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ABSTRACT:

Smolensky [Sm] showed an exponential lower bound for the sizes of circuits with MOD
p, AND and OR gates, using algebraic methods in finite fields. Deriving superpolynomial
lower bounds for circuits with MOD m gates remained unsuccessful, despite the widespread
opinion that the powers of MOD m gates and MOD p gates do not differ considerably.

We prove in this paper that it is much harder to evaluate depth—2, size-N circuits
with MOD m gates than with MOD p gates by k—party communication protocols: we show
a k—party protocol which communicates O(1) bits to evaluate circuits with MOD p gates,
while evaluating circuits with MOD m gates needs Q(N) bits, where p denotes a prime,
and m a composite, non-prime power number. Let us note that using k-party protocols
with k& > pis crucial here, since there are depth-2, size-N circuits with MOD p gates with
p > k, whose k—party evaluation needs (IN) bits. As a corollary, for all m, we show a
function, computable with a depth-2 circuit with MOD m gates, but not with any depth—2
circuit with MOD p gates.

It is easy to see that the k—party protocols are not weaker than the k'—party protocols,
for k' > k. Our results imply that if there is a prime p between k and k¥': ¥ < p < &/,
- then there exists a function which can be computed by a k'—party protocol with a constant
number of communicated bits, while any k-party protocol needs linearly many bits of
communication. This result gives a hierarchy theorem for multi-party protocols.

Address: Max Planck Institute for Computer Science, Im Stadtwald, W-6600 Saar-
bruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de

1



1. INTRODUCTION

Smolensky [Sm) showed an exponential lower bound for the sizes of circuits with MOD
P, AND and OR gates, using algebraic methods in finite fields. Deriving superpolynomial
lower bounds for circuits with MOD m gates remained unsuccessful, despite the widespread
opinion that the powers of MOD m gates and MOD p gates do not differ considerably,
where (and throughout this paper) m is a non-prime power composite number and p is a
prime.

Recently, Kakn and Meshulam [KM] showed that OR,, can be computed by a depth-2
circuit with MOD (2p) gates, while it can not be computed by any constant-depth circuits
with MOD p gates.

In this paper we show a large gap between multi—party complexities of evaluating circuits
with MOD p and MOD m gates, where a MOD r gate outputs 1 iff its input is divisible by
7. The multi-party communication game, defined by Chandre, Furst and Lipton [CFL), is
a generalization of the 2-party communication game of Yao [Y1)]. In this game, k players:
Py, P;..., P, intend to compute the value of g(4:,A42,...,4x), where g : {0,1,2,....,m —
1}*» — N, where N denotes the set of natural numbers, m € N and 4; € {0,1,2,...,m —
1}», for i = 1,2,...,k. Player P; knows every variable, ezcept A;, for ¢ = 1,2,...,k. The
players have unlimited computational power, and they communicate with the help of a
blackboard, viewed by all players. Only one player may write on the blackboard at a time.
The goal is to compute g(A;, Az, ..., A), such that at the end of the computation, every
player knows this value. The cost of the computation is the number of bits written on
the blackboard for the given A = (4;, A,,..., Ax). The cost of a multi-party protocol is
the maximum number of bits communicated for any A from {0,1,2,...,m — 1}**. The
k-party communication complexity, C(*)(g), of a function g, is the minimum of costs of
those k-party protocols which compute g.

The theory of the 2-party communication games is well developed [L], but much less is
known about the multi-party communication complexity of functions. As a general upper
bound, P; can compute any function of A with n bits of communication: P, writes down
the n bits of A; on the blackboard, P; reads it, and computes the value g(A) at no cost.
The additional cost of diffusing the result g(A) to other players is the binary length of
9(4).

An important progress here was made by Babai, Nisan and Szegedy, [BNS], proving an
(%) lower bound for the k—party communication complexity of the GIP function. This
result is almost optimal, as shown in [G]. Goldmann and Hdstad [GH] found a surprising
apphca.tlon of the BNS-lower bound to circuit—complexity.

In [GH], some special depth—3 threshold circuits are considered, whose outputs can easﬂy be
computed by a multi-party protocol. This fact implies that these circuits cannot compute
functions needed a large number of communicated bits (e.g. GIP).

