
Associative-Commutative Reduction

Orderings

Leo Bachmair

MPI–I–91–209 November 1991

Author’s Address

Department of Computer Science, State University of New York at Stony Brook, Stony Brook,

New York 11794, U.S.A., leo@sbcs.sunysb.edu

Publication Notes

The present report has been submitted for publication elsewhere and will be copyrighted if

accepted.

Acknowledgements

I wish to thank Harald Ganzinger for his comments on a preliminary version of this paper.

This research was supported in part by the National Science Foundation under grant CCR-

8901322.

Abstract

Rewrite systems are sets of directed equations used to compute by repeatedly

replacing subterms in a given expression by equal terms until a simplest form

possible (a normal form) is obtained. If a rewrite system is terminating (i.e.,

allows no infinite sequence of rewrites), then every expression has a normal

form. A variety of orderings, called reduction orderings, have been designed for

proving termination, but most of them are not applicable to extended rewrite

systems, where rewrites take into account inherent properties of given functions

such as associativity and commutativity. In this paper we show how an ordering

represented as a schematic rewrite system—the lexicographic path ordering—

can be systematically modified into an ordering compatible with associativity

and commutativity.

Keywords

Termination orderings, rewrite systems, automated deduction.

1 Preliminaries

We consider first-order terms built from given function symbols and variables. With each function

symbol f we associate a set α(f) ⊆ N that indicates the number of arguments f may take. A

syntactically well-formed term is an expression f(X), where X is a sequence of terms t1, . . . , tn
with n ∈ α(f). The length of a term f(X) is defined by |f(X)| = 1 +

∑
t∈X |t|. We say that s is a

subterm of t = f(X) if either s = f(Y), for some sequence Y ⊆ X,1 or else s is a subterm of some

term u ∈ X. If s ̸= t we speak of a proper subterm. For example, if {2, 3} ⊆ α(f), then f(a, c) is a

subterm of f(a, b, c).

A rewrite rule is a pair of terms, written s → t. A rewrite system is a set of rewrite rules. A

binary relation → on terms is called a rewrite relation if s→ t implies f(X, sσ, Y)→ f(X, tσ, Y),

for all terms s, t, and f(X, s, Y), and substitutions σ. By ← we denote the inverse of → and by

→+ and →∗ the transitive and transitive-reflexive closure of →, respectively. By →R we denote

the smallest rewrite relation containing the rewrite system R. We say that t is derivable from s if

s →+
R t; and write s →!

R t if s →∗
R t and there exists no term t′ such that t →R t′ (then t is also

called a normal form). A rewrite system R is called terminating if there exists no infinite sequence

t1 →R t2 →R t3 · · · .
An (rewrite) ordering is an irreflexive and transitive (rewrite) relation. Well-founded rewrite

orderings are called reduction orderings.2 Evidently, a rewrite system terminates if and only if it

is contained in some reduction ordering. A widely used ordering is the lexicographic path ordering,

which can be defined as the derivability relation induced by the following recursively defined rewrite

system LPO:

f(X) → s if s ∈ X

f(X) → g(Y) if f ≻ g and f(X) →LPO t, for all

t ∈ Y

f(X, s, Y) → f(X, t, Z) if s →LPO t, |Y | = |Z|, and

f(X, s, Y)→LPO u, for all u ∈ Z

where ≻ is a well-founded ordering on function symbols (called a precedence). Rules of the form

f(X)→ s are called subterm rules; rules f(X)→ g(Y), combination rules; and rules f(X, s, Y)→
f(X, t, Z), lexicographic rules.

Rewrite systems are often used to model functions that satisfy certain identities. For instance,

the associativity and commutativity of a function symbol f can be described by the rewrite rules

f(s, f(t, u)) → f(f(s, t), u)

f(f(s, t), u) → f(s, f(t, u))

f(s, t) → f(t, s)

which induce a non-terminating rewrite relation and therefore are dealt with in a special way.

The rewrite system R/S consists of all rules u → v such that u →∗
S u′ →R v′ →∗

S v, for

some terms u′ and v′. We consider the problem of proving termination of rewrite systems R/AC,

1We write Y ⊆ X to indicate that X is a sequence t1, . . . , tn and Y a sequence ti1 , . . . , tik , where 1 ≤ i1 < · · · <
ik ≤ n

2For a detailed discussion of reduction orderings see the survey by N. Dershowitz, J. Symbolic Computation

3(1987):69-116.

