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Abstract
For compact Euclidean bodies P, Q, we define A(P, Q) to be smallest ratio r/s where
7>0,s> 0satisfy sQ' C P C 7Q". Here sQ denotes a scaling of Q by factor s, and
Q',Q" are some translates of Q. This function A gives us a new distance function
between bodies which, unlike previously studied mcasures, is invariant under affine
transformations. If homothetic bodies are identified, the logarithm of this function
is & metric. (Two bodies are homothelic if one can be obtained from the other by
scaling and translation).
For integer & > 3, define A(K) to be the minimum value such that for each convex
polygon P there exists a convex k-gon @ with A(P, Q) < M(k). Among other results,
we prove that 2.118... < A(3) < 2.25 and A(%) = 1+©(k™?). We give an O(n?} log? 2 n)
time algorithm which for any input convex n-gon P, finds a triangle ' that minimizes
(T, P) among triangles. But in Lincar time, we can find a triangle ¢ with A(t, P) <
2.25.
Our study is motivated by the attempt to reduce the complexity of the polygon
containment problem, and also the motion planning problem. In cach case, we
describe algorithms which will run faster when certain implicit slackness parameters
of the input arc bounded away from 1. These algorithms illustrate a new algorithmic
paradigm in computational geometry for coping with complexity.
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1 Introduction

Most motion planning problems, except for the simplest exa:nples, have at least a quadratic
time complexity in the worst case (sce for example Yap [14]). Our basic goal is to circum-
vent this apparent bottleneck by using heuristics. Yap [14] describes two general heuristics:
the so-called simplification heuristic in which we try to replace a complicated robot body
P by a simpler shape 0, and the local ezpert heuristic in which we invoke some specialized
algorithm when the robot is in some stereotyped environment (such as the vicinity of a
door). Of course the real challenge for theoretical Tobotics is to quantify precisely such
heuristics. This paper will provide a method for quantifying the simplificaticn heuristic.

In real life, one can often sce instantly when a motion is possible or when a motion is
impossible. This suggests that it may be possible to develop algorithms whose complexity
reflects this phenomenon: it should run quickly for inputs where the possibility of 2 motion
is “easy to see”. Defore we proceed to explain this idea, we should say that this idea
is related to the concept of output-sensitive algorithms, but only in the sense that our
algorithm also depends on some implicit complexity parameter cf the mput After all,
there does not seem to be an obvious ion between “easy ” and output
size in our setting.

Let us formalize the idea of an implicit parameter. Assume that we want to move a
convex polygon P amidst obstacles E from placement Z to Z’. We define the slackness
parameter s(P) (= s(P,E,Z,Z")) to be the supremum of s > 0 such that there exists a
motion for the body sP. Here sP denotes the scaling of P by s. To make this notion
well-defined, we assume that ir the initial and final positions Z and 2, P is surrounded
by enough free space that the existence of a motion for sP is independent of the center
of scaling for sP {as long as this center lies within P); see 2lso Alt et al. [2]. Intuitively,
we think of P moving from a large room to another large room through narrow doors and
hallways.

Clearly there exists 2 motion for 7 if and only if s(P) > 1. Now it is intuitively obvious
that it is “easily seen” that no motion exists if the slackness paramecter is very small (i.e.,
close to zero); likewise, it is “easily secn” that a motion exists if the slackuess parameter is
very large (i. e., s(P) > 1). When s(P) ~ 1, it is difficult to decide immediately whether
a motion for P is possible.

‘What we would like to have is a simple substitute Q for P which should come as close
as possible to satisfying the following conditions:

(i) If there is a motion for (), then there is also a motion for P.
(ii) If there is no motion for @, then there is no motion for P.

Of course, the only way to ensure these two conditions in general is to set @ = P. So we
relax (ii

(ii") If there is no motion for @, then there is no motion for P, ezcept when it is “difficult
to see” that there is 2 motion for P.

In other words:

(ii") If there is no motion for @, then s(P) < 1 or s(P) = 1
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We can make this more precise by choosing a constaut so > 1 and defining
()= 1 = 1/sp < sif) < s0,
and thus our condition becomes now
(ii’) If therc is no motion for ¢, then s(P) < sy (i. ., there is no motion for soP).

We can achieve (i) by having P contained in (), and we can achieve (ii’) by having Q
contained in (a translate of) so’ (sce Figure 1).

5@
Figure 1: A triangle Q is enclosed TFigure 2: A pair of triangles Q 2nd soQ
between P and sof. 2pproximating a polygon P.

Of course we can also weaken (i) instead of (ii), and we will get:
() I there is 2 motion for &, then s(P) > 1/so.
(i) If there is no motion for @, then there is no motion for P.

We can achieve this by having (1/so)P C @ and G € P.
So if Q fulfills (i) and (it') then G = (1/s0)Q fulfills conditions (i’) and (ii), and vice
versa. We sce that both pairs of conditions lead in fict to the same approximation problem:

Shape approximation problem: Given a convex figure P in the plane, find
a “simple” polygon Q such that P C Q C so/”, where P is a translate of P.

“Simple polygon” might for example mean triangle, quadrangle, rectangle, or ellipse.
A set P and a scaled and translated copy s(P + ) of it are called (positively) homothetic,
for s > 0. It is clear that the roles of P and Q are i 1 ble in the above
and thus we might as well look for a pair of homothetic simple polygons Q and soQ’ for
which Q € P C s0Q’ holds (see Figure 2). This is in fact the formulation that we are
going to work with. The two figures Q and soQ’ approximate P from inside and from
outside, motivating the title of our paper.




One of our results is that, for so = 9/4, we can find a triangle Q which fulfills the
above relation in time lincar in the number of vertices of the approximated polygon. For
our application, this means that

1. If there is no motion for the triangle Q then there is no motion for P;
2. if there is a motion for soQ’ then there is a motion for P;
3. otherwise, the solution is not “casy to see” (i. e., 1/so < s(P) < so).

