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ABSTRACT In this paper we show how a slight modi�cation of �a� b��trees allows us
to perform member and neighbor queries in O�log n� time and updates in O��� worst�case
time �once the position of the inserted or deleted key is known�� Our data structure is
quite natural and much simpler than previous worst�case optimal solutions� It is based on
two techniques � �� bucketing	 i�e� storing an ordered list of 
 log n keys in each leaf of an
�a� b� tree	 and 
� lazy splitting	 i�e� postponing necessary splits of big nodes until we
have time to handle them� It can also be used as a �nger tree with O�log� n� worst�case
update time�

� � Introduction

One of the most common �and most important� data structures used in e�cient algo�
rithms is the balanced search tree� Hence there exists a great variety of them in literature�
Basically	 they all store a set of n keys such that location	 insertion and deletion of keys
can be accomplished in O�log n� worst�case time�

In general	 updates �insertions or deletions� are done in the following way � First	
locate the place in the tree where the change has to be made� second	 perform the actual
update� and third	 rebalance the tree to guarantee that future query times are still in
O�log n�� The second step usually takes only O��� time	 whereas steps � and 
 both need
O�log n� time� But there are applications which do not need the �rst step because it is
already known where the key has to be inserted or deleted in the tree� In these cases we
would like to have a data structure which can do the rebalancing step as fast as the actual
update	 i�e� in constant time�

One such example are dynamic planar triangulations� In �M��� Mulmuley examined
�among others� point location in dynamic planar Delauney triangulations� The graph of
the triangulation is stored such that at each node of the planar graph the adjacent triangles
are stored �sorted in clockwise radial order� in a balanced search tree� But now	 whenever
a point v is deleted or inserted	 all points in the neighborhood of v can be a�ected by the
retriangulation because their sequence of adjacent triangles might have changed� However	
these changes are only local in the sense that one triangle �which is known at that time
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and has not to be searched in the radial tree� must be deleted or get some new neighbors
�see �M���	 
�
 for details�� To guarantee a worst�case update time for the triangulated
point set which is proportional to the structural change �i�e� the number of deleted or
newly created triangles� one needs search trees at the nodes which can handle updates in
constant worst�case time�

It has been well known for a long time that some of the standard balanced search
trees can achieve O��� amortized update time once the position of the key is known
��GMPR�	�HM�	�O�
��� But for the worst�case update time the best known method had
been a complicated O�log� n� algorithm by Harel ��H���	�HL��� It has also been known
that updates can be done with O��� structural changes �e�g� rotations� but the node to be
changed has to be searched in ��log n� time ��T�
��� Levcopoulos and Overmars ��LO��
have only recently come up with an algorithm achieving optimal O��� update time �a sim�
ilar result had been obtained by �vE��� They use the bucketing technique of �O�
� � Rather
than storing single keys in the leaves of the search tree	 each leaf �bucket� can store a list
of several keys� Unfortunately	 the buckets in �LO� have size O�log� n�� so they need a

�level hierarchy of lists to guarantee O�log n� query time within the buckets� They show
that this bucket size is su�cient if after every logn insertions the biggest bucket is split
into two halves and then the rebalancing of the search tree is distributed over the next
log n insertions �for which no split occurs��

Our paper simpli�es this approach considerably � We	 too	 distribute the rebalancing
over the next log n insertions into the bucket which was split	 but allow many buckets to be
split at consecutive insertions �into di�erent buckets�� This seems fatal for internal nodes of
the search tree � they may grow arbitrarily big because of postponed �but necessary� splits�
But we show that internal nodes will never have more than twice the allowed number of
children� hence queries can be done in O�log n� time� Furthermore	 our buckets can grow
only up to size 
 log n	 which means that we only need an ordered list to store the keys
in a bucket� Also	 the analysis of our algorithm seems simpler and more natural than in
�LO��

The paper is organized as follows� In Section 
 we de�ne the data structure and give
the algorithms for �nd and insert� In Section 
 we prove their e�ciency� Then we conclude
with some remarks in Section ��

� � The Data Structure

In this Section we want to describe a simple data structure which maintains a set S of
ordered keys and allows for operations query	 insert and delete� Queries are the so�called
neighbor queries � given a key K	 if it is in the current set S report it	 otherwise	 report
one of the two neighbors in S according to the given order� Insert and delete assume that
we have previously located the key �to be deleted� or one of its neighbors �if we insert a
new key� in the data structure� As was illustrated by the triangulation example in Section
� where we have two nested data structures	 this does not necessarily mean that we must
perform a query in our data structure to locate this key� Our data structure is basically a
balanced search tree	 a variant of an �a� b��tree �� � 
a � b and b even��






