

"Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministers
für Forschung und Technologie (Betreuungskennzeichen ITS 9103) gefördert. Die Verantwor­
tung für den Inhalt dieser Veröffentlichung liegt beim Autor."

An o(n3)-Time Maximum-Flow Algorithm1
,2

JOSEPH CHERIYAN3, TORBEN HAGERUP4, AND KURT MEHLHORN4

Abstract. We show that a maximum flow in a network with n vertices can be computed deter­

ministically in 0 (n3 Ilog n) time on a uniform-cost RAM. For dense graphs, this improves the previous

best bound of O(n3).

The bottleneck in our algorithm is a combinatorial problem on (unweighted) graphs. The number

of operations executed on flow variables is O(n8 / 3(logn)4/3), in contrast with O(nm) flow operations

for all previous algorithms, where m denotes the number of edges in the network. A randomized

version of our algorithm executes O(n3/ 2m1/ 2Iog n+ n2 (log n)2 I log(2 + n(logn)2 Im)) flowoperations

with high prob ability.

For the special case in which all capacities are integers bounded by U, we show that a maximum

flow can be computed deterministically using O(n3/2m 1/ 2 + n2 (log U)1/2 +log U) flow operations and

O(min{nm,n3 Ilogn} + n2 (log U)1/2 + log U) time. We finally argue that several of our results yield

optimal parallel algorithms.

1 This research was partially supported by the ESPRIT TI Basic Research Actions Program of

the EC under contract No. 3075 (project ALCOM).

2 A preliminary version of this paper was presented at the 17th International Colloquium on

Automata, Languages and Prograrnming (ICALP) in July 1990.

3 School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853,

USA.

4 Max-Planck-Institut für Informatik, W-6600 Saarbrücken, Germany.

1

1. Introduction

The fastest algorithm predating this paper for computing a maximum flow in a network with n

vertices and m edges, even allowing randomization, has an expected running time of o (min{nm log n,

nm + n2 (log n)2}) [CR91]. Despite intensive research for over three decades, no algorithm with a

running time of o(nm) has ever been reported for any combination of n and m. This is true even

for networks with integer capacities, provided that the maDnmm capacity U is moderately large, say,

U = O(n) [AOT89].

Our main result is a maximum-flow algorithm that runs in 0 (n3 j log n) time. For dense networks

with m = w(n2 flogn), this is o(nm). We also slightly improve the best previous results for sparse

networks with m = o(n{logn)2) and m = w(nlognjloglogn) and match the best previous results for

other ranges of m through simpler algorithms. The best bounds known at the time of writing for

strongly polynomial maximum-flow algorithms are summarized in Table 1 below and in Theorems 8.1

and 8.2. Roughly speaking, a strongly polynomial algorithm for the maxim.um.-flow problem is one

whose running time is bounded by a polynomial in the number of vertices in the network, independently

of the capacities of the edges (see [GLS88] for a more careful definition).

Running Time

nm log n

Range

m<n~ - loglogn

n2(log n)2 I log n
log(Hn(logn)2/m) nloglogn::; m::; n(logn)2

Model Source

deterministic I [ST83] and thia paper, Thm. 8.1(a)

randomized I This paper, Thm. 8.1(c)

nm I n(logn)2 ::; m::; nS/ 3logn I randomized I [CH91] and thia paper, Thm. 8.1(c)

nm I n S/ 3logn ::; m ::; n2 /log n I deterministic I [AI90] and thia paper, Thm. 8.l(b)

n3 jlogn n2 /log n ::; m ::; n2 deterministic I This paper, Thm. 8.2

Table 1: The best strongly polynomial maximum-flow algorithms for different combinations of n and

m. The first column gives the order of the bound on the running time of each algorithm, the second

column indicates the range of network densities where the algorithm is superior to other algorithms,

the third column states whether the algorithm is deterministic or randomized, and the last column

gives the source of the algorithm and a corresponding theorem in the present paper. The new results

appear in lines 2 and 5 of the table (not counting the header line).

Our algorithm is based on earlier work in [CR89], [GT88], and [A089] , all of which in turn use

the generic maxim.um.-flow algorithm of Goldberg and Tarjan [GT88], which works by manipulating a

so-called preftow [Ka74] in the given network. We design an extension ofthe generic algorithm, called

the incremental generic alg0 rithm , which uses a new operation called add edge. The new algorithm

manipulates a preflow in a subnetwork and, as the execution progresses, gradually adds the remaining

edges to the current subnetwork.

2

Adding the edges in the order of decrea.sing capacities allows instances of the incremental generic

algorithm to save on the number of operations on fiow variables. In particular, the number of fiow

operations executed by our main algorithm is O(n8 / 3(logn)4/3). To the best of our knowledge, all

previous algorithms execute O(nm) fiow operations. Using randomization, we can do even better:

A maximum fiow can be computed using O(n3/ 2m1
/

2 logn + n2 (log n)2 Ilog(2 + n(logn)2 Im» fiow

operations with high prob ability. In fact, our deterministic algorithm is obtained from the random­

ized algorithm by applying a derandomization technique due to Alon [Al90]. Our analysis of fiow

operations is based on a novel potential argument.

The bottleneck in our algorithms turns out to be a simple combinatorial problem on a dynamically

changing (unweighted) graph, that ofrepeatedly identifying the so-called current edge of a given vertex.

Indeed, given a sufficiently efficient solution to the current-edge problem, the running time of each of

our algorithms would match the number of fiow operations. A straightforward solution to the current­

edge problem contributes e(nm) time to the running time ofthe maximum-fiow algorithms. The idea

behind our improvement of this bound for dense· networks, by a factor of e(logn), is to represent the

graph by its adjacency matrix and to partition the matrix into 1 x llognJ submatrices. A submatrix

can be processed in constant time by table look-up during the search for a current edge.

Our ideas also apply to networks with integer capacities. For networks with integer capacities

bounded by U one of the fastest algorithms known is the wave scaling algorithm of [AOT89], which

runs in time O(nm + n 2 (log U)1/2 + log U). This algorithm refines the excess scaling algorithm of

[A089] , whose running time is O(nm + n 2 log U). For neither algorithm a better bound than the

running time is known for the number of fiow operations. We give incremental versions of both

algorithms and show how to replace the term nm by min {nm, n3 I log n} in the bound for the running

time and by n3/ 2m 1/ 2 in the bound for the number of fiow operations.

The paper is organized as follows: Basic definitions are given in Section 2. The incremental generic

algorithm and the current-edge problem are introduced in Section 3. The incremental excess scaling

and wave scaling algorithms for networks with integer capacities are described in Sections 4 and 5,

respectively. Section 6 discusses solutions to the current-edge problem. The strongly polynomial

algorithm is presented in Section 7 and analyzed in Sections 7 and 8. Section 9 discusses parallel

versions of our algorithms and Section 10 states a number of open problems. Readers with an exclusive

interest in the strongly polynomial algorithm can skip Sections 4 and 5 almost entirely. The only

material in these sections needed later are the definition of -y-fooling height and its properties (F1)­

(F5), given after the proof of Lemma 4.1.

2. Definitions and notation

For every set V and every e = (v, w) E V X V, let tail(e) = v, head(e) = w, and retl(e) = (w, v). v

and w are the tail of e and the head of e, respectively. A network is a tuple G = (V, E, cap, $, t), where

(V, E, cap) is an edge-weighted directed graph, cap maps each edge in E to a. nonnegative real number

called its capacity, and $ and t are distinct vertices in V called the source and the sink, respectively.

3

We assume that E is symmetrie (i.e., rev(e) E E for all e E E) and without self loops (i.e., v ~ w for

all (v, w) E E). In order to make the notation less eumbersome, we omit one pair of brackets from

expressions such as "eap«v,w»".

A preftow in G is a function I : E -+ IR with the following properties:

(1) I(rev(e» = -/(e), for all e E E (antisymmetry eonstraint);

(2) I(e) ~ cap(e), for all e E E (eapacity eonstraint);

(3) E eEE: helld(e)=v I(e) ~ 0, for all v E V\{s} (nonnegativity eonstraint).

A preß.ow I in Gis aftow ifEeEE: helld(e)=v I(e) = 0 for all v E V\{s, t} (fiow eonservation eonstraint).

The value of I is E eEE: helld(e)=t I(e), i.e., the net fiow into t, and a maximum ftow in G is a fiow in G

ofmaximum value. An edge e E Eis residual (with respeet to I) if I(e) < eap(e). A push on e of value

cE IR is an increase in.f(e) by c. 'rhe push is saturating iff I(e) = cap(e) afterwards. A push on an edge

(v, w) is also ealled a push out 0/ v and a push into w. A labeling of Gis a function d : V -+ IN U {O}.

The labeling is valid for G and a prefiow I in G exactly if d(v) ~ d(w) + 1 for every edge (v, w) E E that

is residual with respeet to I. Our algorithms operate with the eoncept of an undirected edge, i.e., a pair

{ v, w}, where (v, w) E E, which intuitively we identify with the pair {(v, w), (w, v)} of two antiparallel

direeted edges. For all symmetrie subsets E' of E, let E' = {{v, w} : (v,w) E E'} be the corresponding

set ofundirected edges. A push on an undirected edge {v,w} E Eis a push on one ofthe edges (v,w)

or (w, v). The eapacity of an undirected edge {v, w} is defined as cap({v, w}) = cap(v, w) + cap(w, v).

We assume without loss ofgenerality that cap({v,w}) > 0 for all {v,w} E E.

Our algorithms are formulated in the traditional model for the study of problems on networks.

They use two data types for numerical values: integerand ftowvalue. Capacities and fiow values

are represented by objects of type ftowvalue, on which the only allowed arithmetical operations are

addition and subtraction, and all other quantities are represented by objects of type integer, on which

we allow addition, subtraction, multiplication and integer division. In addition, we assume for both

data types standard operations for comparison, data movement, the constant 1, etc. For n-vertex

input networks, we allow integers of absolute value nO(l), i.e., we allow a word size of O(logn) bits.

We charge constant time for each basic operation on either type (uniform eost measure). In keeping

with common usage, we employ the term "fiow operation" to mean any operation on objects of type

ftow vo.lue. In our randomized algorithms we assume in addition that generating a random integer

takes constant time. More precisely, we assume that for every given integer k with 1 ~ k ~ n, a

random integer drawn from the uniform distribution over {l, ... ,k} and independent of all other such

random integers can be obtained in eonstant time.

