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ABSTRACT: 

Smolensky [Sm] showed an exponentiallower bound for the sizes of cireuits with MOD 
p, AND and OR gates, using algebraie methods in finite fields. Deriving superpolynomial 
lower bounds for cireuits with MOD m gates remained unsueeessful, despite the widespread 
opinion that the powers of MOD m gates and MOD p gates do not differ eonsiderably. 

We prove in this paper that it is much harder to evaluate depth-2, size-N cireuits 
with MOD m gates than .with MOD p gates by k-party eommunieation protocols: we show 
a k-party protoeol which eommunieates 0(1) bits to evaluate cireuits with MOD p gates, 
while evaluating cireuits with MOD m gates needs n(N) bits, where p denotes a prime, 
and m a eomposite, non-prime power number. Let us note that using k-party protoeols 
with k > p is erucial here, since there are depth-2, size-N cireuits with MOD p gates with 
p > k, whose k-party evaluation needs n(N) bits. As a eorollary, for all m, we show a 
function, eomputable with a depth-2 cireuit withMOD m gates, but not with any depth-2 
circuit with MOD p gates. 

It is easy to see that the k-party protoeols are not weaker than the k'-party protoeols, 
for k' > k. Our results imply that if there is a prime p between k and k': k < P < k', 
then there exists a function which ean be eomputed by a k'-party protoeol with a eonstant 
number of eommunieated bits, while any k-party protoeol needs linearly many bits of 
eommunieation. This result gives a hierarchy theorem for multi-party protoeols. 

Address: Max Planck Institute for Computer Scienee, Im Stadtwald, W-6600 Saar­
bruecken, GERMANYj email: grolmusz@mpi-sb.IIi.pg.de 
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1. INTRODUCTION 

Smolemky [Sm] showed an exponentiallower bound for the sizes of circuits with MOD 
p, AND and OR gates, using algebraic methods in finite fields. Deriving superpolynomial 
lower bounds for circuits with MOD m gates remained unsuccessful, despite the widespread 
opinion that the powers of MOD m gates and MOD p gates do not düfer considerably, 
where (and throughout this paper) m is a non-prime power composite number and p is a 
prune. 

Recently, Kahn and Me&hulam [KM] showed that 0Rn can be "computed by a depth-2 
circuit with MOD (2p) gates, while it can not be computed by any constant-depth circuits 
with MOD p gates. 

In this paper we show a large gap between multi-party complexities of evaluating circuits 
with MOD p and MOD m gates, where a MOD r gate outputs 1 iff its input is divisible by 
r. The multi-party communication game, defined by Chandra, Fur&t and Lipton [OFL], is 
a generalization of the 2-party communication game of Yao [Yl]. In this game, k players: 
P1 ,P2 ••• ,PIe intend to compute the value of g(A1 ,A2 , ••• ,AIe), where 9 : {O,1,2, ... ,m-
1 }len ~ "N, where N denotes the set of natural numbers, m E N and Ai E {O, 1,2, ... , m -
1}n, for i = 1,2, ... ,k. Player Pi knows every variable, ezcept Ai, for i = 1,2, ... ,k.The 
players have llnljmjted computational power, and they communicate with the help of a 
blackboard, viewed by all players. Only one player may write on the blackboard at a time. 
Thegoal is to compute g(AI ,A2 , ••• ,AIe), such that at the end of the computation, every 
player knows this value. The cost of the computation is the number of bits written on 
the blackboard for the given A = (Ab A2 , ••• , Ale). The cost of a multi-party protocol is 
the ma.xiinum number of bits communicated for any A from {O,1,2, ... ,m - 1}nle. The 
k-party communication complexity, C(Ie)(g), of a function g, is the mjnjmum of costs of 
those k-party protocols which compute g. 

Th~ theory of the 2-party communication games is well developed [L], but much less is 
known ab out the multi-party communication comple:xity of functions. As a general upper 
bound, PI can compute any function of A with n bits of communication: P2 writes down 
the n bits of Al on the blackboard, PI reads it, and computes the value g(A) at no cost. 
The additional cost of diffusing the result g( A) to other players is the binary length of 
g(A). 