We can decide which of these three cases holds by running any known motion planning
algorithm for Q and for s,Q’. Note that in the third case, we can conlinue testing with
a good approximating k-gon, for k ,.... Thus we cbtain an algorithm for mation
planning whose running time degrades gracefully as the siackucss parameter approaches 1.
Note that we could run a standard motion planning algorithm for  at the same time, so
that the worst case complexity can be guaranteed to be no more than the usual bound.
(Alternatively, this can be guarantecd by letting k grow sufficiently fast.) This paradigm of
making use of the slackness parameter depends on the ability to find good approximating
pairs of k-gons efficiently.

By insisting that the two approximating polygons are homothetic we make sure that
our application works even if rotations are not allowed in the robot motion. If we allowed
rotations as well, then we could take better (i.e., smaller) values of so. For example, in the
case of triangular approximations we could take so = 2: Let ¢ with vertices u,v and w be
a largest area triangle in the polygon P, and let T be the triangle with an edge through
u parallel to vw, an edge through v parallel to uw, and an edge through w parallel to uv.
Then t C P C T, and -2t is a translate of T.

The above paradigm can be applied to the problem of polygon containment, again
yielding an algorithm whose performance degrades gracefully as the implicit slack param-
eter approaches 1. Recall that the current fastest algorithm for placing a convex n-gon Q
inside a convex m-gon P runs in time O(nm?) (Chazelle [3]).

The preceding discussion motivates the following concept of approximation: For any
two compact subsets Q, P of Euclidean space, let A(Q, P) be the infimum of the ratio r/s
where 7,5 > 0 satisfy

sQ'CPcrQ”
and Q’, Q" are some translates of Q.
‘With this notion, our shape approximation problem can be formulated as follows:

Given a convex figure P in the plane, find a “simple” polygon @ which mini-
mizes A(Q, P).

In this paper, we will take “simple polygon” to mean a k-gon, for any fixed integer k > 3,
and we will study the maximum value of A(Q, P) which we may expect in the worst case.

In the Euclidean plane, for any integer k > 3, we define A(k, P) to be the infimum of
A(Q, P) as Q ranges over all convex k-gons, and define A(k) to be the supremum of A(k, P)
over all convex P. As mentioned above, we shall show that A{3) < 9/4.

For the distance measure A(P,Q), the size and position of P and @ are irrelevant;
A(P, Q) depends only on the shape of P and Q. We have A(P,Q) = 0 if and only if P
and Q are positively homothetic. If homothetic bodies are identified, the logarithm of the



Approximation of shapes 5

function A(Q, ) turns out to be a metric, which is invariant under afline transformations.
We shall study properties of this metric in Section 2.

Section 3 presents bounds for A(3), i. ., for approximation by triangles, and develops
an O(n?log? ) algorithm for finding the best triatgle approximation. In Section 4 we will
study the asymptotic behavior of A(k), and we will discuss a number of open questions in
Section 5. Finally, in an appendix we prove that the ratio between the arca of a convex
hexagon and the area of its largest contained triangle is at most 9/4; we nced this result
for our estimate of A(3).

Tlis paper is an extended version of the conference paper [6].

2 A Metric on Shapes

There are many different distance measures between convex bodies, like the Hausdorf
distance, symmetric diffe metric, jation metric (see for example the
survey of Gruber [8]). Typically, the definition of these metrics is motivated by the desire
to approximate a convex body P in some Euclidcan space by another body @, where
the metric function d(P,Q) measures the quality of the approximation. The function
A(P,Q) that we have defined in the introduction is different from the classical metrics
in some important aspects. One notable property is that it is invariant under affine
transformations: For any affine transformation 7, we have A(7Q,7P) = A(Q, P). The
classical metrics d(Q, P) are invariant under rotations and translations, but not under
other affine transformations. For example, if 7 is a scaling by the factor u, then we
usually have

d(rQ,7P) = |ul?- d(Q, P),
where ¢ is some integer between 1 and the dimension.

With suitable precautions, the logarithm of A is 2 metric. By a (planar) body P we
mean a compact subset of the plane. For any body P, let P denote the class of bodies
equivalent to P under translation and positive scaling, i. e., the homothets of P. We call
such equivalence classes shapes. We say two bodies P,Q have the same shape if P = Q.

‘We first observe that X is in fact 2 function on shapes: that is, if P, P’ have the same
shape and if Q,Q’ have the same shape then A(P,Q) = A(P',Q’). Hence the notation
A(P, () is meaningful. The following theorems are easy to prove.

Theorem 2.1 The function A(P,Q) := log \(P, Q) defines a metric on shapes.

Theorem 2.2 The functions A, A are invariant under affine transformations, that is, if T
is an affine transformation then A(P,Q) = A(P,7Q). o

The metric X has also been used by Kannan, Lovisz, and Scarf [11] under the name
of Banach-Mazur metric. (It is 2 variation of the clussical Banach-Mazur distance whick
applies to centrally symmetric bodies and allows arbitrary affiuc transformations, not just
scalings.)

3 Approximation by Triangles

In this section we will give lower and upper bounds for A(3) and present an algorithm which
constructs an optimal triangle approximation for a given n-gon in time O(n?log? ).



Figure 3: The hexagon P in the proof of Theorem 3.1.

First, it is useful to introduce the following general concept: for two bodies Q,Q’
with the same shape, and for a body P, we call (Q,Q’) an approzimating pair for P if
Q C P C Q’; the ezpansion factor of (Q,Q’) is the factor by which Q must be scaled in
order for it to have the same size as Q'. Given a body P and a triangle ¢ contained in P,
let Tp(t) be the smallest triangle of the same shape as ¢ that contains P. Then (¢, Tp())
is an approximating pair for P, and its expansion factor will be denoted by xp(t). Note
that A(t, P) < xp(t), where equality holds if and only if £ is a largest triangle of its shape
contained in P.

The i area heuristi; C ing the value A(k, P) (for k and P) seems
to amount to finding an approximating pair (Q, Q) for P such that Q is 2 k-gon and the
expansion factor equals A(k, P). There is a natural candidate for (@, Q’), namely where
Q is the largest convex k-gon contained in P. The next theorem shows how well this
mazimum area heuristic performs in case of the triangle.