The main problem with update operations in a balanced search tree �and all other
query�e�cient search structures� is that it is not enough only to insert or delete a node	
but it is also necessary to take care of the balanced structure of the tree if future queries
are still to be e�cient� This means that we should rebalance the tree after each update�
Unfortunately	 this rebalancing can a�ect the whole path from the node to the root of the
tree	 which can be of length ��log n�� However	 we will show in the next Section that in
our search tree the rebalancing does not need to be performed immediately but can be
distributed	 step by step	 over following updates which do not need a costly rebalancing�
Thus we can guarantee constant worst�case update time�

In �OvL� and �O�
�	 Overmars presented a very general method of handling deletions
e�ciently	 the global rebuilding technique� We only give a short outline of this method
here and refer to the original papers for details�

The idea is that a delete operation only deletes the node without doing any other
operations	 especially no rebalancing� This does not increase the query or insert time	 but
it does not decrease it either as it should� But since the optimal query time for n

c
keys is

still log n � c	 we can a�ord being lazy for quite a long time before running into trouble
�this is the reason why this method works only for deletions and not for insertions� n

c

insertions	 all into the same position	 can result in a path of length ��n� which would be
disastrous for queries��

If there are too many deletions and the number of keys in the tree sinks below n
c
�here

c � 
 is some constant�	 we start rebuilding the whole tree from scratch� Since this takes
linear time	 we distribute it over the next n

�c
operations	 i�e� we still use and update our

original �but meanwhile rather unbalanced� tree	 but in parallel we also build a new tree	
and we do this three times as fast� If the new tree is completed	 we must still perform
the updates which occured after we started the rebuilding� But again	 we can do this in
parallel during the next n

�c operations� This continues until we �nally reach a state where
both trees store the same set set of �at least ����

�
�� � � ��n

c
� n

�c� keys� Now we can dismiss
the old tree and use the new tree instead� Since c � 
	 we are always busy constructing at
most one new tree� Hence the query and update time can only increase by a factor of ��

This allows us to focus on a data structure which can only handle insertions� deletions
can then be done using the global rebuilding technique� Now we give the details of our
data structure� Assume that we initially have a set S� of n� keys �n� could be zero��

The Tree � Let � � 
a � b and b even� Then our tree T can be viewed as an �a� 
b��
tree	 i�e� its internal nodes have between a and 
b children� However	 each
leaf does not store a single key but contains a doubly�linked ordered list of
several keys� so we call the leaves buckets� Furthermore	 each bucket B has
a pointer rB which points to some node within T �usually on the path from
the root to B��

We remark that it is not really important that the keys in a bucket are stored in
sorted order	 but our algorithm automatically inserts new keys at the correct position of
the list� For a node v of T let size�v� denote the number of its children� We call v small
if size�v� � b	 otherwise big� We want to split big nodes into two small nodes whenever
we encounter one� This makes our tree similar to an �a� b��tree� the main di�erence is that






we cannot a�ord to split big nodes immediately when they are created	 but instead have
to wait for a later insertion which can do the job� Insertions are done as follows�

Algorithm A � �A��� Insert the new key into the bucket� Let this bucket be B with rB
pointing to node v�

�A�
� If v is big then split v into two small nodes�

�A�
� If v is the root of T then split B into two halves and let the
r�pointer of both new buckets point to their common father� Oth�
erwise	 set rB to father�v�	 i�e� move it up one level in the tree�

Initially	 we start with an �a� b��tree T� �which is also an �a� 
b��tree� for the set S�
such that each bucket contains exactly one key of S�� Also	 all pointers rB point to their
own bucket B� However	 it is not clear at this point that Algorithm A really preserves the
�a� 
b��property of T � one could think that some nodes could grow arbitrarily big because
we could split the children of a node too often before testing and splitting the node itself
in �A�
�� But we will show in the next Section that this can not happen� Therefore it is
reasonable to speak of splitting a big node into only two small nodes in �A�
�� Nevertheless	
this splitting can not be done arbitrarily but must follow some easy rules which will be
given in the proof of Lemma 
�� and in Lemma 
�
�

Furthermore	 in �A�
�	 we want to split a bucket into two halves	 and this should be
done in constant time� Therefore we must design the buckets a little bit more complicated
than just using a list� It is not really di�cult	 but it is technical � Each bucket has
two headers �with �ve entries� to control the list �see Fig� 
���� Initially	 or after a split	
rightheader controls an empty sublist� At each insertion	 one key is added to the sublist
of rightheader �either the inserted key or the rightmost key of the sublist of leftheader��
Then we can easily split a bucket in �A�
� in constant time by changing only the header
information and creating two new empty headers� This does not split the bucket exactly
into two halves	 but it is su�cient for our purpose as the next Lemma shows�

