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Ragde demonstrated that in constant time a PRAM with n processors can move at most 

k items, stored in distinct cells of an array of size n, to distinct cells in an array of size at most 

k 4 • We show that the exponent of 4 in the preceding sentence can be replaced by any constant 

greater than 2. 
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1. Introduction 

The problem of approximate compaction has been the focus of a great deal of attention lately 

[10,8,6,7]. For n,s E IR and kEIN, define the (n,k,s)-compaction problem as follows: 

Given the integer k and an array A of at most n cells containing at most k items stored in distinct 

,cells (the remaining cells of A contain nothing), move the items in A to distinct cells in an array of at 

most s cells. 

For reasons of convenience, we allow n and s to have noninteger values. The problem is of interest 

for k :::; s < n; intuitively, we are trying to "compact" the items, Le., to move them more closely 

together, thereby reducing the number of empty cells between them. Compaction has always been 

fundamental in efficient parallel algorithms. Ideally, we would like to compact exactly, Le., to move 

however many items are present in an array of size n, this quantity not being specified as part of the 

input, to an array whose size exactly equals thenumber of items. Exact compaction reduces to prefix 

summation and can therefore be performed in O(lognjloglogn) time on a CRCW PRAM [3]. On 

the other hand, computing the parity of n bits reduces to exact compaction, which therefore requires 

O(lognjloglogn) time with any polynomial number of processors [2] . As it turns out, however, 

approximate compaction can be done in constant time. This was first realized by Ragde [11], who 

showed that (n, k, k4 )-compaction problems can be solved in constant time with n processors. Ragde's 

result triggered the development of a number of very fast randomized algorithms for fundamental 

problems [12, 10, 8, 9, 1, 6, 7]. Matias and Vishkin [10] claimed without proof the ability to solve 

(n, k, k2.
829 )-compaction problems in constant time with n processors. We improve this result by 

showing that n processors can solve (n, k, kHI!)-compaction problems in constant time, for arbitrary 

fixed E > o. Although we shall not give any details, this can be used to reduce the probability of 

faUme in almost all of the very fast algorithms mentioned above . 
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2. The algorithm 

Our model of computation is the AR.BITR.ARY CRCW PRAM [4], a synchronous parallel machine 

with a global memory accessible to all processors. Concurrent reading from the same cell is allowed, 

and in the event of concurrent writing to the same cell, some (arbitrary) processor succeeds and writes 

its value. We assume constant-time operations for integer addition, subtraction, multiplication and 

division with remainder. All algorithmic steps described in this section are supposed to be executed 

in constant time, i.e., in time independent of n and k; this will not be stated explicitly on every 

occasion. As an aid to seeing that constant time sufiices, note the simple fact that for every fixed 

rational number q, the function 2: 1-+ min{ n, L 2: q J} can be evaluated in constant time for arguments in 

IN on a CRCW PRAM with n processors. 

When placing items in an array of size at most s, we speak ofmapping or compacting them into 

space s. A cell or array will be called nonempty exact1y if it contains at least one item. 

Ragde's algorithm, as weil as ours, is based on the following result, proved by Fredman, Kornlos 

and Szemeredi. 

Lemma 1 [5]: Let m,k EINand let p > m be a prime. Then for every sub set X of {l, ... ,m} 

with lXI = k, there exists an integer a with 1 ::; a < p such that the restriction to X of the mapping 

2: 1-+ (a2: mod p) mod k2 is injective. 

For every mEIN, the set {m, .. . , 2m} contains at least one prime, and a prime in this set can be 

found in constant time with m 2 processors: Simply test each number in the set against every possible 

divisor. Therefore Lemma 1 immediately furnishes an algorithm for (n, k, k2 )-compaction that uses 

O(n2 ) processors: Compute a prime p with p = O(n), then test all possible va1.ues of a in parallel and 

choose one whose associated mapping is injective when restricted to the set of (indices of) nonempty 

ceils. Our remaining eifort aims at reducing the number of processors used to O(n). 