An important progress here was made by Babai, Ni&an and Szegedy, [BNS], proving an 
O( 4";) lower bound for the k-party communication complexity of the GIP function. This 
result is almost optimal, as shown in [G]. Goldmann and Hä&tad [GH] found a surprising 
application of the BNS-Iower bound to circuit-complexity. 
In [GH], some special depth-3 threshold circuits are considered, whose outputs can easily be 
computed by a multi-party protocol. This fact implies that these circuits cannot compute 
functions needed a large number of communicated bits (e.g. GIP). 

In this paper we use multi-party techniques to characterize some hard-to-handle circuit 
classes. We shall need the following definition: 

Definition i. Let C be a cireuit, and let k > 2 be an integer. Let X de.note tb.e set of 
tb.e input-variables of C, i.e. X = {ZI, Z2, ••• , zt}. We say tb.at cireuit C is k-evaluated 
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witb. b bits of eommunication, jf for all partitions of X into k classes Xl,X2 , ••• Xk, tb.ere 
exists a k-party protoeol witb. players PI, P2 , ••• , Pk, such. tb.at all tb.e players know Creuit 
C and partition XI, X 2 , ••• Xk, and player Pi knows tb.e values of all tb.e variables, exeept 
tb.ose in Xi, for i = 1,2, ... , k; and tb.e k-party protoeol eomputes tb.e outputoftb.e Creuit, 
eommunicating at most b bits. 

BeuristieaJly, we can eonsider a cireuit to be "hard" ·if it needs a large number of 
communieated bits for evaluation, otherwise it ean be said "easy"·. The statement of the 
main lemma of [BNS] (whose generalization is our Lemma 12.), implies that the cireuit, 
with a PARITY gate at the top and fan-in k AND gates at level one is hard for k-party 
protocols. The lower bound of [GB] uses the fact that any circuit, with aSYMMETRIe 
gate at the top, and arbitrary gates of fan-in at most k - 1 at level 1 are eaSy for k-party 
protoeols. Theeasiness of some cireuits with MOD m and EXAeT gates (with fan-in 
bounded by k on level one) is used to derive exponential lower bounds for the sizes of 
those cireuits in [G2]. 

Szegedy has eonsidered the (2-party) eommunieation eomplexity of evaluating Boolean 
functions in [S], using the 2-party version of Definition 1. He proved that cireuits with 
gates of bounded symmetrie eommunication-complexity, ean be simulated by cireuits with 
MOD m, AND and OR gates of similar depth and size. 

Obviously, if m and p are eonstants, then there is no di:fferenee between the evaluations 
of one MOD m or one MOD p gate. However, we shaJl show here, that if we consider two 
layers of MOD p gates versus two layers of MOD m gates, the di:fferenee is dramatie 
(Theorem. 2 V8. Theorem. 5), and the k-party technique (with k > 2) becomes very 
important (Theorem 2 V8. Theorem 3). 

Theorem 2. Let p be a prime, k > p an integer, and let C be a Creuit of deptb. 2 and size 
N witb. a MOD pi. gate on tb.e top, for 2 ::5 l ::5 pLk/pJ and N - 1 MOD p gates on level 1. 
Tb.en C is k-evaluated witb. O(kl) bits of eommunieation. 

Note. 'Wb.en p and k are constants, tb.en tb.e Creuit is k-evaluated bya con8tant number 
of eommunieated bits. 

The k > p assumption, and the use of the k~party eommunieation model is erucial here, 
Slnee 

Theorem 3. Let q > k, and NE N. Tb.en tb.ere exists a deptb.-2, size-N Crcuit witb. 
MOD q gates, whieb. needs n( ~) bits of eommunieation, jf evaluated by any k-party 
prot0 eol. 

Let us note that the k-party protoeols separate the powers of the cireuits with MOD p 
gates and with MOD q gates, where q > k ~ p. 
The next is an immediate eorollary of Theorem 2: 

Corollary 4. Let k > 2, integer, and let f be a function, and suppose tb.at tb.e k-party 
communieation eomplexity of f is non-eonstant. Tb.en f cannot be eomputed by a deptb.-2 
Creuit of MOD p gates, for p < k. • 

3 



Theorem 5. Let m be a positive integer with. at least two different prime divisors, PI 
and 1'2, and let N and k be positive integers. Th.en th.ere exists an explicitly constructible 
depth.-2, size--N circuit C with. MOD m gates on th.e first and on th.e second level, such. 
th.at th.e k-evaluation of C needs O(!l-) bits of communication, wh.ere constant Cm > 0 

c'" 
depends only on m. 

