Algorithms for Dense Graphs and
Networks

Joseph Cheriyan Kurt Mehlhorn

MPI-1-91-114 September 1991

Algorithms for Dense Graphs and Networks

J. Cheriyan K. Mehlhorn
School of Operations Research Max-Planck-Institut fiir Informatik and
Cornell University Universitat des Saarlandes
Ithaca, New York 66 Saarbriicken
USA Germany

September 2, 1991

Abstract

We improve upon the running time of several graph and network algorithms

when applied to dense graphs. In particular, we show how to compute on a ma-
chine with word size A a maximal matching in an n-vertex bipartite graph in time
O(n? + n?%/)) = O(n*%/logn), how to compute the transitive closure of a di-
graph with n vertices and m edges in time O(nm/)), how to solve the uncapaci-
tated transportation problem with integer costs in the range [0..C] and integer de-
mands in the range [~U..U] in time O((n*(loglog n/log n)/? + n?log U) log nC), and
how to solve the assignment problem with integer costs in the range [0..C] in time
0(n*%log nC/(logn/ loglog n)!/4).
Assuming a suitably compressed input, we also show how to do depth—first and
breadth-first search and how to compute strongly connected components and bicon-
nected components in time O(n) +1?/)), and how to solve the single source shortest
path problem with integer costs in the range [0..C] in time O(n?(log C)/logn).

Key words: graph, network, algorithm, dense graph, dense network

1 Introduction

We improve upon the running time of several graph and network algorithms when applied
to dense graphs and networks by exploiting the parallelism on the word level available
in Random Access Computers [AV79). In particular, the bounds shown in Table 1 can
be obtained for graphs and networks with n vertices and m edges on machines with
word size A = Q(logn). For several graph algorithms, we show that the previously best
bounds can be improved by a factor A on dense graphs; e.g., a maximum matching in a
bipartite graph can be computed in time O(n?+n?%/)) = O(n?*/logn). For problems on
networks, e.g., the shortest path problem, the assignment problem, and the transportation
problem, assuming that all the numeric parameters of the network are integers, we obtain
improvements by a fractional power of log n.

" *When this rescarch was carried out, both authors worked at the Dept. of Computer Science, Univ.

d. Saarlandes, D-66 Saarbriicken. The research was partially supported by ESPRIT project no. 3075
ALCOM.

Problem Running Time Tnput Previous Bound
Depth-first-search
Breadth-first-search
Strongly connected

components O(nX + n?/X) c 0(n?)
Biconnected com-

ponents

Maximum matching

in bipartite graphs O(n? +n?5/)) s 0(n*®), [HK73]
Transitive closure O(nm/X) s O(nm)
Single source shortest

paths with edge o(nz‘yggvf) ¢ 0(n?), [Dij59)

weights in [0..C]
Assignment problem

with edge 0(n?5(lognC) - B) s 0(n?®lognC),
weights in [0..C] [GT89], [0A88]
transportation

problem with

edge costs O((n®y + n*logU)lognC) | s | O((n® + n?logU)lognC)
in [0..C] and [AGOTS8S8]

demands in [0..U]

Tablel: Survey of results: The first column specifies the problem, the second column
states the running time obtained in this paper(8 denotes (loglogn/logn)!/4 and v de-
notes (loglogn/logn)!/2), the third column states whether the input is standard (s) or
compressed (c), and the fourth column states the best previous bound. A denotes the
word size of the machine.

There is a simple common principle underlying all our improvements. This principle
was introduced by Cheriyan, Hagerup, and Mehlhorn [CHM90] in their O(n®/ log n) max-
imum flow algorithm. Alt et al [ABMP90] showed later that the technique can also be ap-
plied to the bipartite matching problem. They obtained a running time of O(n?®/y/logn).
In this paper, we further exploit the principle and show that it can be applied to a large
number of graph and network problems.

The technique is most easily described in the case of depth-first-search (DFS). DFS is
arecursive procedure which explores a graph starting from a source s. Initially, all vertices
are unlabeled and DFS(s) is called. A call DFS(v) labels v and then scans the edges (v, w)
starting at v until an unlabeled vertex w is found. Then DFS(w) is called. The crucial
observation is that, although up to n? edges are examined by DFS, only n — 1 of them
lead to recursive calls. Suppose now that the adjacency matrix of the graph is available
in “compressed form”, i.e., t, t < A, bits of the adjacency matrix are stored in a single
computer word. Suppose also that we maintain the compressed bit-vector of unlabeled
vertices. Then taking the ise AND of ding words of v’s row of the
adjacency matrix and the bit-vector of unlabeled vertices and testing the result for zero
checks simultaneously for t vertices whether one of them is unlabeled and reachable from v
by an edge. In this way, the adjacency lists of all vertices can be scanned in O(n?/t) time.
Only n times will an edge leading to an unlabeled vertex be detected and a recursive call
be required. This adds O(nt) to the running time.

The details for DFS will be given in section 2.2. Breadth-first-search is discussed
in section 2.3 , the fon of strongly d and bi d in
section 2.4, the 1 matching problem in section 2.5, and the computation of transitive closures
in section 2.6. We mention that Feder and Motwani [FM91] independently obtained an
O(n**/logn) bipartite matching algorithm. Their approach is completely different from
ours. The for the ion of strongly and bi: given
in section 2.4 are alternatives to the algorithms in [Tar71]. We find that the correctness
proofs in section 2.4 are more intuitive.

Chapter 3 is devoted to algorithms on networks; the shortest path problem is discussed
in section 3.1, the transportation problem in 3.2, and the assignment problem in 3.3. For
network algorithms, the compression technique requires the precomputation of tables and
therefore typically the full word size cannot be exploited.

The machine model used in this paper is essentially the RAC (Random Access Com-
puter) of Angluin and Valiant [AV79]. Let A be an integer. A A-RAC consists of M = 2*
registers, each of which can ha]d an mteger in the range [0..M — 1]. The instruction set
of a A-RAC consists of ari (addition, sub: i iplication and
integer division (all modulo M)) and boolean operations (AND, OR, EXCLUSIVE-OR,
Negation). For the boolean operations an integer is interpreted as a bitstring of length A;
all boolean operations work bit-wise, i.e., on all A bits in parallel. In contrast to Angluin
and Valiant [AV79] , we do not postulate that the word-size X is logarithmic in the size of
the input. Rather, we treat word size and length of input as independent quantities and
only require that the word size is at least logarithmic in the size of the input. Following
Kirkpatrick and Reisch [KR84] , we call an algorithm conservative, if it uses only a word
size which is logarithmic in the size of the input (although the actual word size of the
machine in use may be actually larger).

2 Graph Algorithms

2.1 Basics

For an integer ¢ and a 0 — 1 valued vector L[0..n — 1] the t-compression (or t-compressed
version) oL of L is a vector oL[0..[n/t] — 1] such that for 0 < k < [n/t]:

oL[k]= Y Llk-t+12¢7,

ogi<t

where L[v] = 0 for v > n is assumed for simplicity. The entries of a t-compression take
values in T = [0..2¢ — 1.

For integers z € T and [,0 < I < t, we use (z); to denote the I-th bit of z, i..,
z = Yocci(2)1-2' and (z); € {0,1} for 0 <1 < t. For 0 <1< t let E; denote the integer
2l

Forz € T,z # 0, |log z] is the index of the highest numbered non~zero bit in z. In our
graph algorithms, we will frequently have to compute |logz|. Let us assume that |logz|
is not available as a machine instruction. The simplest algorithm is linear search.

l—t—1;while (z AND Ej)=0dol«~I-10d

It takes time O(t) and needs no precomputation. A faster method is binary search. It
takes O(logt) time and requires the precomputation of O(t) masks. Finally, Fredman
and Willard [FW90] have recently found a method which works in time O(1) with O(A)
precomputation. In the algorithms below we always state the time bounds in terms of
linear search.