We use "log" to denote the logarithm to base 2, and we assume lists to be implemented as a data

type with operations first and pop (among others). Given a list L, first(L) returns the first element

of L, and popeL) removes the first element of Land returns it.

3. The incremental generic algorithm

In this section we generalize the generic maximum-fiow algorithm of [GT88] by extending it to

4

include one additional operation, add edge.

The goal of the algorithm is to compute a maximum flow in a network G = (V, E, cap, s, t). Let

n = IVI and m = lEI. In order to avoid trivialities, we assume that m ~ n ~ 3. Let V+ = V\{s,t}.

The main variables used by the incremental generic algorithmare:

(1) A network G* = (V, E*, cap*, s, t), where E* ~ E is symmetrie and cap* is the restriction of cap

to E*. G* is the current network, on which the algorithm operates. E* = 0 initially, and the

edges in E are gradually added to E*.

(2) A preflow f : E* -IR, which gradually evolves into a maximum flow in G.

(3) A labeling d: V - IN U {O}, valid for f and G*.

An edge (v, w) E E* is called eligible exactly if it is residual with respect to f and d(v) = d(w) + 1.

For all e E E*, the residual capa city of e is defined as rescap (e) = cap (e) - f(e), and for all v E V,

the ezcess of v is defined as ezcess(v) = E eEE .. : head(e)=v fee).

We now briefly review the generic maximum-flow algorithm of [GT88], which works on the

complete network throughout the execution. The labeling d and the pre:flow f are initialized as follows:

des) = n, d(v) = 0 for all v E V\{s}, fee) = cap(e) for all edges e with taU s, fee) = -cap(rev(e»

for all edges e with head s, and f(e) = 0 for all other edges e. Note that the initiallabeling is valid

for the initial preflow. The algorithm repeatedly picks some vertex v E V+ with positive excess and

performs either a push out of v or a relabeling of v. More precisely, if there is an eligible edge with

taU v then a push is performed on one such edge, and if there is no eligible edge with taU v then d(v)

is increased by one. This maintains the validity of d, which. is crucial for the analysis, cf. Lemmas 3.3

and 3.6 below. The algorithm terminates when there is no vertex in V+ with positive excess.

In the incremental generic algorithm we start with des) = n, d(v) = 0 for all v E V\{s}, and

E* = 0, and gradually add the edges in E to E*. This creates a problem, however. The validity

of d is endangered whenever an edge (v, w) with d(v) > d(w) + 1 is added to E*. We overcome this

difficulty by adopting a more conservative rule than that of [GT88] for sending flow out of a vertex.

N amely, define the visible ezcess ezcess* (v) of a vertex v E V by

ezcess* (v) = ezcess(v) --' cap(e)
eEE\E": tail(e)=v

and relabel a vertex or send fiow out of it only if its visible excess is positive and remains nonnegative

(this use of visible excess is in some ways similar to the use of "available excess" in [AOT89]). We

will show below (Lemma 3.1) that this rule guarantees that ezcess*(v) ~ 0 whenever d(v) > o. In

particular, when an edge (v,w) with d(v) > d(w) is added to E*, it can be saturated immediately

using the excess available at v, so that d remains valid. We now give the details.

The algorithm maintains the current network G* , the prefiow f, the labeling d, and the functions

ezcfss(V) and ezcess*(v). Although the functions ezcess and e:rcess* in principle can be computed

from f and E*, efficiency dictates that they must be represented explicitly. In the description of the

algorithm, 'however, we omit this trivial elaboration.

Since f by definition is antisymmetrie, low-Ievel fiow manipulation is carried out by the procedure

5

procedure setftow(e: edgej c: real)j

f(e) := Cj f(retJ(e)) := -Cj

with the special case

procedure saturate (e: edge) j

setftow(e, cap(e))j

The main routines of the incremental generic algorithm and the algorithm. itself follow.

procedure push.(e: edgej c: real)j

Precondition: e = (v,w) E E*, v E V+, e is eligible, and ° < C ~ min{ezcess*(v),rescap(e)}.

setftow(e, f(e) + cl;

procedure relabel(v: tJertez)j

Precondition: v E V+, ezcess* (v) > 0, and no edge in E* with taU v is eligible.

d(v) := d(v) + 1j

procedure add edge({v, w}: undirected edge)j

Precondition: ({v, w), (w, v)} ~ E\E*.

E*:= E* U ({v,w),(w,v)}j

if d(v) > d(w) then saturate(v, w) fij

if d(w) > d(v) then saturate(w,v) fij

procedure generic initialize;

for a1l e E E do setftow(e, O) odj (* zero flow is default for new edges *)

for a1l v E V\{s} do d(v) := ° odj d(s) := nj

E* :=0;

Incremental generic algorithm.:

generic initializej

while max{ezcess*(v) : v E V+} > ° or E* ~ E

do

Execute some push., relabel or add edge operation

whose precondition is satisfiedj (* there always is one *)

od.

An execution of relabel(v) is called a relabeling of v. Define a push to be regular if it does not take

place during a call of Add edgej there are at most m nonregular pushes. Note the special status ofthe

source and the sink: No regular pushes are performed out of S or t, nor are they ever relabeled.

We next show the partial correctness of the algorithm. and give a few additional properties. Our

proof is similar to the correctness proof of the generic algorithm. of [GT88]. In stating invariants for

the algorithm., we consider push., relabel and add edge to be atomic operations, i.e., we ignore possible

violations of the invariants while these routines are being executed. We also implicitly restrict attention

to the part of the execution that follows the initialization.

6

Lemma 3.1: At all times during an execution ofthe incremental generic algorithm and for all v E V+,

if d(v) > 0 then ezcess*(v) .~ O.

Proof: We use induction on the number of steps executed by the algorithm. The claim is clearly

true immediately after the initialization and after a relabeling of v (by the precondition of the relabel

operation). A push into v does not decrease the visible excess of v, and a regular push out of v does not

decrease it below zero (by the precondition ofthe push operation). Finally observe that the execution

of an add edge operation cannot decrease the visible excess of any vertex.

Lemma 3.2: At all times during the execution,

(a) fis a preftowj

(b) d is a valid labeling.

•

Proof: (a) and (b) hold initially, ud they are not invalidated by calls of push or relabel (cf. Lemma 3.1

of [GT88]). Furthermore calls of add edge are easily seen to preserve (b). The only remaining issue

is that for some v E V\{s}, a saturating push on an edge (v,w) performed during a call of addedge

might invalidate the nonnegativity constraint ezcess(v) ~ O. However, when the push takes place,

d(v) > d(w) ~ 0, and it follows from Lemma 3.1 that ezcess(v) ~ 0 after the push. •

Lemma 3.3: Suppose that the algorithm terminates. Then, at termination, fis a maximum fiow in

G.

Proof: At termination, G* = G, and ezcess(v) = ezcess*(v) = 0 for all v E V+. Thus fis a fiow in

G. If f is not maximum, then, by a classical theorem of Ford and Fulkerson [FF62, Corollary 5.2],

there exists an augmenting path with respect to f, i.e., a simple path in G from s to t all of whose

edges are residual with respect to f. Since d(s) = n, d(t) = 0, and the length of a simple path in Gis

at most n - 1, this contradicts the validity of d. •

Lemma 3.4: An ineligible edge (v, w) E E* can become eligible only during a relabeling of v.

Proof: An edge e = (v, w) is ineligible exact1y if either rescap (e) = 0 or d(v) ~ d(w). The residual

capacity of e can increase from zero to a positive value only during a push on rev(e). But d(w) > d(v)

at the time of such a push on rev(e), i.e., eis ineligible after the push. Thus only a relabeling of v

can make e eligible. •

Lemmas 3.5 and 3.6 below are analogous to Lemmas 3.5 and 3.7 of [GT88], respectively. We

include them for the sake of completeness.

Lemma 3.5: For all v E V+ and at all times during the execution, if ezcess(v) > 0 then there is a

simple path in G* from v to s all of whose edges are residual with respect to f.

Proof: Let S be the set of vertices reachable from v in G* by a path all of whose edges are resid­

ual with respect to f. We need to show that sES. Assume otherwise. The choice of S im­

plies that f ('U, w) ~ 0 for all edges ('U, w) E E* with 'U $ S and wES. U sing the antisymmetry

7

of J, we obtain EWES ezcess(w) = E(u,w)EE-: uEV,wES J(u,w) = E(u,W)EE-: uEV\S,wES f(u,w) +
E(u,w)EE-: uES,wES f(u, w) ~ o. Since ezcess(w) ~ 0 for all w E V\{s}, we conclude that ezcess(v) =

0, a contradiction. •

Lemma 3.6: For all v E V and at all times during the execution, d(v) ~ 2n - 1. In particular, the

total number of relabelings executed by the algorithm is < 2n2 •

Proof: Let v E V+ with ezcess(v) > 0 be arbitrary. By Lemma 3.5 there is a simple path from v to

s in G* all ofwhose edges are residual with respect tol. Since des) = n, dis valid, and a simple path

consists of at most n -1 edges, this implies that d(v) ~ 2n - 1. Thus no vertex v with d(v) = 2n - 1

can ever be relabeled. •
We discuss instances ofthe incremental generic algorithmin Sections 4,5, and 7. For allinstances

an efficient implement at ion of the following current-edge abstract data type is important: the task is

to maintain two functions r : E -+ {O,1} and h : V -+ {O, ... , 2n - I} under the operations specified

below. An edge (v,w) E E is called admissible if r(v,w) = 1 and h(v) = h(w) + 1. For v E V, let

E(v) = {(v,w) E E: (v,w) is admissible}.

Initj

Sets h(v):= 0 for all v E V\{s}, h(s) := n, and r(v,w) := 0 for all (v,w) E Ej

Spush(v, w)j

Precondition: v E V and (v, w) E E(v).

Sets r(v,w) := 0 and r(w,v) := 1;

Npush(v, w)j

Precondition: v E V and (v,w) E E(v).

Sets r(v,w) := r(w,v) := 1;

Relabel(v);

Precondition: v E V, E (v) = 0 and h(v) < 2n - 1.

Executes h(v) := h(v) + 1j

Add edge({v, w})j

Precondition: {v,w} E E and r(v,w) = r(w,v) = o.
Sets r(v,w):= 1 ifeither h(v) < h(w) or (h(v) = h(w) and cap(v,w) > 0);

Sets r(w,v):= 1 ifeither h(w) < h(v) or (h(v) = h(w) and cap(w,v) > 0);

ce(v);

Precondition: v E V.