Theorem 3.1 For any convez body C, any largest triangle t contained in C has the prop-
erty that
9
A1,C)< <.
“0)<q

Proof. We can apply an affine transformation that maps ¢ to an equilateral triangle with
unit side length; so we may assume that ¢ is equilateral with unit side length from the
beginning. Each edge of the triangle T = Tc(t) touches C in at least one point; this
gives three points which together with the vertices of ¢ form a polygon P with at most six
vertices; in general this will be a hexagon (see Figure 3). Let h and H denote the heights
of ¢ and T respectively and let d := dy + dy + d3 where the d; are the distances between
corresponding edges of t and T. Then H = h+d, because ¢ is equilateral. Let us denote by
area() the area of body Q. We have areat = & and areaP = areat+3(di+d2+ds) = 4. So
the expansion factor of (¢,T) equals & = 2222 In the appendix we show that 228 < £ if
P is a convex polygon with at most six vertices, and ¢ is a triungle of largest area contained
in P. The theorem follows.
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Corollary 3.2 For any convez n-gon, we can find in O(n) time a triangular approzimat-
ing pair {t,T) with czpansion fuctor at most 3. =]

This follows from the fact that the largest area triangle contained in a convex polygon
can be found in Jincar time (Dobkin and Snyder [4]). We will sce below that the maximum
area heuristic s, in general, suboptimal.

Rigid approximating pairs.  For the construction of an optimal triangle approxima-
tion of a given convex n-gon P, we look for a triangle ¢ contained in P that minimizes
xp(1); dearly, this triangle also minimizes AL, P) =l thus determines A(3, P). Tn a first
step ve reduce the set of possible candidates for £.

Let (1,7 be ax approximating pair of triangics fur 7. A pair (v, V') of corresponding
vertices of (¢,T) is fme if (i) v€P, or (ii) ve€dP, butitis not a vertex of P and the
two edges of 7" incident to V are not flush with edgcs of P; (9P denotes the boundary of
P). We call (4,T) rigid if it has no free vertex pair and T = Tp(t).

For example, in the pair of triangles in Figure 2, every pair of corresponding vertices is
free. In Figure 4 (u, U) and (w, ) are not free for the pair (Auvw, AUVW), but (v, V)
is free. The following two lemmata will lead to 2 theorem that justifies that we restrict
our attention to rigid approximating pairs.

Lemma 3.3 Let t le a triangle contained in P such that xp(t) = A(3,P). Then all
vertices of  lie on the oundary 8P of P.

Proof. See Figure 4. Suppose that t = Auvw has vertex v not in dP. Consider T = Tp(t).
Without loss of generality, we assume that T = M, i.e. the scaling center of £ and T is
the origin. Since ¢ is the largest triangle of its shape in P, ut is not in P for any p > 1
therefore, either pu or pw lies outside of P (not on dF) for every p > 1, say this holds for
pu. Hence, the vertex U = Au of T corresponding to u lias to lie outside of P.

Consider now a point v’ on the boundary of P such that the triangle ¢’ = Auv'w
contains t and has v in its interior. Let 7/ = AUV'W, where V/ = Av’. Then (¢,T") is
an approximating pair for P with the same expansion factor as (¢,T). But since the edge
UV’ does not touch P, it cannot be optimal; we use here that U ¢ 9P, and that the rest
of edge UV does not even touch T, since V lies in the interior of T".

The following lemma can be proved ‘directly’ by some analytic calculations; we present
a short proof (using cross ratios) based on notes by Rolfdicter Frank [7). It turns out that
this is ially 2 new Schli ivalent to Pappus’ Theorem as was pointed
out by Armin Saam [12]. The lemma is illustrated in Figure 5, in a way that indicates
already how we want to use it.

Lemma 3.4 Let T he a triangle with a base of length B, let R and S be points on the
other two edges of T (but not on the base), and lct g be the line which contains the base
of T. If we move the basc of T on g 1o the left (or ) by an amount z while preserving
its length, this new bese together with the (fized) prints R and S defines @ triangle T(z).
Then, in a corresponding similar triangle 1(z) with  fized buse, the third vertez v(z) (i.c.
the vertez not on the base) moves on a straight linc as z varies.

Proof. Instead of moving the base of T and keeping the points 2 and § fixed, we keep the
basis fixed and move the points R and § horizontally by equal amounts, see Figure 6. We



G e

Figure 4: Dlustrating the proof of Lemma 3.3.

Figure 5: Ilustrating Lemma 3.4 (and the proof of Theorem 3.5).
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Tigure G: Tllustrating the proof of Lemma 3.4.

want to show that V moves on a line. We proceed as follows: Assume that the base UW
is horizontal and take two triangles AUVoW and AUViW ‘generated’ by points Ro, So
and horizontally shifted points Ri, Sy, respectively. Now we move the point V' on the
line through Vo, V3 and watch the intersections 12 and § of the sides UV and VW with
the horizontal lines through RoR; and SoS1, respectively. We will prove the lemma by
showing that the distances RoRt 2nd 508 are equal.

Let us recall from projective geometry that the cross-ratio (4, B,C, D) of four collinear
points is defined as :

(4,8,c,0)= 25 .22,
AD BC

— — — —

where the sign of the directed distances AC, AD, BC and BD has to be taken with respect

to 2 fixed chosen orientation of the line containing the points; the value of the cross-ratio is

independent of this choice of oricutation. If one of the points, for example 4, is at infinity,
— —

the value of AC/AD is taken as 1. In this case, the cross-ratio (0, B, C, D) simplifies to

—_— —
the ratio BD : BC. It is an elementary fact of projective geometry that the cross-ratio is
invariant under central projections.

To use this fact for our proof, we denote by N the intersection of the base line through
UW with the line on which vertex V moves. If we project the four points N, Vo, V1 and V'
on the horizontal lines through RoR; and So$) from the centers U and W, respectively,
we get -

— — — =
RoR : RoRy = (0, Ro, By, B) = (N, Vo, V1, V) = (00, 50, 51, 5) = 505 : So51
E— — R —
But RoR; and So5; are equal by choice, and thus RoR and SoS are also equal.

Theorem 3.5 For any convez polygon P, there is a rigid approzimating pair (t,T) with
ezpansion factor A(3, P).