Lemma��� Let n be the number of keys currently stored in T � Then size�B� � 
 log n
for all buckets B�

Proof � Easy by induction once we have proven that T is always an �a� 
b��tree of height
at most log n �see Theorem 
�
��

The r�pointers of the buckets always move up the tree from the leaves to the root	
then starting again at the leaf�level� They usually follow the path from their own bucket to
the root but if a node v is split �by an insertion into another bucket� then some r�pointers
may point to the wrong sibling �if we create one new node as a sibling for v then all buckets
in the subtree below the new node have their r�pointer still pointing to v which is not on
their path to the root�� But the analysis in Lemma 
�� shows that this is not a problem
�only Invariant �I��� deals with r�pointers	 and in case of a split both siblings must belong
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to the same red tree�� Hence it is not necessary to care about the r�pointers pointing to v

when v is split�

v

rile r rile

r

leftheader rightheader

List of keysFig� ��� A bucket

� � The Analysis

In this Section we prove that Algorithm A will never blow up an internal node of
T 	 i�e� T actually always remains an �a� 
b��tree� The idea is to show that the algorithm
always splits a big node into only two small nodes	 and that none of these two nodes can
be split again before their common father has been tested and found to be small �or made
small by a split�� Since we start with an �a� b��tree T�	 this proves that T is always an
�a� 
b��tree�

In order to prove this we extend Algorithm A to an Algorithm B which computes
some additional attributes for the nodes and edges of the tree� These attributes allow us
to conclude easily the desired properties of the tree T � constructed by Algorithm B� But
since T and T � are identical �the additional attributes in no way in�uence the structure of
the tree� the claim also holds for the tree T of Algorithm A�

First	 we de�ne the attributes which are just colours � Nodes and edges are coloured
blue or red� A node is red if one of its incident edges is red	 and blue otherwise� The red
nodes together with the red edges form a forest of subtrees of T � we call the trees of this
forest red trees� Leaves �buckets� are always red� Initially �in T��	 all other nodes and all
edges are blue� this means that each bucket is the root of a red tree which only consists of
the bucket itself� We call these red trees trivial� As we will see in the proof of Lemma 
��	
red edges can only be created by splitting a blue edge into two red edges� hence red edges
always appear as pairs of two red edges� The red colour shall indicate that these edges can
not be split �as long as they are red��

�



The edge connecting a node to its father is called f�edge	 whereas the edges going to its
children are called c�edges� We de�ne the �non�existent� f�edge of root�T � as always being
blue� For a node v	 let dv �ev� denote the number of its red �blue� c�edges� Obviously	
size�v� � dv � ev� If dv � 
ev � b then v is called blocking� In particular	 blocking nodes
are small and can not grow big �because red edges are never split and blue edges are always
split into two red edges�� hence they can not propagate a split to their father� For a leaf
�bucket� B we de�ne dB � � and eB � �	 i�e� leaves are blocking�

We now give the extended algorithm�

Algorithm B � �B��� Insert the new key into the bucket� Let this bucket be B with rB
pointing to node v�

�B�
� If v is big then split v into small nodes and colour these nodes	
their f�edges and their common father red �Lemma 
�� shows that
we always obtain only two small nodes�� Otherwise	 if v is the root
of a nontrivial red tree �i�e� v is a red inner node of T with a blue
f�edge� then colour blue�v��

�B�
� If v is the root of T then split B into two halves and let the r�
pointer of both new buckets point to their common father� also	
colour both buckets	 their f�edges and their common father red�
Otherwise	 set rB to father�v�	 i�e� move it up one level in the
tree�

colour blue�v� is a subroutine which recursively recolours �blue� a whole red tree with
root v�

colour blue�v� � Colour v blue�
For all red c�edges e � �v�w� colour e blue	 and if w is not a leaf then
colour blue�w��

Now we de�ne invariant �I� which we will show to be true before and after every
execution of Algorithm B�

�I� � �I��� Blue nodes are small�

�I�
� Red edges always appear as pairs�

�I�
� T is an �a� 
b��tree�

Let rT be any red subtree of T with root v�

�I��� All nodes w of rT 	 w �� v	 are blocking�

�I��� rT contains at least one bucket of T �

�I��� If rT is a nontrivial red tree then	 for all buckets B of rT 	 rB points into rT �

Lemma��� Invariant �I� holds true after each step of Algorithm B� In particular	 all
nodes of T always have size at most 
b	 and we always split big nodes into
only two small nodes�
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Proof � By induction�
Initially	 �I� is true because in T� all edges are blue and all nodes are small� So
suppose that	 after some time	 we have a tree T and want to insert a new key into
bucket B� Let rB point to node v�

�B��� This step does not a�ect �I�� So �I� is true after �B��� i� it was true before�

�B�
� We have to consider two cases�

v is small � If v is the root of a red tree rT then rT is coloured blue in �B�
��
This destroys one red tree and creates many trivial red trees �the buckets
of rT �� Therefore �I�
���I��� hold after �B�
�� �I��� is true because we only
change the colour of nodes of rT � but v was small by assumption and the
other nodes were small by �I���� And �I�
� is true because both edges of
a pair of red edges must belong to the same red tree and hence are both
una�ected or both coloured blue�
And if v is not the root of a red tree then nothing happens in �B�
��

v is big � Then �B�
� does not a�ect �I���� From �I��� and �I��� we conclude
that v must be the root of a red tree rT � But then v has at most 
b children
by �I�
�� Hence we can split v into only two small nodes� this	 together with
the fact that the f�edge of v must be blue	 proves �I�
�� However	 we have
to be careful about how to split v� Both new nodes must get at least a

children to satisfy �I�
�� on the other hand	 both nodes must not get too
many children because they must become blocking to satisfy �I���� Lemma

�
 shows that it is always possible to split v such that both �I�
� and �I���
are satis�ed�

The red tree rT grows by the split� either father�v� becomes its new
root	 or	 if it was a red node of a red tree rT � before	 rT becomes part of
the bigger tree rT �� In any case	 �I��� and �I��� hold after the split�

�B�
� If v is the root of T then B is split� This can only occur if v was not split in
�B�
�� But then	 B must be a trivial red tree now � If B was not a trivial red
tree before �B�
� then	 by �I���	 v must have been a node of the red tree rT
which contained B� but then it must have been the root of rT and therefore
rT was coloured blue in �B�
�� Hence �I� holds after splitting B�

If v is not the root of T then rB is moved up to father�v�� But this can
only a�ect �I���� With a similar argument as above we conclude that �I���
is still true after �B�
� � either B was a trivial red tree before �B�
� �and
therefore still is afterwards�	 or v was a node of the red tree rT containing
B� but in this case	 since v was not recoloured in �B�
�	 father�v� must also
be in rT �

From this follows immediately

Theorem��� Algorithm A always maintains an �a� 
b��tree T � It supports neighbor
queries in time �dlog be � 
� � logn and insertions in time O���� once the
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position where the key is to be inserted in the tree is known� Also� deletions
can be done in time O��� using the global rebuilding technique�

Proof � We start with an �a� b��tree T� and always maintain an �a� 
b��tree T by Lemma

��� Hence the height of T is always bounded by logn	 and	 doing a query	 we can
decide in time dlog be � � at which child of an internal node the search must be
continued� And in the leaves	 we can locate each key in time 
 log n by Lemma

���

It remains to prove that we can always split a big node into two small nodes satisfying
�I�
� and �I���� This is an easy consequence from the following combinatorial Lemma �if
blue edges are coded as ci � � whereas pairs of red edges are coded as ci � 
��

Lemma��� Let 
a � b 	 b even	 k � b and c�� � � � � ck � f�� 
g with b �

kX

i��

ci� Then an

j � k exists such that a �

jX

i��

ci 	 a �
kX

i�j��

ci 	 
j � b and 
�k� j� � b�

Proof � Let j� �� min
j

�

jX

i��

ci � a� and j� �� max
j

�
kX

i�j��

ci � a�� From
kX

i��

ci � 
a � �

and ci � f�� 
g follows j� � j� 	 j� �
b
�

and k � j� �
b
�
� Let j �� min�j��

b
�
��

Then j� � j � j� 	 
j � b and 
�k � j� � b �because k � b��

� � Conclusions

We have seen how to implement a simple data structure which supports neighbor
queries in time O�log n� and updates in time O���� However	 as in �LO�	 our data structure
can not be used as a �nger tree� Hence	 it remains an open problem to obtain a �nger tree
with only O��� worst�case update time �which would have many more useful applications��
However	 using our tree recursively in the buckets �instead of the ordered lists�	 it is possible
to obtain a data structure with O�log� n� worst�case update time which also allows �nger
searches� This matches the best previous bounds ��H���	 �HL���

Another open problem is the question whether the query time can be reduced to log n
�with factor ��� Andersson and Lai recently addressed this problem but could only �nd an
optimal amortized solution ��AL���

Our data structure seems to depend heavily on special properties of �a� b��trees� It is
not clear how to apply our techniques to other kinds of balanced search trees �e�g� BB���	
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AVL	� � ��� Furthermore	 as R� Tamassia pointed out	 it may be di�cult to make our search
tree persistent� But we hope that it can be used in all kinds of e�cient dynamic data
structures �as in the triangulation example in Section ���
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