For a graph G = (V,E) with n nodes we identify the vertices with the integers
0,1,...,n — 1 and we use E to also denote the adjacency matrix of G, i.e., E[v,w] = 1
iff (v,w) € E, and E[v,w] = 0, otherwise. The t-compressed adjacency matrix oF is a
matrix 0E[0..n — 1,0..[n/t] — 1] such that the v-th row of oF is the t-compression of the
v-th row of E,0 < v < n.

2.2 Depth First Search

Depth-First-Search (DFS) is a useful method for the systematic exploration of a graph.
DFS visits the nodes of a graph in depth-first order, i.e., DFS always follows an unex-
plored edge (if any) out of the most recently reached vertex. Program 1 specifies DFS as a
recursive procedure df s(node v). This program also computes two node labelings df snum
and compnum and a list of tree edges. The labeling dfsnum numbers the nodes by the
time of the call of dfs, compnum numbers the nodes by the time of the completion of the
call of dfs, and tree contains the set of edges whose exploration leads to recursive calls.
DFS runs in time and space O(n?) on an n-vertex graph.

We now describe the compression technique. Let oF be the t-compressed adjacency
matrix. We also store the bitvector reached in its t-compressed form oreached and rep-
resent a node v by the pair (i,7) with i = [v/t] and j = v mod t. The crucial obser-
vation is now that for 0 < h < [n/f] — 1, oE[v, k] A = o reached[k] # 0 iff some edge in
{(v,w); kt < w < (k+1)t} leads to an unreached node, i.e., one operation checks t edges.
The details are given in program 2.

(1) proc dfs(node v)
(2) begin reached[v] — 1;

(3) dfsnum[v] — dfs_countl « dfs_countl + 1;
(4) forweV

(5) do if E[v,w] and ~reached[u)

(6) then T.append((v, w));

(M dfs(w)

(®) i

(9) od;

(10) compnum(v] dfs_count2 « dfs_count2 + 1
(11) end;

(12) T « empty list of edges

(13) for v € V do reached[v] — 0 od;
(14) df s_countl «— dfs_count2 — —1;
(15) forveV

(16) do if -reached[v] then dfs(v) i od

Program 1: Depth First Search

(1a) proc dfs(integers i,5)
(1b) begin v it +j;

(2a) (reached[i]); — 1;

(3a) df snumlv] — dfs_countl « dfs_countl + 1;
(4a) for k € [0..[n/t] — 1]

(5a) do X « oE[v,k] A - o reached[k);

(5b) while X #0

(5¢) do ! t—1;while (X), =0do!—I-1od;
(6a) T.append((v, kt + 1));

(1) df(k, I);

(b) X « 0E[v,k] A ~ o reached]k]

(8a) od

(%a) od;

(10a) compnum[v] — dfs_count2 — dfs_count2 + 1
(11a) end;

(12a) T « empty list of edges

(13a) for i € [0..[n/t] — 1] do oreached[i] — 0 od;
(14a) dfs_countl — dfs_count2 — —1;

(15a) for i € [0..[n/t] - 1)

(15b) do for € [0..t—1]

(16a) do if ~(reached[i]); then dfs(i,l) i od
(172) od

Program 2: Depth First Search with compressed adjacency matrix

Lemma 1 Given the t-compressed adjacency matriz oE of an n-vertez graph, t < X,
depth-first-search runs in time O(n?/t + nt) and space O(n?/t) on a A-RAC.

Proof: The time spent outside line (5c) is clearly O(n?/t). Also, a single execution of
line (5c) takes time O(t) and there are at most n — 1 executions of it since there are at
most n — 1 calls to dfs in line (7a). This proves the time bound. The space bound is
obvious.]

Remark: Line (5¢) computes |log X | by linear search in time O(t). In view of section 2.1,
we may also use binary search or the constant time method of Fredman and Willard
provided that we add O(t) and O()) preprocessing time respectively. This gives a running
time of O(n?/t + nlogt + t) and O(n?/t +) respectively. We prefer to state our time
bounds in terms of linear search because it uses the weakest machine model.

DFS can be used to partition the edges of a graph into tree, forward-, back-, and
cross—edges. The tree edges have already been collected in the list L in program 1. We
now show how to construct the submatrices of oE corresponding to the three other classes
of edges. All three classes can be characterized in terms of the two labelings dfsnum
and compnum, cf. [Tar71] and [Meh84, section IV.5), e.g., an edge (v,w) is a cross—
edge if dfsnum(v] > dfsnumlw] and compnumlv] > compnum|w]. We can therefore
extract the submatrix of cross—edges by deleting all edges which violate one of the two
defining conditions. The following simple strategy deletes for example all edges (v, w) with
df snum[v] < df snum[w]. We step through the vertices in increasing order of dfsnumber
and maintain the ion osmaller of a bit smaller with ler[w] = 1 iff
df snum[w] < dfsnum[v]. The AND of oE[v,] and osmaller then deletes all edges (v, w)
with dfsnumlv] < df snum[w). The program follows:

for v € V do ord[dfsnumv]] — v od;
for i € [0..[n/t] - 1] do smaller(i] — 0 od;
for h from 0 ton—1
do v — ord[h); i — v div t; j — v mod ;
for k € [0..[n/t] — 1]
do oC[v, k] — oE[v, k] A osmaller(k] od;
(osmaller(i]); — 1
od

Lemma 2 Under the hypothesis of Lemma 1, the t-compressed adjacency matrices for
the forward-, back-, and cross-edges can be computed in time O(n?/t + nt) on a A~RAC.

2.3 Breadth First Search

Breadth-First-Search computes the shortest distances of all nodes from a given set S of
nodes, i.e., a node labeling d with d(v) = min {k; Jvp, vy, ..., v such that v, € S,ve = v,
and (v;,vi41) € E for 0 < i < k}, cf. Program 3. BFS takes time O(n?) on an n-vertex
graph. With the methods of section 2.2 (the details are left to the reader) this can be
improved to O(n?/t + nt) time on a A-RAC, provided that ¢ < A and the t-compressed
adjacency matrix is given.

The layered subgraph of a graph G consists of all edges (v, w) with d[w] = d[v]+1. It is
needed in several applications of BFS, e.g. to matching or flow problems; cf. section 2.5.

for all v € V do Reached[w] — 0 od;
Q « empty queue;
for all s € S do Q.append(s); Reached]s) — 1; od; Q.append(#);d — 0;
while Q # 0
do v « Q.pop();
fo=#andQ#0
then Q.append(#);d — d+1
else dfv] — d;
forallweV
do if E[v,w] and -Reached[w]
then Reached[w] — 1;
Q.append(w)

od
fi
od

Program 3: Breadth-First-Search; Q.append(z) appends to the rear of @, Q.pop()
deletes the first element of Q and returns it.

‘We now discuss how to construct the compressed adjacency matrix of the layered subgraph.
For k,0 < k < n, let oL, be the t-compression of the bit-vector Ly where Ly[v] = 1 iff
d[v) = k for all v € V. These vectors can be computed in time O(n2/t + n); namely
O(n?/t) time to initialize them to zero and O(1) time for each vertex. Next observe that
the v-th row of the t-compressed adjacency matrix oD of the layered subgraph is given
by the AND of 0E[v,s] and Ly)4;. We summarize in:

Lemma 3 Given the t-compressed adjacency matriz of an n-vertez graph, t < X, and a
subset S of the vertices, BFS and the construction of the layered subgraph of G take time
O(n?/t +nt) on a \-RAC.

2.4 Strongly-C ted and Bi ted C t

A digraph G = (V, E) is strongly connected if for any two vertices v,w € V there is a
path from v to w. A strongly connected component (scc) is a maximal strongly connected
subgraph. An undirected graph G = (V, E) is biconnected if for any two edges ¢ and ¢/
there is a simple cycle ining e and ¢’. A bi (bec) is a maximal
biconnected subgraph.