1

where AC is a set of associativity and commutativity rules. A reduction ordering ≻ is called AC-

compatible if s↔∗
AC u ≻ v ↔∗

AC t implies s ≻ t, for all terms s, t, u, and v. Since the two relations

→AC and ↔AC are identical, a rewrite system R/AC terminates if and only if R is contained in

some AC-compatible reduction ordering.

Unfortunately, most reduction orderings are not AC-compatible. For example, if f ∈ AC3 and

a ≻ b, then f(b, a)↔AC f(a, b)→LPO f(b, a), but of course f(b, a) ̸→+
LPO f(b, a). We shall design

a variant of the lexicographic path ordering in which lexicographic rules are restricted to function

symbols f ̸∈ AC and terms are compared only after they have been converted to a suitable normal

form.

2 Transformation

Let AC be a set of associativity and commutativity rules. Henceforth, we shall assume that

α(f) = {2, 3, 4, . . .}, if f ∈ AC, and α(f) is a singleton, otherwise. By F ′ we denote the set of all

rewrite rules of the form

f(X, f(Y))→ f(X,Y), f ∈ AC, |X| ≥ 1, |Y | ≥ 2;

by ∼ the (symmetric) rewrite relation generated by all rules

f(X,u, Y, v, Z) ↔ f(X, v, Y, u, Z), f ∈ AC;

and by F the rewrite system F ′/∼. The rewrite system F is length-decreasing and terminates; its

rules are called flattening rules. We also say that s′ is a flattened version of s if s →!
F s′. The

relation ∼ is called the permutation congruence. Flattened versions of equivalent terms are unique

up to permutation:

Lemma 1 If s′ ←!
F s↔∗

AC t→!
F t′, then s′ ∼ t′.

If L = L′/∼ is a rewrite system, we define the relation ≻L|F by: u ≻L|F v if u →!
F u′ →+

L/F

v′ ←!
F v. In general, such “transformed relations” ≻L|F are not rewrite relations.

For example, if f ≻ g and f ∈ AC, then f(a, b) →LPO g(a, b), but f(f(a, b), c) →!
F

f(a, b, c) ̸→LPO f(g(a, b), c). Observe that the term f(f(a, b), c), but not its flattened version

f(a, b, c), can be rewritten by LPO. To address this problem we shall extend LPO to a rewrite

system L with which flattened terms can be rewritten, if necessary.

3 Commutation

We say that a rewrite system S commutes with T if for all terms u, v, and u′ with u′ ←T u→S v,

there exists a term v′, such that u′ →+
S/T v′ ←∗

T v.4

Proposition 1 Let AC be a set of associativity-commutativity rules, F be the corresponding set of

flattening rules, and L = L′/∼ be a rewrite system. If L/F terminates and L commutes with F ,

then ≻L|F is an AC-compatible reduction ordering.

3We write f ∈ AC if AC contains the respective rules for f .
4Similar commutation properties have been discussed by L. Bachmair and N. Dershowitz, Proc. Eighth Int. Conf.

on Automated Deduction, Lect. Notes in Computer Science vol. 230, pp. 5–20, Berlin: Springer-Verlag.

2

Proof. It can easily be seen that ≻L|F is AC-compatible and well-founded. Furthermore, we may

use induction on →+
L∪F to prove that for all terms u, u′, and v with u′ ←!

F u→+
L/F v, there exists

a term v′, such that u′ →+
L/F v′ ←∗

F v. (Note that L ∪ F is terminating, as both L/F and F are

terminating.) ¿From this one can easily derive that ≻L|F is a rewrite relation. 2

For the purpose of extending LPO to a rewrite system L that commutes with F we analyze

so-called “critical peaks” between L and F . For instance, a term f(X, f(Y)) can be rewritten in

two different ways, which produces the peak

f(X,Y)←F f(X, f(Y))→LPO f(X, y)

where f ∈ AC, |X| ≥ 1, |Y | ≥ 2, and y ∈ Y . We include the rule

f(X,Y) → f(X) if f ∈ AC, |X| ≥ 2, and |Y | ≥ 1

in L to ensure that f(X,Y)→L f(X, y). Similarly, the peak

f(X,Y)←F f(X, f(Y))→LPO f(X, g(Z)),

where f ∈ AC, f ≻ g, |X| ≥ 1, |Y | ≥ 2, and f(Y)→LPO t, for all t ∈ Z, results in a rule

f(X,Y) → f(X, g(Z)) if f ∈ AC, f ≻ g, |X| ≥ 1, |Y | ≥ 2,

and f(Y)→LPO t, for all t ∈ Z.