Proof. Let (t,T) be an approximating pair with jon factor A(3, 7). We know from
Lemma 3.3 that every vertex of ¢ is on P. Suppose there is a free vertex pair (v,1).
Then each of the two edges of T incident to V touches P in one point only, say in point 12
and in point S, respectively. If R is 2 vertex of T, then we T smaller by rotating
the edge RV about R until it is flush with an egde of P. We gt o triangic T, which forms
with the analogously mauipulated triangle ¢’ in P an approximating pair with the same
expansion factor, and this «pv*o).unatm pair has oue free vertex pair iess. Contix
transform the pair in ik igi i

So we may assume that R and
Lemma 3.4 are sat e
while preserving contact
of P, the vertex v of a similar
Tine intersects the interior of P, then we get 2 contradiction to the optimality of (¢, T} via
Lemma 3.3 (See Figure 5). Thus this Line contains the cdge on which v sits and we can
perform this motion while preserving the expansion factor, uatil cither v meets a vertex
of P or one of the two edges of T containing R and § respectively gets flush with an edge
of P; then (v, V) is not {ree.

So we can find the optimal approximating pairs of triangles by considering only rigid
approximating pairs. Every rigid approximating pair (t,T) falls into at least one of the
following classes.

A Al three vertices of ¢ are also vertices of P.

B One vertex of t is also a vertex of P and the opposite edge of T is flush with an edge
of P.

C Two edges of T are flush with edges of P.

These classes are not disjoint but we will find the overall optimum by computing the
optimum of each class. The pairs in each class can be further classified by the incidences
between the edges and vertices of the inner and outer triangle on one side, and of the
2pproximated polygon on the other side. We call this the type of a rigid approximating
pair.

For Class A a type is specified by the three vertices of P which are the vertices of ¢; this
completely determines (2,T), because T' = Tp(t). The situation gets slightly more subtle
in the other classes, because the type does not always completely determine the triangles,
and a type may contain 2 coutinuous family of solutions. Fortunately, we only have to
deal with P ic families of solutions, and thus it is easy to find the optimum.

The type of 2 Class B pair (¢,T) is specificd by a vertex v of ¢ and the vertex of P
which coincides with v, the edge ¢ of > which is contained in the edge of T opposite to
V. (V is the vertex of T corresponding to v) and the portions (edges or vertices) of 9P
which contain the other vertices of 1, and the portions vk e contained in the other
edges of T. There is one case whare the type does not uniquely deiermine the triangles ¢
and T, namely when the other vertices (different from v) of ¢ are boili on edges of P {not
vertices), and the other edges of T both touch P in vertices (not edges). But the expausion
factor of a pair (of fixed type) is a rational function of the form (cif + c2)/(csh? + csh)
in the height h of the smaller triangle (the ¢;’s are consl’mts depending on the type);
this should be clear from Figure 7: Note that ¢ and v are lincar functions in h. The
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v(hy-alh

Figure 7: How to compute the optimum of a given type in Class B.

base of ¢ has length ¥(h) + ¢(h), and the base of T has length p(h)a/h + ¢(h)b/h +c,
where @, b and ¢ are constants. The expansion factor is the ratio of these two expressions.
Hence the optimum of & given type can be found by solving a quadratic equation and
checking whether the Toots of this equation correspond to valid pairs (¢, T) of the type. It
may happen that the optimum occurs at a boundary position of the type, but this would
already be a different type, and therefore such a solution is taken care of correctly.

In Class C we have two edges e and f of P which are contained in edges UV and VW
of T. This also determines the vertex V. In addition, to completely specify the type, we
have to say on which vertex or edge of P each vertex of ¢ lies, and which vertex or edge of
P is touched by the edge UW. The only case in which the solution is not unique occurs
when the vertices u, v, and w of ¢ are contained in edges (not vertices) of P, and the edge
UW of T touches P at some vertex R (not at an edge). In this case the distance VR is
constant (see Figure 8). Therefore, xp(t) is inversely proportional to the corresponding
distance vr in the small triangle ¢. Let us assume that the line VR is vertical, and let
d be the distance of v from the next vertex of £ on the left. The coordinates (uz,uy),
(vz, vy), and (wg, wy) of the points u, v, and w are then linear functions of d. By dividing
the triangle ¢ into the triangles Avrw and Avru on2 can see that the area of ¢ is half
the length of vr times the horizontal distance between w and u. This gives the following
formula for 77: |

Up =V We— v |
Uy — vy Wy — vy

=

Ug — W
Setting the derivative of this rational function to zero yieids a quadratic equation for d,
and thus the minimization problem for this type can be solved by elementary means.



Figure 8: How to compute the optimum of a given type in Class C.

An operation on triangles.  For the analysis of the algorithm we are going to describe,
we need the following argument. If (to, To) and {t;, T1) are approximating pairs of a convex
polygon P with the same expansion factors, then — under certain circumstances to be
specified later — we can continously deform one pair into the other via approximating
pairs (¢,,7,), 0 < p < 1, while preserving the same expansion factor. For t = Auguowo
and t; = Auyvyw;, we define ¢, as the triangle

A((1 = puo + pur)((1 = p)vo + por)((1 = p)wo + pwr)

and we define T}, in an analogous way as an intermediate triangle between To and T}; note
that in the definition of ¢, the order of the vertices defining Zo and ¢; makes a difference
for the resuiting 2.

Observe right away that t, and T, have the same shape, that (t,,7}) has the same
expansion factor as (i,7o) and (t1,T1), and that ¢, is contained in P. The first two
properties can be easily checked by plugging in the formulas, and the last property follows
from the fact that the vertices of ¢, are contained in the convex hull of to U ts.

However, in general, T}, will not coutain P. The following iemnma, though, will ensure
that in the situations we will consider.

Lemma 3.6 (see Figure 9). Let V,Uo, Wy be three noncollinear points in the plane, let
Uy be a point on the open scgment VUo, and let Wo be a point on the open segment VW;.
For u, 0 < p < 1, we define U, = (1 — u)Uo + uUs and W, = (1 — u)Wo + uW. Then
AULVW, contains AUV Wo N AU VW, for all0 < p < 1.