Tarjan [Tar71] has given linear time algorithms for the computation of scc’s and bec’s.
Both algorithms are based on the computation of so-called lowpoints. Since lowpoint
values can change Q(m) times, his algorithms do not seem amenable to the techniques
described in the previous sections. Another linear time algorithm for the computation
of scc’s was given by Sharir [Sha81]. It uses DFS on G and G™*", the graph obtained
from G by reversal of all edges. Section 2.2 implies that Sharir’s algorithm runs in time
O(n?/t + nt) provided that the t-compressed adjacency matrix of G and G™" are given.
Unfortunately, Sharir’s algorithm cannot be used to compute bec’s of undirected graphs.

Example: Assume that Ge,, is as shown in Figure 1. We assume that DFS reaches
the vertices in the order a,b,c,d,e, f,g,h that the calls dfs(a),dfs(e),dfs(d),dfs(g)
are completed, and that we are currently exploring edges out of vertex h. We have
unfinished = (b,c,d, f, g, h) and roots = (b,c, f, k).

Figurel: A graph Geur; tree (back, cross, forward) edges are shown solid (dashed, wiggled,
dash~dotted). Nodes for which the call of dfs is completed are shaded. The shrunken graph
is also shown. Completed components are shaded.

In this section we describe an O(m) algorithm for the computation of scc’s which is as
fast as Tarjan's algorithm (Sharir’s is slower by about a factor of two), is simple (maybe
even simpler than Tarjan’s algorithm), can be modified to compute bee’s, and can be made
to run in time O(n?/t + nt) given the t-compressed adjacency matrix. Our algorithm is
similar to an algorithm described by Dijkstra [Dij82) which has however running time
Q(n?).

Our algorithm is based on DFS and constructs the scc’s of G incrementally. Let Gy,
be the subgraph of G consisting of all vertices reached by DFS and all edges explored
by DFS. A scc of Geyr is called completed if the call dfs(v) is completed for all vertices
v of the component, and uncompleted, otherwise. Let unfinished = (v;,vs,...,v,) be
the sequence of vertices of Geyr in uncompleted components of G, ordered according to
increasing DFS-number. For each scc C call the node with the smallest DFS—number the
root of C, and let 700ts = (v, Viy, -, vi,) With 1 = d; < iz < ... < i be the subsequence
of unfinished consisting of the roots of the uncompleted components. We maintain the
following three invariants.

o T1: There are no edges (z,) of Geyr With z belonging to a completed component
and y belonging to an uncompleted component.

o 12: The nodes in roots lie on a single tree path, i.e., v;; =" v,41 for 1 <1 < k, and

J
we are currently exploring edges out of v, where p > ix.

o 13: The nodes in the uncompleted scc with root v;, are the nodes Uiy, Uig41, .oy Virgy -1
(with the convention ix4; = s + 1). Moreover, all these nodes are tree descendants
of the root vi.

Let us now consider the exploration of edges and the completion of calls. If (v, w) is
the edge to be explored, let G, = (Veur U{w}, Ecur U{(v,w)}) be the new graph spanned
by the explored edges. Of course, w € Vi, if (v, w) is not a tree edge.

o Exploration of a tree edge (v, w):

In G.,, the node w is a scc by itself and, of course, an uncompleted one; all other scc’s
stay the same. We can reflect this change by adding the node w at the end of sequences
unfinished and roots. Note that this preserves all our invariants. I3 is preserved since w
is a scc by itself. I1 is preserved since the node v belongs to an uncompleted component
according to I3; 12 is preserved since v is a tree descendant of the last element of sequence
roots according to 12, I3, and the fact that (v,w) is a tree edge. Also, the sequences
unfinished and roots are still ordered by DFS-number.

In Program 4, lines (3) and (4) implement the actions described above. The sequence
roots and unfinished are realized as pushdown stores; in addition, unfinished is also
represented as a boolean array in_un finished.

o Exploration of a non-tree edge (v,w):

We have to distinguish two cases:
either w belongs to a completed component or it does not. The case distinction is made
in line (8) of Program 4.

Case 1: w belongs to a completed component.

In this case no path exists from w to v, since v belongs to an uncompleted component
of Gur according to 12 and no edge exists from a node in a completed component to a
node in an uncompleted component according to I1. Thus G, and Gy have the same
scc’s and no action is required. The three invariants are clearly preserved.

Case 2: w belongs to an uncompleted component.

Let unfinished = (v1,vs,...,v,) and let roots = (v, iy,
iz < --- < ik. Let v = v, where p > i according to I2, and w
iee. vy is the root of the scc containing w. Then the scc’s of Ghy,
merging the scc’s of Geyr With T00ts vi,, Vi, - - -, vi, into a single scc with root v;, and
leaving all other scc’s unchanged. This can be seen as follows. Note first that completed
scc’s remain the same according to I1. Next consider any node z in an uncompleted
component, i.e., z = v, for some r. If 7 > if, say if < 7 < i1 With [< h < k, then

g where 4 < g < iy,
can be obtained by

sy -
Ecur

ey -
Ecur

v Uiy =" v—w —" Y,

v =t vy —t
Bap " By ™ B Ecur

where the existence of the first, the fourth and the fifth path follows from I2 and I3, the
existence of the second and third path follows from the fact that v;, and v, belong to the
same scc, and the existence of the seventh path follows from the fact that w and v;, belong
to the same scc. Thus v, and v;, belong to the same scc of Gl if r > il.

I 7 < iy say in < 7 < dnga with b < 1, then o5 v, 2" v5="w, since v, and v,
cur *Eeur 'Ee
(vi, and w respectively) belong to the same scc and v;, — v, according to I2. Since

Ecur
h < I no path exists from v;, to v, in Geyr. If there were such a path in Gl,,, then it
would have to use the edge (v,w) and hence there would have to be a path from w to v,
in Geyr. Thus w and v, would belong to the same scc of Geyr, a contradiction. This shows
that uncompleted scc’s with roots v;,, h < I, remain unchanged.

10

(1) procedure dfs(v : node);

(2) countl — countl + 1; dfsnumlv] — countl; reached(v] — true;
(3) push v onto unfinished; in_unfinished[v] — true;

(4) push v onto roots;

(5) for all w with (v,w) € E

(6) do if ~reached[w]

(7 then dfs(w)

(8) else if in_un finished[u)]

(9) then co we now merge components oc
(10) while df snumltop(roots)] > df snuml|
(11) do pop(roots) od

(12) fi

(13) &

(14) og;

(15) if v = top(roots)
(16) then repeat w «— pop(unfinished); in_unfinished[w) « false;

(17) co w is an element of the scc with root v oc
(18) until v = w;

(19) pop(roots)

(20) &

(21) end;

(22) begin co main program oc

(23) unfinished «— roots «— empty_stack;

(24) countl — 0;

(25) for all v € V do in_unfinished[v] — false; reached[v] — false; od;
(26) for all v € V do if -reached[v] then dfs(v) fi od

(27) end.

Program 4: A scc algorithm

‘We have now shown that the scc’s of GL,, can be obtained from the scc’s of Geyr by
merging the scc’s with roots vy,,.. ., v, into a single scc. The newly formed scc has root
v;, and hence the merge can be achieved by simply deleting the roots vi,,, ..., v, from
roots. Next note that i; < ¢ < 4141 < -+ < ik, where w = v, and hence dfsnum|v;] <
dfsnumlw)] < df snum[vi,,,] < ... < dfsnum[v] since un finished and roots are ordered
according to DFS-number. This shows that the merge can be achieved by popping all
roots from roots which have a DFS-number larger than w. That is exactly what lines (10)
and (11) of Program 4 do. The three invariants are preserved by the arguments above.
This finishes the description of how edges are explored. We now turn to the completion
of calls.

o Completion of a call dfs(v):

According to 12 the node v is a tree descendant of the last vertex of roots, iy =
top(roots). If it is a proper tree d; i.e., v # top(), then the ion of

11

dfs(v) does not complete a scc. We return to df s(w) where w is the parent of v. Clearly,

wis still a tree descendant of top(roots) and also wi— v—" top(roots) belong to the

same scc This shows that I2 and I3 are preserved; I1 1s also preserved since we do not
complete a component.
If v = top(roots) then we complete a According to I3 this

consists of exactly those nodes in un finished which do not precede top(roots) and hence
these nodes are easily enumerated as shown in lines (16) through (18) of Program 4. Of
course, top(roots) ceases to be a root of an uncompleted scc and hence has to be deleted
from roots; line (19). We still need to prove that the invariants are preserved. For Il
this follows from the fact that all edges leaving the just completed scc must terminate in

i scc’s, since the d scc’s form a path according to 12. The
invariants I2 and I3 are also maintained by a similar argument as in the case v # top(roots).