We shall see that these two new rules already ensure commutation.

Let L be the rewrite system L′/ ∼, where L′ is the following recursively defined set of rules:

f(X) → s if s ∈ X

f(X) → g(Y) if f ≻ g and f(X) →L′/∼ t, for all

t ∈ Y

f(X, s, Y) → f(X, t, Z) if f ̸∈ AC, s →L′/∼ t, |Y | = |Z|, and
f(X, s, Y)→L′/∼ u, for all u ∈ Z

f(X,Y) → f(X) if f ∈ AC, |X| ≥ 2, and |Y | ≥ 1

f(X,Y) → f(X, g(Z)) if f ∈ AC, f ≻ g, |X| ≥ 1, |Y | ≥ 2,

and f(Y)→L′/∼ u, for all u ∈ Z

Rules of the form f(X,Y) → f(X) are called AC-subterm rules; rules f(X,Y) → f(X, g(Z)),

AC-combination rules.

Proposition 2 The rewrite system L commutes with F .

Proof. Let s, t, and s′ be terms with s′ ←F s →L t. We use induction on |s| + |t| + |s′| to prove

that there exists a term t′, such that s′ →L t′ ←∗
F t. There are several cases according to the rule

applied in s →L t. We discuss one representative case: application of a combination rule. There

are several subcases.

(a) Suppose f(X ′) ←F f(X) →L g(Y), where f ≻ g and f(X) →L u, for all u ∈ Y . Since

f(X ′)←F f(X)→L u, for all u ∈ Y , we may apply the induction hypothesis to infer that for each

u ∈ Y there exists a term u′ with f(X ′) →L u′ ←∗
F u. Let Y ′ be the sequence obtained from Y

3

by replacing each term u by the corresponding term u′. Then f(X ′) →L g(Y ′) ←∗
F g(Y), which

proves this subcase.

(b) If the peak is of the form f(X,Z)←F f(X, f(Z))→L g(Y), where f ≻ g and f(X, f(Z))→L

u, for all u ∈ Y , then we may again use the induction hypothesis to infer that for each term u ∈ Y

there exists a term u′, such that f(X,Z) →L u′ ←∗
F u. Thus f(X,Z) →L g(Y ′) ←∗

F g(Y), where

Y ′ is obtained from Y by replacing each term u by u′.

(c) For each peak f(X,Z)←F f(X, f(Z))→L f(X, g(Y)) we have f(X,Z)→L f(X, g(Y)) by

virtue of an AC-combination rule.

The two remaining subcases–application of a combination rule either within the variable part

of a flattening rule or at a disjoint subterm–are trivial. Applications of other rules are dealt with

in a similar fashion. 2

The following lemmas are useful for proving termination of L/F (or L ∪ F).

Lemma 2 If g(X) →L∪F t →n
L∪F f(Y) and g ̸≽ f , then there exist a term u ∈ X and a number

k with n ≥ k, such that g(X)→L u→k
L∪F f(Y).5

Proof. Use induction on (n, |t|), considering all possible cases of rewrites g(X)→L∪F t. 2

Lemma 3 If f ∈ AC, |Z| ≥ 1, and f(X) →L∪F t →n
L∪F f(Y), then there exists a term u, such

that f(X,Z)→L∪F u→∗
L∪F f(Y, Z) and |f(t, Z)| ≥ |u|.

Proof. Similar to the previous lemma, by induction on (n, |t|). 2

4 Termination

Suppose L ∪ F is not terminating. We define an infinite sequence of rewrites t0 →L∪F t1 →L∪F t2 · · ·
as follows. Let t0 be a shortest term from which there is an infinite sequence of rewrites. Once

the term tn has been determined, let tn →L∪F tn+1 be any minimal rewrite such that there is an

infinite sequence of rewrites from tn+1. Here a rewrite u →R v is considered to be smaller than a

rewrite u →S v′ if either |v′| > |v| or else |v| = |v′|, R = L, and S = F . By S we denote the set

consisting of all proper subterms of terms ti, i ≥ 0, and terms derivable from them.

Lemma 4 There is no infinite sequence of rewrites from any term in S.

