

On a Compaction Theorem of Ragde

Torben Hagerup

MPI-I-91-121 November 1991

On a Compaction Theorem of Ragde
Torben Hagerup ..

Max-Planck-Institut für Informatik, W-6600 Saarbrücken, Germany

Ragde demonstrated that in constant time a PRAM with n processors can move at most

k items, stored in distinct cells of an array of size n, to distinct cells in an array of size at most

k 4 • We show that the exponent of 4 in the preceding sentence can be replaced by any constant

greater than 2.

Keywords: parallel algorithms, approximate compaction

1. Introduction

The problem of approximate compaction has been the focus of a great deal of attention lately

[10,8,6,7]. For n,s E IR and kEIN, define the (n,k,s)-compaction problem as follows:

Given the integer k and an array A of at most n cells containing at most k items stored in distinct

,cells (the remaining cells of A contain nothing), move the items in A to distinct cells in an array of at

most s cells.

For reasons of convenience, we allow n and s to have noninteger values. The problem is of interest

for k :::; s < n; intuitively, we are trying to "compact" the items, Le., to move them more closely

together, thereby reducing the number of empty cells between them. Compaction has always been

fundamental in efficient parallel algorithms. Ideally, we would like to compact exactly, Le., to move

however many items are present in an array of size n, this quantity not being specified as part of the

input, to an array whose size exactly equals thenumber of items. Exact compaction reduces to prefix

summation and can therefore be performed in O(lognjloglogn) time on a CRCW PRAM [3]. On

the other hand, computing the parity of n bits reduces to exact compaction, which therefore requires

O(lognjloglogn) time with any polynomial number of processors [2] . As it turns out, however,

approximate compaction can be done in constant time. This was first realized by Ragde [11], who

showed that (n, k, k4)-compaction problems can be solved in constant time with n processors. Ragde's

result triggered the development of a number of very fast randomized algorithms for fundamental

problems [12, 10, 8, 9, 1, 6, 7]. Matias and Vishkin [10] claimed without proof the ability to solve

(n, k, k2.
829)-compaction problems in constant time with n processors. We improve this result by

showing that n processors can solve (n, k, kHI!)-compaction problems in constant time, for arbitrary

fixed E > o. Although we shall not give any details, this can be used to reduce the probability of

faUme in almost all of the very fast algorithms mentioned above .

.. Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfs­

methoden und Parallelität, and in part by theESPRIT II Basic Research Actions Program of the EC

under contract No. 3075 (project ALCOM).

2. The algorithm

Our model of computation is the AR.BITR.ARY CRCW PRAM [4], a synchronous parallel machine

with a global memory accessible to all processors. Concurrent reading from the same cell is allowed,

and in the event of concurrent writing to the same cell, some (arbitrary) processor succeeds and writes

its value. We assume constant-time operations for integer addition, subtraction, multiplication and

division with remainder. All algorithmic steps described in this section are supposed to be executed

in constant time, i.e., in time independent of n and k; this will not be stated explicitly on every

occasion. As an aid to seeing that constant time sufiices, note the simple fact that for every fixed

rational number q, the function 2: 1-+ min{ n, L 2: q J} can be evaluated in constant time for arguments in

IN on a CRCW PRAM with n processors.

When placing items in an array of size at most s, we speak ofmapping or compacting them into

space s. A cell or array will be called nonempty exact1y if it contains at least one item.

Ragde's algorithm, as weil as ours, is based on the following result, proved by Fredman, Kornlos

and Szemeredi.

Lemma 1 [5]: Let m,k EINand let p > m be a prime. Then for every sub set X of {l, ... ,m}

with lXI = k, there exists an integer a with 1 ::; a < p such that the restriction to X of the mapping

2: 1-+ (a2: mod p) mod k2 is injective.

For every mEIN, the set {m, .. . , 2m} contains at least one prime, and a prime in this set can be

found in constant time with m 2 processors: Simply test each number in the set against every possible

divisor. Therefore Lemma 1 immediately furnishes an algorithm for (n, k, k2)-compaction that uses

O(n2) processors: Compute a prime p with p = O(n), then test all possible va1.ues of a in parallel and

choose one whose associated mapping is injective when restricted to the set of (indices of) nonempty

ceils. Our remaining eifort aims at reducing the number of processors used to O(n).