We have now proved the correctness of Program 4 and summarize in:

Theorem 1 Program 4 computes the strongly connected components of a digraph in time
O(n +m).

Proof: Having already proved correctness, we still have to prove the time bound. The
time bound follows directly from the linear time bound for DFS and the fact that every
node is pushed onto and hence popped from un finished and roots exactly once. This
implies that the time spent in lines (11) and (16) is O(n). The time spent in all other
lines is O(n + m).]

We next discuss a more efficient implementation of this algorithm for dense graphs. It
is based on the observation that at most 2(n — 1) edges lead to a recursive call or to a
merge of existing components. Our goal is therefore to identify these edges quickly. For
each root r of an let B, be a bit: such that B,.[v] = 1iff
v belongs to the uncompleted component with root v. The exploration of an edge (v, w)
leads to a recursive call dfs(w) if reachedfw] = 0 and it causes some components to be
merged if in_unfinished[w] = 1 and Biop(roots)[w] = 0, i.e., if w lies in an uncompleted
component which is not the component of top(roots). If all bit-vectors are stored in t—
compressed form then this condition can be tested in time O(1) for a block of ¢ edges and
hence the time spent on scanning adjacency lists is O(n?/t + nt). When a new vertex w
is reached and dfs(w) is called we create a new t-compressed vector 0B, and initialize it
such that 0By[z] = 1iff w = z. This takes time O(n/t) for each call and hence O(n?/t)
in total. When two components are merged, we also need to update the B-vectors, i.e.
line (11) is changed into

B — Biop(roots)i
pop roots;
Biop(roots) = Brop(roots) V B

This takes time O(n/t) for each merge step and hence O(n?/t) in total. We summarize
in:

Theorem 2 Given the t-compressed adjacency matriz of an n-vertez graph, t < X, the
strongly connected components of G can be computed in time O(n?/t + nt) on a A-RAC.

We next turn to the ion of bi d of undi graphs
which we assume to be given by their (symmetric) adjacency matrix. For a bee C let us
call the vertex with the second smallest DFS-number the center of C, and for each vertex
w let parent[w] be the parent of w in the DFS—tree. A bec C is called completed if the
call dfs(v) where v is the center of C is completed. As before, let unfinished denote
the sequence of vertices belonging to uncompleted bec’s of Geyr in increasing order of
DFS-number. Note that a vertex can belong to several bec's; it stays in unfinished until
all of them are completed. Finally, centers is the subsequence of centers in un finished.
The invariants are now:

o I: For all edges (2,y) of Geur, = and y belong to the same bee of Geur-
Let unfinished = (v, s, ...,vx) and centers = (vi,, viy, ..., %,), where iy < iz < ... < ik.

o I2: The vertices in centers lie on a single tree path and we are currently exploring
edges out of v, where p > .

o 13: The vertices in the uncompleted bce with center v;, are the Vertices i, Vi1, .- iy,
(with the convention i = s) together with the vertex father[v;]. All but the vertex
father[v;,) are tree descendants of v,.

In the program, one changes line (4) into

(4a) push v onto centers,

lines (10) and (11) into
(10a) while df snum|[father|top(centers)]] > df snumlw]
(11a) do pop(centers) od

and lines (15) to (20) into
(15a) if v = top(centers)

(16a) then repeat w — pop(unfinished);in_un finished[w] — false
(17a) until w = v;

(18a) pop(centers);
(19a) (* father[v] and the vertices just popped from the bce with center ¢)
(20a) .

Theorem 3 The program above computes the bi d of an d

graph in time O(n + m). Given the t-compressed adjacency matriz, t <), it can be made
to run in time O(n?/t + nt) on a \-RAC.

Proof: Analogous to the proofs of theorems 1 and 2. [

2.5 Maximum Bipartite Matching

The maximum bipartite matching problem (MPM-problem) is to find a maximum cardi-
nality matching in a bipartite graph. An undirected graph G = (V, E) is bipartite if there
is a partition of the vertex set V into disjoint sets A and B such that every edge e € E
has exactly one endpoint in each of the two sets. A matching M is a subset of E such that
every vertex is incident to at most one edge in M.

Hoperoft and Karp [HK73] have shown how to solve the maximum bipartite matching
problem in time O(n'/? - m). We give an implementation of their algorithm which runs
in time O(n"/?(n?/A + n})) on a A-RAC. Thus the MPM-problem can be solved in time
O(n*%/logn) by a conservative algorithm. For dense graphs, this improves upon [HK73]
and [ABMP90].

The algorithm of Hopcroft and Karp works in O(y/n) Phases. In each phase, which
takes O(m) time, a maximal set (with respect to set inclusion) of shortest augmenting
paths is determined by breadth-first and subsequent depth-first search.

An augmenting path with respect to a matching M is an alternating path connecting
two free vertices in V, i.e. vertices which are not incident to an edge in M. An alternating
path is a path in G which alternately uses edges in M and E — M. Interchanging the
matching and non-matching edges of an augmenting path increases the cardinality of the
matching by one.

We can now describe a phase of their algorithm in more detail. Let M be the matching
at the beginning of the phase. Let Gpr = (V, En) be a directed graph with edge set
Ey = {(v,w);{v,w} € E\M,v € A,w € B} U {(w,v);{v,w} € M,v € A,w € B}, ie,
the edges in M are directed from B to A and the edges outside M are directed from A
to B. Clearly, the paths from free vertices in A to free vertices in B are in one-to-one
correspondence to the augmenting paths with respect to M. In each phase a BFS of G
starting from the free vertices in 4 is carried out first. Let d be the minimal distance label
of a free vertex in B, let Gy consist of the layers 0 through d of the layered subgraph of
Gu, and let D be the adjacency matrix of G. Clearly, all shortest augmenting paths with
respect to M can be found in Gr. A maximal set of vertex-disjoint augmenting paths can
be determined by a variant of DFS, cf. Program 5. It maintains a set L of vertex-disjoint
augmenting path (initially empty) and a set of reached vertices. A call search_path(v),
where v € A is free, constructs an augmenting path from v to a free node in B (if any)
and adds it to L. Also, all nodes visited by the search are added to the set of reached
vertices. Having determined a maximal set L of vertex-disjoint augmenting paths, the
matching M is updated by reversing the direction of all edges of all paths in L.

‘We now discuss how to implement a phase in time O(n?/A + n)) on a A-RAC. Let
us assume inductively that the A dj: matrix of G is available at the
beginning of a phase. (For M = 0, it takes time O(n?) to establish this assumption).
We first construct the A-compressed adjacency matrix oD of Gy, using BFS as described
in section 3.2 in time O(n?/A + n), and then search for augmenting paths as described
above. Since search_path is called at most once for each vertex and since the total length
of the augmenting paths found in one phase is at most n, the time spent for the search is
O(n) except for the three lines marked by (o).