Proof. Evidently, there is no infinite sequence of rewrites from any proper subterm of t0. Suppose

there is an infinite sequence of rewrites from some proper subterm t of ti+1, but from no term that

is (derivable from) a proper subterm of ti. We consider several cases, depending on which rule is

applied in the rewrite ti →L∪F ti+1.

If ti ∼ f(X, f(Y)) →F f(X,Y) ∼ ti+1, then t ∼ f(X ′, Y ′), where X ′ ⊆ X, Y ′ ⊆ Y , and

|X ′| ≥ 1. If X ′ ̸= X, then

f(X ′, f(Y))→L f(X ′, Y)→L f(X ′, Y ′)

and hence t is derivable from a proper subterm of ti, which is a contradiction. Suppose X ′ = X.

If Y ′ ̸= Y and |Y ′| ≥ 2, then f(X, f(Y))→L f(X, f(Y ′)) is a smaller rewrite than f(X, f(Y))→F

5We write s →n t to denote a sequence of n rewrites.

4

f(X,Y) (because |f(X,Y)| ≥ |f(X, f(Y ′)|), which together with f(X, f(Y ′))→L f(X,Y ′) yields a

contradiction. Finally, if |Y ′| = 1, then t can be derived from ti in one step (because f(X, f(Y))→L

f(X,u), for all u ∈ Y), which is a contradiction.

Similar arguments can be applied in other cases. 2

The lemma shows that the restriction ≻S of the rewrite relation →+
L∪F to terms in S is well-

founded. The lemma also indicates that no term ti+1 is a proper subterm of ti. Thus, if ti is

written as fi(Yi), then fi ≽ fi+1, for all i ≥ 0. Since the precedence ≻ is well-founded, we may

infer that fj = fj+1 = fj+2 = · · · , for some j ≥ 0. Let si denote the term tj+i and suppose si is of

the form f(Xi), for all i ≥ 0.

The sequence s0 →L∪F s1 →L∪F s2 →L∪F · · · contains infinitely many rewrites where a rule

in L ∪ F is applied at the top. If f ̸∈ AC, then only lexicographic rules can be applied at the

top. and the sequence X0, X1, . . . is lexicographically decreasing with respect to ≻S , which is a

contradiction. If f ∈ AC, then only flattening and AC-combination rules can be applied at the

top. (There have to be infinitely many applications of flattening, as AC-combination rules strictly

decrease the number of top-level subterms.)

Now let us assign a status to the elements of Xk, for all k ≥ 0. All terms in X0 are free, and

corresponding terms in Xk and Xk+1 have the same status. Furthermore, if Xk+1 = (Xk\{f(Y)})∪
Y , then all terms in Y are free (application of a flattening rule at the top introduces free terms); if

Xk+1 = (Xk \ Y) ∪ {g(Z)}, where |Y | ≥ 2, then g(Z) is bound (application of an AC-combination

rule at the top introduces a bound term); and if Xj+k+1 = (Xj+k \ {u})∪{v}, then v has the same

status as u. Observe that bound terms can only be introduced by AC-combination rules.

We claim that whenever there is a rewrite

sk ∼ f(X, f(Y))→F f(X,Y) ∼ sk+1,

then f(Y) is free. For if f(Y) is bound, it must have been derived from some term g(Z ′) that had

previously been introduced in a rewrite

sl−1 ∼ f(X ′, Z)→L f(X ′, g(Z ′)) ∼ sl,

where k > l, |Z| ≥ 2, f ≻ g, f(Z) →L u, for all u ∈ Z ′, and f(X ′, Y) →∗
L∪F f(X,Y). Using

Lemmas 2 and 3 we may infer that f(Z)→L u→∗
L∪F f(Y), for some u ∈ Z ′, and f(X ′, Z)→L∪F

u′ →∗
L∪F f(X ′, Y), for some term u′ with |f(X ′, g(Z ′))| > |f(X ′, u)| ≥ u′, which contradicts the

minimality of the rewrite sl−1 →L sl.

Finally, for each term sk we define a finitely-branching (labeled) tree Tk as follows. The tree T0

consists of a root labeled with the symbol ⊤ and |X0| successor nodes labeled by the elements of X0.