Obviously, the k-party communication complexity of the function, computed by C, is 
O( * ), so, by Corollary 4, for any P < k, this function cannot be computed by any depth-

'" 2 circuits :with MOD P gates. Forany m and p, choosing a k ~ p, this result separates the 
powers of depth-2 circuits with MOD m and with MOD p gates. 

It is easy to'see that the k-party protocols are not weaker than the k'-party protocols, 
for k' > k. Theorem 2, and, on the other hand, Theorem 3 directly imply the following 
hierarchy-theorem: 

Theorem 6. Let k < k' two positive integers, and suppose th.at th.ere is a prime p between 
k and k': k < p ~ k'. Th.en for all N E N, . th.ere exists a functioD of kN variable wh.ich. 
can be computed by a k' -party protocol with. a constant number of communicated bits, 
wh.ile any k-party protocol needs O( N) bits of communication to compute th.e function . . 

• 
2. SEPARATING CIRCUIT-CLASSES 

Proof of Theorem 2. By Definition 1, we must show a k-party protocol for any k­
partition {X I ,X2 , ••• ,XIc} of set X which evaluates C With O(kl) bits of communication. 
Let the partition {Xl, X 2 , ••• , X Ic} be fixed. 

The players first compose a matrix B E {O, 1, 2, ... ,p _1}(N-I)xlc, then playa k-party 
protocol, using data only from this matrix. Let Bi denote column i, Bi row j of B, and 
Bf the entry in the intersection of Bi and Bi. Let Gb G2 , ••• ,GN-I denote the MOD p 
gates on level 1 of C. Gate Gi will be corresponded to row Bi as follows: 

B{ is the sum, modulo p, of the values of those inputs of Gi which are in dass Xi. The 
value of Zl (or Zl) should be added with multiplier Cl if Gi is connected to Zl (or to Zl) 

with Cl wires. 

Let us observe that players can compose matrix B without any communication, and Pi 
knows every column of B, eXcept Bi, j = 1,2, ... , k. . 
It is easy to see that circuit C outputs 1 if and only if the number of those rows of B, 
whose sums are divisible by p, is 0 mod pLlcfpJ. 

Lemma 1. Let B E {O, 1, 2, ... ,p _1}nXIc, wh.ere pisa prime and k > p an integer. Th.en 
th.ere exists an explicitly constructible protocol, wh.ich. computes th.e number, modulo pl, 
of th.ose rows of B, wh.ose sums are divisible by p. Moreover, th.is protocol uses O(kl) bits 
of communication for 1 < l < pLlcfpJ . . 

Proof. Protocol "MOD m" will satisfy the requirements, with m = p: 
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The strategy of the pla.yers in protocol MOn m is the following: Player Pi (1 ~ i ~ 
k) assumes that column i of B, Bi is the all-I vector. PI - using bis assumption -
communicates the number of rows in each congruency- classes modm: 

a = (aO,a17 ... ,am-I), 

where ai denotes the number of those rows, whose sums are believed to be i mod m. Next 
P2 corrects PI in case of those rows wbich begin with 0 or 2, or 3, or ... , m -1, instead of 
the assumed 1: P2 communicates the corrections, to be added to ovector a. P2 computes 
tbis correction, assuming that he knows the entire input. Then Pa corrects PI and P2 , 

in case of those rows, which begins withtwo non--()nes, and so on, until Pk comes. Then 
Pk corrects PI, P2 , ••• , Pk-I in ca.se of those rows which begins with k - 1 non--()nes. The 
protocol makes errors only in the case of those rows, for which neither of the assumptions 
were satisfied: the rows without l's. Every other row will be counted correctly: since at 
least one player's assumption was right, he saw the row correctly,and counted it to the 
proper congruency-class, corrected the errors of the players with lower indices. Player Pi 
will not count those r(>ws, which contain a 1 in a position lower than i. 