In this paper we use multi-party techniques to characterize some hard-to~handle circuit
classes. We shall need the following definition:

Definition 1. Let C be a circuit, and let k > 2 be an integer. Let X denote the set of
the input-variables of C, i.e. X = {z1,%2,...,z¢}. We say that circuit C is k-evaluated .



with b bits of communication, if for all partitions of X into k classes X;,X3,...X, there
exists a k—party protocol with players P, P,, ..., Py, such that all the players know circuit
C and partition X, X3, ...X, and player P; knows the values of all the variables, except
those in X;, for i = 1,2, ..., k; and the k—party protocol computes the output of the circuit,
communicating at most b bits.

Heuristically, we can consider a circuit to be “hard” if it needs a large number of
communicated bits for evaluation, otherwise it can be said “easy”. The statement of the
main lemma of [BNS] (whose generalization is our Lemma 12.), implies that the circuit,
with a PARITY gate at the top and fan—in ¥ AND gates at level one is hard for k—party
protocols. The lower bound of [GH] uses the fact that any circuit, with a SYMMETRIC
gate at the top, and arbitrary gates of fan—in at most k — 1 at level 1 are easy for k—party
protocols. The easiness of some circuits with MOD m and EXACT gates (with fan-in
bounded by %k on level one) is used to derive exponential lower bounds for the sizes of -
those circuits in [G2]. '

Szegedy has considered the (2—party) communication complexity of evaluating Boolean
functions in [S], using the 2-party version of Definition 1. He proved that circuits with
gates of bounded symmetric communication—complexity, can be simulated by circuits with
MOD m, AND and OR gates of similar depth and size.

Obviously, if m and p are constants, then there is no difference between the evaluations
of one MOD m or one MOD p gate. However, we shall show here, that if we consider two
layers of MOD p gates versus two layers of MOD m gates, the difference is dramatic
(Theorem 2 vs. Theorem 5), and the k—party technique (with & > 2) becomes very
important (Theorem 2 vs. Theorem 3).

Theorem 2. Let p be a prime, k > p an integer, and let C be a circuit of depth 2 and size
N with a MOD p* gate on the top, for 2 < £ < p!*/?] and N —1 MOD p gates on level 1.
Then C is k—evaluated with O(k£) bits of communication.

Note. When p and k are constants, then the circuit is kevaluated by a constant number
of communicated bits. :

The k > p assumption, and the use of the k—party communication model is crucial here,
since '
Theorem 3. Let ¢ > k, and N € N. Then there exists a depth-2, size-N circuit with

MOD q gates, which needs Q(f{-) bits of communication, if evaluated by any k-party
protocol.

Let us note that the k—party protocols separate the powers of the circuits with MOD »p
gates and with MOD q gates, where ¢ > k > p.
The next is an immediate corollary of Theorem 2:

Corollary 4. Let k > 2, integer, and let f be a function, and suppose that the k—party
communication complexity of f is non~constant. Then f cannot be computed by a depth-2
circuit of MOD p gates, forp < k. |}



Theorem 5. Let m be a positive integer with at least two different prime divisors, p;
and p;, and let N and k be positive integers. Then there exists an explicitly constructible
depth-2, size-N circuit C with MOD m gates on the first and on the second level, such
that the k-evaluation of C needs 9(%) bits of communication, where constant ¢,, > 0

depends only on m.

Obviously, the k-party communication complexity of the function, computed by C, is
Q(;J,,\'L), so, by Corollary 4, for any p < k, this function cannot be computed by any depth-
2 circuits with MOD p gates. For any m and p, choosing a k > p, this result separates the
powers of depth-2 circuits with MOD m and with MOD p gates.

It is easy to'see that the k—party protocols are not weaker than the k'-party protocols,
for k' > k. Theorem 2, and, on the other hand Theorem 3 directly imply the following
hierarchy-theorem:

Theorem 6. Let k < k' two positive integers, and suppose that there is a prime p between
k and k': k < p < k'. Then for all N € N, there exists a function of kN variable which
can be computed by a k'-party protocol with a constant number of communicated bits,

while any k-party protocol needs QU N) bits of communication to compute the function.
|

2. SEPARATING CIRCUIT-CLASSES

Proof of Theorem 2. By Definition 1, we must show a k-party protocol for any k-
partition {X;,X>,...,Xx} of set X which evaluates C with O(k£) bits of communication.
Let the partition {X;,X3,..., X} be fixed.