The tree Tk+1 is obtained from Tk as follows: if Xk+1 = (Xk \{f(Y)})∪Y , then new nodes labeled

with the terms in Y are added as successors to the leaf f(Y); if Xk+1 = (Xk \ Z) ∪ {g(Y)}, where
|Z| ≥ 2, then a single successor node labeled with the symbol ⊥ is added to each leaf representing

a term in Z; if Xk+1 = (Xk \ {u}) ∪ {v}, where u is free, then v is added as a successor to u.

Note that each free term in Xk is represented by some leaf in the tree Tk. Furthermore, Tk ̸= Tk+1

whenever the rewrite sk →L∪F sk+1 is by application of a rule at the top. Thus, T∞ =
∪

i Ti is an

infinite tree and, by König’s Lemma, contains an infinite branch. On the other hand, if v is the

label of a successor of a node labeled by u, then u ≻S v (assuming ⊤ and ⊥ represent maximum

5

and minimum elements, respectively). The existence of an infinite branch therefore contradicts the

well-foundedness of ≻S .

In summary, we have proved:

Proposition 3 The rewrite system L ∪ F is terminating.

As a corollary to Propositions 1, 2, and 3 we obtain:

Theorem 1 The relation ≻L|F is an AC-compatible reduction ordering.

It can easily be proved that the ordering also satisfies the subterm property (i.e., t[s] ≻L|F s, for

all terms t and proper subterms s of t) and hence is a simplification ordering. We have thus also

established that the lexicographic path ordering is a simplification ordering (this being the special

case where AC = ∅.)
We conclude this section with an example. Let R be the rewrite system

x+ 0 → x

x+ y′ → (x+ y)′

x ∗ 0 → 0

x ∗ y′ → x+ (x ∗ y)
(x+ y) ∗ z → (x ∗ z) + (y ∗ z)

and ≻ be a precedence in which ∗ ≻ + ≻ ′ ≻ 0. Then R is contained in ≻L|F and hence R/AC is

terminating.

5 Summary

We have illustrated by way of the lexicographic path ordering how to systematically modify a

reduction ordering so as to obtain an ordering compatible with associativity and commutativity.

The modification is guided by the requirement of establishing certain commutation and termination

properties and employs standard techniques of term rewriting, such as an analysis of critical peaks.

The specific ordering we have obtained essentially corresponds to an ordering introduced by Kapur,

Sivakumar, and Zhang.6 (The main difference is in the presentation: we describe an ordering via a

schematic rewrite system, while Kapur et al. present an algorithm for computing the corresponding

rewrite relation. The various operations used in their algorithm—“partitioning,” “pseudo-copying,”

“elevating,” etc.—correspond to sequences of rewrites by L/F .)

We believe that the above approach to designing reduction orderings can be applied in other

contexts as well, e.g., to rewrite systems R/AC1 where AC1 is a set associativity, commutativity,

and identity axioms. The associative path ordering7 can also be formulated in this framework. This

ordering differs from the above ordering in that commutation of the peak

f(X,Y)←F f(X, f(Y))→LPO f(X, g(Z))

6Proc. Conf. on Foundations of Software Technology and Theoretical Computer Science, 1990.
7L. Bachmair and D. Plaisted, J. Symbolic Computation 1(1985):329-349.

6

is achieved, not by introducing AC-combination rules, but by enriching F with “distributivity

rules”

f(X, g(Z))→ g(f(X, t1), . . . , f(X, tn)),

where f ≻ g and Z = t1, . . . , tn. Certain restrictions on the precedence ensure that the correspond-

ing ordering ≻APO is indeed a reduction ordering. (The main difficulty consists in establishing a

suitable commutation property, while termination is straightforward.) The ordering ≻L|F imposes

no such restrictions, but has the disadvantage that certain terms can not be compared, e.g., f(a, c)

and f(b, b), where f ∈ AC and a ≻ b ≻ c. The associative path ordering, on the other hand,

allows for more flexible comparisons of arguments of associative-commutative function symbols, so

that f(a, c) ≻APO f(b, b). Similar extensions of the rewrite system L that would allow for such

comparisons result in non-terminating rewrite systems. It is an open question whether there ex-

ist any precedence-based AC-compatible reduction orderings so that two ground terms are either

equivalent with respect to AC or else are comparable.8

8There are orderings with these properties, but they are not precedence-based, see P. Narendran and M. Rusi-

nowitch, Proc. Fourth Int. Conf. on Rewrite Techniques and Applications, Lect. Notes in Comp. Scie. vol. 480,

pp. 423–434, Berlin: Springer-Verlag.

7