Ragde proceeded from Lemma 1 to show the following:

Lemma 2 [11]: For arbitrary r E IR. with r = O(v'n) , O(n) processors can solve (rv'n,k,k2r)­

compaction problems in constant time.

Proof: Divide the input array into O(y'n) subarrays of size at most r each. Compute the set of (indices

of) nonempty subarrays, which is of cardinality at most k, and use Lemma 1 with m = O(v'n) to map

it into an array of k2 blocks, where a block is simply a set of consecutive cells temporarily considered

as one entity. Making each block just large enough to hold one subarray, we have mapped the items

to an array of size at most k2 r. •

Ragde's original result on (n, k, k4)-compaction follows by two successive applications of Lemma 2:

first the (v'n . v'n, k, k4)-compaction problem is reduced to a (k2 v'n, k, k4)-compaction problem (r =

y'n), then the (k2v'n,k,k4)-compaction problem is solved (r = k 2). The second application of

Lemma 2 is legal only if k = O(n1 / 4), but for k ~ n 1 / 4 the original problem is trivial.

2

Our proof uses similar ideas. In particular, we divide the input array into roughly Vn subarrays of

Vn cells each. Before we compact the set of (indices of) nonempty subarrays, however, we recursively

attempt to compact each subarray into less space, which will allow us to use smaller blocks. Since

we do not know how many items to expect in a subarray, we try to compact it into arrays of many

different sizes and use the smallest one into which the items in the subarray will fit. Of course, this

requires us to provide blocks of different sizes. Another important point is that since we aim for

a constant running time, we cannot let the recursion run until subproblems have been reduced to

constant size, which would take o (log log n) steps . . Instead we finish off the recursion in constant

depth by an application of Ragde's algorithm. We now give the details.

For all E E IR+, denote by P(E) the assertion

P(E): (n,k,k2+e:)-compaction problems can be solved in constant time with O(n) processors.

Our goal ist to show that P (E) holds fo~ all E E R+. To this end, let f : R+ -+ R+ be the continuous

function given by

f(E) = E - 2 + y'SE2 + 12E + 4,
4+E

for all E E R+. We will show that f has the following properties:

(A) For all E,E' E R+, E< l => f(E) < f(l)j

(B) For all E E R+, f(E) < Ej

(C) For all E,ß E R+, P(E) => P(f(E) + ß).

We first assume that (A)-(C) hold and demonstrate that they imply the desired result. We begin by

showing the following generalization ofproperty (C), where li) denotes the function defined as i-fold

repeated application of f.

(D) For all E,ß E R+ and for all i EIN, P(E) => P(f(i)(E) + ß).

We prove (D) by induction on i. For i E IN, let Q(i) denote the assertion

Q(i): For all E,ß E R+, P(E) => p(f(i)(E) + ß).

Q(l) is just (C). Hence let i E IN, assume that Q(i) holds and let E,ß E R+.· We must show that

P(E) =>P(f(i+l)(E) + ß). By the continuity of li+l), we can choose E' > E such that li+1)(l) ::;

f(i+1)(E) + ß/2. But then

where the first implication follows from (A) and (C), and the second implication is an instance of the

induction hypothesis. This ends the proof of (D).

To see that (B) and (D) imply P(E) for all E E R+, simply observe that P(2) is Ragde's result,

and that limi-+oo li)(2) = O. All that remains is to verify (A)-(C).

Proof: It is straightforward to show that f' (E) > 0 for all E E R+. •

3

Proof: Equating the two expressions for f(f.), it is easy to see that

f(f.) = 4f.
2 - f. + v'5f.2 + 12f. + 4

Moving 2 - f. to the opposite side of the inequality and squaring both sides, it is also easy to verify

that

2 - f. + vi 5f.2 + 12f. + 4 > 4.

The claim follows. •

Lemma 5: For all f.,ß E IR+, P(f.} ::} P(f(f.) + ß).