Returns some (v,w) E E(v) if E(v) =F 0, nil otherwisej

For q EIN, denote by Tee (n, m, q) the time needed to execute any legal sequence of one Init

operation followed by q Spush, Npush, Relabel, Add edge and ce operations. Note that such a sequence

contains at most m Add edge operations, since at all times after a call Add edge({v, w}) we have

8

r(v, w) = 1 or r(w, v) = 1. Implementations of the current-edge data type are discussed in Sections 6

and 8. The algoritbms of Sections 4 and 5 use the current-edge data type as follows: generic initialize

calls Init, a saturating and a nonsaturating regular push on an edge e call Spush(e) and Npush(e),

respectively, relabel(v) calls Relabel(v), and add edge({v, w}) calls Add edge({v, w}). For the sake of

simplicity, we do not explicitly mention these calls in the description of the algoritbms, and we consider

them to form atomic entities with the calling operations.

With this interface, it is easy to verify that the following holds throughout the execution: d(v) =

h(v) for all v E V, and an edge (v, w) in E* is eligible if and only if it is admissible. Thus for all

v E V, a call ce(v) returns an eligible edge with tailv if there iso one, and nil otherwise. The function

ce is used by the flow algoritbms to find eligible edges on which to push flow and to test whether a

vertex can be relabeled.

4. The incremental excess scaling algorithm

In this section we describe an incremental excess scaling algorithm for the case in which all edge

capacities are integers bounded by U ~ 1. The algorithm is an adaptation of the excess scaling

algorithm of Ahuja and Orlin [A089] to the incremental paradigm.

The execution of the algorithm is divided into phases parameterized by the value of a scaling

parameter .60 (of type ftow value). The algorithm repeatedly chooses a vertex v E v+ with ezcess* (v) ~

.60 and minimal d(v) and either pushes flowon an edge (v,w) or relabels v. When there are no more

vertices v E V+ with ezcess*(v) ~ .60, the current phase ends, .60 is replaced by .6../2, all edges

(v,w) E E\E* with cap({v,w}) ~ .6o/ß are added to E*, and the next phase begins. Here ß is a

positive integer, which we williater fix at L(m/n)1/2 J ~ 1. The complete program follows.

Incremental excess scaling algorithm:

generic initialize;

L := list of all undirected edges in E ordered by decreasing capacities;

.60:= 2LlogUJ;

while .60 ~ 1

do

while L 4: 0 and cap(first(L)) ~ .6o/ß da add edge(pop(L)) od;

while max{ezcess*(v) : v E V+} ~ .60

do

Among the vertices v E V+ with ezcess*(v) ~ .60, choose v as one with minimal d(v);

if ce(v) = nil

then relabel (v)

else e:= ce(v); push(e,min{.6o,rescap(e)}) fi;

od;

.60 ::-.60/2;

od.

9

When the algorithm terminates, we have E* = E (since ß :2: 1) and ezcess* (tI) < 1 for all tI E V+.

Since all flow values computed by the algorithm are integral, this implies that ezcess*(tI) = 0 for all

tI E V+ when the algorithm terminates. Thus the algorithm is an instance of the incremental generic

algorithm, and hence is partially correct. The algorithm refines the excess scaling algorithm of Ahuja

and Orlin [A089] j in fact, for ß = 00, Le., if all edges ue added before the first phase, the two

algorithms are identical.

Denote by bushes, Urelabels, Uadd edge and Uce the total number of regular pushes, relabelings,

calls to add edge, and calls to ce, respectively, executed by the algorithm. We first analyze Upushes

using a potential argument inspired by that of [CH89, Lemma 2]. Although part of this argument

appears identically in [CH91], we repeat it in full for the reader's convenience. The argument is

used to bound the number of regular saturating as well as the number of nonsaturating pushes. The

analysis of the excess scaling algorithm by Ahuja and Orlin [A089] also uses a potential argument.

Their argument, however, applies only to nonsaturating pushes.

For tI E V and i = 1,2, ... , denote by degi(tI) the number of edges with taU tI added to E*

between phase i - 1 and phase i (for i = 1: before the first phase). Further, for i = 1,2, ... , let

mi = Ll1EV degi(v).

Fact 4.1: At the time of a regular push on an edge e = (tI,w), eis eligible, the value of the push is

~ 8, and if w E V+, then ezcess*(w) < 8 immediately before the push.

Lemma 4.1: For all tI E V+, ezcess*(tI) < 28 at the beginning of phase 1, and ezcess*(tI) < 28 +
2 degi(tI)8/ ß at the beginning of phase i, for i :2: 2.

Proof: Consider first the case i = 1. A call add edge({8, v}) increases ezcess*(tI) by at most U < 28

and there is at most one such call for each vertex tI E V+. All other calls of add edge before phase 1

leave the flow unchanged, since all vertices tI except 8 have d(tI) = o. This completes the case i = 1.

For i :2: 2, observe that ezcess*(tI) < 28 for all tI E V+ before the calls of add edge between phases

i - 1 and i and that each call add edge({u, tI}) between these phases adds at most 28/ ß to ezcess*(tI).

Thus ezcess*(tI) < 28 + 2 degi(tI)8/ ß at the beginning of phase i, for all i :2: 2. •

For -y :2: 1 call a regular push on an edge (u, tI) a -y-push if I {w E V : d(w) = d(tI)} I :2: -y at the time

of the push and define the -y-fooling height d")'(tI) of a vertex tI EVas follows: If V = {tII, ... ,tin},

then

d")'(tI) = max I{k E Z: 0 ~ k < d(tI) and I{j : i j = k}1 :2: -y}I.
il ~d(111) ••••• i .. ~d(11 ..)

Intuitively, d")'(tI) counts the maximum number of "dense virtual distance levels" between tI and t,

where a vertex tlj is allowed to occupy any one virtual distance level numbered at least d(tlj), and

where a dense virtual distance level is one that contams at least -y vertices.

d")' has the following properties, named for future reference:

(F1) \:ItI E V : 0 ~ d")'(tI) ~ nhj

(F2) \:ItI E V: d(tI) = 0 ~ d")'(tI) = Oj

10

(F3) 'Vu,v E V : d(u) > d(v)::} d-y(u) ~ d.y(v);

(F4) "1'11., V E V: (d(u) > d(v) and I{w E V : d(w) = d(v)} I ~ I)::} d-y(u) > d-y(v);

(F5) A relabeling of a vertex v E V+ increases d-y(v) by at most 1 and does not increase d-y(w) for

any w E V\{v}.

Define the normalized value of a push as the value of the push divided by A.

Lemma 4.2:

(a) For all I ~ 1, the total normalized value of all I-pushes is at most (2n2 log U + 2nm/ß)/; + 4n2 ;

(b) There are O(nm/ß + n2 (logU + 1» nonsaturating pushes;

(e) There are O(nm/ß + n2ß + n2 10g U) saturating pushes.

Proof:

(a) Define the potential funetion

~ = L ezce:*(v) . d-y(v) + L
tlEV+: ezce"·(tI)~2~ tlEV+: ezce"·(tI»2~

ezcess*(v) . ~
a I

At the start of phase 1, ~ = 0 (by Lemma 4.1, property (F2) and the fact that d(v) = 0 for all

v E V+ at the start of phase 1), and ~ ~ 0 always (by Lemma 3.1 and property (F2». ~ does not

inerease due to regular pushes (by Fact 4.1 and properties (Fl) and (F3», and a relabeling increases

~ by at most 2 (by property (F5». For i ~ 2, the change of a and the addition of edges between

phases i-I and i increase ~ by at most (2n + 2mi/ß) . n/, (by Lemma 4.1 and property (Fl».

Consequently, and by Lemma 3.6, the total increase and hence also the total decrease in ~ is at most

(2n2 log U + 2nm/ß)/;+4n2
• Finally note that each I-push ofnormalized value c eauses ~ to decrease

by at least c (by Fact 4.1 and property (F4».

(b) Every push is a I-push and every nonsaturating push has normalized value 1. The bound now

follows from part (a), applied with ,= 1.

(c) Call a regular push on an edge (u,v) small if its value is less than a/ß, call it terminal if

I{w E V: d(w) = d(v)} I < ß at the time ofthe push, and partition the regular saturating pushes into

three classes: (1) small pushes; (2) nonsmall terminal pushes; (3) nonsmall nonterminal pushes. We

bound the number of pushes in each dass separately.

(1) We have cap({v,w}) ~ a/ß for each {v,w} E E*. Henee between any two small saturating

pushes on a fixed undirected edge there is a nonsaturating push on that edge. Therefore the number

of small saturating pushes is at most m plus the number of nonsaturating pushes, and the bound

follows from part (b).

(2) By Lemma 3.4, each terminal push out of a vertex v E V is followed by fewer than ß saturating

pushes out of v before the next relabeling of V. Sllmming over all v E V and all possible values of

d(v), this gives at most 2n2ß terminal saturating pushes.

(3) The normalized value of a nonsmall push is at least 1/ ß, and each nonterminal push is a ß­
push. An application ofpart (a) with I = ß now shows that there are at most 2n2 1og U +2nm/ ß+4n2 ß

regular nonsmall nonterminal pushes. •
11

We sum up the findings as follows:

Theorem 4.1: A maximum fiow in a network with n vertices, m edges and integer capacities bounded

by U ~ 1 can be computed deterministically using O(q) fiow operations and O(q) + Tce(n, m, q) time,

where q = O(n3 / 2m1/2 + n2IogU).

Proof: Put ß = L(m/n)1/2J and note that ß can be computed within the stated resources. Sorting

the undirected edges by their capacities takes O(mlogm) = O(n3 / 2m1/2) time, the execution of

genericinitialize is no more expensive, and the initial value of A can be computed in O(m + log U)

time. There are L log U J + 1 phases, in each of which a number of undirected edges is added to E*.

This takes O(logß) = O(logn) time per undirected edge (for the multiplication of its capacity by

ß), and hence O(mlogn) time altogether. Using simple data structures described in [A089], the

selection of v in the second inner while loop of the algorithm can be implemented to run in constant

time per vertex selection plus O(n) time per phase. Over the whole algorithm, this adds up to

O(dpushe8 + dreiabels + n(log U + 1)) time. Since dpushes = O(n3 / 2m1/2 + n2log U) (by Lemma 4.2),

dreiabels = O(n2
) (by Lemma 3.6), dce = O(ppushes + drelabels), and daddedge $ m, both the total

number of operations executed on the current-edge data structure and the total time spent outside

this data structure are O(n3/ 2m1/ 2 + n2log U). The claim follows. •

In the next section we show how the wave scaling technique of [AOT89] can be combined with the

incremental approach to reduce the value of q in Theorem 4.1 to O(n3/ 2m1 / 2 + n2(log U)1/2 + log U).