The pla.yers first compose a matrix B € {0,1,2,...,p— 1}(¥N~1*k then play a k-party
protocol, usmg data only from this matrix. Let B; denote column %, B’ row j of B, and
BJ the entry in the intersection of B; and B’. Let G;,Gs,...,GN—1 denote the MOD P
ga.tes on level 1 of C. Gate G; will be corresponded to row Bj as follows:

B;?‘ is the sum, modulo p, of the values of those inputs of G; which are in class X;. The
value of z, (or Z;) should be added with multiplier ¢, if G; is connected to z; (or to Z,)
with c, wires.

Let us observe that players can compose matrix B without any communication, and P;
knows every column of B, except B’, j =1,2,..., k.

It is easy to see that circuit C outputs 1 if and only if the number of those rows of B,
whose sums are divisible by p, is 0 mod pl*/?), :

Lemma 7. Let B € {0,1,2,...,p — 1}***, where p is a prime and k > p an integer. Then
there exists an explicitly constructible protocol, which computes the number, modulo p?,
of those rows of B, whose sums are divisible by p. Moreover, this protocol uses O(k£) bits
of communication for 1 < £ < pl¥/?],

Proof. Protocol “MOD m” will satisfy the requirements, with m = p:
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The strategy of the-players in protocol MOD m is the following: Player P; (1 < i <
k) assumes that column i of B, B; is the all-1 vector. P; — using his assumption —
communicates the number of rows in each congruency- classes modm:

a = (0,01, .y Am—1),

where o; denotes the number of those rows, whose sums are believed to be i mod m. Next
P, corrects P in case of those rows which begin with 0 or 2, or 3, or ..., m — 1, instead of
the assumed 1: P, communicates the corrections, to be added to vector . P, computes
this correction, assuming that he knows the entire input. Then P; corrects P; and Ps,
in case of those rows, which begins with two non—ones, and so on, until P comes. Then
Py corrects Py, P, ..., Pr—; in case of those rows which begins with £ — 1 non—ones. The
protocol makes errors only in the case of those rows, for which neither of the assumptions
were satisfied: the rows without 1's. Every other row will be counted correctly: since at
least one player’s assumption was right, he saw the row correctly, and counted it to the
proper congruency—class, corrected the errors of the players with lower indices. Player P;
will not count those rows, which contain a 1 in a position lower than 7.

Example. Let m = p = 3,k = 3, and consider row 022.

P, assumes this row to be 122, so he counts this row to vector « as (0,0,1).

P, assumes this row to be 012, so he counts it as (1,0,0), and P, assumes that P, saw the
row to be 112, and because of this, P; communicated (0,1,0) for this row, which should
be corrected by P, subtracting it. In total, P, adds (1,—1,0) to the a of P;.

P; assumes the row to be 021, he adds (1,0,0), and he corrects first P;, next P,. Ps
assumes that P; saw the row to be 121, and corrects him adding (0,—1,0) to a. Ps
assumes that P, saw the row to be 011, and corrects him by adding (0,0,—1). However,
P; assumes that P, erroneously corrected P;, P; thinks that P, thinks that P; saw the
row to be 111, so P; is thought to correct P, adding (—1,0,0), so Ps corrects P, by adding
(1,0,0). So P; adds in total (2,—1,-1).

The sum of the corrections here is (3,—2,0) instead of the correct value (0,1,0).

Let us observe that (3,—2,0) = (0,1,0) (mod 3), i.e. the value computed is correct
if seen modulo 3. The following lemma gives a formula for the number, computed by our
protocol for rows without entry “1”. We shall see that the error is 0 (mod pl*/?]).

Notation 8. Let N denote the set of natural numbers. We denote the elements of vector
space N™ by small-case greek letters, and we index their coordinates from 0 through
m — 1. Let S™** denote the set of all n x k matrices with entries from set S. Let
Be{0,1,...,m —1}**k, Let

8™ (B) = (60,815 s 1)
denote a vector where é; is the number of those rows of B, which are congruent to %

(mod m). Let v € {0,1,...,m — 1}*, then CT(v, B) denotes the number of those rows of
B, which are equal to v. Let 0 = (0,0,...,0) € {0,1,...,m — 1}*.

Lemma 9. Protocol MOD m computes the number

5™ (B) - > CT(v, B)w.,,

v€{0,2,3,....m—1}*
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where w, € N™, and when v contains d, 2 coordinates, d3 3, ..., dm—1 m —1’s, and dyp
0’s, then

w, = vII4O)(I — T™1)33(I — I™"2) (I — O%)3m-1(I — M),

where v = (1,0,0,...,0) € N™, d(v) =2d; + 3d3 + ... + (m — 1)dmn_1, and II is the m x m
cyclic right-shift permutation matrix:

010 00
0 01 00
g=13 ¢ ¢ :
0 00 10
0 00 01
1 00 00

Let us note that a row vector multiplied by II is the vector with coordinates shifted
with one position to right. Similarly, if a row-vector is multiplied by II! the result is the
vector, with coordinates shifted with one position to left.