Proof. Tt suffices to prove that AU,VW, contains the point z of intersection between
segments UoWo and U; W;. Consider the line k parallel to UpV containing Wy, let Wg be
the point where k intersects the line containing UoWo, and let W, = (1 — p)Wg + uWi.
Then U,W), contains z. But W, can be obtained also by intersecting the line parallel to
WoW; through W, with A. The lemma now follows easily.
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®v

Figure 9: Dlustrating Lemma 3.6 and its proof.

Corollary 3.7 If (to,To) and (t1,Ty) are approzimating pairs of P such that To has two
edges flush with edges of P and Ty has two edges flush with the same two edges of P, then
all (t,,,T,) for 0 < p2 < 1 are approzimating pairs of P.

Corollary 3.8 (see Figure 10). Let To = AUoVoWo and Ty = AUViW; be two triangles
such that the base segment UgWy of Ty is contained in the base segment UyWy of Ty and
the vertez V; is contained in To. Then T, contains ToU Ty, forall0 < p < 1.

Proof. The line through Vo and V; intersects the basis UpVp and thus separates each of
the triangles Tp and T} into two triangles, to which Lemma 3.6 can be applied.

Computing an optimal approximating pair. The algorithms for each class are as
follows:

For Class A we investigate all pairs u,w of vertices of P and look for a third vertex v
which minimizes xp(Auvw). For fixed vertices v and w, we abuse notation and write x(z)
short for xp(Auzw), where z is 2 point in P. We want to show that x(z) is unimodal
2s z moves from u to w on P (on either side of uw). Suppose x(z') = x(z") for two
points z’ and 2" on P, both on the same side of uw. Let T/ = AU'X'W’ be the triangle
Tp(Auz'w), and let T = AU"X"W" = Tp(Luz"w).

Now we apply Lemma 3.4. The bases of 7' aud T" lie on the same line, and since
(Luz'w,T') and (Auz"w.T") bave the same expansion factors, the bases of 7* and T
have the same lengths. Since ull edges of 7' and T touch P, the segment U’X’ must
intersect U”X” in a point R, and W'X' must interscct W”X” in a point §. Now move
the base of T” towards the base of T”, and consider the iriangles with this base and
the other two edges containing R and S; all these triangles contain T/ N T” 2 P. As
we observe similar copies with base uw, Lemma 3.4 tells us that the third vertex moves
monotonically on a line from z’ to z”. Hence every point z on dP between z’ and z”
satisfies x(z) < x(z'), and so x is unimodal.




Figure 10: Il ing the proof of the ity of x(k) in Class B.

Lemma 8.9 The optimal approzimating pair in Class A can be computed in time
O(n*log?n).

Proof. For every pair u,w of vertices P, and for both sides of vw, we perform 2 Fibonacci
search for the vertex v that minimizes xp(Auvw). This needs O(logn) vertices to be
visited, and for each such vertex v we have to compute Tp(Auvw), which takes 0(log n)
time. This gives the claimed time bound.
In Class B we fix an egde e and a vertex v of P, and consider all triangles Auvw,
with u,w on 9P, and ww parallel to e. We write x(k) short for xp(Auvw), if h is the
height of Auvw at base uw. Again we show that x(h) is unimodal.
Let ho > hy with x(ho) = x(h1). Fori = 0,1,let ¢; be the triangle Au;vw; with height
hyy thh u;, w; on P, and uxw, parallel to e, and let T; = Tp(t;). Note that the base of Ty
ing e) is 1 ined in the base of T, and that the third vertex V; of
Ty is contained in To (see anure 10). Hence, the line through V; and the third vertex Vo
of Ty intersects the bases of Tp and of Ty. By Corollary 3.8 we know that the the triangles
T, contain ToNT; 2 P, for all 1, 0 < p < 1. Now it easily follows that x(k) < x(ho) for
all h between kg and hy.

Lemma 3.10 The optimal approzimating pair in Class B cun be computed in time
O(n?log?n).

Proof. For every pair of an edge € and a vertex z of P, we scarch for the type that contains
the optimal triangle t = Auvw with one vertex v on z, and the opposite edge uw parallel
to e. First we perform a Fibonacci scarch for the optimal position for the vertex u of T
among the vertices of P. This will limit the possible positions of u to one vertex and two
edges of P. Then we similarly identify two possible edges and a possible vertex for w.
Finally, we search among the edges of P where the the edge UV of T may lie flush, again
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using Fibonacci scarch. This gives us a possible edge and two possible vertices where this
edge touches. After a similar search for the edge VW, we find the optimum in each of the
resulting types in constant time, either by computing the raiio for the unique solution or
by optimizing locally as described above (see Figure 7).

Finally, we have reached Class C. Let ¢ and f be edges of P. For point v on 9P,
consider the triangle ¢ = Auwvw with u,w on 9P, uv parallel to ¢, and vw parallel to f.
We write x(v) short for xp(t). Using Corollary 3.7 it is now easy to show that x(v) is
unimodal as v moves on @P between e and f in the part where Tp(t) has edges flush with
eand f.

Lemma 3.11 The optimal approzimating pair in Cless C can be computed in time
O(n?log?n).

Proof. For every pair e, f of edges of P we select a few possible types of approximating
pairs where the outer triangle has edges flush with e and /. This is carried out similarly
as in Class B: Let V be the common vertex of these two outer edges, as in Figure 8.
By first searching among all vertices of P as possible positions for » we identify the two
possible edges and one possible vertex where v may lie. This is done by Fibonacci search
in O(log?n) time. Subsequently, we identify two possible edges and a possible vertex for
u, and then for w; each by a separate Fibonacci search. Finally, we search among the
edges of P where the the third edge UW of T may lie flush. This gives us a possible edge
and two possible vertices where this edge touches. We end up with a small number of
types, which have either 2 unique solution, or can be handled as described before.

‘We conclude with:

Theorem 3.12 Given an n-gon P one can compute an optimal triangular approzimating

pair (4,T) and the value A(3, P) in time O(n?log’ n).
Approxi; ing the regular ‘We conclude this section by determining

the optimal approximating pair for the regular pentagon. It will provide us with a lower
bound for A(3). Somewhat surprisingly, this bound is tighter than the bound A(3, D) =2
for a disk D.