Ragde proceeded from Lemma 1 to show the following: 

Lemma 2 [11]: For arbitrary r E IR. with r = O(v'n) , O(n) processors can solve (rv'n,k,k2r)­

compaction problems in constant time. 

Proof: Divide the input array into O( y'n) subarrays of size at most r each. Compute the set of (indices 

of) nonempty subarrays, which is of cardinality at most k, and use Lemma 1 with m = O( v'n) to map 

it into an array of k2 blocks, where a block is simply a set of consecutive cells temporarily considered 

as one entity. Making each block just large enough to hold one subarray, we have mapped the items 

to an array of size at most k2 r. • 

Ragde's original result on (n, k, k4 )-compaction follows by two successive applications of Lemma 2: 

first the (v'n . v'n, k, k4 )-compaction problem is reduced to a (k2 v'n, k, k4 )-compaction problem (r = 

y'n), then the (k2v'n,k,k4)-compaction problem is solved (r = k 2 ). The second application of 

Lemma 2 is legal only if k = O(n1 / 4 ), but for k ~ n 1 / 4 the original problem is trivial. 
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Our proof uses similar ideas. In particular, we divide the input array into roughly Vn subarrays of 

Vn cells each. Before we compact the set of (indices of) nonempty subarrays, however, we recursively 

attempt to compact each subarray into less space, which will allow us to use smaller blocks. Since 

we do not know how many items to expect in a subarray, we try to compact it into arrays of many 

different sizes and use the smallest one into which the items in the subarray will fit. Of course, this 

requires us to provide blocks of different sizes. Another important point is that since we aim for 

a constant running time, we cannot let the recursion run until subproblems have been reduced to 

constant size, which would take o (log log n) steps . . Instead we finish off the recursion in constant 

depth by an application of Ragde's algorithm. We now give the details. 

For all E E IR+, denote by P( E) the assertion 

P(E): (n,k,k2+e:)-compaction problems can be solved in constant time with O(n) processors. 

Our goal ist to show that P ( E) holds fo~ all E E R+. To this end, let f : R+ -+ R+ be the continuous 

function given by 

f( E) = E - 2 + y'SE2 + 12E + 4, 
4+E 

for all E E R+. We will show that f has the following properties: 

(A) For all E,E' E R+, E< l => f(E) < f(l)j 

(B) For all E E R+, f(E) < Ej 

(C) For all E,ß E R+, P(E) => P(f(E) + ß). 

We first assume that (A)-(C) hold and demonstrate that they imply the desired result. We begin by 

showing the following generalization ofproperty (C), where li) denotes the function defined as i-fold 

repeated application of f. 

(D) For all E,ß E R+ and for all i EIN, P(E) => P(f(i)(E) + ß). 

We prove (D) by induction on i. For i E IN, let Q(i) denote the assertion 

Q(i): For all E,ß E R+, P(E) => p(f(i)(E) + ß). 

Q(l) is just (C). Hence let i E IN, assume that Q(i) holds and let E,ß E R+.· We must show that 

P( E) =>P(f(i+l)( E) + ß). By the continuity of li+l), we can choose E' > E such that li+1 )( l) ::; 

f(i+1)(E) + ß/2. But then 

where the first implication follows from (A) and (C), and the second implication is an instance of the 

induction hypothesis. This ends the proof of (D). 

To see that (B) and (D) imply P(E) for all E E R+, simply observe that P(2) is Ragde's result, 

and that limi-+oo li)(2) = O. All that remains is to verify (A)-(C). 

Proof: It is straightforward to show that f' ( E) > 0 for all E E R+. • 
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Proof: Equating the two expressions for f( f.), it is easy to see that 

f( f.) = 4f. 
2 - f. + v'5f.2 + 12f. + 4 

Moving 2 - f. to the opposite side of the inequality and squaring both sides, it is also easy to verify 

that 

2 - f. + vi 5f.2 + 12f. + 4 > 4. 