14

L « empty set of paths;
for all v € V do reached[v] — 0 0d;
for all v € A, v free
do (+ Lis a set of disjoi ing paths; reached[v] = 1
implies that either v lies on a path in L or there is no path
from v to a free vertex in B disjoint from the paths in L x)

P search_path(v);

if P # nil then L.append(P) fi
od

‘where

path procedure search_path(node v);
(* when search_path(v) is called, the recursive stack contains a path
from a free node in A to v which is disjoint from the paths in L. The
call either finds a path from v to a free node in B and then returns
this path or, otherwise, returns nil x)
w — 0; P « nil;
while P=nil and W <n (o)
do if ~reached[w] and Dfv,w] (o)

then if w is free

then P «— ((v,w))
else P «— search_path(w);
if P # nil then P.append((v,w)) f

i
reached [w] 1;

wewtl (o)
od
return P
end

Program 5: Searching for augmenting paths

Replacing them by:

ke 0;P —nil;
while P # nil and k < [n/t]
do X «— oD[v, k] A ~Reached|k]
X A0
then [— 0; while (X); = 0do I — I +1 od;
wek A+

elsek —k+1
fi

od

brings the cost of these lines down to O(n?/A + n)). Finally, reversing the direction of all
edges of all paths in L takes time O(n).

‘We summarize in:

‘Theorem 4

a) On a A-RAC a mazimum matching in an n-vertez bipartite graph can be computed
in time O(n1/2 - (n2/A + n))).

b) The MPM-problem can be solved in time O(n?%/logn) by a conservative algorithm.

2.6 Transitive Closure of Acyclic Graphs

In this section, we discuss the computation of transitive closures. We restrict ourselves to
acyclic (directed) graphs because acyclicity makes the problem more difficult; for general
graphs one can always compute the strongly connected components first and then shrink
them to obtain an acyclic graph. We assume our graphs to be topologically sorted, i.e.,
V ={0,..n—1} and (v,w) € E implies v < w. The transitive closure E* of E consists of
all pairs (v, w) such that there is a path from v to w using only edges in E. The transitive
reduction E,eq of E consists of all edges (v,w) € E such that there is no path of length
at least two from v to w. Let m,eq = |Eyedl.

Goralcikova and Koubek [GK79] have shown how to compute E* in time O(myed - n).
The algorithm is quite simple. It steps through the vertices of G in decreasing order. When
vertex v is considered it first initializes E*[v,v] = 1 and E*[v,w] = 0 for w # v, and then
considers the edges (v,w) € E in increasing order of w. When (v,w) € E is considered,
and E*[v,w] = 0 at that time, then E*[v,*] — E*[v, %]V E*[w, *] is performed.

The crucial observation is that the OR of the v-th and the w-th row of E* is computed
precisely for the edges (v,w) € Eyeq; this implies the O(myeq-n) time bound. Also, if the -
compression of E* is computed instead, then the time bound reduces to O(n? + myeq -n/A)
where the n? term accounts for the computation of E* from oE*.

Lemma 4 On a A-RAC the transitive closure of an n-vertez graph can be computed in
time O(n? + myeqn/)).

Let ¢,0 < ¢ < 1, be a fixed real number. A random acyclic digraph is defined as follows.
For v < w, prob((v,w) € E) = ¢, and the different events (v,w) € E are independent.

Lemma 5 (Simon [Sim88]) E(my.q) < 2nlogn for all e,0 < ¢ < 1.
Theorem 5 The transitive closure of an acyclic digraph can be computed by a determinis-
tic and conservative algorithm whose ezpected running time on the class of random acyclic

digraphs s O(n?).

Proof: This is a direct consequence of the two preceding lemmas. 1

3 Network Algorithms
3.1 An O(n?{%2) Shortest Path Algorithm

Let N = (V,E,c,s) be an edge-weighted network with source s, i.e, (V, E) is a directed
graph, ¢ : E — {0,...,C} is an integer-valued cost function on the edges and s € V is a
distinguished vertex. The goal is to compute arrays dist and pred, where for all v € V
dist[v] is the length of a shortest path from s to v and pred[v] is the predecessor of v on
a shortest path.

We solve the shortest path problem in two phases; in the first phase we compute the
dist-array and in the second phase we compute the pred-array. Both phases are based on
Dijkstra’s algorithm [Dij59). We use two data structures, namely an integer d and an array
Q:V = {-1,0,..,,C, 0} that serves as a priority queue. During the execution, a vertex
v is in one of two states: scanned (Q[v] = —1) or unscanned (Q[v] € {0,1,...,C} U {oo0}).
‘We maintain the invariant that the distance to every scanned vertex from s has been
correctly computed, and that for every unscanned vertex v, Q[v] + d is the length of
a shortest path from s to v, subject to the restriction that every vertex in the path
(except v) is scanned. In each iteration, an unscanned vertex v with minimal value Q[v]
is selected. Then dist[v] = d + Q[v] according to the Invariant. For later use in Phase 2
the value distmod[v] = dist[v] mod (C + 1) is also stored. Also, d is increased by Q[v],
Q[w] is decreased by Q[v] for all unscanned vertices w, and all edges emanating from
v are inspected and cheaper paths are recorded. The details are given in Program 6.
The proof of correctness is standard, see for example [Meh84, section IV.7.2]. It is
also easy to see that the algorithm can be made to run in time O(n?[log C/logn]) by
representing all Q- and dist-values in base 2U!°6). Note that all values computed are
bounded by Cn = 2'°6"+1%6C and hence require O([log C/logn]) digits in base 2U°8"), In
the remainder of the section we will show how to achieve running time O(n?log C/logn).
We may assume [log(3 + C)] < logn/3 because[log C/logn] = O(log C/logn) otherwise
and the claim is trivial. Let b = [log(3 + C)] and let t € IN be such that ¢ - b < logn.
The exact value of ¢ will be specified later. Also interpret c as a V x V matrix with entries
in {0,...,C’}. We partition Q and each row of c into blocks of length t and represent each
block as a single integer. More precisely, for a € D := {~1,0,...,C, o0} let

C+2 ifa=-1

a= { C+1 ifa=oo

a ifo<a<c,
and for a, ..., ar-1 € D let Comp(ag, ...,at-1) = Socicy @(C + 3)'. Then
0 < Comp(ao,...,ai-1) < (C + 3)t < 2% < n. The t-compressed representation of a
sequence do, ..., @n-1 of values in D, where for simplicity we assume ¢ to be a divisor of n,
is the sequence Comp(ao, ..., ar_1), Comp(a, ...,az-1), .. . We assume from now on that
cand Q are available in t-compressed form and show next how the row-scans implicit in
lines (4), (6) and (7), and (9) to (11) can be done in time O(n/t) each.

For integers 4, B,a with 0 < 4, B < (C+3)'~1,0 <@ < C+1,4 = Comp(ao, ..., 1),
and B = Comp(bo,...,b—1) let select.min(B) = (i,b) where 0 < i < ¢t — 1 and b; =
min(Bo, 1, ..., Be-1), decrease(A,a) = A', where A’ = Comp(ao — a, ..., ar_1 —a) if 0 < & <
C,and A’ = A otherwise, and componentwise_min(4, B) = A’ where
A’ = Comp(aj,...,a}_,) and

o= {b,, ifbi<a;<C+1
"~ la; otherwise.

17

(1) deQls] <o

(2) forallv#s do Q[v] — oo od;

(3) while 3 unscanned vertez

(4) dolet v be an unscanned vertex with minimal

entry Q[v];
(5) d — dist[v] — d+ Q[u]; distmod[v] — d mod (C +1)
(6) for all unscanned w
(7) do Q[u] — Q[w] - Q[v] 0d (x 00 — Q[v] = c0 %)
(8) Qo) — —1; (* v is now scanned)
(9) for all unscanned w with (v,w) € E
(10) do if ¢(v,w) < Q[w]
(11) then Q[u] « c(v, w)
(12) fi
(13) od
(14) od

Program 6: shortest paths: Phase 1

Lemma 6

(a) The function tables for functions select.min, decrease and componentwise_min can
be computed in time O(t - 22%).

(b) Given tables for functions select.min, decrease and componentwise.min Phase 1
runs in time O(n?/t).

Proof:

(a) The tables have at most 2,2 - 2, and 22! entries respectively. Each entry can be
computed in time O(t).