Proof: Fix f.,ß E IR+ and assume that P(f.) holds. Take '1 = f(f.) + ß and 0 = 1/(2 + f.). By

continuity, wecan assume that f. and '1 are rational. Suppose that we are given an input array of

size at most n containingat most k items and observe that because Lemma 5 will be proved for all

ß E IR+, it suflices to show how to compact the items into an array of size at most 4>(f., ß)k2+'Y , where

. 4> : IR~ -+ IR+ is an arbitrary continuous function. We now describe an algorithm to accomplish this

task.

Divide the input array into O(y'n) subarrays of size at most ..;n each. For some constant 8 E IR+

(i.e., 8 may depend on f. and ß, but not on n and k), chosen below to make 1/6 a multiple of 4, use

the algorithm implied by the assertion P(f.) to attempt to compact each subarray into an array of

size Lni6J, for i = 1, ... , t = 1/(26) - 1. Define the level of a subarray as ° if even the compaction

of the subarray for i = 1 succeeds, as t if no compaction of the subarray succeeds, and otherwise as

an arbitrary integer i with 1 ~ i < t such that the compaction into Ln<Hl)6J space succeeds, but the

compaction into L ni6 J space does not. For i = 0, ... ,t, let Si be the set of those nonempty subarrays

whose level is i. Our goal is to compact the items stored in subarrays in Si into k2+'Y space, for

i = 0, ... ,t. Since t depends only on 6, this solves the given problem.

Fix i E {O, ... , t}. By the correctness of the algorithm implied by P(f.), each subarray in Si

contains more than ni6a items. Hence ISil ~ kn- i6a . Using O(n) processors, we can therefore compact

Si into an array ofat most (kn- i6a)2 blocks of Ln<Hl)6J cells each, a total of at most k2n6<i+l-2ia)

cells. Since 0 < 1/2 and i6 < 1/2,

6(i + 1 - 2io) = i6(1- 20) + 6 ~ 1/2 - 0 + 6.

The items in Si are therefore located in an array ofsize at most M = k2n1/ 2 - a +6. H M ~ k2+'Y, we

are done. Hence assume that this is not the case, i.e., n1/ 2- a +6 > k'Y. Then M < n', where

(
1) (2) 1 1 - 20 (2) ,= 2 - 0 + 6 1 +:y = 2 + '1 - 0 + 6 1 +:y .

Although it is not obvious from the above bound, we can clearly ensure that the array containing the

items in Si is of size O(n). Hence use Lemma 2 to move the elements in Si to an array of size at most

4

As above, if N $ k2+"Y, we are done. H not, N < n(J, where

We will show that

(
1- 2a) (2) 1

f(€) - a 1 + f(€) = 2'

Since a < 1/2 and i > f(€), it then follows that for sufficiently small values of 5, the exponent (} will

also be bounded by 1/2. But then the compaction can be completed by one application of Lemma 2

with r = 1.

We still have to show (*). Since 1 - 2a = €/(2 + €), we can rewrite the relation as

or as

2(E - f(E))(2 + f(E)) = (2 + E)f(€)2,

which a last rewriting turns into

(4 + €)f(E)2 + (4 - 2E)f(E) - 4€ = O.

Finally observe that f(E) is indeed the positive solution to the quadratic equation

(4+ E)z2 + (4 - 2€)z - 4E = O .•

Theorem: For every fixed E > 0, (n, k, k2+€)-compaction problems can be solved in constant time on

an AR.BITR.AR.Y CRCW PRAM with O(n) processors. •

References

[1] H. BAsT AND T. HAGER.UP, Fast and Reliable Parallel Hashing, in Proc. 3rd Annual ACM

Symposium on Parallel Algorithms and Architectures (1991), pp. 50-61.

[2] P. BEAME AND J. HASTAD, Optimal Bounds for Decision Problems on the CRCW PRAM, J.

ACM 36 (1989), pp. 643-670.

[3] R. COLE AND U. VISHKIN, Faster Optimal Parallel Prefix Sums and List Ranking, Inform. and

Comput. 81 (1989), pp. 334-352.

