MAX-PLANCK-INSTITUT
FUR
INFORMATIK

A Tight Lower Bound for the Worst Case

of Bottom-Up-Heapsort

Rudolf Fleischer

MPI-I-91-104 April 1991

O

BENE O R M A T LS

Im Stadtwald
66123 Saarbriicken

Germany

A Tight Lower Bound for the Worst Case
of Bottom-Up-Heapsort

Rudolf Fleischer

MPI-I-91-104 April 1991

A Tight Lower Bound for the
Worst Case of Bottom-Up-Heapsort

by

Rudolf Fleischer 2

ABSTRACT Bottom-Up-Heapsort is a variant of Heapsort. Its worst case complex-
ity for the number of comparisons is known to be bounded from above by %n logn + O(n),
where n is the number of elements to be sorted. There is also an example of a heap which
needs %nlogn — O(nloglogn) comparisons. We show in this paper that the upper bound
is asymptotical tight, i.e. we prove for large n the existence of heaps which need at least
¢n - (3nlogn — O(nloglogn)) comparisons where ¢, = 1 — iGEl’*Tz converges to 1. This
result also proves the old conjecture that the best case for classical Heapsort needs only
asymptotical nlogn + O(nloglogn) comparisons.

1. Introduction

Bottom-Up-Heapsort is a variant of the classical Heapsort algorithm and was presented
in 1989 by Ingo Wegener ([W90]). The input to the algorithms is an array a[l..n] of n
elements from an ordered set S which are to be sorted. We will measure the complexity of
the algorithms in terms of number of comparisons; first, because comparisons are usually
the most expensive operations, and second, because each comparison is preceded by only
a (small) constant number of other calculations.

First the elements will be arranged in form of a heap (Heap Creation Phase) with
biggest element at the root (see Section 2 for details). This requires O(n) time ([Wi64]).
Then follows the Selection Phase which consists of n Rearrangement Steps. In each Rear-
rangement Step the root element changes place with the last active element in the array
and becomes inactive; then the heap is rearranged with respect to the remaining active
elements. So the size of the heap decreases by one. Since the root always contains the
biggest heap element, the array will be step by step filled from the end with elements in
decreasing order.

The classical rearrangement procedure works as follows ([M84]). At the beginning,
the root contains a former leaf element (the last active array element is always a leaf).
This element is repeatedly swapped with the bigger one of its children until it is bigger
than both of its children or it is a leaf. At each level two comparisons are made. Hence
the total complexity of the Selection Phase might be as big as 2nlogn.

In Bottom-Up-Heapsort, the rearrangement procedure is changed in the following way.
We first compute the special path ([W90]) which is the path on which the leaf element

1 This work was supported by the ESPRIT II program of the EC under contract No. 3075 (project ALCOM)

4 Department of Computer Science, University of Saarland, D-6600 Saarbriicken, Germany

1

would sink in the classical rearrangement procedure. This is the unique path with the
property that any node on it (except the root) is bigger than its sibling. This costs only
one comparison per level. Then we let our leaf element climb the special path up to its
destination node at the cost of one comparison per level.

This algorithm tries to make use of the intuitive idea that leaf elements are likely to
sink down again nearly to the bottom of the heap so one can expect that climbing up
might be cheaper than sinking down. In fact, Wegener ([W90]) showed an upper bound
of %n logn + O(n) for Bottom-Up-Heapsort. He also conjectured a tighter upper bound
of nlogn + o(nlogn) but this was disproved by [FSU] who constructed a heap with an
asymptotic lower bound of %nlogn — O(nloglogn). In this paper we give a construction
of a heap that improves the lower bound to asymptotical %nlogn — O(nloglogn) which
matches the upper bound. This bound also implies an asymptotic upper bound of nlogn+
O(nloglogn) for the best case of the classical Heapsort algorithm as has been conjectured
for many years.

The construction is an improvement of our previous work ([FSU]). In that paper we
constructed a heap with the property that the first 3 rearrangement steps of Bottom-Up-
Heapsort need nearly i—nlogn comparisons. At this point, the active heap is the initial
heap without its leaf-level which now contains the 7 biggest elements in sorted order.
Unfortunately, we could say nothing nontrivial about the remaining rearrangement steps;

hence we only got a lower bound of %nlog n.

In this paper we will use the same general ideas but many details are quite different.
Also the proof techniques have changed completely. The advantage is that we now can
iterate the above procedure, i.e. we can prove that not only the leaf-level but many levels
of the heap are expensive. This gives the asymptotic optimal lower bound.