(b) Each execution of lines (4), (6) to (7), and (9) to (11) is tantamount to n/¢ evaluations
of functions select.min, decrease, and componentwise_min respectively and each
evaluation takes constant time by table look-up. Finally, an execution of line (5)
takes time O(logn/log C) = O(logn) since 0 < d < nC < 2?'°6™ and an execution
of line (8) takes constant time using an priate table. Also, initialization takes
linear time O(n).

Lemma 7 Let t = |(logn)/3b]. Given the distance matriz c in t-compressed form the

shortest distances from s in an n-vertez graph can be computed in time

0(n*(logmax(2,C))/ log n).

Proof: For t = |(logn)/3b] we have ¢ - 26t = O(nlogn) and O(n/t) =

0(n?(log max(2,C))/logn). The claim now follows from the preceding lemma. 1
‘We next turn to the computation of the shortest path tree. In the standard implemen-

tation of Dijkstra’s algorithm the pred-array is computed together with the dist-array by

18

adding the assignment pred[w] « v in line (11). We cannot do that here because each
such assignment requires to write logn bits and therefore several of these assignments
cannot be d into a single assi We propose to compute the predecessor
information in a second phase. The program for the second phase is the same as for the
first phase except that line (7) is replaced by
(7a) dmod — (dmod + Q[v]) mod (C +1)

and line (11) is replaced by
(113) Q[w] « c(v,w)
(11b) if (dmod + Q[w]) mod (C + 1) = distmod[w]
(11c) then predfw] — v fi

Lemma 8 Phase 2 computes the pred-array correctly. Also, given a t-compressed ¢ for
t = |logn/3b] it can be made to run in time O(n?(logmax(2,C))/logn).

Proof: We first prove Phase 1 distmod[w) = dist{w] mod (C +1)
for all vertices w. Also, distfw] < d + Q[w] and d < dist[w] for all unscanned nodes
and dmod = d mod (C + 1) throughout execution of Phase 2. Thus, whenever line (11a)
is executed we have d < dist[w] < d + Q[w] < d + C and hence whenever line (11c) is
executed we have dist{w] = d+ Q[w] and thus all assignments in line (11c) are valid. Next
consider for any vertex w # s the last assignment to Q[w] in line (11a). At this point,
we have d + Q[w] = dist[w] and hence there will be an assignment to pred[w]. Finally
observe that for any unscanned vertex w the value d + Q[w)] never increases, and decreases
in every execution of line (11a). Thus there will be at most one assignment to pred[w].
This proves correctness and also that line (11c) is executed at most n times.

‘We next turn to the running time. For 0 < 4, B, D < (C+3)*~1,A = Comp(a, ..., ar-1),
B = Comp(bo, --.,be-1), D = Comp(dy, ..., d_1), and 0 < d < C let Ezt.min(4, B,d, D) =
(A',k) where A’ = Comp(a,..,a}_,) is defined as in the case of componentwise_min(4, B),
k= Tocice ki2', and

k :{1 if @} = b; < a;, and d + b; = d; mod (C + 1)
"7 1o otherwise

We can use function ezt_min in lines (11a) to (11c) as follows:

For t vertices vo, ..., 01 let A = Comp(Q[vo), .., Q[ve-1]), B = Comp(c[v, vo), .
and D = Comp(distmod[uo), ..., distmod[v.—]). Then ezt.min(A, B, dmod, D
where A is the new content of Q and k codes all indices for which line (11c) has to be
executed. Thus lines (11a) to (11c) can be executed for ¢ vertices in time O(1 + # of exe-
cutions of line (11c)), which amounts to O(n?/t + n) overall. Finally, a table for ezt_min
can be computed in time O(t - 2 - 2%) = O(n(log n)?). [

Theorem 6 Let b = [log(3 + C)] < (logn)/3 and t = |logn/3b|. Given the distance
matriz ¢ in t-compressed form the shortest path problem on an n-vertez graph with edge
weights in {0,...,C} U {co} can be solved in O(n?(logmax(2,C)/logn) time.

Proof: Obvious from Lemmas 7 and 8. [}

3.2 The Uncapacitated Transportation Problem

Let (V,W, E) be a symmetric directed bipartite graph, i.e., E C (V x W)U (W x V) and
(v,w) € Eiff (w,v) € E,let b: VUW — [~U...U] be a supply-demand function on the
vertices (X cyuw b(z) = 0), and let ¢ : E — [~C...C] be a cost function on the edges
(¢(v,w) = —c(w,v) and c(v,w) > 0 for (v,w) € EN(V x W)). Let cap : E —» R U {o0}
with cap(v,w) = oo and cap(w,v) = 0 for (v,w) € EN (V x W) be a capacity function
on the edges. A solution for the transportation problem (V, W, E, b, c) is an integer valued
function f on the edges such that

(1) f(z,y) = ~f(y,2) and f(z,y) < cap(z,y) forall (z,y) € B

(2) b(z)= Y. f(z,y) forallze VUW
(zw)eE

(3) cost(f)= Y. f(z,u)- c(z,y) is minimized.
1za)20

Ahuja et al. [AGOTSS] have shown how to solve the uncapacitated transportation
problem in time O((nm + n?log U)log nC); see also [AMO91).We take the latter paper as
the basis of our exposition. We need the following definitions. A function f satisfying (1) is
called a pseudo-flow. The imbalance of a vertex z with respect to a pseudo-flow f is given
by imb(z) = b(z) — L(zy)er f(2,9), and the residual capacity of an edge (z,y) is given
by rescap(z,y) = cap(z,y) — f(z,y). A dual function is any function 7 : VUW — R.
A pseudo-flow f is e-optimal with respect to real number ¢ > 0 and dual function = if
&(2,y) = c(2,y) + 7(2) — 7(y) > —¢ for all (z,y) € E with rescap(z,y) > 0; &(z,y) is
called the reduced cost of edge (z,y). A pseudo-flow is a flow, if it satisfies (1) and (2).

Fact 1

(a) Lete < 1/n and let f be a flow which is e-optimal with respect to some dual function
7. Then f is optimal.

(b) Let f be any flow and let x(z) = 0 for allz € V UW. Then f is C-optimal with
respect to .

Ahuja et al. solve the uncapacltated transportation problem by log nC iterations of a
dure improve_approzis This dure takes as input a dual function x' and
an ¢ > 0 and returns a flow f and a dual function = such that f is (¢/2)-optimal wrt. 7.
The procedure requires the precondition that there is an e-optimal flow f’ with respect to
«', although it need not to know this flow. For ¢ = C, the constant zero dual funcuon hu
this property by part (b) of Fact 1. After lognC applications of improve
an (1/n)-optimal flow is obtained. It is optimal according to part (a) of Fact 1. The
procedure improve_approximation (cf. Program 7) starts with the pseudo-flow f(z,y) = 0
for all (z,y) € E and a dual function = such that f is (¢/2)-optimal wrt. 7. It then turns
f into a flow by successive augmentations along so-called admissible paths. An admissible
path consists of admissible edges and leads from a vertex z with positive imbalance to
a vertex y with negative imbalance. An edge is admissible, if its residual capacity is
positive and its reduced cost is negative. An admissible path starting in a vertex z (with
imb(z) > 0) is constructed iteratively. Suppose that we already have an admissible path
from z to some other node y. If imb(y) < 0 then we are finished. If imb(y) > 0 and there

20

procedure improve.approximation(w,¢);

f(z,9) 0 for all (2,y) € E
7(v) (o) forallve V
m(w) o (w) e forallw € W

A 2losl]

while 3z € V UW with imb(z) # 0
do S(A) — {z € V UW;imb(z) > A}
while S(A) # 0
do (s fis a (¢/2)-optimal pseudo—flow with respect to 7 and rescap(z,y)
is a multiple of A for all (z,y) € E x)
select and delete a vertex z € S(A);
determine an admissible path P from z to some node y with imb(y) < 0;
o "ugment & usits of flow along the path P and update f
od;
AcAl2
od

Program T: going from e-optimality to (¢/2)-optimality

is an admissible edge (y, z), then z is added to P (advance). If there is no such edge, then
#(y) is decreased by ¢/2 and y (if different from z) is removed from P (retreat).