The optimal approximation (t,T) for a regular pentagon turns out to be in Class B,
with 2 common vertex v of t and the pentagon, and an edge of T flush with the edge of
the pentagon opposite to v. All other types and classes are boundary cases of this type
or symmetric to it, or they can be dismissed as worse by direct calculations. Figure 11
depicts the optimal situation for a regular on, where the indicated distances refer to
2 pentagon of side length 1. The distances are labeled according to Figure 7. The slope of
the lower right edge of the pentagon is 1/ tan 18°, the vertical distance of the base of ¢ from
the base of the pentagon is 21 —h = S8 _h. Thus ¢:(i) = ¢{k) = } +(H — h) tan18° =
1- htan18°. The formula derived abovc for Class 3 ¢

B(h)a/h+ d(h)o/h+c _ (2= 2htan18%)cos18®/l+ 1+ 26in18° _ h+2cos18°
B(B) + é(k) 2 - 2htan 18° “ h-2ntan1s°
(6]




a=b=cas18°

U
Hetioot18® .
& /
>
vin) o TS

c=142sin18"

TFigure 11: The optimal approximation for the regular pentagon.
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By setting the derivative Lo zero and solving the resu
the optimal value of 4:

= cos 18°(=2 + /4 + 2/ sin 18°) = cos 18°(\/6 + 2v/5 — 2) = cos 18°(V/5 - 1),

using the value of sin18° = (v/5 — 1)/4. Substituting this into the cxpression (1) gives
an expansion factor of 1 +v/5/2.

Iting quadratic equation one gets

Theorem 3.13
2.118...=1+

‘We conjecture that the regular pentagon is indced the worst case for approximation
by triangles, and that A(3) is cqual to 1 +v/5/2.

4 Upper Bounds for k-gons

The maximal area heuristic applied to quadrilaterals can be seen to yield an approximating
pair (Q,Q’) with expansion factor at most 2. Hence A(4) < 2. But in fact, Schwarzkopl
et al. [13] have recem]y shown that we may a.ssmn» that Q is rectangular and such a
T ing pair can be computed in time O(log®n) if P is a polygon with
its n vertices ngen sorted in a linear array. Furthermore this bound of 2 is optimal when
restricted to rectangular approximation.

The rest of this section is devoted to the asymptotic behaviour of A(k). Any disk D
can be approximated by a regular k-gon @ with A(Q, D) = 1/ cos(x/k), which is optimal.
This gives us a lower bound on A(k):

Lemma 4.1 A(E) 2 1/ cos(x/k) > 1+ n%/(2F?). g

In fact this lower bound on A(k) — 1 is tight up to a constant factor, as will be shown
below. The idea of the proof is to reduce our approximation problem to approxi.

with respect to the HausdoriT distance, for which an O(1/k?) bound is known. For any
two bodies P and R, their Hausdorfl distance d(P, 22) is defined as follows:

d(P, R) = max { sup inf Z7, sup inf 77 }.
z€PyER yERTEP

‘We invoke the following result:
Lemma 4.2 (cf. Gruber [8]) Let a convez body P of perimeter U be given, and let k > 3.
Then P contains a k-gon R with

sin(x/k)
dPR)SUTHE <

However, for polygons that are very long and thin, the Hausdorff distance d is not a
good approximation to our distance A. This is because d measures the actual Euclidean
distance from each point to the nearest point in the other body, whereas A measures a
relative scaling factor so that the effect of a point on ) is somehow inversely proportional



Figure 12: Hlustrating the proof of Lemma 4.3.

to its distance from the scaling origin. Therefore, we have to first apply an affine trans-
formation to our body P to make it roughly “round”. We expect that for “round” bodies,
there will not be too much difference between the Hausdorff distance and our distance
measure A. The following lemma makes this precise.

Lemma 4.3 Let P be a convez body containing a convez body R such that d(P,R) < ¢,
and suppose that R contains a disk of radius a. Then A(P,R) < 1+ ¢/a.

Proof. Let us take the center of the disk of radius a 2s our origin 0. We dlaim that
P C (1+ ¢/c)R, where the scaling of R is centered at Q. To see this, look at a half-
line A ing from O which i cts the boundaries <[ 2 and P in points r and p,
respectively (see Figure 12). Let us draw a supporting line of & through 7, and denote tiie
points on this line closest to O and p by O’ and p/, respectively. By considering similar
triangles, we can conclude that

/70 = pr’/00".
But pp < € and OO’ > a, by our assumptions, and thus we get
0p/0r = (07 +79)[0r < 1+ ¢/a.
Lemma 4.4 Fork>35, A(k) £ 1+ 27%/(k? - 272).

Proof. Let P be a convex body to be approximated by 2 k-gon. We know by a result of
John [9] (see also Leichtweif [10]) that there is an ellipse E C P, such that P C E’, where
E'is the ellipse E scaled by a factor of 2 about its center. Now we choose an appropriate
affine transformation such that E becomes 2 unit disk. Since P is contained in E’ and
since E' has perimeter 47 we know that the perimeter of P is at most 47. By Lemma 4.2,
we can find 2 k-gon R contained in P such that d(P, R) < 47%/(2k?). Let € := 272/k%.
Since P contains the unit disk £, R must contain a disk of radius 1 — ¢, and app]ymg
Lemma 4.3 with @ = 1 — ¢ gives the result. (Notc that 1 —¢ > 0 for £ > 5.)
‘We can summarize the results of this scction as follows:

Theorem 4.5 A(E) = 14+ ©(1/F?).
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5 Further Research

The algorithm for constructing an optimal approximating triangle is slow bul it is not
clear how the exhaustive scarch used in Theorem 3.12 can be sped up considerably.

Even the triangle imation of the regular p (lower bound in Theo-
rem 3.13) is not fully understood. It turns out that the scaling center for the optimal
approximating triangle pair is jusi the midpoint of the pentagon but we do not know
if there is a deeper reason for this.

.

For smail k& we would like to have explicit tight bounds on A(k) instead of the
asymptotic bounds in Section 4. Furthermore we would like to find algorithms
which efficiently construct optimal (or nearly optimal) k-gons. One candidate for
such an algorithm is the maximum area heuristic. Currently we do not have general
bounds on the performance of this heuristic.