5. The incremental wave scaling algorithm

The incremental wave scaling algorithm is an adaptation of the wave scaling algorithm of

[AOT89] to the incremental paradigm. As in the previous section all edge capacities are integers

bounded by U ~ 1, and the execution is divided into phases parameterized by A, with edge additions

taking place between phases.

The incremental wave scaling algorithm makes use of the procedures 8tack pU8h relabel and wave.

A call8tackpu8hrelabel(v) pushes fiow out ofv until either the visible excess Ofl1 is zero or there are

no eligible edges with tailv, in which case 11 is relabeled. Also, when 8tack push relabel(11) considers an

e1igible edge (v, w) and w has visible excess A or more, stack push relabel is first called recursively with

argument w in order to "clear the way" for the push on (v, w). The procedure wave orders the vertices

in V+ by decreasing value of the function d and then steps through the ordered list of vertices, calling

8tack push relabel for each vertex in turn. An important property of processing the vertices in this

order is that once a call 8tackpush relabel(v) in wave has terminated, the visible excess of 11 remains

unchanged until the end of the call of wave. The algorithm employs the two procedures as follows: In

eac4 phase it first uses stack pusn. relabel to reduce the individual visible excess of each vertex in V+

below A and then wave to reduce E* below nA/I, where I > 0 is a parameter to be chosen later and

1:;* = E"ev+ max{ ezces8*(11), O}. Although not strictly accurate, it is helpful to think of 1:;* as the

total visible excess.

12

procedure stack push relabel(v: vertez)j

while ezcess*(v) > 0 and ce(v) * nil

do

w:= head(ce(v»j

Ü w =1= t and ezcess*(w) 2: a
then stack push relabel (w)

else (* w = t or ezcess*(w) < a *)

push« v, w),min{ ezcess*(v), a, rescap(v, w)})j

fij

odj

if ezcess*(v) > 0 then relabel(v) fij

procedure wave j

J := list of all vertices v E y+ ordered by decreasing values of d(v)j

whUe J =1= 0

do stack push relabel (pop (J» odj

Incremental wave scaling algorithm:

generic initializej

L := list of the undirected edges in E ordered by decreasing capacitiesj
a f- 2l1ogUJ. ,
whUe a 2: 1

do

while L * 0 and cap(first(L» 2: a/ß do add edge(pop(L» od;

(* A *)

whUe max{ ezcess* (v) : v e Y+} 2: a
do

Choose v E y+ with ezcess*(v) 2: a;
stack push relabel (v);

od;

(* B *)
whUe ~* 2: najl do wave od;

(* C *)

a:= a/2;
od.

The parameters 1 and ß will be chosen later. The incremental wave scaling algorithm differs

in two respects from the wave scaling algorithm of [AOT89]: (1) it is incremental; (2) instead of

beginning each phase with a sequence of watJes, i.e., calls of watJe, we first reduce the visible excess of

every vertex below a before executing the waves. This is necessary because the addition of edges at

the beginning of a phase may cause individual excesses to be very large. In return, it is not necessary

to reduce individual excesses after the waves as in [AOT89] - this is taken care ofby the next phase.

13

We next elucidate the relationship between the incremental excess scaling algorithm of Section 4

and the incremental wave scaling algorithm of this section. Without the "wave loop", i.e., the loop

between labels B and C, the two algorithms are basically the same. The wave loop re duces ~* below

nd/I. This allows us to replace the n 2logU term in Lemma 4.2 by n 2 logU/1 and thus yields an

improved bound on the numher of nonsaturating pushes. On the other hand, the wave loop brings

about additional cost proportional to n2l (since each wave has cost e(n) that cannot be accounted for

by the techniques of the previous section, and since the numherof waves is essentially proportional to

nl, cf. Lemma 5.2). Choosing I = (log U)1/2 bala.nces the two contributions and reduces the n2 log U

term in Theorem 4.1 to n2 (log U)1/2 in Theorem 5.l.

We now analyze the incremental wave scaling algorithm. If and when the algorithm terminates,

we have E* = E (since ß ~ 1) and ezcess*(v) < 1 for all v E V+. Thus the algorithm is an instance of

the incremental generic algorithm and therefore partially correct. Also Fact 4.1 holds for it. Lemma

4.1 can be sharpened to the following

Fact 5.1: For i ~ 1, the following bounds on totaland individual visible excesses hold during phase i:

(a) At label A, ezcess*(v) < 2d for i = 1 and for all v E V+, and ~* < 2nd/l + 2mid/ß for i > 1;

(b) At label B and until the end of the phase, ezcess* (v) < 2d for all v E V+.

Denote by üstackpush relabels and by üwaves the number of callsof stackpush relabel and of wave,

respectively, and by üpushes the number of regular pushes executed by the algorithm. We first show

the following refinement of Lemma 4.2.

Lemma 5.1:

(a) For all, ~ 1, the totalnormalized value of all,-pushes is at most 2n2 log U /(Z,)+2nm/(ß,)+4n2;

(b) üstackpushrelabels = O(nm/ß+n2 +n2IogU/I+n'üwaves);

(c) üpushes = O(nm/ß + n 2ß + n2 log U /1 + n· üwaves).

Proof:

(a) We use the same potential function ~ as in the proof of Lemma 4.2(a). At the start of phase 1,

~ = 0 (by Fact 5.1(a), property (F2) of ,-fooling height and the fact that d(v) = 0 for all v E V+

at the beginning of phase 1). By the same argument as in the proof of Lemma 4.2(a), ~ ~ 0

always, ~ does not increase due to regular pushes, and a relabeling increases ~ by at most 2. For

i ~ 2, the change of d and the addition of edges between phases i - 1 and i increase ~ by at most

(2n/1 + 2mi/ß) . nh (by Fact 5.1(a) and property (F1)). Consequently, the total decrease in ~ is at

most 2(n/l)· (nh) . log U + 2(m/ß)' (nh) + 4n2. Finally note that each ,-push ofnormalized value

c causes ~ to decrease by at least c (by property (F4)).

(b) Define a call stackpushrelabel(v) to be potent if ezcess*(v) ~ d at the time of the call. Since

each nonpotent call of stack push relabel is made directly by wave, there can be at most n· üwaves such

calls. Also at most 2n2 calls stack push relabel(v) end with a relabe1ing of v (by Lemma 3.6). A potent

call stack push relabel (v) that does not end with a relabe1ing of v, finally, carries out pushes out of v of

14

total normalized value at least 1. Since every push is a 1-push, an application ofpart (a) with i = 1

now shows the number of such calls to be O(nm/ ß + n 2 + n2log U /1).

(c) There is at most one nonsaturating push of value < .6. per call of stack push relabel, and the

number of pushes of value 2: .6. is easily bounded by anotherapplication of part (a) with i = 1.

This shows the bound for nonsaturating pushes. As for saturating pushes, we defi.ne the concepts of

small and terminal pushes as in the proof of Lemma 4.2(c) and argue as done there. The number of

small saturating pushes is bounded by m plus the number ofnonsaturating pushes, there are O(n2ß)

terminal pushes, and the number of nonsmall nonterminal pushes is O(n2log U /1 + nm/ß + n2ß) .•

The following lemma was essentially proved in [AOT89] (Lemma 4.2).

Lemma 5.2: dwaues = o (min{n2 , nl + logU}).

Proof: We :first show the O(n2) bound and then the O(nl + logU) bound.

For the O(n2) bound observe :first that at most 2n2 waves execute a re1abeling (Lemma 3.6). On

the other hand, a wave that does not execute at least one re1abeling reduces lJ* to 0 and hence is

either the last wave or is separated from the next wave by the addition to E* of at least one edge.

Thus there are at most 2n2 + m + 1 = O(n2) waves.

For the O(nl + log U) bound consider any wave that is not the last in its phase. At the end

of such a wave lJ* 2: n.6./1. Also, no vertex has visible excess exceeding 2.6. (by Fact 5.1(b», and

every vertex with positive visible excess at the end of the wave was re1abe1ed during the wave. Thus

at least n/(21) relabelings occurred during the wave and hence the number of waves is bounded by

Llog UJ + 1 + 2n2/(n/(21» = O(nl + log U). •

Theorem 5.1: A maximum ftow in a network with n vertices, m edges and integer capacities bounded

by U 2: 1 can be computed deterministically using O(q + log U) flow operations and O(q + log U) +
Tce(n,m, q) time, where q = O(n3 / 2m 1/ 2 + n2(log U)1/2).

Proof: Replace U by max{U,2} and choose I such that 1 = 0(y1Og"U) and such that the sequence

ao,al, . .. ,aLlogUJ can be computed in O(logU) time, where ai = r2 i n/ll, for i 2: O. We show below

how to do this. Also take ß = L(m/n)1/2 J (as in the previous section) and note that ß can be computed

within the stated resources. As in the proof of Theorem 4.1, a. component in the running time of

O(mlogn+log U) accounts for initialization, maintenance of.6. and multiplication ofthe capacities of

all undil-ected edges by ß. By the conditions placed on I above, each execution ofthe test between labels

Band C can be carried out in constant time (maintain lJ* explicitly). The totalnumber ofoperations

executed on the current-edge data structure as we1l as the remaining running time can be seen to be

at most proportional to dpushes + dstack push relabels + mj in particular, note that the list J employed

by waue can be constructed in O(n) time by bucket sorting. Since dwaues = o (min{n2 ,ni + log U}) =

O(n(logU)1/2), Lemma 5.1 implies that dpushes + dstackpushrelabels = O(n3 / 2m 1/2 + n2(logU)1/2),

from which the desired result follows.

In the remainder of the proof we show how to choose 1 to satisfy the conditions stated above.

This material can be skipped in a :first reading, and it is of little relevance to readers with no interest

15

in the details of our model of computation.

What makes the problem nontrivial is the insistence of our model on a neat separation between the

types integer and ftow 1Jalue and the very restricted operations applicable to values of type ftow 1Jalue.

For example, the condition U > n cannot be tested directly because of a type mismatch: U is oftype

ftow1Jalue, while n is of type integer, and we have not provided for comparisons between values of

different types. The available operations do, however, allow the computation of the ftow 1Jalue n from

the integer n in O(n) time (and, in fact, in O(logn) time), so that the test can be executed after all.

We use this idea below.

Begin by computing rlog Ul = min{i ~ 1 : 2i ~ U} in o {log U) time using repeated doubling.