Before proving Lemma 9, let us see how it implies Lemma 7. Let m = p. Since matrix II
commutes with its own powers, one can write w, into the form:

w, = vI¥")(I — M)k P(I),
where P(II) is a polynomial of matrix II, since k = dy + ds + wee +dm-1 + dg, and one can
write (I — II*) = (I — I)Q(II), where Q is also a polynomial. '
By the binomial theorem:

(I-T)P = (g).r_ G’)n+... +(-1)? (;) Ior = f+‘(-1)?11? =I+(-1)’I =0 (mod p),

sO

(I -T)?)'5) =0 (mod pl3)), and (I - M)* =0 (mod pl3)).

Hence
w, =0 (mod pL%J )s
for all v € {0,2,3,...,p — 1}*. This means that protocol MOD p computes §™(B) mod
L&)
p7.

However, the players are enough to communicate their « vectors only mod p‘. Hence each
player communicates p numbers of size O(£log p), and protocol MOD p uses O(kflog p) =
O(k£) bits of communication, which is constant if k is constant.

Proof of Lemma 9. First we prove



Sublemma 10. The vector, computed by protocol MOD m for a row v € {0,2,3,...,p—
1}* is the same for any permutation of the coordinates of v.

Proof. It is enough to prove that our protocol computes the same vector for
¥ = (V1,V2,rey Viy Vi1 +eey Vk)
and
!
v = (V1,02 eey Vit1, Viyoeny Ok ).
Obviously, P, communicates the same vector for v and v' if s # ¢ or s # : + 1. P; assumes
v to be vp, and v’ to be vp:

vp;, = (1)1,172, w3 1, Vi1, ...,‘Uk)

P g
Vp, = (1)1,1)2,...,1,1),,...,1));),

while P;y, assumes v to be vp,,, and v’ to be vp, . :
VP = (V1,200 04, 1,00, V)

I
VPifr = (v1,92; ey Vit1, 1, 00y Ok)-

P; sees v in the same congruency-class as P;y; sees v', and P; sees v' in the same
congruency—class as P;y; sees v. Moreover, P; corrects players P;, Ps,...,P;_; for row
v exactly as P;y; corrects them in row v', and P; corrects players P, P,,..., P;_; for row
v' exactly as P;y; corrects them in row v. P;4; ,both in v and in v', corrects P; assuming

(‘v1,‘v.2, seey 1', 1, ...,'vk).

So the sum of the vectors, communicated by P; and P;y, is the same for v and for v'. [}

By Sublemma 10, we may assume that the first d, coordinates are 2's, then ds 3’,...,
dm—1 m —1’s, and, at the end, dgy 0’s. Let us note that the correct vector, to be added up
for v to get §™(B), is vII* "), However:

P, assumes the first coordinate to be 1 instead of 2, so he communicates

-1,

P, assumes the second coordinate to be 1, so he adds up vII¥® I}, too, but corrects P;
by subtracting vII%(*)II~2, since the sum, supposed to be seen by P, is less by one. So P,
communicates:

VIOV — I ).

P; (i < d2) communicates the same vector as P;_; communicated plus the correction for
P;_,. This correction is (—II"!) times the vector, communicated by P;_;, so P; commu-
nicates: ‘

V]Id(v)]:[—l (I - H—I )i-—l .
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The sum of the vectors communicated by P;, Ps, ..., Py, is:

ﬂ(2) — paé -1 [I+ (I _ H-—l) +(I= H—-1)2 $ et T — n-—l)dz—l] -

= yI4C)(I — (I - TI1)%).
Remark: d, = 0 implies that 3(2) = 0.

P;,+; assumes v4,41 to be 1, instead of the correct 3. So Pj,+; sees the sum of v one
less than P;, has seen, this also applies to the corrections for P, Ps,...,Pi,—1. So Py,
communicates vYII%®) T~ ([—I~1)4~10~? plus the correction for Ps,: what is the (—II~2)
times that P;, has communicated. P;, communicates:

v — I1)% "} (I~ - I7%) = yI4II—2(1 — I1)%.