The paper is organized as follows. In Section 2 we present the classical Heapsort
algorithm and the Bottom-Up-Heapsort algorithm in detail. In Section 3 we give some
definitions and prove some simple properties of heaps. In Section 4 we explain the heap
construction followed by the complexity analysis in Section 5. We conclude with some
remarks in Section 6.

2. Heapsort and Bottom-Up-Heapsort

In this section we give the programs of the two Heapsort-versions in detail. We follow
the notaions of [W90] and [FSU].

The input to the algorithms is an array a[l..n] with elements of an ordered set S. The
heap property at position ¢ is fulfilled if (as] < a[27] or 7 > |2]) and (a[i] < a[2i + 1]
or i > [2]). The array is called a heap if the heap property is fulfilled for all positions.
Thus the array is considered as a binary tree, where the children of node 7 are the nodes
2i (if 22 <n) and 2¢ + 1 (if 20 + 1 < n). We now give the classical Heapsort algorithm.

Heapsort(n)

(* sort an array of size n *)

(1) fori=|%],...,1 do rearrange(n,i); (* Heap Creation Phase *)
(2) form=n,...,2do (* Selection Phase *)

(3) interchange a[l] and a[m];

(4) if m > 2 then rearrange(m — 1,1);

(5) od

Procedure rearrange(m,z1)
(* check the i-th element of a heap of size m *)
(1) ifi < Z then maz := max(ali], a[2i], a[2i + 1]);
if i = Z* then maz := max(a[z], a[21]);
if ¢ > Tt then STOP;
(2) if maz = afi] then STOP;
(3) if maz = a[2i] then
interchange a[t] and a[2:];
rearrange(m, 2t);
(4) else
interchange a[t] and a[2: + 1];
rearrange(m,2: + 1);

fi

Bottom-Up-Heapsort works like Heapsort, but rearrange is replaced by the procedure
bottom-up-rearrange.

Procedure bottom-up-rearrange(m,z)

(* check the i-th element of a heap of size m *)
(1) leaf-search(m,z,j);

(2) bottom-up-search(z,j);

(3) interchange(s,7);

We first search for the leaf that we can reach by starting at node ¢ and going always
down to the child containing the bigger element. We call this leaf the special leaf and
the corresponding path special path. This is done by the procedure leaf-search.

Procedure leaf-search(m,z,j)
(* search the special path starting at node 7 in a heap of size m; the leaf will be returned
in j ¥)
(1) j:=35
(2) while 2j < m do

if a[2j] > a[2j + 1] then j :=2j

else j := 25 + 1;

od;

(3) if 2j =m then j :=m;

We now climb up the special path and look for the destination position of element 2
which is the same position as computed by the rearrange procedure above. This is done
by the procedure bottom-up-search.

Procedure bottom-up-search(z, ;)
(* let the i-th element climb up the tree starting at node j *)

(1) while a[i] < afj] do j := |£];

Now we have to shift up the elements of the ancestors of the computed position on
the special path. This is done by the procedure interchange.

Procedure interchange(z,)
(* place the i-th element in node j and shift up all elements above j *)
(1) = :=a[j];
(2) alj] = ald];
(3) whilej > do ‘

interchange a[|Z]] and z;

j=13];

od

3 . Basic Properties

In this section we will give some definitions and prove some basic lemmas about heaps.
W.l.o.g. we only construct heaps of size n = 2™ —1, i.e. the heap is a complete binary tree
of height m. After the first 2™~! steps of Bottom-Up-Heapsort the leaves of the initial tree
are deleted (and filled with the 2™~ biggest elements) and the remaining active heap is a
complete binary tree of height m — 1. We call this deletion of the leaf-level an iteration.
Bottom-Up-Heapsort consists of m — 1 iterations.

To achieve high complexity in an iteration, many leaf elements must climb up the
tree to high destination nodes. The upper bound proof ([W90],[FSU]) shows that only
about one half of the leaf elements can have this property at all. We will construct a heap
which will for many consecutive iterations send nearly half of the leaf elements to high
destinations; thus its complexity will be very close to the upper bound. Our construction
is based on two types of heaps defined below; both types have the above property for the
first iteration, and after the first iteration the resulting heap will be of the other type (at
least if it is still big enough).

First we need some notations for some particular parts of a heap (see Fig. 3.1). Let
k be a fixed constant to be defined later and H,, be a complete heap of height m with
k+logk+1<m< 2k — 4.