The claim follows. • 

Lemma 5: For all f.,ß E IR+, P(f.} ::} P(f(f.) + ß). 

Proof: Fix f.,ß E IR+ and assume that P(f.) holds. Take '1 = f(f.) + ß and 0 = 1/(2 + f.). By 

continuity, wecan assume that f. and '1 are rational. Suppose that we are given an input array of 

size at most n containingat most k items and observe that because Lemma 5 will be proved for all 

ß E IR+, it suflices to show how to compact the items into an array of size at most 4>( f., ß)k2+'Y , where 

. 4> : IR~ -+ IR+ is an arbitrary continuous function. We now describe an algorithm to accomplish this 

task. 

Divide the input array into O( y'n) subarrays of size at most ..;n each. For some constant 8 E IR+ 

(i.e., 8 may depend on f. and ß, but not on n and k), chosen below to make 1/6 a multiple of 4, use 

the algorithm implied by the assertion P( f.) to attempt to compact each subarray into an array of 

size Lni6J, for i = 1, ... , t = 1/(26) - 1. Define the level of a subarray as ° if even the compaction 

of the subarray for i = 1 succeeds, as t if no compaction of the subarray succeeds, and otherwise as 

an arbitrary integer i with 1 ~ i < t such that the compaction into Ln<Hl)6J space succeeds, but the 

compaction into L ni6 J space does not. For i = 0, ... ,t, let Si be the set of those nonempty subarrays 

whose level is i. Our goal is to compact the items stored in subarrays in Si into k2+'Y space, for 

i = 0, ... ,t. Since t depends only on 6, this solves the given problem. 

Fix i E {O, ... , t}. By the correctness of the algorithm implied by P( f.), each subarray in Si 

contains more than ni6a items. Hence ISil ~ kn- i6a . Using O(n) processors, we can therefore compact 

Si into an array ofat most (kn- i6a )2 blocks of Ln<Hl)6J cells each, a total of at most k2n6<i+l-2ia) 

cells. Since 0 < 1/2 and i6 < 1/2, 

6(i + 1 - 2io) = i6(1- 20) + 6 ~ 1/2 - 0 + 6. 

The items in Si are therefore located in an array ofsize at most M = k2n1/ 2 - a +6. H M ~ k2+'Y, we 

are done. Hence assume that this is not the case, i.e., n1/ 2- a +6 > k'Y. Then M < n', where 

(
1 ) ( 2) 1 1 - 20 (2) ,= 2 - 0 + 6 1 +:y = 2 + '1 - 0 + 6 1 +:y . 

Although it is not obvious from the above bound, we can clearly ensure that the array containing the 

items in Si is of size O(n). Hence use Lemma 2 to move the elements in Si to an array of size at most 
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As above, if N $ k2+"Y, we are done. H not, N < n(J, where 

We will show that 

(
1- 2a ) ( 2) 1 

f(€) - a 1 + f(€) = 2' 

Since a < 1/2 and i > f( €), it then follows that for sufficiently small values of 5, the exponent (} will 

also be bounded by 1/2. But then the compaction can be completed by one application of Lemma 2 

with r = 1. 

We still have to show (*). Since 1 - 2a = €/(2 + €), we can rewrite the relation as 

or as 

2( E - f( E))(2 + f( E)) = (2 + E)f( €)2, 

which a last rewriting turns into 

(4 + €)f(E)2 + (4 - 2E)f(E) - 4€ = O. 

Finally observe that f( E) is indeed the positive solution to the quadratic equation 

(4+ E)z2 + (4 - 2€)z - 4E = O .• 

Theorem: For every fixed E > 0, (n, k, k2+€)-compaction problems can be solved in constant time on 

an AR.BITR.AR.Y CRCW PRAM with O(n) processors. • 
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