Example. Let m = p = 3, k = 3, and consider row 022. 
PI asSumes this row to be 122, so he counts this row to vector a as (0,0,1). 
P2 assumes this row to be 012, so he counts it as (1,0,0), and P2 assumes that PI saw the 
row to be 112, and because of this, PI communicated (0,1,0) for this row, which should 
be corrected by P2 , subtracting it. In total, P2 adds (1,-1,0) to the a of PI' 
Ps assumes the row to be 021, he adds (1,0,0), and he corrects first Pb next P2 • Pa 
assumes that PI saw the row to be 121, and corrects him adding (0, -1, 0) to a. Pa 
assumes that P2 saw the row to be 011, and corrects him by adding (0,0, -1). However, 
Pa assumes that P2 erroneously corrected PI, Pa thinks that P2 thinks that PI saw the 
row to be 111, so P2 is thought to correct PI adding (-1,0,0), so Pa corrects P2 byadding 
(1,0,0). So Pa adds in total (2, -1, -1). 
The sum of the corrections here is (3, -2,0) instead of the correct value (0,1,0). 

Let us observe that (3, -2, 0) = (0,1,0) (mod 3), i.e. the value computed is correct 
if seen modulo 3. The following lemma gives a formula for the number, computed by our 
protocol for rows without entry "1". We shall see that the error is 0 (mod pLk/pJ). 

Notation 8. Let N denote the set of natural numbers. We denote the elements of vector 
space Nm by sma.ll.-case greek letters, and we index their coordinates !rom 0 through 
m - 1. Let STl.xk denote the set of a.ll. n x k matrices with entries !rom set S. Let 
B E {O, 1, ... , m - 1}Tl.xk. Let 

s(m)(B) = (SO,S17 ""Sm-I) 

denote a vector where Si is the number of those rows of B, which are congruent to i 
(mod m). Let v E {O,I, ... ,m _1}k, then CT(v,B) denotes the number ofthose rows of 
B, which are equal to v. Let 0 = (0,0, ... , 0) E {0,1, ... , m - l}k. 

Lemma 9. Protocol MOn m computes the nUmber 

CT(v, B)wtI , 

tlE{0,2,a, ••• ,m-1 }" 
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where Wt/ E Nm, and when v contains d2 2 coordinates, d3 3'5, ... , dm - 1 m - 1 '5, and do 
0'5, then 

where v = (1,0,0, ... ,0) E Nm, d(v) = 2d2 + 3d3 + ... + (m - 1)dm - 1 , and TI is the m X m 
cyclic right-shift permutation matrix: 

Let us note that a row vector multiplied by TI is the vector with coordinates shifted 
with one position to right. Similarly, if a row-vector is multiplied by TI-l the result is the 
vector, with coordinates shifted with one position to left. 

Beforeproving Lemma 9, let us see how it implies Lemma 7. Let m = p. Since matrix TI 
commutes with its own powers, one can write Wt/ into the form: 

where P(TI) is a polynomial of matrix TI, since k = d2 + d3 + ... + dm-I + do, and one can 
write (I - TI") = (I - TI)Q(TI), where Q is also a polynomial. 

By the binomial theorem: 

so 
«I - TI)P) L~J = ° (mod pL~J), and (I - TI)A: = ° (mod pL~J). 

Hence 

Wt/ = ° (mod pL~J), 

for all v E {0,2,3, ... ,p-1}A:. This means that protocol MOn p computes 6(m)(B) mod 
pL~J . 

However, the players are enough to communicate their a vectors only mod pt.. Hence each 
player communicates p numbers of size O( llog p), and protocol Mon p uses O( kllog p) = 
O(kl) bits of communication, which is constant if k is constant. 

Proof of Lemma 9. First we prove 
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Sublemma 10. Tb.e vector, computed by protocol MOn m for a row v E {O, 2, 3, ... ,p­
l}k is tb.e same for any permutation of tb.e coordinates of v. 

Proof. It is enough to prove that our protocol computes the same vector for 

and 

Obviously, p. communicates the same vector for v and v' if s =J i or s =J i + 1. Pi assumes 
v to be vp,. and V' to be Vp,' .: 

• • 

V~. = (Vl,V2, ... ,1,Vi, ... ,Vk), 

while Pi+l assumes V to be VPi+l and v' to be VPi+l : 

V~i+l = (Vl,V2, .•. ,Vi+1,1, ... ,Vk). 