Then determine ry10gUl = min{i ~ 1 : E~=1(2i - 1) ~ rlogUl} in O(.y1OgU) time. Finally

compute io = min{i E Z: 2i n ~ r.y1OgUl} and take 1 = 2i on. The numbers io and 21iol can be found

in O(liol + 1) = O(log(n + log U» time via repeated doubling, starting from min{n, r.y1OgUl}, and

clearly 1 = E>(y'log U). Furthermore, ai = r2 i - iol, for i ~ 0. Hence ao can be computed in constant

time, and ai can be computed from ai-1 in constant time, for all i ~ 1. •
6. Solutions to the current-edge problem

In this section we describe two solutions to the current-edge problem, Le., implementations of the

current-edge data type, both of which are based on the fact that if an edge (v, w) E E* is inadmissible

at some time, then it remains inadmissible until the next execution of Relabel(v) (cf. Lemma 3.4).

Lemma 6.1: Tee(n,m,q) = O(nm+ q) = O(n3 + q).

Proof: Maintain for each vertex v a list Lv containing those edges (v, w) for which Add edge({v, w})

has been executed. If the functions r and h are represented by tables in the obvious way, [nit can

be executed in O(m) time, while each of Spush, Npush, Relabel and Add edge takes constant time.

In order to implement the final operation ce, additionally maintain for each vertex v apointer z[v]

into Lv, which is initialized to point to the beginning of Lv and is reset to this position in each call

of Relabel(v). Each call ce(v) advances z[v] (possibly a distance of zero) until an admissible edge is

encountered, or until the end of Lv is reached, in which case the value nil is returned. The correctness

of this implementation follows from the fact cited above, which guarantees that no edge behind z[v]

is ever admissible; in particular, note that an edge (v,w) is always inadmissible at the time of its

insertion in Lv. Since each pointer z[v] makes at most 2n scans over its list Lv, the total time spent

is O(nm+ q). •
Lemma 6.1 describes the standard solution to the current-edge problem, as used in [A089] ,

[AOT89], [CH89], and [GT88]. We now give a fast er solution. First identify V with the set

{O, ... ,n -1} and extend r to a function from V X V to {O,l} bytaking r(v,w) = ° for (v,w) $ E.

Theorem 6.1: Tee (n, m, q) = O(n3 flog n + q).

16

Proof: We represent the function h not only directly, but also through an array H : {O, ... , 2n -I} X

V -+ {O, I} such that for all integers k with 0 ~ k ~ 2n - 1 and all v E V, H[k,v] = 1 if and only

if h(v) = k. Then for all (v,w) E E with h(v) > 0, r(v,w) . H[h(v) - 1,w] * 0 if and only if the

edge (v,w) is admissible. We combine this observation with the "four Russians' trick" (see [AHU74,

Section 6.6]), i.e., we partition each row of the arrays r and H into blocks of size z and represent the

z bits of each block by a single integer. Here z is a positive integer, which for simplicity we assume

to be a divisor of n. More precisely, let X = {O, ... ,2:1: - I}. Instead of r and H, we maintain arrays

r' : V X {O, ... , n/z -1} -+ X and H' : {O, ... , 2n -1} x {O, ... , n/z -I} -+ X defined as follows: For

all v E V and all integers k and i with 0 ~ k ~ 2n - 1 and 0 ~ i ~ n/z - 1, let

:1:-1 :1:-1

r'[v, i] = L r(v, iz + j) ·2:1:-1-;

;=0
and H'[k, i] = L H[k, iz + j] ·2:1:-1-;.

;=0

1:' E X I t (:1:-1) (0) d t th . di ·d al b·t f· (:1:-1) (0) E {O I} d .ror a ,e a , ... ,a eno e e m VI u ISO a, I.e., a , ... ,a ,an

Ej;~ a(;) 2; = a. For a, b EX, let a Ab be the bitwise AND of a and b, i.e., a A b = Ej;~ (a(;) . b(;) . 2;.

Then for all v E V with h(v) > 0 and for all integers i with 0 ~ i ~ n/z - 1, we have r'[v,i] A

H'[h(v) - 1, i] * 0 if and only if one of the edges in {(v, iz + j): 0 ~ j < z} is admissible. This leads

to the implementation of ce given belowj the remaining operations are left to the reader. In order to

understand the last line of the code, note that for each nonzero a EX, Llog a J is the position of the

leftmost nonzero bit in a, the rightmost bit position counted as o.

function ce (v: vertez): edge j

if h(v) = 0 then return nil fij

while r'[v, z[v]] A H'[h(v) - 1, z[v]] = 0 and z[v] < n/z - 1

do z[v] := z[v] + 1 odj

if r'[v, z[v]] A H'[h(v) - 1, z[v]] = 0

then return nil

else return (v, z[v] . z + Llog(r'[v, z[v]] A H'[h(v) - 1, z[v]])J) fij

In the execution of any legal sequence of q operations following Init, the total number of chang~s to

z[v] is O(n2 /z), for arbitrary v E V. Hence such a sequence can be executed in O(n3 /z + q) time,

provided that the operations of testing and setting individual bits of numbers in X and of computing

LlogaJ and aA b; for arbitrary a,b E X, take constant time.

For z = Llog n J, tables implementing the operations a I-t Llog a J and (a, b) 1-+ a A b, for a, b EX,

can be constructed in O(n2) time, and individual bits of numbersin X can be inspected and modified

in constant time via appropriate multiplications and integer divisions by powers of 2. This completes

the proof of Theorem 6.1. •

Remark: On many real computers the operation of bitwise AND is built-in, i.e., takes constant time.

It is easy to improve Theorem 6.1 for such a machine with a nonstandard word length of z = w(logn)

bits. Although the remaining bit-level operations discussedabove may not be available at unit cost,

they can trivially be executed in · O(z) time. Hence on a machine with a word length of z bits and

17

unit-time bitwise AND, Tce(n,m,q) = O(n3 /z + qz + n2), where the term n2 accounts for the cost of

initialization.

7. The incremental strongly polynomial algorithm

In addition to the data structures of the generic algorithm, the incremental strongly polynomial

algorithm uses, as do several previous algorithms, an edge-weighted directed graph F = (V, EF, val),

where EF ~ E* and val is a function from EF to IR. F at all times is a directed forest, i.e. , an acyclic

directed graph with maximum outdegree at most one, and vai(e) = rescap(e) for all e E EF. A vertex

v E V is called a root exactly if its outdegree in F is zero. The following operations are applied to F:

InitFi

Sets EF:= 0i

Find value(e)i

Precondition: e E E F.

Returns val(e)i

Find root(V)i

Precondition: v E V.

Returns the root of the tree in F containing Vi

Find mine V)i

Precondition: v E V and v is not a root.

Returns · an edge e of mjnjmal value val(e) on the maximal path in F starting at Vi in the case of ties

the last such edge is returnedi

Add value(v, C)i

Precondition: v E V and c E IR.

Replaces val(e) by val(e) + C for each edge e on the maximal path in F starting at Vi

Link(e, c);

Precondition: e E E* , cE IR, and (V,EF U {e}) is a directedforest.

Replaces EF by EF U {e} and sets val(e) := ci

Cut(e);

Precondition: e E EF.

Replaces EF by EF\{e}i

The dynamic trees data structure of Sleator and Tarjan [ST85] supports the seven operations defined

above in O(logn) amortized time each, i.e., a sequence of q operations. on F, starting with InitF, can

be executed in O(qlogn) time.

The preflow I is represented in one of two ways: For e E E*, while e $ EF and rev(e) $ EF,

I(e) is stored directly as g[e], where 9 : E -+ IR is an array. While e E EF, I(e) is given implicitly

as cap(e) - val(e), and I(rev(e» as - I(e). Accordingly, we redefine the basic procedure setftow and

incorporate the conventions for the representation of I into new versions of Link and Cut.

18

procedure sdftow(e: edgej c: real)j

g[e] := Cj g[rev(e)] := -Cj

procedure link (e: edge)j

Link (e, rescap(e))j

procedure cut(e: edge)j

setftow(e, cap(e) - Find value(e))j

Cut(e)j

The procedure tree pusk de1ined below works as follows: A call tree pusk(v) first inserts an eligible edge

with tail v into EF if v is a root, and then determines the minimal residual capacity C of any edge on the

maximal path in EF starting at v. It finally increases the flow along that path by min{c, ezcess*(v)}

and deletes all edges from E F that become saturated.

procedure tree pusk(v: vertez)j

if Find root (v) = v (* v is a root *) then link(ce(v)) fij

c := Findvalue(Findmin(v))j

Add value(v, - min{c, ezcess*(v)})j

whlleFindroot(v) =1= v and Findvalue(Findmin(v)) = 0

do cut(Findmin(v)) odj

We finally extend the routine relabel and give the main program.

procedure relabel(v: vertez)j

for all u E V with (u,v) E EF do cut(u,v) odj

d(v) := d(v) + 1j

Incremental strongly polynomial algorithm:

generic initializej

InitFj

L := list of the undirected edges in E ordered by decreasing capacitiesj

.whUe L =1= 0

do

a := cap(jirst(L))j

add edge(pop(L));

(* a is used only by the analysis *)

whlle max{ ezcess* (v) : v E V+} > 0

do

Choose v E V+ with ezcess*(v) > Oj

if ce(v) = nil

then relabel(v)

else tree pusk (v);

fij

od;

od. ,...

19

The algorithm uses the current-edge data type as follows: genericinitialize calls Init, relabel(v) calls

Relabel(v), add edge({v, w}) calls Add edge({v, w}), link (e) calls Npush(e), and each call cut(e) within

treepush calls Spush(e). The latter conventions regarding calls of Spush and Npush, which at first

glance may seem rather arbitrary, are motivated by our desire to have the current-edge data structure

reflect faithfully what go es on in the fiow algorithm. Said more simply, it is crucial to maintain the

invariant that each edge in E* is eligible if and only if it is admissible, which ensures the correctness

of the values returned by calls of ce. While clearly h(v) = d(v) continues to hold for all v E V, we

prefer to argue more formally that an edge (v, w) E E* is residual if and only if r(v, w) = 1.

Lemma 7.1: At all times of the execution after the initialization and except during calls of add edge ,

treepush and relabel, the following invariants hold:

(a) Every edge in E F is eligible;

(b) For all (v, w) E E*, (v, w) is residual if and only if r(v, w) = 1.

Proof: (a) and (b) hold vacuously immediately after the initialization. We show by simultaneous

induction on the number of steps executed by the algorithm that they continue to hold throughout .