What can be said about the minimum enclosing polygon (Aggarwal, Chang, and
Yap [1]) heuristic? Again we know that in general it is not optimal (the example of
the regular pentagon again).

o We have not idered the higher di ional probl
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Appendix. Largest Area Triangles in Hexagons

‘We want to prove that for a convex polygon P with at most 6 vertices the ratio between its
area and the area of the largest sriangle contained in P is at most 9/4. For a convex body C,
we denote the ratio between its arca and the area of the largest tfiangle contained ir it
by ratioC. For arbitrary convex bodies C (without restriction on the number of vertices)
2 tight bound of ratioC < % = 2.41... is known (Fejes Téth [5]).

‘We need some notation. Given a convex polygon P, a critical triangle is a triangle
of largest area whose vertices are vertices of P. It is easily seen that there is always a
critical triangle that has largest area among all triangles contained in P. If P is a hexagon
with vertices A, B',C, A’, B,C’ in clockwise order, then a triangle ¢ is called alternating if
t=AABC ort=AA'B'C’, and it is called diagonal if AA’, BB' or CC' is an edge of t.
Note that if ¢ is neither alternating nor diagonal, then it is formed by three consecutive
vertices of P.

A largest-ratio instance is a convex polygon P with at most 6 vertices that maximizes
ratioP. A compactness argument shows that such a largest-ratio instance exists, and we
can show that there are largest-ratio instances with many critical triangles.

Lemma A.1 There ezists a largest-ratio instance, where cvery vertez participates in at
least two critical trianglcs.
Proof. Let P be a largest-ratio instauce with the minimuin number of vertices, and
among those with the sninimum number of vertices with the maximuni number of critical
triangles. If a vertex A participates in no critical triangle, then we can move A while
increasing areaP without changing the area of the largest triangle contained in P. If A
participates in one critical triangle AABC, then there is a closed hzlfplane where we can
move A without decreasing areaP, and there is a line on which we can move 4 without
changing areaAABC. Hence there is a possibility of moving A without decreasing ratioP
and keeping AABC critical. At some point either a vertex of P degenerates, or a new
critical triangle is born; both situations contradict our choice of P.
It follows that we may assume that a largest-ratio instance P has at least 2n/3 critical
triangles, where n is the number of vertices of P. The next three Jemmas will show that
certain configurations of critical triangles imply a bound on ratioP.

Lemma A.2 Let P be a convez polygon, and let t = AABC be a crilical triangle with
A, B, C three consecutive vertices of P in that clockwise order. Then ratioP < 2.
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Proof. Let g be the line through A and B, and let ¢’ he the parallel line through C. Then

P has to lie in the strip beuween g and g's otherwise Lhcre is a triangle larger than ¢ in P.

Similarily, for the Jine  through 2 and C, and its paralicl line ' through A. lience, P is

contained in the quadrilateral Q with vertices 4, B, Lg'nA. Since sreal) = 2arcat,

the lenuna follows. i}
Along similar lines, the next femma can be proved.

Lemma A.3 Let P be a convez polygon, and let t = AABC end AACD be critical
triangles such that the vertices A, B,C, D of P lic on the boundary of P in that clockwise
order (not necessarily consecutively). Then P is a parallelogram and ratioP = 2. =1

In other words the lemma states, that if two critical triaugles share a common edge,
and the respective third vertices lie on opposite sides, then the considered polygon is a
parallelogram. The next lemma considers the case, where the respective third vertices lie
on the same side, and 2l involved vertices are consecutive on the boundary of the polygon.

Lemma A.4 Let P be a convez polygon, and let t = AABD and AACD be critical
triangles of P with A, B,C, D four consecutive verlices of P in that clockwise order. Then
ratioP < 9/4. The ratio 9/4 is obtained by a hezagon, which is unique up to affine
transformations.

Proof. BC has to be parallel to AD. So we may assume (by an affine transformation)
that 4 = (0,0), B = (0,1), D = (1,0), and C = (é,1) with § a parameter that varies
between 0 and 1, see Figure 13. (If § > 1 then areaAABC > areaAABD.) Let f be the
line through B and D, and let f’ be the parallel line through A. For ¢ to be a critical
triangle, P must lie completely above f’. Similarily, if g is the line through A and C, and
g¢' is the parallel line through D, then P must lie above ¢’. We also want to ensure that
BC is not the base of a triangle in P with area larger than 1/2. This can be guaranteed
iff P lies above the horizontal line &' : y = 1— }. Note that the y-coordinate of f'N g’
equals —37. Soif 1 - § < —g}7 then the restriction of A’ is redundant. This happens iff
624§ —1< 0 which is equivalent to § < 3(v5—1)in therange 0 < § < 1.

Casel: 0<§<3(v/5-1). Pmustbe contained in the pentagon @ = ABCDE, where
E = f'ng'. The area of Q equals 1/2 (for the area of AABD) plus 1/2 (for the arca of
AACD) plus 16(1 — 115) (for the area of ABC(S Ng)). Note that AABD and AACD
“overcount” by the area of A4D(f N g) which, however, equals the arca of AADE. Hence,
areaQ = 1+ 112 which increases as § increases for § > 0. So the maximun is obtained
for § = 1(v5—1) when areaQ = 3v/3. Consequently, ratioP = 222 < 222 < \/5 < 9/4,
which settles this case.

Case2: 3(v/5-1)< 6 < 1. P must be contained in the hexagon @ = ABCDEF with
E=g¢'nkand F = f'nk. Since the slope of f’ is —1, we have F = (} = 1,1-}).
Furthermore, C and E have the same z-coordinate 8, since the triangles AE(1,1- §)D
and AC(1,1)(1,1) are congruent. Now we can calculate the area of Q: We consider the
rectangle R between the vertical lines z = 0 and z = 1 and between the horizontal lines
y=1and . Then the area of Q equals 1/ (the area of J2) minus §(3 — 1)? (for the area
of the triangle AAF(0,1— }) in R not covered by @) minus 3}(1 = 6) (for the triangles
ACD(1,1)and ADE(1,1- }) in R not covered by Q). We obtain that areaQ = 3(3— 7).
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Figure 13: The worst-case example of Lemma A.4, Case 2, with § = 2/3.