— The root is called r.

— The first k levels of H,, are a complete binary tree called B (it will always contain
big elements).

— A; is a binary tree rooted at leftson(r) of height m — k (< k — 4) with the k — 2
rightmost nodes of the lowest level missing, i.e. A; contains only a := 2™"% — k4 1(>
k + 1) nodes. A, is defined symmetrical. (Remark: For the proof of correctness, any
other sets A; and A, in the two halves of B would work as well; but this deﬁmtxon
yields optimal results in the complexity analysis).

4

— The leaves of B are from left to right v;,vs,...,vs; with [:= 2F—2,
— The left subtree of v; is called D;, the right subtree is called E;. D; and E; both have
height m — k and size 2™~ % —1 > 2k — 1.

We distinguish between Type-1I and Type-II Heaps according to the following conditions
(of course, there are also heaps which are of neither type but they do not occur in our
construction). If no confusion is possible we also write w for the element stored in a node
w and F for the set of elements stored in a heap F'.

Def. 3.1 Let F be some heap.
(1) F'® is the leftmost leaf of F.

(2) Let G be a heap of smaller size than F. F is a predecessor of G if Bottom-
Up-Heapsort started with input heap F' will end up with heap G after some
rearrangement steps.

(3) If F and G are complete heaps of same size, we say G is below F' (G < F)
iff there exists a heap H' as shown in Fig. 3.2 which is a predecessor of heap
H (also Fig. 3.2). (Remark: G < F = G < F but not vice versa !).

(4) If (I.1)—(1.6) are satisfied then F is a

Type-1 Heap
(1) D; <Ei;, 2<i<2l
(1.2) E; < A,
(I3) Je€ Dy :e < EFtt
(I.4) 3f € D,\{e}: f < Et
(1.5) father(®(v;) := father(father(vy)) < Ea
(I.6) v; <E¥t, 2<i<2l-2

(5) If (IL.1)—~(I1.3) are satisfied then F'is a

Type-11 Heap
(I1.1) E;<D;, 1<:<2
(I11.2) E;<B, 1<:<2l

(113) vy < Ay

First we show that these definitions make sense, i.e. we show

Lemma 3.2 For all m, k+logk+1 < m < 2k — 4, exists a type-I (type-II) heap of height
m.

Proof : Place the smallest elements in D;, 1 < ¢ < 2[, and then fill the heap from left to
right with elements in increasing order, i.e. choose always the first node in symorder
with no empty children to fill next. Then (I.1)-(I.6) are satisfied. Type-II heaps
are similar (smallest elements in E; instead). D

Now we make the following crucial observation.

Lemma 3.3 (Onestep-lemma) Let F, be a heap of n elements stored in a[l..n]. Let b
be any element bigger than F, and c be any element of F,, with ¢ < af| 21]]
(node | 2f1] is the father of node n + 1). Then there exists a heap F,;; of
n+1 elements with b stored at the root and a[n+1] = ¢ which is a predecessor
of F,.

Proof : Let p be the path in F;, from the root to the node where ¢ is stored. Move ¢ to
a[n + 1]. Then move all remaining elements of p down one level along p. Finally
put b into the root.

The tree obtained has the following properties: It is a heap (because it was
a heap before) and p is the upper part of the special path (any element of p
was replaced by its father thus becoming the bigger sibling). Hence the first
rearrangement step of Bottom-Up-Heapsort will transform F, ., into F,. D

From this follow immediately two more useful lemmas.

Lemma 3.4 (Filling-lemma) Let F be a complete heap and F; be some subset of F
with F; < F — F;. Then there exists a heap which is a predecessor of F' and
whose lowest level consists only of the |Fj| leftmost positions filled with the
elements of F; (see Fig. 3.3).

Proof : An element of F} is called wrong if it is not at the final lowest level or if it has a
F,-father. Apply the Onestep-lemma |F;| times to the smallest wrong F}-element.
(]

Lemma 3.5 (Below-lemma) Let F and G be complete heaps of same size. Let F' =
F, UF, where F, are some leaves of the left subtree of F, andlet G = G, UG,
where G are some leaves of G (see Fig. 3.4). If F; > G;, F» > G, and
|G2| > 2|F3| then G < F.

Proof : The leaves of G can all be placed as new leaves below the left subtree of F. Hence
we can repeatedly apply the Onestep-lemma to heap H of Fig. 3.2, first moving
all leaves of G in an appropriate order below F. D

4. Heap Construction

In this section we will show how to construct a heap of n elements which forces
Bottom-Up-Heapsort to make many comparisons.