P;, ;2 tells the same for the sum of v and the corrections for Py, Ps,..., Pi, as P4,41, but
he also corrects P4, 1, by subtracting II~% times the vector that P4,+; has communicated,
so in total, Pj,+, communicates:

YOI ~2(] — T~1)%(1 - I72).

Py (i < d3) communicates

yI4O~2( — O~)42 (1 - m~2)L.

B®), the sum of the vectors, communicated by Py +1,Pi, 424y Paytds 1s

ﬂ(3) - V]Id(“’)(I —-Io? )dz (I _ (I 12 )da).

Similarly, B, the sum of the vectors, communicated by Pty atis
Pa,t..tdj_ 14250y Pdyt..4d; _1+d; 15

B = NI — W) (I — M~9+2)di-1 (] — (I — OI—3+1)4%),

The result of the telescoi)ic sum ﬂ(.z) +BG) 4+ ...+ ™ 1 B0 i:
VI [ — )2 (I —O72)% (I — T+ ydm,
So the vector w, is equal to
wy = yI¥N(I — M) %(I — M2)%. (1 — T+ o,
Noticing that II™ = I, our result follows. [
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Proof of Theorem 5. By Definition 1, we must give a circuit C and a k partition
X1,X3,... X of X, for which every k~party protocol needs (L) bits for evaluation. In
fact we shall prove the statement only for k’s of the form k = p: since if for a k—partition
X1,X2,..., X the k-evaluation of circuit C needs a bits of commumca.tlon, then for k' < k,
and for the partition X] = X,..., X}, _, = Xpo1, Xp = UL, X, the k'—evaluation needs
also at least a bits of communication. If we prove a lower bound of Q(—;;) for the least
k > k' of the form k = p{, then it implies a lower bound Q(g,—) with ¢,, = 4P* for the
original k', and that is stated in the theorem. "

Let

X = {Y1,Y2; -y Ym3 T11, 212 -vey L1k T21 -0 T2k s s Z(N=1)13 -+ z(N—1)k]’a
The partition on X is defined as follows: X1 = {¥1,¥2,:-sYm; %11, %21, .-, E(N—-1)1}, a0d
X;= {z1j,zzj,...,z(N_1)j}, for j = 2,3,..., k.
Let g1 = m/p1, and g2 = m/p,.
Circuit C is defined as follows: there is a MOD m gate G on the top, and MOD m
gates G1,G3,...,GN—1 on the first level; the variables of X are situated on the bottom.
G is connected to variables y;,¥2,...,¥ym With one-one input wire, while to each gates
G1,Gs,...,GN—1 with ¢ input wires. The fan-in of G is (N — 1)q; + m. Gate G; is
connected to each variable from {z;;,zi2,..., i} with g, input—wires, the fan-in of the
MOD m gates is kqg,.
Let us remark that G; is 1iff z;; +Zi2+...+ 2 = 0 (mod p;). Suppose that > I~ v = q18
(mod m). Then Gis 1iff ¢35 + ¢1(G1 + G2 + ... + GN—-1) = 0 (mod m). Or, in other
words, Gis 1iff s+ (G1 + G2 + ... + GN-1)0 (mod p;). ,
Let A denote matrix {z;;},¢=1,2,..,N —1; j =1,2,...,k. Because of the definition of
our partition, player j knows all the columns of this matrix, except column j. Gate G; is
1 iff the sum of row 7 is divisible by p,, and gate G is 1 iff the number of those rows of A4,
whose sums are divisible by p., is congruent to —s (mod p,).

Suppose now, that players P, Ps, ..., P evaluates circuit C with communicating b bits.
Then for any s and for any 4 € {0,1, }(N —1)xk they can decide, communicating b bits,
whether the number of those rows of A, whose sums are divisible by p,, is congruent to
—s (mod p);, or not. So the players can compute the number, mod p;, of those rows of
A, whose sums are divisible by p, with bp; bits of communication.

The following lemma gives a lower bound to bp;:

Lemma 11. Let p; and p, be different primes, k = p$, and A € {0,1}"**. Then any
k-party protocol computing mod p; the number of those rows of A which are divisible by
P2, needs Q) bits of communication.

Proof. By Lemma 9, players can compute vector
(1) . §2)(4) — (I — M)*CT(0, A)

using O(klogn) bits of communication, where 6? 2)(A) is the number of rows of A, whose
sum is = (mod p;), and II is the P2 X pz cyclic right-shift permuta.tion matrix.