(a) By invariant (b), every edge inserted into E F is indeed eligible at the time of its insertion; note also

that invariant (a) shows the precondition of the call to link to be satisfied, and that the preconditions

of all other calls executed by the algorithm are easily seen to hold. An edge in E F becomes ineligible

either because it is saturated, in which case it is removed from EF in a call of treepush, or because of

a relabeling, in which case it is removed from EF in a call of relabel.

(b) We analyze those events that make a nonresidual edge residual, or vice versa, as weIl as those that

change values ofr, i.e., calls of link and calls of cut in treepush. Recall first that a call Add edge({v, w})

initializes r(v, w) and r(w, v) correctly.

Invariant (a) shows that the value c computed by treepush is always positive. As a consequence,

an edge (v, w) E E* can become residual only during a call of treepush that also executes a call

link(w,v), thereby setting r(v,w) := 1. Furthermore, (v,w) is residual at the end of every suCh call

of treepush, and no call1ink(v,w) ever changes r(v,w).

On the other hand, an edge (v, w) E E* stops being residual only when a saturating push on

(v,w) is performed ina call of treepush, in which case a call cut(v,w) executed by the same call of

treepush sets r(v, w) : = o. Furthermore, this accounts for all calls of cut in treepush. •
As an instance of the incremental generic algorithm, the incremental strongly polynomial algo­

rithm is partially correct. The following fact is obvious.

Fact 7.1: At all times during the execution, ezcess* (v) ~ a for all vertices v E V+.

Define a PTR el1ent on an edge e to be a relabeling of the head of e while e is eligible, and denote

by "ptr the totalnumber ofPTR events during the execution. PTR events were introduced in [CH~9].

Their number depends on the exact edges returned by calls of ce; this dependence will be discussed

in Section 8. A PTR event on an undirected edge {v,w} is a PTR event on one ofthe edges (v,w)

20

or (w, v). Denote by "sat cuts the number of calls of cut within tree push, by "ptr cuts the number of

calls of cut within relabel, by "cuts the sum of "sat cuts and aptr cuts, by "tree pushes the number of

calls of tree push, and by "links the number of calls of link. A call of cut or link is also called a cut or

a link, respectively.

The analysis of our strongly polynomial algorithm centers around the following ideas. We first

show that the running time is determined by the search for current edges, "tree pushes, and deuts, and

then relate atree pushes to "cuts. In order to bound "sat cuts we use a potential function similar to the

one used in the proof of Lemma 4.2, and in order to bound "ptr cuts we upper-bound this quantity by

"ptr and use the analysis of [CH89].

Lemma 7.2: The algorithm uses O(q log n) fiow operations and O((atree pushes + deuts) . log n + n 2 +

mlogn) + Tee(n,m,q) time, where q = O(atreepushes + deuts + n2).

Proof: It takes time O(mlogn) to sort the undirected edges by capacity. If we maintain for each

vertex v the set of edges in EF with head v, then a re1abeling takes 0(1) time plus O(logn) time

for each cut caused by the relabeling. A call of tree push takes 0 (log n) time plus 0 (log n) time for

each cut caused by tree push. Finally, the time spent on the current-edge task is Tee (n, m, q), where

q = O(Utree pushes+acuts+n2
), since the number of calls of ce is bounded by the number ofrelabelings

plus twice the number of calls of treepush, the numberof calls of Spush and Npush are bounded by

Utreepushes and deuts, respectively, and the number of calls of Addedge and Relabel are bounded by

0(n2). •

Lemma 7.3:

(a) atreepushes = O(alinks+asatcuts+m)j

(b) alinks ~ U cuts + nj

(c) "ptr cuts ~ Uptr.

Proof:

(a) We use a potential function T defined as the number of nonroot vertices with positive visible

excess. When treepush(v) is called we have excess*(v) > o. If a call treepush(v) performs neither

a link nor a cut, then v was not a root before the call and excess*(v) = 0 after the call, i.e., T is

reduced by one. No call of tree push increases T by more than one, the addition of an undirected

edge increases T by at most 2, and a relabe1ing does not change T. Hence the total increase in T

is O(Ulinks + Usat cuts + m), T = 0 initially and T ~ 0 always, and with the exception of at most

Ulinks + Usat cuts calls, every call of treepush decreases T by 1.

(b) Since F is a forest at all times during the execution, it never contains more than n - 1 edges.

(c) By Lemma 7.1(a), each cut within a relabeling corresponds to a PTR event. •
Lemma 7.4: US4tcuts = 0(n3/ 2m1/ 2 + uptr).

Proof: Define a push bundle for an edge e E E* to be the sequence of all regular pushes on e in a

maximal period of eligibility of e. A push bundle for an undirected edge {v, w} is a push bundle for

21

one ofthe edges (v,w) or (w, v). The number ofpush bundles clearly bounds Usatcuts. A push bundle

for an edge e = (v, w) E E* is called complete if its pushes increase f (e) by cap ({ v, w}), Le., from

-cap(w,v) to cap(v,w), and incomplete otherwise.

Claim 1: The number of incomplete push bundles is O(m + Uptr).

Proof: A maximal period of eligibility of an edge eis terminated by a PTR event on e, by a saturating

push on e or by the end of the execution. Hence an incomplete push bundle for an undirected edge

{ v, w} that is neither the first nor the last push bundle for {v, w} is either immediately preceded or

immediately followed by a PTR event on {v,w}.

Claim 2: The number of complete push bundles is O(n3 / 2m1 / 2).

Proof: Define the level of a push on an edge (u, v) E E* to be the value of d(u) at the time of the

push. Two pushes on a fixed edge (u, v) have the same level if and only if they belong to the same

push bundle. Hence for all (u, v) E E and all integers k with 1 ::; k ::; 2n - 1, we can denote by

(u,v, k) the push bundle for (u,v) (if any) whose pushes are oflevel k. Let ß be a positive integer, to

be chosen below, and call a push bundle (u, v, k) terminal if it is followed by less than ß push bundles

of the form (u, w, k), where (u, w) E E. Clearly there are at most 2n2 ß terminal push bundles. In

order to count the number of nonterminal push bundles, we use a potential argument similar to those

used in the proofs of Lemmas 4.2 and 5.1.

Consider the potential function

~ = ~ ezcess*(v)
~ A • dß(v).

tlEV+

~ = 0 initially, ~ ~ 0 always (since ezcess*(v) < 0 implies dß(v) = 0, for all v E V+), ~ does not

increase due to changes of a (since ezcess* (v) ::; 0 for all v E V+ at each change of a), ~ does

not increase due to regular pushes (by property (F3) of ß-fooling height), the total increase due to

relabelings is at most 2n2 (by Fact 7.1 and property (F5», and the increase due to the addition of an

edge is at most n/ ß . The total decrease of ~ is therefore bounded by nm/ ß + 2n2 • Finally note that .

the pushes in a complete nonterminal push bundle decrease ~ by at least 1. This can be seen as follows.

Consider a complete nonterminal push bundle (u, v, k). Since (u, v, k) is nonterminal, it is followed

by ß bundles (u, Wl , k), ... , (u, W ß, k). Lemma 3.4 now implies that the edges (u, wd, ... , (u, w ß) are

eligible whenever a push in the bundle (u,v,k) oceurs. Thus, by property (F4), dß(u) > dß(v) at

the time of each such push. Also the total value of the pushes in the push bundle is cap({ u, v}),

and a ::; cap({u, v}) whenever a push in the bundle occurs, since the undirected edges are added

in the order of decreasing capacities. Snmming up, the total number of complete push bundles is

O(nm/ß + n 2 ß). Claim 2 follows with ß = L(m/n)1/2J, and this ends the proof ofLemma 7.4. •

Lemma 7.5: The algorithm uses O(qlogn) flow operations and O(qlogn) + Tce(n,m,q) time, where

q = O(n3 / 2m 1/ 2 + Uptr).

Proof: Combine Lemmas 7.2, 7.3, and 7.4. •
22

8. The extended current-edge problem and PTR events

In the definition of the current-edge data type in Section 3, we aUowed a caU ce(v) to return

an arbitrary admissible edge (if any) with taU v. Given so much freedom, however, an adversary

might be able to "score" a high number of PTR events, leading to a bad running time. Our defense

against the adversary will be randomness: We force the choice among several admissible edges to be

made according to a fixed but random orderingj then we can prove that the number of PTR events

is usually much lower than the naive upper bound. In this section we adapt the specifi.cation of the

current-edge data type and extend the results of Section 6 to the more restrictive definition of ce,

review and slightly extend the bounds on the number of PTR events shown in [CH89], and finally

prove our main theorem.

For every finite set A, denote by Perm(A) the set of aU permutations of A, i.e., of all bijections

from {O, ... ,IAI-l} to A. As in Section 6, identify V with the set {O, ... ,n -I}. The extended

current-edge data type is initialized with n permutations eo, el,.'" en-l of V. Its task is to maintain

two functions r: E -+ {O,l} and h: V -+ {0, ... ,2n -I} under the operations Init, Spush, Npush,

Relabe/, Add edge and ce. The operations Spush, Npush, Relabel and Add edge are defined as in

Section 3, and Init and ce are redefined as follows:

Init(eo, ... ,en-t}j
Precondition: eo, ... , en-l are permutations of V.

Records eo, ... ,en-l and sets h(v):= 0 for v E V\{s}, h(s):= n, and r(v,w):= 0 for aU (v,w) E E.
. ,

ce(v)j

Precondition: v E V.

Returns the first admissible edge with taU v in the order induced by e" if E(v) ~ 0, nil otherwise.

If E(v) ~ 0, the first admissible edge with taU v in the order induced by e" is (v,e,,(io», where

i o = min{i: 0 ~ i ~ n - 1 and (v,e,,(i» E E(v)}.

For q E N, denote by T~e(n,m,q) the time needed to execute any legal sequence of one Init

operation followed by q Spush, Npush, Relabel, Add edge and ce operations of the extended current­

edge data type.

Lemma 8.1: T~e(n,m,q) = O(nm + q) = O(n3 + q) .