[4] D. EpPSTEIN AND Z. GALIL, Parallel Algorithmic Techniques for Combinatorial Computation,

Ann. Rev. Comput. Sei. 3 (1988), pp. 233-283.

[5] M. L. FR.EDMAN, J. KOMLOS, AND E. SZEMER.EDI, Storing a Sparse Table with 0(1) Worst

Case Access Time, J. ACM 31 (1984), pp. 538-544.

5

[6] J. GIL, Y. MATIAS, AND U. VISHKIN, Towards a Theory of Nearly Constant Time Parallel

Algorithms, in Proc. 32nd Annual Symposium on Foundations of Computer Science (1991), pp.

698-710.

[7] M. T. GOODRICH, Using Approximation Algorithms to Design Parallel Algorithms that May

Ignore Processor Allocation, in Proc. 32nd Annual Symposium on Foundations of Computer

Science (1991), pp. 711-722.

[8] T. IlAGERUP, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Rep. no.

MPI-I-91-106 (1991), Max-Planck-Institut für Informatik, Saarbrücken.

[9] T. IlAGERUP, Fast Parallel Generation of Random Permutations, in Proc. 18th International

Colloquium on Automata, Languages and Programm;ng (1991), Springer Lecture Notes in Com­

puter Science, Vol. 510, pp. 405-416.

[10] Y. MATIAS AND U. VISHKIN, Converting High Prob ability into Nearly-Constant Time - with

Applications to Parallel Hashing, in Proc. 23rd Annual ACM Symposium on Theory of Com­

puting (1991), pp. 307-316.

[11] P. RAGDE, The Parallel Simplicity of Compaction and Chaining, in Proc. 17th International

Colloquium on Automata, Languages and Programm;ng (1990), Springer Lecture Notes in Com­

puter Science, Vol. 443, pp. 744-751.

[12] R. RAMAN, The Power of Collision: Randomized Parallel Algorithms for Chaining and Inte­

ger Sorting, in Proc. 10th Conference on Foundations of Software Technology and Theoretical

Computer Science (1990), Springer Lecture Notes in Computer Science, Vol. 472, pp. 161-175.

6

[6] J. GIL, Y. MATIAS, AND U. VISHKIN, Towards a Theory of Nearly Constant Time Parallel

Algorithms, in Proc. 32nd Annual Symposium on Foundations of Computer Science (1991), pp.

698-710.

[7] M. T. GOODRICH, Using Approximation Algorithms to Design Parallel Algorithms that May

Ignore Processor Allocation, in Proc. 32nd Annual Symposium on Foundations of Computer

Science (1991), pp. 711-722.

[8] T. HAGER.UP, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Rep. no.

MPI-I-91-106 (1991), Max-Planck-Institut für Informatik, Saarbrücken.

[9] T. HAGER.UP, Fast Parallel Generation of Random Permutations, in Proc. 18th International

Colloquium on Automata, Languages and Programming (1991), Springer Lecture Notes in Com­

puter Science, Vol. 510, pp. 405-416.

[10] Y. MATIAS AND U. VISHKIN, Converting High Probability into Nearly-Constant Time - with

Applications to Parallel Hashing, in Proc. 23rd Annual ACM Symposium on Theory of Com­

puting (1991), pp. 307-316.

[11] P. RAGDE, The Parallel Simplicity of Compaction and Chaining, in Proc. 17th International

Colloquium on Automata, Languages and Programrning (1990), Springer Lecture Notes in Com­

puter Science, Vol. 443, pp. 744-751.

[12] R. RAMAN, The Power of Collision: Randomized Parallel Algorithms for Chaining and Inte­

ger Sorting, in Proc. 10th Conference on Foundations of Software Technology and Theoretical

Computer Science (1990), Springer Lecture Notes in Computer Science, Vol. 472, pp. 161-175.

6

	91-1210001
	91-1210002
	91-1210003
	91-1210004
	91-1210005
	91-1210006
	91-1210007
	91-1210008
	91-1210009
	91-1210010