Theorem 4.1 For any m > 50 we can construct a heap H,, of height m which forces
Bottom-Up-Heapsort to make % - (3logn — 8loglogn — 2) - (1 — ;)

comparisons, where n = 2™ — 1.

Proof : Choose k := m — |4logm] and let Hp,_|2104m| be a type-II heap of height
m — |2logm| (which exists for m > 50 by Lemma 3.2). Then apply alternately
Theorems 4.2 and 4.3 until a heap H,, of height m is constructed. These theorems
can be applied as long as the height of the current heap is at most 2k — 5; this is
always the case if m > 50. The complexity of Bottom-Up-Heapsort started with
H,, will be analyzed in Section 5. D

We remark that there is a tradeoff (within some limits) between the factor ¢, :=
1- ﬁ,—n of the whole term and the factor 8 of the loglogn term by choosing other values
of k together with another number of iterations.

Theorem 4.2 Let H,, be an arbitrary type-1I heap of height m, k+logk+1 < m < 2k—5.
Then we can construct a type-1 heap H,,,, of height m + 1 which is a
predecessor of H,,.

Proof : The elements of H,, are called old elements whereas the new added elements are
called new elements. New elements are bigger than any old element and they are
added step by step in increasing order.

Algorithm 1

The algorithm runs in 2! rounds; in round ¢, 1 < ¢ < 2[, new leaves are created
below D; and E;.

(i) Apply the Onestep-lemma to D'*®; this creates the leftmost new leaf below
D;.

(i) Move E; below D; according to (II.1). This fills E; with new elements
and k — 1 old elements for : = 1 (from the path to v;; the root got a new
element in (i)) and at most k — 2 old elements for 7 > 2 (the root contains
a new element at the beginning of round 7).

(iii) If ¢ = 1 then apply the Filling-lemma to E; and its k—1 smallest elements.
If 2 > 2 then apply the Filling-lemmato E; and its k — 2 smallest elements;
then apply the Onestep-lemma to the leftmost new leaf (which contains
one of these elements). Now E; and its leftmost new leaf contain only new
elements.

(iv) Hence the elements of A, (if ¢ < I) or 4; (if 2 > I + 1) can be placed as
new leaves below E; (apply the Onestep-lemma).

Algorithm 1 has constructed a heap H,,4+1 of height m + 1. It remains to show
that it is a type-I heap. An upper index II denotes the old elements of H,,.

(I.1) We have to show D; < E;_1,2 <1t < 2l.
D; only contains the old elements v}, D/ and E7!; v}! is the biggest of
them.
E; contains only the k£ — 1 old elements from the path to father(vi!) =
father(vi?) and Al; (I1.3) implies D, < E;.
If 2 > 3 then E;_; contains at most k£ — 2 old elements from the path to
father(v!)); they are stored in the left half of E;_; and they are bigger
than Ef! by (I1.2); since |[Eff| > 2(k — 2) the Below-lemma can be applied.

(I.2) A, was filled with new elements in rounds ¢ > [+ 1 whereas E, can only
contain new elements of rounds z < I. Hence F, < A,.

(I.3) E'*" is an old element from the path to father(v{!) which is bigger than
D,.

(I.4) E¥® is a new element and hence bigger than D;.

(I.5) E.; only contains new elements which were added in rounds 7 > [+ 1 whereas

father®(vf!) can only contain a new element of rounds i < I because it is
below A;.

(I.6) After step (iii) of the algorithm, E; only contains new elements which were
added during round :. Hence E; is bigger than any element to the left of the
path to Elf. m]

The other construction is similar but some details are more complicated.

Theorem 4.3 Let H,, be an arbitrary type-I heap of height m, k+logk+1 < m < 2k—35.
Then we can construct a type-II heap H,,; of height m + 1 which is a
predecessor of H,,.

Proof : We first give the algorithm. As in Algorithm 1 we have old and new elements.

Algorithm 2

The algorithm runs in 2/ 4 1 rounds; in round i, 1 <1 < 2/ + 1, new leaves are
created below E;_; and D; (if they exist).

(a)i=1:

Analogous to the Filling-lemma we can move D; U {v;} into the new leaves
below D; by filling the path to v; and the upper part of D; with 2™ % new
elements.

(b)yi=2:

(i) Apply the Onestep-lemma to the element e € D; of (1.3) which now is in
one of the new leaves below D;.