(I - m)* E( 1)( )n*—z %! (mod p;),

1=0

9



since k = p$ and p; divides (%) if 0 <i < k.
Since v = (1,0,0,. 0), v(I—I)Pi = y(I—1IPi) is the first row of (I —II?1). The first entry

in the first row of II”iL is 0, since IT?1 # I, because p, does not divide pS. So the first entry
of vector v(I — II?1) is 1, thus the first coordinate of vector §(P2)(A) ~ »(I — II)*CT(0, A)

2) 687 (4) — CT(0,4) (mod py).

From the assumption, 681’ 2)(A) mod p; is computed by the protocol, say, with z bits of
communication. Then, because of (2), CT(0,A) mod p; can also be computed using z +
O(klogn) bits of communication. The following generalization of ([BNS], Theorem 1)
yields that z + O(klogn) = Q(3%).

" Lemma 12. Let p be a prime, and A € {0,1,}"**. Then any k—party protocol, which
computes CT(0, A) mod p, needs (%) bits of communication.

‘Proof. We adopt the notation and some of the definitions of [BNS]. Let S C {0, 1}"'"’e
S is called a cylinder if the membership of S does not depend on column i, for some
1 €{1,2,...,k}. Siscalleda cylinder—intersection if it can be represented as the intersection
of some cyhnders

It is easy to verify that for any k—party protocol, the subset S C {0, 1}™** whose
elements, if they are taken as inputs, lead to the same strmg s of communicated bits, is
a cylinder intersection. Any cylinder intersection in {0,1}"** can be represented as the
intersection of at most k& cylinders.

Definition 13. Let g: {0,1}"** — {0,1,2,...,p— 1} be a function. The discrepancy of g
r—1

I'(g) = ma.x\ Y eiPr{g(4) =i, A € 5)|,

=0

where € is a p-th complex root of unity, which minimizes |1 + €|, and A is chosen uniformly
from {0,1}*** and S runs over all the cylinder intersections of {0,1}*F.

Lemma 14. ([BNS], Lemma 2.2.) For any function g:

o(0) 2 08 (57 -

Proof. Let Sy be the cyhnder—mtersectlon of the largest probability, on which g is con-
stant. Then Pr(So) < I‘(g), and, on the other hand, C(g) > log (P—) I

Let g(A) = gn,k,p(A4) = CT(0,A) mod p, and let

f(A) = e9(4) = (CT(0:4),

Let

ABm) =, max  |E(f(4)é162--6)]
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where ¢; is a shorthand for ¢;(A) = ¢:(4i1, A2, ..., Ax), where A; denotes column j of
matrix A, and where the maximum is taken over all functions ¢; : {0,1}*** — {0,1} such
that ¢; does not depend on A;. E denotes the expected value on the uniformly distributed
A= (A;,A;,...,A;) € {0,1}7%F, '

Let us note that A(*)(n) = I'(g 1 p)- Because of Lemma 14, an upper bound to A¥)(n)
yields a lower bound to C(g).

Lemma 15.

where py = 3, and p; = 1/1—+'—‘2“—1.

Note: It is easy to show by induction that px < 1 —4~*, which is about e

AP (n) < p,

—4—k

Proof. The proof is by induction. For k£ =1,

A®(n) <277 (’g) &+ (’1‘) St (Z)snl = 2|1+ ) <277 =

since |(1 +¢)| < 1. Let k > 2. Since ¢ does not depend on Ax:

A®)(n) < E
: Al yA2 v"aAk— 1

(B (fdr, 4,r )i 900)) |

We will use the following version of the Cauchy-Schwarz inequality:

Cauchy—Schwarz inequality. For any random variable z:
(E(=))* < E(=*).
Using the Cauchy-Schwarz inequality with

T =

P (f(A17A21 ceey Ak)¢1¢’2"°¢k—1) ’

and noticing that

22=

E(f)ibrdrns)| = (B (F(A)so2u2)) (B (FA)b16z-n-)),

Where f denotes the complex conjugate of f.