Pi sees v in the same congruency-class as Pi+l sees v', and Pi sees v' in the same 
congruency-class as Pi+l sees v. Moreover, Pi corrects players P1 , P2 , ••• , Pi-l for row 
v exactly as Pi+l corrects them in row v', and Pi corrects players P1 , P2 , ••• , Pi-l for row 
v' exactly as Pi+l corrects them in row v. Pi+l ,both in V and in v', corrects Pi assuming 

So the sum of the vectors, communicated by Pi and Pi+l is the same for v and for v': • 

By Sublemma 10, we mayassume that the first d2 coordinates are 2' s, then d3 3's, ... , 
dnt-l m - 1 's, and, at the end, tk O's. Let us note that the correct vector, to be added up 
for v to get öm (B), is 11 nd( v). However: 

P1 assumes the first coordinate to be 1 instead of 2, so he communicates 

P2 assumes the second coordinate to be 1, so he adds up 1Ind(V)n-1, too, but corrects P1 

by subtracting 1Ind(v)n-2, since the sum, supposed to be seen by Pl, is less by one. So P2 

communicates: 

Pi (i ~ d2 ) communicates the same vector as Pi- 1· communicated plus the correction for 
Pi- 1 • This correction is (_n-1

) times the vector, communicated by Pi-ll so Pi commu­
nicates: 
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The sum of the vectorscommunicated by PI, P2, •.. , Pd2 is: 

= vnd(tr) (I _ (I _ n-I)d2 ). 

Remark: ~ = 0 implies that ß(2) = o. 
Pd2+1 assumes Vd2+1 to be 1, instead of the correct 3. So Pd,+l sees the sum of v one 
less than Pd2 has seen, this also applies to the corrections for PI, P2, ... , Pd,-I. So Pd, 
communicates vnd(tr)n-I (1 _n- I )d2 - In-I plus the correction for Pd

2
: what is the (_n-2 ) 

times that Pd2 has ~ommunicated. Pd2 communicates: 

Pd2+2 tells the same for the sum of v and the corrections for PI, P2, ••• , Pd2 as Pd2+I, but 
he also corrects Pd2+I, by subtracting n-2 times the vector that Pd2+1 has communicated, 
so in total, Pd2+2 communicates: 

Similarly, ß{j), the sum of the vectors, communicated by Pd2+ ... +di-l+1, 
Pd2+ ... +di-l+2, •.. , Pd2+ ... +di-l+di is 

The "result of the telescopic sum ß(2) + ß(3) + ... + ß(m) + ß(O) is: 

" vnd(tr) _ vnd(tr)(1 _ n-I )d'(1 _ n-2 )d3 ••• (1 _ n-m +I )d .... 

So the vector W tr is equal to 

Noticing that nm = I, our result folIows. • 

8 



Proof of Theorem 5. By Definition 1, we must give a cireuit C and a k partition 
X ll X 2 , ••• Xk of X, for which every k-party protoeol needs O(~) bits for evaluaiion. In 

Cm 

fact we shall prove the statement only for k's of the form k = p~, sinee if for a k-partition 
Xl, X 2 , ••• , Xk the k-evaluation of cireuit C needs a bits of eommunieation, then for k' < k, 
and for the partition X~ = Xl, ... ,X1'_1 = Xk'-1,X1, = U~=k' Xi, the k'-evaluation needs 
also at least a bits of eommunieation. H we prove a lower bound of O(:ff) for the least 
k ~ k' of the form k = p~, then it implies a lower bound O( z:, ) with Cm = 4P1 for the 

Cm . 

original k', and that is stated in the theorem. 
Let 

X = {Yl' Y2, ... , Ym; Zn, Zl2, ... , Za, Z2l, ... , Z2k, ... , Z(N -1)1, ... , Z(N-l)k}, 

The partition on X is defined as follows: Xl = {YbY2, ... ,Ym;Zll,Z2l" .. ,Z(N-l)1}, and 
Xj = {Zlj, Z2j, ... , Z(N -l)j}, for j = 2,3, ... , k. 