Fact 2 Improve_approzimation ezecutes O(n?logU) advance and retreat steps and runs
in time O(n?logU) plus the time needed to identify admissible edges. Moreover, 7(z),
2 € VUW, is changed only O(n) times within a call of Improve_Approzimation.

The O(nm) term in the running time of the Ahuja et al. algorithm results from the fact
that each adjacency list is scanned O(n) times, once for each change of the dual value.
‘We now discuss how to speed up the search for admissible edges in dense graphs.

Define the truncated reduced cost &(z,y) of an edge (z,y) € E by:
Hz,y) = |&(=,9)/(¢/2)] - (¢/2)-

Lemma 9 (z,y) € E is admissible if &(z,y) = —1 and rescap(z,y) > 0.

Proof:

7 ?: £ ¢(z,y) = —1 then &(z,y) < 0.

7= 7: If (2,y) is admissible then &(z,y) < 0 and rescap(z,y) > 0. By (¢/2)-optimality,

we also have &(z,y) > —¢/2. Thus &(z,y) = -1.
1

We maintain a matrix D which approximates & We have D[z,y] € [-z...z] U
{-00,00}, where z is a constant to be fixed later, and D[z,y] = -1 iff (z,y) € E and

21

&z,y) = —1. Let b > [log(2z + 3)], i.e., b bits suffice to encode an entry of D, and let
t € IN be such that t2b < logn. We partition D into ¢ X t-submatrices and store each
submatrix in a single RAM-word.

The invariant D(z,y] = —1iff &z,y) = -1 is maintained by updating the entries in
row and column z after every z/2 changes of z’s dual value, i.e., D[z, y] is set to &(z,y) if
(2,9) € E and &z,) € [~2,2], and to +00 or —co otherwise. This takes time O(n) for
each update and hence time O(n®/z) totally.

For the search for admissible edges we also maintain a (compressed) matrix R with
R[z,y] € {0,1} and R[z,y] = 1 iff rescap(z,y) > 0. R(z,y) can be updated in time O(1)
per change of the preflow f and hence in time O(n?log U) totally. Also, given appropriate
tables, a scan of an adjacency list takes time O(n/t) plus the number of admissible edges
found. The total time for scanning adjacency lists is therefore O(n®/t +n?log U). Finally,
the tables required can be precomputed in time O(22®).

With the choice t = z = |(logn/ loglog n)!/2], we obtain a running time of
0(n*(loglogn/log n)'/? + n? log U)
for each call of improve_approximation. We summarize in :

Theorem 7 The uncapacitated transportation problem (V, W, B, b,c) with [V| = [W| = n,
supplies and demands bounded by U and costs bounded by C can be solved in time

O((n®(loglog n/ log n)'/? + n?log U) log nC).

3.3 The Assignment Problem

Let (U, W, E) be a bipartite graph (which is assumed to have a perfect matching) and
let ¢ : E — [0..C] be a cost function on the edges. A solution to the assignment
problem is a perfect matching M which maximizes (M) = ¥,,ep c(uw); throughout
this section we use uw to denote the unordered edge {u,w}. We show how to imple-
ment the O(n?®lognC) algorithm of Orlin and Ahuja [OA88] so that it runs in time
O(n*%lognC - (loglogn/logn)'/*). The same speed-up can also be obtained for the
Gabow and Tarjan [GT89] assignment algorithm.

As most assignment algorithms do, the Ahuja and Orlin algorithm computes not only
amatching but also a dual function defined on the vertices. A pair (val, price) of functions
val : U — Z and price : W — Z is called dominating with respect to cost function c if
val(u) + price(w) > c(uw) for all vw € E. It is called I-tight with respect to a cost
function ¢ and a partial matching M if val(u) + price(w) = c(uw) + 1 for all uw € M.

A high-level description of the assignment algorithm is given in Program 8. The
algorithm scales the cost function. In each scaling iteration it uses the auction algorithm
of Bertsekas [Ber81] in order to compute a perfect matching M and a dual pair (val, price)
which is dominating and 1-tight with respect to M and the reduced cost function . The
auction algorithm will be discussed below.

Lemma 10 (Orlin and Ahuja) Let 0 < cuy < C for all uw € E. A call assignment
(U, W, E,(n+1)-c) returns an optimal matching and runs in time O((Tauction+n) log nC +
n2%/log n) where Toction is the cost of a call of auction.

22

proc assignment (U, W, E, c) returns (M, val, price)

precondition : (U, W, E) has a perfect matching and c,, > 0 for all uw € E.
postcondition: M is a perfect matching and (val, price) is a pair of dual functions
which is dominating and 1-tight with respect to ¢ and M.

begin if cyy =0 forall uw € E
then return (M,0p,1w) where M is any perfect matching, 0, is the constant
zero function on U, and 1y is the constant one function on W

else let Zyy = |cyu/2) for all vw € E;
(3, val, price) « assignment (U, W, E,);
let Euy = cuw — 2val, — 2price, — 1;

(* (val,price) is dominating and 1-tight for & and M, Gy, < 0 for all
ww € E, and §M") > —4n where M~ is an optimal assignment wrt. & *)

(M, val, price) — auction (U, W, E,¢);

(x (val, price) is dominating and 1-tight for ¢ and 3. x)

return (7, 2val + val, 2price + 1 + price)

Program 8: The assignment algorithm

Proof: Let Sy = (n+ 1) - cuw, let M~ be an optimal matching, and let M be the
matching computed by the call of assignment. Then

AM) <EM) < 3 (val(u) + price(w))

uwweM*®

> val(u) + Y price(w)

uel weW

> (Euw+1)=2aM)+n

wweM

Also, g M*) — &(M) is divisible by n + 1 and hence &(M") = &(M).
The depth of the recursion is log nC and each level has cost O(Tauction + 7). Finally, the
then—case takes time O(n?%/logn) (according to section 2.5) .]

Lemma 11 (Orlin and Ahuja)

(a) uw <0 for alluw € E

(b) &(3) > -3n

23

(c) The pair (2val + val, 2price + 1+ price) is dominating and 1-tight for M and c.
Proof: cf. [0A8S] 1

The auction algorithm is defined by Program 9; 7 > 1 is a constant to be fixed later.
In this program Ugree = {u € U;~3uw € M} is the set of free vertices in U wrt. matching
M. Wy,e. is defined analogously.

Lemma 12

(a) (val,price) is always dominating and 1-tight with respect to M and c.
(b) There are at most 2yn®/? ezecutions of the while-loop in Phase 1.
€) |Usree| = [Wireel < 8n2/2/7 at the end of Phase 1.

f]

(d) The total cost of Phase 2 is O(n?S /7).
Proof:

(a) By induction on the running time; cf. [0A88] for details.

(b) Clearly 1 — |vy/a) < val(u) < 0 for every u € U and price(w) > 0 for all w € W
throughout Phase 1. Also, after every increase of price(w), w € W, there is a vertex
u € U such that ¢y, + 1 = val(u) + price(w). Thus price(w) < cup + 1 - val(u) <
1+ [yn'/2] — 1 < yn!/2. Since each iteration of the while-loop either increments
price(w) for some w € W or decrements val(x) for some u € U the bound follows.

(c) Let M be the matching at the end of Phase 1 and let M* be an optimal assignment
wrt. & Then
-3n (M)

Zual(u)+ Z price(w,
Z (val(u]+ prxce(w))+ > (val(w)+ Y price(w)

IA 1A

wwel w€Uyree wEWpree
= X (w4 Upeel(1 = [1v/R))
wwelt

< M- (n=1)Upeel

where the first inequality follows from Lemma 11, the second by domination, the
third by rearranging terms, the fourth from 1-tightness and the fact that val(u) =
1 - |yv/] for u € Uy, and price(w) = 0 for w € Wyye, and the last from the fact
that cyy < 0 for all uw € E. Thus [Wyyeel = [Ufree < 4n/(7v/a — 1) < 8n1/2/7 for
n>4.