The derivative $2%2 equals 0 for § = 2/3 which lies in the range of § considered in this
case. For § = 2/3, we have areaQ) = 9/8 which is a maximum. We have shown that
weaP < 2areaQ < 9/4, which proves the inequality of the lemma in Case 2.

The above argument not only proves the upper bound of 9/4, it also demonstrates
that the only possibility to attain that ratio is that P equals the hexagon Q in Case 2
for § = 2/3 (or an affine image of this hexagon). Figure 13 shows this situation, and
Figure 14 is an affine image of that same worst-case hexagon that exhibits its symmetry
more clearly.

B [of

F E
Figure 14: A more symmetric affine transformation of the example of Figure 13.

It remains to show that there is no triangle of area larger than 1/2 contained in Q.
Consider the cyclic sequence of triangles:

248D *22° pgcp *NBE p g CBUP ppcp PAET
aBCF PSP AppF PPUF Appa.

Each triangle is obtained from its predecessor by moving one vertex on 2 line parallel to
the line through the two other vertices. as indicated above tlie arrows: We have observed
before that C and E have the same z-coordinate, and so CE is parallel to AB. The fact
that BF is parallel to CD follows by symmetry. The other four cases are immediate from
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the construction of Q. Thus, all triangles involved in this cyciic sequence have the same
area 1/2, and it can be casily verified that all other trisngles with vertices from Q have
smaller area.

Remark. If Pin the statement of the preceding lemma is a pentagon, then ratioP < V3
can be shown; equality holds iff P is an affine image of a regular pentagon.

Before we prove the theorem, we need the following interspersing Lemma on which
algorithms for computing largest area contained triangles are based (see Dobkin 2nd Sny-
der [4]).

Lemma A.5 Let P b a convez polygon, and lett and t' be critical triangles. The vertices
of t and t' which are not common to both triangles alternate on the boundary of P.

Thus, if two critical triangles of 2 hexagon do not share a vertex, then they must be the
two alternating \riangles.

Theorem A.6 ratioP < 9/4 for every convez polygon P with ai most 6 vertices; the
bound is tight, and it is achieved by a hezagon whic: is unique up to ajfine transformation.

Proof. Let P be a largest-ratio instance, where every vertex participates in at least two
critical triangles. We know that ratioP > 9/4; so P must have at Jeast 5 vertices. From
Lemma A.2 it follows that 2t most one edge of a critical trizngle is also an cdge of P; so
at least two edges of 2 critical trizngle must be chiords of P, i. 2., line segments connecting
nonadjacent vertices of P.

Case 1: P has five verlices. Then P must have at least 32, i. e., at least 4 critical
triangles. Since each critical triangle has two chords of 2 as its egdes, there must be 2
chord AB that participates in two critical triangles with vertices C and C’. C and C’
must lie on the same side of AB (c[. Lemma A.3), and the assumptions of Lemma A.4
are satisfied, which shows ratioP < 9/4.

So P has to be 2 hexagon AB'CA'BC’, vertices in clockwise order. There are at
= 4 critical triangles. If one of the diagonals AA’, BB’ or CC’ participates in
cal triangles, then Lemmas A.3 and A.4 inimediately prove the theorem. So we
assume that a diagonal participates in at most one critical triangle. Now there are at most
5 critical triangles, two alternating and three diagonal; we conclude that there is at least
one alternating critical triangle.

Case 2: P is a hezagon, and it has ezactly one allernating critical triangle. W.l.o.g let
this alternating critical triangle be AABC. Note now that every vertex participates in
exactly two critical trizngles, since there are only four critical triangles. So A participates
in the alternating critical triangle AABC, and in the diagonal critical triangle that uses
the diagonal AA’; similarily, for B and C. It foilows that the diagonal critical triangle
using AA’ is either AAA'B’ or AAA'C'; say, w.lo.g., it is AAA'B’. Then the two other
diagonal triangles have to be ABB'C’ and ACC'A’. But now AA'CC’ and AA'B'A
contradict Lemma A.3, which settles Case 2.
The final case will lead us once more into analytic calculations.



Case 3: P is a hezagon will two alternating critical tiangles. 1l I’ has ouly two
diagonal critical triangles, they cannot share a common vertex, znd we get a contradiction
to Lemma A.5. Hence, there are three diagonal critical triangies, and so two must share
edges with the same alteraating critical triangle; say with ;\/U)C and t hared edges
are AC and BC (the two edges have to be different, since no cdge forms critical triangles
with three vertices on the saie s Now these diagonal critical triangles are fixed to be
AACA' and ABCB'; othes jos: es are excluded by Lemma A3 or A.5. The third
diagonal critical triangle cannot be ACC'B or ACC'A, since thea BZ {or AC) would be
an edge of three critical triangics. The two remaining vertices A’ and B’ are symmetric, so
w.l.o.g. let us assume that ACC’B" is critical. Note now that because of critical triangles
AB'CB and AB'CC', B'C and C'B have to be parallel, and because of AB'C’A’ and
AB'C'C, B'C' and A'C have to be parallel. So the position of C” is already determined
by the five remaining vertices. We are free to choose A, B, and C in fixed positions, so
we have to vary only A’ and B’ 2nd investigate the position whick maximizes ratioP.

We let 4 = (=1,0), B = (1,0), C = (0,1), 4’ = (7 + 1,7) and B' = (=(6 + 1), 6) for
some 0 <y <1land (<6< 1. Now

¢ = (TG 4 p(H) = B+ 0

for appropriate p and 7. Any instance generated in this way has the property that our
five critical triangles have the same area. We eliminate p and get 7 = 1+ g=5. Therefore,
the y-coordinate of C” equals 7{§ — 1) = —(-6 + T‘-_‘-;’Z-v) The area of P equals now 1 (for
AABC) phus 1v/2(6v/32) (for LACR') pins %\/' (vv/2) (for £CBA') plus 32(~8 + &
(for AABC") whick gives reasing as 6
increases. Since P is a largest-tati tance, there must be
condradicts our assumption that there are only five critical

Consequently, the only largest-ratio instances are those constructed in the proof of
Lemma A4.

angie, which
angie, which