. Proof: Identical to that of Lemma 6.1, except that the list L" is kept sorted according to the order

induced by e", for aU v E V. This makes Add edge operations more time-consuming. Since there are

at most m caUs of Add edge, however, each of which can be executed in O(n) time, the total time is

still O(nm + q). •

We now extend the fast er solution of Section 6, but only for a restricted dass of permutations

eo, ... ,en-l. Let x = LlognJ, which as in Section 6 we assume to be a divisor of n. Also take

M = {O, ... ,nix -I} and let Bi = {ix,ix + 1, ... , (i+ 1)x -I}, fori = 0, ... ,nix -1. A permutation

of M is caUed a block permutation. For every block permutation S E Perm(M), define the induced

block-preserving permutation as the permutation e E Perm(V) obtained by first arranging the blocks

23

according to S, and then replacing each block by the sorted sequence of its elements (Le., for v E Bi

and w E B j , e-1(v) < e-1(w) ~ (S-l(i) < S-l(j) or (i = j and v< w))).

Lemma 8.2: For aU q EINand for n arbitrary block permutations So, ... , Sn-l E Perm(M) with

induced block-preser~ing permutations eo, ... ,en-l E Perm(V), the operation Init(eo, ... ,en-I) and

any legal sequence of q Spush, Npush, Relabel, Add edge and ce operations following it can be executed

in O(n3 / log n + q) time.

Proof: The proof of Theorem 6.1 carries over with only two minor changes: A relabeling of a vertex

v resets z[v] to S,,(O) instead of to 0, and in the implement at ion of ce the pointer z[v] steps through

the blocks in the order given by S" instead of in increasing order, i.e., lines 3 and 4 of the code of ce

are replaced by

while r'[v,z[v]] A H'[h(v) -l,z[v]] = 0 and S;l(Z[V]) < n/z-1

do z[v] := S,,(S;l(z[v]) + 1) odj •
The incremental strongly polynomial algorithm uses the extended current-edge data type essentially

as described in Section 7 (in the paragraph preceding Leinma 7.1). The only modification is that

genericinitialize now chooses n p~rmutations eo, . . . ,en-l ofV and caUs Init(eo, .. . ,en-I). In this sit­

uation, we say that the algorithm is executed with the adjacency lists ordered according to eo, . . . , en-l.

We now turn to the discussion of PTR events. We need the following definitions. Given finite

. sets A and B and permutations J.L E Perm(A) and 0" E Perm(B), let A(J.L, 0"), caUed the coascent of J.L

and 0", be the length of a longest (not necessarily contiguous) common subsequence of the sequences

J.L(O), ... , J.L(IAI - 1) and 0"(0), ... , O"(IBI - 1). Given I permutations J.Lo, ... , J.LZ-l of subsets of a finite

set A, for some I EIN, let A(J.Lo, . .. , J.Lz-d = ma.x.,.ePerm(A) E~:~ A(J.Li, O")j note that this quantity does

not depend on A. We caU A(J.Lo, ... , J.Lz-t} the external coascent of J.Lo, ... ,J.LZ-l.

For aU u E V, denote by r u the set of neighbors of u , i.e., r u = {v E V: (u,v) E E}. For

e E Perm(V) and u E V, caU J.L E Perm(r u) the restriction of e to r u if the vertices in r u are ordered

identically by J.L and by e, i.e., if J.L-l(v) < J.L-l(w) ~ e-1(v) < e-1(w), for all v,W E r u •

Lemma 8.3 [CH89]: Let eo, .. . , en-l E Perm(V). If the strongly polynomial algorithm is executed

with the adjacency lists ordered according to eo, ... ,en-l, then Uptr ~ 2n · A(J.Lo, ... , J.Ln-d, where J.L"

is the restriction of e" to r", for aU v E V.

Proof: Combine Lemma 9 and the claim following Lemma 11 in [CH89] . •
As is clear from Lemma 8.3, our next task is to analyze A(J.Lo, ... ,J.Ln-t}, where J.Lo, ... ,J.Ln-l are

obtained in various different ways.

Lemma 8.4:

(a) For aU v E V, let J.L" be a permutation of r". Then A(J.Lo, ... , J.Ln-l) ~ mj

(b) [Al90] For every two integers n and h with 1 ~ h ~ n and every set W with IWI = h, n

permutations J.Lo, ... ,J.Ln-l of W with A(J.LO, ... ,J.Ln-I) = O(nh2
/

3
) can be constructed in O(nh)

time;

24

(c) Suppose that J.Lv is drawn randomly from the uniform distribution over Perm(r,,), for all v E V,

.and that Ilo, ... ,JLn-l are independent. Take (= log(2+n(lognfZ Im). Then for some B = B(n, m)

with B = O(v'nm + nlogn/() and for all r ~ 0,

Remark: The proofofpart (c) is based on the proofs ofLemma 10 in [CR89] and ofLemma 6.3 in

[CR91] .For m = o(n(logn)2), it strengthens those lemmas.

Proof:

(a) Obvious, since Irol + ... + Irn-I! = m.

(b) This is Theorem 2 in [Al90] .

(c) Recall that A(Ilo, ... ,JLn-d = maxCTEPerm(V) <1>(0'), where <I>{O') = E::~ A{JL" , 0'). We will show

the prob ability that <I>{O') is large to be very small for each fixed 0' E Perm{V). Multiplying that

prob ability by the number of choices for 0', Le., by n!, we obtain an upper bound on the prob ability

that A{JLo, ... ,JLn-d is large.

Rence let 0' E Perm(V) be arbitrary but fixed. For all v E V, let A" = A(JL" , 0') and take

S = <1>(0') = E::~ A", the quantity of interest. For all v E V, let d" be the degree of v, i.e., d" = Ir "I.

For arbitrary integers d and k with ° ::; k ::; d ::; n, the number of permutations JL of an arbitrary

sub set of V of cardinality d with A(JL,O') ~ k is at most (~)\d - k)!. To see this, note that if

A(JL, 0') ~ k, then the elements of a (not necessarily contiguous) subsequence of JL(0), ... , JL{ d - 1) of

length k appear in the same order in the sequence 0'(0), ... , 0'(n - 1). The elementS of the subsequence

can be chosen in (~ ways, and the positions in which they appear in JL(O), ... ,JL(d - 1) can also be

chosen in (~ ways, while the remainder of the sequence JL(O), .•. ,JL(d - 1) can be chosen in (d - k)!

ways. It follows that for all v E V and all integers k with 1 ::; k::; d",

where in the last step we used (a very emde) Stirling's approximation k! ~ (k/e)1c.

It can be seen that A" is unlikely to exceed -jd; by very much. Applying the Cauchy-Schwarz

inequality lu, vi ::; lullvl to the vectors u = (1, ... ,1) and v = (.JdO, ... , J dn-I) , we obtain

s = E::~ A" is hence unlikely to exceed v'nm by very much. In order to obtain precise bounds, we

use a method based on the moment generating functions of Ao, ... ,An- 1 and akin to the usual proof

of the well-known Chernoff bounds (see, e.g., [HR90]).

First observe that for arbitrary real numbers B, r and t with t ~ 1,

25

where the simple Markov inequality was used in the last step. Second, since J.'O, • •• ,J.'n-l and hence

also etAo , ... ,etAn- 1 are independent,

n-l n-l
E(ets) = E(eE:::(tA.») = E(II etA.) = II E(etA.).

1/=0 1/=0

We next bound the quantities E(etA.). Let v E V and let a1/ ~ 0 be an arbitrary integer. Then

00 a. 00

E(etA.) = L etk Pr(A1/ = k) ~ L etk Pr(A1/ = k) + L etk Pr(A1/ ~ k)
k=O k=O k=~.+l

~. 00 (2 d) k 00 (t+2 d) k ~ et~. LPr(A1/ = k) + L etk e k
2

1/ ~ et~. + L e k
2

1/
k=O k=~.+l k=~.+l

h ak eH2 d 1 r . Lv tH J C oose a1/ to m e ~ ~ 2" ~or k ~ a1/ + 1, l.e., take a1/ =2e d1/. Then

00

E(etA.) ~ et~. + L 2-k = et~. + 2-~· ~ 2etv'2et+2d., ~ 2eteH3 v'Gi;.

k=~.+l

Putting everything together yields

n-l n-l
Pr(S ~ () + r) ~ e-t(lI+r) E(etS) = e-t(lI+r) II E(etA.) ~ e-t(lI+r) II (2etet+3v'Gi;)

1/=0 1/=0
'+3 "",,-I ~ +3 = e-t(8+r) .2nete L....=o v d• ~ 2net(e' .Jnm-(8+r».

Recalling that (T can be chosen in n! ways, we find

Pr(A(J.'o, ... ,J.'n-d ~ () + r) ~ n!. 2nete'+3.Jnm-t8-tr

~ 22nlognete'+3.Jnm-t8e-tr < e2nlogn+teH3.Jnm-t8. 2-r .

Choose () so as to make 2nlogn + tet+3v'nm - t() = 0, Le., take

() = 2n log n + tet+3.;nm .
t

Then Pr(A(J.Lo, ... ,J.'n-l) ~ () + r) ~ 2-r , as desired. All that remains is to show that for all combi­

nations of n and m, it is possible to choose t ~ 1 such that () = 0 (v'nm + n log n j (). Consider two

cases:

Case 1: e4v'nm> nlogn. In this case take t = 1 and observe that () = O(v'nm), as required. This

is essentially the analysis of [CH89].

Case 2: e4v'nm ~ nlogn. Now choose t ~ 1 to make t et+3 v'nm = nlogn, i.e.,

tet+3 =
n(logn)2

m

This is clearly possible, and t = O«(). But then () = O(nlognj(). •
Theorem 8.1: A maximum flow in a network with n vertices and m edges can be computed with the

folIowing bounds on flow operations and time:

26

(a) Deterministicallyusing O(nmlogn)1low operations andO(nmlogn) time;

(b) Deterministically using O(qlogn) flow operations and O(nm + qlogn) time, where q = n8 / 3 •

(c) Probabilisticallyusing O(aqlogn) flow operations and O(nm+aqlogn) time withprobability at

least 1- 2-avnm, for arbitrary a ~ 1, where q = n3 / 2m 1/ 2 + n21ogn/log(2 + n(logn)2 Im).

Remark: The bounds of part (a) were previously obtained by [ST83]. The time bound of part (b)

was previously obtained by [Al90] , although with a weaker bound on the number of flow operations;

we recently learned that King, Rao and Tarjan [KRT91] have extended Alon's result to lower network

densities. for m = O(n(logn)2), the time bound ofpart (c) was previously obtained by [Ta89] and

[CH91], although with a weaker bound on the number of flow operations. For m = o(n(logn)2), the

result is new.

Proof:

(a) Combine Lemmas 7.5, 8.3, 8.4(a), and 6.1.

(b) Combine Lemmas 7.5,8.3, 8.4(b) (tised with h = n), and 8.1 (note that with Tce(n,m,q) replaced

by T~e(n, m, q), Lemma 7.5 holds for the modified algorithm that works with the extended current-edge

data type).