We can estimate

=

z

(3) A(k)(n)S[ E ( E (f(A)¢1¢2...¢k_1)) (E (f(A)¢1¢2,,,¢k_1)>] -

Ay 1A2,-"7Ak—1

[0

- [ E (U7 eVeVedeY .--¢2’_1¢Z_1)]

U7V1A1 ,Az 1"-7Ak—1
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where U,V € {0,1}*, and fU stands for f(41,42,..,4x-1,U), f¥ stands for
f(A1,42,...,Ak—1,V), and ¢V stands for ¢i(4;,42,...,4x-1,U), ¢Y stands for
¢i(A1)A21-":Ak—1’V)-

Note: The domain of fU, f¥ and ¢Y, ¢V is {0,1}7*(*-1),

Let us partition the rows of matrix A' = (4;,4,,...,Akr-1) into four classes:
Ago, A11,A01 and Ajo, where A,y contains row i of A' ff U; = 2,V; =y,1 <7 < n,
z,y € {0,1}. Let fy denote the restriction of fU to Ay: . fgy = gCT(%423)  for
z,y € {0,1}. fV is defined similarly.

From the definition of f:
f7 = foofar flo i1, and £V = foo for flofis-

So
FOFY = foofaofor For fio Flo fii Fi1-
Let us observe that f] fj; = 1, since among those rows there are no all-0 ones, because
their last coordinates are 1. f = foo = eCT(0:400) 5o fU f¥ = 1. Moreover, fi =€ =1,
fo; = €° = 1, so we have got:
| 75" = fafio-
Fori=1,2,....,k—1,let A; be composed of two parts: B; and C;, where C; corresponds to
the coordinates of 4; in the rows of A;¢, and B; corresponds to the remaining coordinates.
U,V,B1,B2,..cBi—
Let éi 12 . 1(C'],, Cz, eeny Ck—l) = ¢£J(A1, Az, ceny Ak—l )¢Y(A1, Az, eeey Ak_1). Then
we can estimate (3):
|

L

uv

A®(n) < [ E
311321"-ka—1 Cllch"-tck—l

E fa ( E (m§1§2~o-€k-1))

since f& does not depend on the C!s.

From the induction hypothesis:

B (Fitibatins)| <ups,

Cl,c2s"-sck—1

where m;o is the number of rows in A4;,.

Fori=1,2,...,k—1 let B; be composed of two parts: D; and F;, where F; corresponds to
the coordinates of B; in the rows of A3, and D; corresponds to the remaining coordinates.
Then

A(k) n) < [ E ( mio
(n) < UV,D1,DayersDa_y \ K71

1
2
5L @]
FI’FZ;---,FI:—-I ot
Again, from the induction hypothesis, choosing ¢; = ¢2 = ... = Pp—1 = 1:

e, (8)]<se
Fi,FarFroy \ O3 Fie-1>
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where my; is the number of the rows of Ay;. So we have got
3
A(k)(n) < [ E (#Zhg+mw)]
= luViD1,D2yesDron N

myg + Mo is equal to the number of those coordinates :: U; # V;. Since U and V is
distributed uniformly, the probability that m,9 + m¢1 = m is (:,_) 2™, so:

n % -
n —T n 3 n
Al0(n) < (Z (m) 2_“#?_1) = (271 + pr-1)")* = i,
_ \m=0 '

and this completes the proof of Lemma 15. [}
Lemma 15 yields that A(F)(n) < uf < e~™ " and from Lemma 14:

C(9) Zilogv(e"rk) = Q(%)

which completes the proof of Lemma 12. E
We have got that z + O(klogn) = Q(J%), that is, z = Q(3t), so any protocol computing

531’ 2)(A) mod p; needs Q(3%) bits of communication, and this is the statement of Lemma
11. .

Since bp, = Q(%), then b = Q(%) also holds, thus evaluating circuit C needs also (%)
bits of communication for k = p§, and () bits for general k. This completes the proof

of Theorem 5. W
Proof of Theorem 3. Let p be a prime—divisor of q. Let

X = {yl,y'h ceo3Yg3 115 T129 eeey T1ky L2153 o0y T2ky ooey B(N=1)1) ++*3 Z(N—l)k}i

The partition on X is defined as follows: X; = {y1,¥2,--¥g3 11,221, .-, Z(N—1)1}, and
X; = {21,225, T(N-1)j}» for j = 2,3,..., k.

Let g1 = ¢/p.