24

proc auction (U, W, E, &) returns (M, val, price)
precondition: & < 0 for all uw € E. There is a matching M* such that &§(M*) > —3n.
postcondition: (val, price) is dominating and 1-tight for ¢ and M.

begin =
val, — 0 for all u € U, price,, — 0 for all w € W; M — 0.

(* Phase 1: bidding *)
while 3u € Upee : val(u) > —|yv/a) + 1
do let u be such a vertex;

if 3w e W : &y, = val, + price,

then let w € W be such a vertex;
let «' € U be such that u'w € M (x u' may not exist *);
M« M - {v'w} U {uw};
price(w) « price(w) + 1;

else val(u) « val(u) -1
od

(% Phase 2: Hungarian search x)

while 3w € W,

do select wo € Wy, direct all unmatched edges from B to 4, all matched
edges from A to B and solve the shortest path problem with source w and
distance function &, = val(u) + price(w) — & Let dist, be the shortest
distance from wo to z, let d = min{distu; u € Usrec}, let o € Ugpee be such
that d = dist,,, and let dist, = min(d, dist.). Augment the matching M
along the shortest path from wo to ug, i.e., reverse the direction of all edges
on this path and set:

val(u) — val(u) — dist(u) for all u € U
price(w) — price(w) + dist(w) — 1 for all w € W

(* (val,price) is dominating and 1-tight for 3 and ¢ x)
od
end

Program 9: The auction algorithm

25

(d) Each iteration of the while-loop in Phase 2 takes time O(m) = O(n?), since the
shortest path calculation uses a nonnegative distance function and since d < n
always; cf. [0A88] for details.

We now discuss the implementation of Phase 1. Let us call an edge uw tight, if cuw =
val(u) + price(w). It is clear that a non-tight edge uw can only become tight by a
decrement of val(u). The search for tight edges in Phase 1 can therefore be done as
follows: For each vertex u € Uy, We maintain a pointer into u’s adjacency list such that
all edges to the left of the pointer are nontight. If u is selected in Phase 1 the pointer
is advanced until a tight edge, say uw, is found. This edge is added to 37 and becomes
non-tight by the increment of price(w). If no tight edge is encountered val(u) is decreased
and u’s pointer is reset to the first edge on u’s adjacency list. In this way, each adjacency
list is scanned at most 7,/7 times for a total cost of yn2¥. Note, however, that only yn%/2
tight edges are found in Phase 1 according to Lemma 12. We may therefore hope to speed
up the search for tight edges by the compression method. The details are as follows:

Let dyy = Cuw — val(u) — price(w). We maintain a matrix D[u,w), (v,w) € U x W,
which approximates d,. More precisely, D[u,w] € [z..0] U {-oo}, where z = O(logn)
is a constant to be fixed later, and D[u,w] = 0 if and only if uw € E and duw = 0. Let
b > [log(z + 2)], i.e., b bits suffice to encode an entry of D[u,w], and let ¢ € IN be such
that t2 - b < logn. The actual value of ¢ will be fixed later. We partition the matrix D
into ¢ X t-submatrices and store each submatrix in a single RAM-word.

We now show how to maintain the invariant that D[u,w] = 0 if and only if uw € E
and dy, = 0, and how to search for tight edges. In order to maintain the invariant, we
recompute for each z € UUW the row (if z € U) or column (if z € W) of D corresponding
to z after every z/2 changes of val(z) or price(z) according to the following rules:

if 2w € E and d(z,w) > —2/2
if zw ¢ E or d(z,0) < —z/2
d(u,z) ifuz € E and d(u,z) > —2/2
- ifuz ¢ E or d(u,z) < —z/2

Iz € U then Dlz,u = { &%)

If z € W then D[u,z] = {

This takes time O(n) for each recomputation and hence O(yn®$/z) throughout Phase 1.

Next we turn to the search for tight edges . Since the matrix D reflects the 0-values
of d correctly, we only need to search the (compressed) matrix D for entries of value 0.
This takes time O(n/t + # of tight edges found) for each scan of an adjacency list given
appropriate tables. The total time throughout Phase 1 is therefore O(n?Sy/t + yn®/%).

Finally, whenever val(u) or price(w) is changed the appropriate row or column of D
has to be updated. We assume that —oco + 1 = —c0, and —z — 1 = —z. Given appropriate
tables, each scan takes time O(n/t) for a total of O(n*® - v/t) throughout Phase 1. Also,
the various tables mentioned above can certainly be computed in time 0(22%).

‘We summarize in:

Lemma 13 The cost of a call of auction is Tauction = O(220'0 + 25/t + n?Sy/z +yn’/2)
where the constants b,t and z must satisfy b > [log(z + 2)] and 2¢2b < log n.

The choices t = z = |(logn/2loglogn)'/?| and 4? = t yield:

Tauction = O(n**(loglog n/ log n)*/4).
We have thus proved.

Theorem 8 A mazimal assignment in a bipartite network (U, W, E,c) where U] = |[W| =
u and cyy € [0..C] for alluw € E can be computed in time O(n>*(loglog n/ log n)!/4log(nC))
by a conservative algorithm.

27

References

[ABMP90] H. Alt, N. Blum, K. and M. Paul. Cq

[AGOTs8]

[AMO91]

[AV79)

[Bers1)

[CHMs0]

[Dij59)

[Dij82)

[FMo1]

[FW90]

[GK79)

[GT89)

[HK73)

[KR84]

[Mehs4]
[0As88]

a car-
dinality matching in a bipartite graph in time o(log"s \/m/Togn). IPL 90,
1990.

RX. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan. Finding minimum-

cost flows by double scaling. Technical Report STAN-CS-88-1227, Dept. of
Computer Science, Stanford University Stanford CA, 1988.

RK Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows. Handbooks in
i Research and M Science, 1:211 -360, 1991.

D. Angluin and L.G. Valiant. Fast isti ithms for hamilti
circuits and matching. Journal of Computer and Systems Sciences, 18:155 —
193, 1979.

D.P. Bertsekas. A new algorithm for the assignment problem. Math. Prog.,
21:152 - 171, 1981.

J. Cheriyan, T. Hagerup, and K. Can a maximum flow be d
in o(nm) time. In Lecture Notes in Computer Science, volume 443, pages 235
- 248. Proc. of the ICALP Conference, Springer Heidelberg, 1990.

E.W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1:269 - 271, 1959.

E.W. Dijkstra. Selected Writings in Computing: A personal perspective.
Springer Verlag, 1982.

T. Feder and R. Motwani. Clique partitions, graph compression and speeding-
up algorithms. STOC, pages 123 - 133, 1991.

M.L. Fredman and D.E. Willard. Blasting through the information theoretic
barrier with fusion trees. STOC 90, pages 1 - 7, 1990.

A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. In
Lecture Notes in Computer Science, volume 74, pages 301 — 307. Proc. Conf.
Mathematical Foundations of Computer Science, Springer Heidelberg, 1979.

H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems.
SIAM J. Comput., 18:1013 - 1036, 1989.

J.E. Hoperoft and R.M. Karp. An n®/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 4:225 - 231, 1973.

D. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random
access machines. TCS, 28:263 - 276, 1984.

K. Mehlhorn. Data Structures and Efficient Algorithms. Springer Verlag, 1984.

J.B. Orlin and R.K. Ahuja. New scaling algorithms for the assignment and
minimum cycle mean problems. Technical Report OR 178-88, Operations
Research Center M.LT. Cambridge M.A., 1988. Working paper.

28

(Shas1]

[Sim8s]

[Tar71)

M. Sharir. A g ivi i and its ication in data flow
analysis. Comp and Math. ics with Applicati 7(1):67-72, 1981.

K. Simon. An improved algorithm for transitive closure on acyclic digraphs.
In Lecture Notes in Computer Science, volume 317, pages 376 — 386. Proc.
13th ICALP, Springer Berlin, 1988.

R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
put., 1:146 — 160, 1971.

29