(c) Initialize the current-edge data structure with n independent random permutations eo, ... ,en-l

of V. Since random permutations can be computed in linear time (see, e.g., [Se77]), this can be done

in O(n2) time. Taking r = a.,jnm in Lemma 8.4(c) and using also Lemma 8.3, conclude that except

with prob ability at most 2-avnm, we have Uptr = O(aq). The claim now follows from Lemmas 7.5

and 8.1. •

Remark: If, as in [CH89], a new random permutation e" of r" is computed at each relabeling of v,

for all v E V, then the failure prob ability ofpart (c) can be reduced even further to 2-aQ •

Remark: Following [AOT89], we can combine the incremental wave scaling algorithm of Section 5

with the use of dynamic trees. As this requires few new ideas, we omit the details and only state

the following result: For every a ~ 1, a maximum flow in a ~etwork with n vertices, m edges and

integer capacities bounded by U ~ 1 can be computed using O(aqlog(2 + nlog U Im) + log U) flow

operations and O(nm + aqlog(2 + nlog U Im) + log U) time with prob ability at least 1 - 2-avnm,
where q = n 3/ 2m 1/ 2 + n2log n/log(2 + n(log n)2 Im).

In order to use the faster solution to the extended current-edge problem provided by Lemma 8.2, .

we first need to demonstrate that random block-preserving permutations are almost as "good" as

unrestricted random permutations. Wedo this by relating the extemal coascent of a set of block­

preserving permutations to that of the set of block permutations that induces it. Recall that z =

LlognJ.

Lemma 8.5: For all Bo, ... , Bn - 1 E Perm(M) with· induced block-preserving permutations

{O, ... ,{n-l E Perm(V), A(eo, ... ,en-d::; Z .A(Bo, ... ,Bn-t}.

27

Proof: Fix u E Perm(V) arbitrarily and let R ~ Perm(M) be the multiset obtained as follows:

For each tuple (ro, ... , rn/z-d E Bo x ... x Bn/z- 1 , where ri, for i = 0, ... , njz - 1, is called a

representative of its block Bi, add to R (one copy of) the block permutation ip that arranges the

blocks in the order in which their representatives occur in u (i.e., for ° $ i,j $ njz - 1, ip-l(i) <
ip-l(j) <==* u-1(ri) < u-1(rj)). We call ro, ... , rn/z-l the defining vertices of (that copy of)ip.

Now, for every block permutation S E Perm(M) with induced block-preserving permutation e,

L A(S, ip) 2: ~A(e,U).
z

'i" eR

To see this, note that each element of a fixed longest common subsequence of e(O), ... ,e(n - 1) and

u(O), ... , u(n - 1) contributes 1 to A(S, ip) if it is a defining vertex of ip, and that each v E V is a

defining vertex of exactly IRljz permutations ip E R. Summing the above inequality for S equal to

So, ... ,Sn-l pro duces

n-l n-l n-l

L A(e",U) $ I~I L L A(S" , ip) = I~I L L A(S", ip)
,,=0 ,,=0 'i" eR 'i" eR ,,=0

$ I~I L A(So, ... ,Sn-d = z . A(So, ... ,Sn-d·
'i" eR

We can now state the main result of our paper and finally justify its title.

•

Theorem 8.2: A maximum flow in a network with n vertices can be computed deterministically using

O(n8 / 3(logn)4/3) flow operations and O(n3 jlogn) time.

Proof: According to Lemma 8.4(b), used with h = njz, n block permutations So, ... ,Sn-1 E

Perm(M) with A(So, ... ,Sn-I} = O(n(njlogn)2/3) can be constructed in O(n2 jlogn) time. By

Lemmas 8.3 and 8.5, if the algorithm is executed with the adjacency lists ordered according to the

block-preserving permutations induced by So, ... ,Sn-1, then "ptr = O(n8 / 3 (logn)1/3). The claim

now follows from Lemmas 7.5 and 8.2. •

9. Parallel algorithms

Since our solution to the current-edge problem trivially parallelizes on most parallel machines, it is

possible to crank out a variety of parallel algorithms for the maximum-flow problem that are optimal,

. as measured by the best currently known sequential algorithms. We mentionjust one example. As is to

be expected because ofthe P-completeness ofthe maximum-flow problem [GSS82], the algorithms are

optimal only for relatively long execution times. No optimal parallel algorithm for the maximum-flow

problem (using w(l) processors) was previously known.

Theorem 9.1: For p = O(n1/ 3(logn)-7/3), a maximum flow in a network with n vertices can be

computed in. (optimal) O(n3 j(plogn)) time on a networkof 2p - 1 processors interconnected to form

a complete binary · tree.

28

Proof: The processor at the root of the tree stores a copy of aU variables. In addition, eacb. of the

p leaf processors has a copy of the vector z, and a copy of the arrays r' and H' is distributed among

the leafprocessors, the ith leafprocessor, for i = 1, . . . ,p, storing the columns of r' and H' numbered

(i - 1), (i - 1) + p, (i - 1) + 2p, etc. The root processor essentially carries out the algorithm of

Theorem 8.2 sequentiaUy. Eacb. update of r' and H' is broadcast to the leaf processors and recorded

by the relevant leaf processor. A caU of ce(v) (originating at the root) is also broadcast to the leaf

processors and causes ea~ of them to advance its copy of z[v], looking only at the columns stored

10caUy, until it encounters an eligible edge, runs out of edges, or is interrupted. A successful processor

sends the eligible edge found up the tree towards the root. Whenever two edges meet in the tree, the

one coming from the right is discarded. The root, upon receipt of the surviving edge, whicb. is ce(v),

broadcasts it to the leaves. This signal interrupts the leaf processors and aUows them to reset z[v] to

the correct value.

This im,plementation aUows a sequence of q operations on the current-edge data structure to be

processed in O(qlogp + n3 j(plogn)) time. The algorithm of Theorem 8.2 uses q = O(n8 / 3(logn)1/3)

operations, giving a total time of O(n8 / 3(logn)4/3 + n3 j(plogn)). For p = O(n1 / 3(logn)-7/3), this is

O(n3 j(plogn)). •

10. Open problems

(1) Does the current-edge problem have an o(nm)-time soh~tion for m = o(n2 jlogn)? A positive

answer to this question would extend the range of o(nm) algorithms below m = O(n2 jlogn).

(2) Can the O(n210gnj 10g(2 + n(10gn)2 jm)) term be dropped in the analysis of the number of PTR

events? A positive answer to this question would extend the range of O(nm) algorithms below

m = O(n(lognY').

(3) Is there an o(nmlogn) maximum-flow algorithmfor m = o(nlognjloglogn)?

References

[AHU74] A. V. ABO, J. E. HOPCR.OFT AND J. D. ULLMAN, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, Mass., 1974.

[A089] R. K. ABUJA AND J. B. OR.LIN, A Fast and Simple Algorithm for the Maximum Flow

Problem, Oper. Res. 37 (1989), pp. 748-759.

[AOT89] R. K. AHUJA, J. B. OR.LIN AND R. E. TAR.JAN, Improved Time Bounds for the MaxiITDJm

Flow Problem, SIAM J. Comput. 18 (1989), pp. 939-954.

[Al90] N. ALON, Generating Pseudo-Random Permutations and Maximum Flow Algorithms, In­

form. Process. Lett. 35 (1990), pp. 201-204.

[CH89] J. CHER.IYAN AND T. HAGER.UP, A Randomized Maximum-Flow Algorithm, Proc. 30th

Annual Symposium on Foundations of Computer Science (1989), pp~ 118-123.

29

[CH91] J. CHER.IYAN AND T. HAGER.UP, A Randomized Maximum-Flow Algorithm, Tech. Rep. no.

988, School of Operations Research and Industrial Engineering, Cornell University, October

1991.

[FF62] L. R. FOR.D, JR.. AND D. R. FULKER.SON, Flows in Networks, Princeton University Press,

Prineeton, NJ, 1962.

[GT88] A. V. GOLDBER.G AND R. E. TAR.JAN, A New Approach to the Maximum-Flow Problem,

J. ACM 35 (1988), pp. 921-940.

[GSS82] L. M. GOLDSCHLAGER., R. A. SHAW AND J. STAPLES, The Maximum Flow Problem is

Log Space Complete for P, Tneoret. Comp. Sei. 21 (1982), pp. 105-111.

[GLS88] M. GR.ÖTSCHEL, L. LOVASZ AND A. SCHR.IJVER., Geometrie Algorithms and Combinatorial

Optimization, Springer-Verlag, Berlin, 1988.

[HR90] T . HAGER.UP AND C. RÜB, A Guided Tour ofChernoffBounds, Worm. Process. Lett. 33

(1990), pp. 305-308.

[Ka74] A. V. KAR.zANOV, Determining the Maximal Flow in a Network by the Method ofPreß.ows,

Soviet Matn. Dokl. 15 (1974), pp. 434-437.

[KRT91] V. KING, S. RAo AND R. E. TAR.JAN, A Faster Deterministie Max-Flow Algorithm, pre­

sented at WOBCATS at the University of Washington in Seattle, April 1991; also Proe. 3rd

Annual ACM-SIAM Symposium on Discrete Algorithms (1992), to appear.

[Se77] R. SEDGEWICK, Permutation Generation Methods, Comp. Surv. 9 (1977), pp. 137-164.

[ST83] D. D. SLEATOR. AND R. E. TAR.JAN, A Data Strueture for Dynamic Trees, J. Comp. Syst.

Sei. 26 (1983), pp. 362-391.

[ST85] D. D. SLEATOR. AND R. E. TAR.JAN, Self-AdjustingBinary Search Trees, J. ACM32 (1985),

pp. 652-686.

[Ta89] R. E. TAR.JAN, personal eommunication, September 1989.

30

	Seite-0001
	Seite-0003
	Seite-0004
	Seite-0005
	Seite-0007
	Seite-0008
	Seite-0009
	Seite-0010
	Seite-0011
	Seite-0012
	Seite-0013
	Seite-0014
	Seite-0015
	Seite-0016
	Seite-0017
	Seite-0018
	Seite-0019
	Seite-0020
	Seite-0021
	Seite-0022
	Seite-0023
	Seite-0024
	Seite-0025
	Seite-0026
	Seite-0027
	Seite-0028
	Seite-0029
	Seite-0030
	Seite-0031
	Seite-0032
	Seite-0033
	Seite-0034
	Seite-0035