Let ql = m/pl' and q2 = m/p2' 

Cireuit C is defined as follows: there is a MOn m gate G on the top, and MOD m 
gates G 1 ,G2 , ••• ,GN-l on the first level; the variables of X are situated on the bottom. 
G is eonneeted to variables Yl,Y2' .. ',Ym with one-one mput wire, while to each gates 
GI, G 2 , ••• , GN-l with ql input wires. The fan-in .of G is (N - l)ql + m. Gate Gi is 
connected to each variable from {Zil, Zi2, ... , Zik} with q2 input-wires, the fan-in of the 
MOD m gates is kq2. 
Let us remark that Gi is 1 iff Zil +Zi2+ ... +Zik = ° (mod P2). Suppose that 2:~1 Yi = qls 
(mod m). Then G is 1 iff qls + ql(G1 + G2 + ... + GN-d = ° (mod m). Or, in other 
words, Gis 1 iff s + (GI + G2 + ... + GN-l)O (mod PI). 
Let A denote matrix {Zij}, i = 1,2, ... , N - 1; j = 1,2, ... , k. Beeause of the definition of 
our partition, player j knows all the eolumns of this matrix, exeept eolumn j. Gate Gi is 
1 iff the sum of row i is divisible by P2, and gate G is 1 iff the number of those rows of A, 
whose sums are divisible by P2, is eongruent to -s (mod pd. 

Suppose now, that players PI, P2 , ••• , Pk eva.luates cireuit C with eommunieating b bits. 
Then for any s and for any A E {O, 1, }(N-l)X\ they ean decide, eommunieating b bits, 
whether the number of those rows of A, whose sums are divisible by P2, is eongruent to 
-s (mod ph, or not. So the players ean compu.te the number, mod PI, of those rows of 
A, whose sums are divisible by P2with bPl bits of communieation. 
The following lemma gives a lower bound to bpl: 

Lemma 11. Let PI and P2 be diiIerent primes, k = p~, and A E {O, l}nxk. Tben any 
k-party protocol computing mod PI tbe number of tbose rows of A wbicb are divisible by 

'P2' needs O(fi;) bits of communication. 

Proof. By Lemma 9, players ean eompute veetor 

(1) c5(P2)(A) - v(I - ll)kCT(O, A) 

using O( k log n) bits of eommunieation, where c5~P2) (A) is the number of rows of A, whose 
sum is = i (mod P2), and TI is the P2 x P2 eyc1ie right-shift permutation matrix. 

(I - II)' = t( -1)(~) II' I-lI'; (mod Pt), 
,=0 
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since k = pi and PI divides e) if ° < i < k. 

Since ZI = (1,0,0, ... ,0), ZI(1 -n)p~ = ZI(1 -np~) is the first row of (I -np~). The first entry 
in the first row of np~ is 0, since np~ =f:. I, because P2 does not divide pi. So the first entry 
of vector ZI(1 - np~) is 1, thus the first coordinate of vector c5(P2)(A) - ZI(1 - n)kCT(O, A) 
IS 

(2) 

From the assumption, c5~P2)(A) mod PI is computed by the protocol, say, with z bits of 
communication. Then, because of (2), CT(O,A) modpl can also be computed using z + 
O( k log n) bits of communication. The following generalization of ([BNS], Theorem 1) 
yields that z + O(k logn) = O(ii"). 

Lemma 12. Let P be a prime, and A E {O, 1, }nxk. Tben any k-party protocol, wbich 
computes CT(O, A) mod p, needs O( ii") bits of commumcation. 

Proof. We adopt the notation and some of the definitions of [BNS]. Let 5 C {o,l}nxk. 
5 is called a cylinder if the membership of 5 does not depend on column i, for some 
i E {I, 2, ... , k}. 5 is called a cylinder-intersedion if it can be represented as the intersection 
of some cylinders. 

It is easy to verify that for any k-party protocol, the sub set 5 C {O, l}nxk, whose 
elements, if they are taken as inputs, lead to the same string S of communicated bits, is 
a cylinder intersection. Anycylinder intersection in {o,l}nxk can be represented as the 
intersection of at most k cylinders. 