Circuit C' is defined as follows: there is a MOD ¢ gate G on the top, and MOD g¢
gates G1,G2,...,GN_1 on the first level; the variables of X are situated on the bottom.
G is connected to variables ¥;,¥2,...,y; With one-one input wire, while to each gates
G1,G2,...,GN-1 with ¢; input wires. The fan—in of G is (N — 1)¢; + g. Gate G; is con-
nected to each variable from {zi1, Z:2, ..., Zix} With 1 input~wire. The fan-in of the MOD
g gate G;is k,for: =1,2,...,N — 1. '

Let us remark that G; is 1 iff z;; = zi2 = ... = z;& = 0. Suppose that zg___l Yi = @18
(mod g). Let A denote matrix {z;;}, ¢ = 1,2,...,N —1; 7 = 1,2,....,k. Then G is 1 iff
@15+ qCT(0,A4) (mod g). Or, in other words, G is 1 iff s + CT(0,4) =0 (mod p).

13



Because of the definition of our partition, player j knows all the columns of matrix A4,
except column j. Gate G; is 1 iff row ¢ is the all-0 row, and gate G is 1 iff the number of

the all-0 rows of A is congruent to —s (mod p).
Suppose now, that players P, P,,..., P; evaluates circuit C' with communicating b

bits. Then for any s and for any A € {0,1,}(¥N 1k they can decide, communicating b
bits, whether the number of the all-0 rows of A, is congruent to —s (mod p);, or not. So
the players can compute the number of the all-0 rows of A, mod p. From Lemma 12 our

statement follows. W :

14



REFERENCES

[BNS] L. Babai, N. Nisan, M. Szegedy: Multiparty Protocols and Pseudorandom Sequences,
Proc. 21st ACM STOC, 1989, pp. 1-11. \

[CFL] A. K. Chandra, M. L. Furst, R. J. Lipton: Multi-party Protocols, Proc. 15th ACM
STOC, 1983, pp. 94-99. '

[G] V. Grolmusz: The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal,
to be appeared in “Informa.tion and Computation”.

[G2] V. Grolmusz: Circuits and Multi-Party Protocols, Technical Report No. MPII-1992-
104, Max Planck Institute for Computer Science, Saarbruecken, Germany, 1992,

[GH] M. Goldmann, J. Histad: On the Power of Small-Depth Threshold Circuits, 31st
IEEE FOCS, 1990, pp. 610-618.

[HMPST] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, G. Turdn: Threshold Circuits of
Bounded Depth, Proc. 28th IEEE FOCS, 1987, pp. 99-110.

[KM] J. Kahn, R. Meshulam: On mod p Transversals, Combinatorica, 1991, (11) No. 1.
pp. 17-22. '

[KS] B. Kalyanosundaram, G. Snitger: The Probabilistic Communication Complexity of
Set Intersection, Proc. Structure in Complexity Theory, 1987, pp. 41—49.

[KW] M. Karchmer, A. Wigderson: Monotone Circuits for Connectivity Require Super-
Logarithmic Depth, Proc. 20th ACM STOC, 1988, pp. 539-550

[L] L. Lovdsz: Communication Complexity: A Survey, Technical Report, CS-TR-204-89,
Princeton University, 1989.

[R] A. A. Razborov: On the Distributional Complexity of Disjointness, preprint
[R1] A. A. Razborov: Lower Bounds on the Size of Bounded Depth Networks Over a
Complete Basis with Logical Addition, (in Russian), Mat. Zametki, 41 (1987), 598
607

[RW1] R. Raz, A. Wigderson: Probabilistic Communication Complexity of Boolean Rela-
tions. Proc. 30th IEEE FOCS, 1989, pp.

[RW2] R. Raz, A. Wigderson: Monotone Circuits for Matching Require Lmea.r Depth. 22nd
ACM STOC, pp. 287-292.

[S] M. Szegedy: Functions with Bounded Symmetric Communication Complexity and
Circuits with MOD m Gates, Proc. 22nd ACM STOC, pp. 278-286.

15



[Sm] R. Smolensky, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity, Proc. 19th ACM STOC, pp. 77-82, (1987).

[Y1] A.C. Yao: Some Complexity Questions Related to Distributive Computing, Proc.
11th ACM STOC, 1979, pp. 209-213.

[Y2] A.C. Yao: Circuits and Local Computation, Proc. 21st ACM STOC, 1989, pp. 186—
196 ‘

[Y3] A. C. Yao: On ACC and Threshold Circuits, 31st IEEE FOCS, 1990, pp; 619-627.

16






	92-1200001
	92-1200002
	92-1200003
	92-1200004
	92-1200005
	92-1200006
	92-1200007
	92-1200008
	92-1200009
	92-1200010
	92-1200011
	92-1200012
	92-1200013
	92-1200014
	92-1200015
	92-1200016
	92-1200017
	92-1200018
	92-1200019
	92-1200020