Definition 13. Let 9 : {o,l}nxk -+ {O, 1, 2, ... ,p -I} be a function. Tbe discrepancy of 9 
lS 

p-l 
r(g) = mF 1 L eiPr(g(A) = i,A E 5)1, 

i=O 

wbere eis a p-tb complex root of unity, wbich minimizes 11 + el, and Ais chosen uniformly 
from {O, l}nxk, and 5 runs over all tbe cylinder intersections of{O, l}nxk. 

Lemma 14. ([BNSj, Lemma 2.2.) For any function g: 

C(g) ~ log (rtg)) . 

Proof. Let 50 be the cylinder-intersection of the largest prob ability, on which 9 is con­

stant. Then Pr(50) < r(g), and, on the other hand, C(g) > log (Pr~so))· I 
Let g(A) = gn,k,p(A) = CT(O, A) mod p, and let 

f(A) = e9(A) = eCT(O,A). 

Let 
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where <Pi is a shorthand for <pi(A) = <Pi(A17 A2, .•. , Ak), where Aj denotes column j of 
matrix A, and where the maximum is ta,ken over all functions <Pi : {O, l}nXk --+ {O, I} such 
that <Pi does not depend on Ai. E denotes the expected value on theuniformly distributed 
A = (Al' A2, •.• , Ak) E {O,l}nxk. 

Let us note that ß(k)(n) = r(9n,k,p). Because of Lemma 14, an upper bound to ß(k)(n) 
yields a lower bound to 0(9). 

Lemma 15 . 

. L. 1 d ..jl+lJ.i-l Wllere J.l.l = 2' an J.l.i = 2· 

Note: It is easy to show by induction that J.l.k < 1 - 4- k , which is about e-4 -a:. 

Proof. The proof is by induction. For k = 1, 

since 1(1 + e)1 :5 1. Let k ~ 2. Since <Pk does not depend on Ak: 

We will use the following version of the Cauchy-Schwarz inequality: 

Cauchy-Schwarz inequality. For any random variable:c: 

Using the Cauchy-Schwarz inequality with 

:c = !! (f(Al ,A2, ... ,Ak)<Pl<P2 ... <Pk-l)!, 

and noticing that 

Where f denotes the complex conjugate of I. 
We can estimate 

1 

(3) ß(k\n) :5 [Al'A2'~.'A"_1 (! (f(A)<Pl<P2 .•. <Pk-l)) (~~ (!(A)<Pl<P2 •.. <Pk-l)) ] ä = 

1 

= [ E (IU]V <pf <pi <pf <pr ... <Pf-l <pr_l)]'2 
U,V,Al,A2, ... ,A"_1 . 
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where U,V E {o,l}n, and fU stands for f(A1,A2, ... ,AIc-l,U), ]V stands for 
- U v f(A1,A2, ... ,AIc-l,V), and <Pi stands for <Pi(Al,A2, ... ,AIc-l,U), <Pi stands for 

<Pi(A1,A2, ... ,AIc-l, V). 
Note: The domam of fU,fv and <pu, <pv is {o,l}nx(lc-l). 

Let us partition the rows of matrix A' = (Ab A2, ... , AIc-d into four classes: 
Aoo , All, A01 and A 10 , where A zy contains row i of A' i1f Ui = z, Vi = y, 1 ~ i ~ n, 
z y E {O I} Let I U denote the restriction of fU to A . I U = eOT(O,A .. ~) for , ,. , zy zy· . zy , 

z, Y E {O, I}. fV is defined similarly. 

From the definition of f: 

fU = ffof~fi{,fR, and fV = f:;'f~fiof~. 

So 
f UfFV .tu jV .tu jV 'fu fFV fU fFV = JOOJOOJ01JOl 10 10 11 ' 11· 

Let us observe that fR~ = 1, since among those rows there are no all-O ones, because 
their last coordinates are 1. ffo = f:;' = eOT(O,Aoo), so ffoffo = 1. Moreover, fi{, = eO = 1, 
t:;. = eO = 1, so we have got: 

For i = 1,2, ... , k -1, let Ai be composed of two parts: Bi and Ci, where Ci corresponds to 
the coordinates of Ai in the rows of A10 , and Bi corresponds to the remaining coordinates. 
Let ef,V,B1,B2

, ... ,B"-1(Cl,C2, ... ,CIc_d = <pP'(Al,A2, ... ,AIc-d<pf(Al,A2, ... ,AIc-l). Then 
we can estimate (3): 

1 

A(k)(n) < [u~v B •. B,~ .. B._Jg (o.,c,.~ .. o.Jff.6e2 ... ek-')) r 
since fg does not depend on the C~s. 

From the induction hypothesis: 

I E (ffo6e2~ .. elc~1 ) I < JL~~~, 
0 1,02, ••. ,0"_1 

where ml0 is the number of rows in A10 . 

For i = 1,2, ... , k -1 let Bi be composed of two parts: Di and Fi, where Fi corresponds to 
the coordinates of Bi in the rows of A01 , and Di corresponds to the remaining coordinates. 
Then 

1 

ß(Ic)(n) < [u,V'Dl'D~' ... 'D"_l (JL~~~IF1'F2'~.'F"_1 (f~)I)]2 
Agam, from the induction hypothesis, choosing <Pl = <P2 = ... = <P1c-l = 1: 
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where mOl is the number of the rows of A01 . So we have got 

mlO + mOl is equal to the number of those coordinates i: Ui #- "Vi. Since U and V is 
distributed uniformly, the prob ability that mlO + mOl = m is (;;;)~-n, so: 

1 

ß(k)(n) < (,t. (:)2-n"r-:,)' = (2-n(1 + "._,)n)! = "., 

and this completes the proof of Lemma 15. • 

Lemma 15 yields that .6,(Ic)(n) < JLi: < e-n4-I<, a.nd from Lemma 14: 

which completes the proof of Lemma 12. • 

We have got that z + O(k logn) = O(it), that is, z = O(it), so any protocol computing 

6~P2) (A) mod Pl needs O( ~) bits of communication, and this is the statement of Lemma 
11. • 

Since bP2 = O(it), then b = O(it) also holds, thus evaluating Crcuit C needs also OCit) 
bits of communication for k = p~, and O(:!f- ) bits for general k. This completes the proof 

c'" 
of Theorem 5. • 

Proof of Theorem 3. Let P be a prime-divisor of q. Let 

x = {Yl, Y2, ••• , Yq; Zu, Z12, ... , Za, Z2l, ... , Z21c, ... , Z(N -1)1' ... , Z(N -1)1c}, 

The partition on Xis defined as follows: Xl = {Yl,Y2, ... ,Yq;Zu,Z211 ... ,Z(N-l)1}, and 
Xj = {Zlj,Z2j, ... ,Z(N_l)j}, for j = 2,3, ... ,k. 

Let ql = q/p. 

Circuit C' is defined as follows: there is a MOn q gate G on the top, and MOn q 
gates Gl , G2 , ••• , G N -1 on the first level; the variables of X are situated on the bottom. 
Gisconnected to variables Yl, Y2, ••. , Yq with one-one input wire, while to each gates 
Gl ,G2, ... ,GN-l with ql input wires. The fan-in of G is (N -1)ql + q. Gate Gi is con­
nected to each variable from {Zil, Zi2, ... , Zilc} with 1 input-wire. The fan-in of the Mon 
q gate Gi is k, for i = 1,2, ... ,N-1. 
Let us remark that Gi is 1 i:ff Zil = Zi2 = ... = Zilc = O. Suppose that Ei=l Yi = qls 
(mod q). Let Adenote matrix {Zij}, i = 1,2, ... ,N -1; j = 1,2, ... ,k. Then Gis 1 i:ff 
qls + ql CT(O, A) (mod q). Or, in other words, G is 1 i:ff s + CT(O, A) = 0 (mod p). 
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Because of the definition of our partition, player j knows all the columns of matrix A, 
except oolumn j. Gate Gi is 1 iff row i is the all-o row, and gate Gis 1 iff the number of 
the all-O rows of Ais congruent to -8 (mod p). 

Suppose ilow, that players Pb P2 , ••• , Pk evaluates circuit C' with communicating b 
bits. Then for any 8 and for any A E {O, 1, }(N-l)Xk, they can decide, communicating b 
bits, whether the number of the all-O rows of A, is congruent to -8 {mod ph, or not. So 
the players can compute the number of the all-o rows of A, mod p. From Lemma 12 our 
statement follows. • . 
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