(ii) Move D, below E; according to (I.1). This fills D, with new elements and
one old element, v,.

(iii) Apply the Filling-lemma to D, and its k — 1 smallest elements. Now D,
contains only new elements; the ¥ — 1 new leaves contain v, and new
elements.

(iv) Hence all elements of A, can be placed as new leaves below D, (use the
Onestep-lemma).

(¢)3<i<:

(i) Apply the Onestep-lemma to the smallest element of D;_,. This is possible
by (1.4) for : = 3, by (1.6) and (b)(iii) for ¢ = 4 and by (1.6) and (c)(iii) for
1 > 5.

(ii) Move D; below E;_; according to (I.1). This fills D; with new elements
and at most k£ — 1 old elements (from the path to v;; the root got a new
element in (i)).

(iii) Apply the Filling-lemma to D; and its k — 1 smallest elements. Now D;
contains only new elements; some of the ¥ — 1 new leaves contain old
elements, one of them is v;.

(iv) Hence all elements of A, can be placed as new leaves below D; (use the
Onestep-lemma).

(d)I1+1<i<2l:

Same as (c) but in (iv) use A4; instead of A,.

(e)i=201+1:

The new leaves of D; now contain some elements of D; U {v1, father(v;),
father(®(v;)}. By (1.5) we can apply the Onestep-lemma to move all these
leaf-elements below E,;.

Algorithm 2 has constructed a heap H,,,; of height m + 1. It remains to show
that it is a type-II heap. An upper index I denotes old elements of H,,.

(I1.1) We have to show E; < D; for all 1.

9

i =1: D; contains only k—3 old elements (from the path to father(®)(v{)).
E; only contains old elements; these are smaller than the old ele-
ments of D; because they were below father(v{). Hence E; < D;.

i=2: D, contains only the old elements AI. E, only contains the old
elements EJ, DI and a f! € D! (1.4). Since Ef < Al by (1.2) we
conclude Ey < D,.

3 <:<2l—1: D; contains at most k — 1 old elements from the path to v{.
E; only contains the old elements E7, Df 41 and v}_,. Since
Ef < v} we conclude E; < D;.

1 = 2l : Dy; contains only one old element, ”211' E,; only contains the old
elements EJ; and some elements smaller than father(?)(v{). Since
E'.f, < v{, we conclude Fy; < D,;.

(I1.2) B is completely filled with new elements whereas all F; only contain old
elements. Hence E; < B.

(I1.3) A, was filled with new elements in rounds ¢ > [4+ 1 whereas v, can only
contain a new element of rounds 7z < I. Hence v, < A4,. D

5. Complexity Analysis

First we will prove that the heaps constructed in Theorems 4.2 and 4.3 have an
expensive first iteration.

Lemma 5.1 Let Hp,4; be the type-I heap constructed in Theorem 4.2. If m > k+2logk
then the first iteration of Ho,41 needs at least 2™~1.(2m+k—2) comparisons.

Proof : We have to search 2™ special paths at the cost of at least m — 1 each. Then the
leaf elements will climb up the special path to their destination nodes. In each of
the 2¥~! rounds, a = 2™~ % — k + 1 leaf elements climb up to A; or A, which costs
at least k; the other leaf elements need at least one comparison each. Hence

Ty > 251 ja-k+2™ %4 (k-1)]+2™ - (m—1)
= 2"l (k+2m—2)+2k 1. 2™k 4 (k—1)—(k—1)-k)
> 2™ 1. (2m+k—2) for m>k+2logk. 0

Lemma 5.2 Let H,,; be the type-1I heap constructed in Theorem 4.3. If £ > 4 and m >
k+2logk+1 then the first iteration of H,,41 needs at least 2™~ 1.(2m+k—2)
comparisons.

10

Proof : We have to search 2™ special paths at the cost of at least m — 1 each. Then the
leaf elements will climb up the special path to their destination nodes. In rounds
1,2<1<2l,a=2™"F _ k41 leaf elements climb up to A; or A, which costs at
least k; all other leaf elements need at least one comparison each. Hence

Trr > (281 —1)[az-k+(k=1)]+(2*1+1). 2% 2™ . (m—1)
> 2™ l(k+2m—2)+ 251 [(k—1)— (k—1)-k]
—(2™ % —k+1)-k—(k—1)+2m!
2t (2m +k—2)+ 2™t — 2k g2 _omk
> 2™ 1. (2m +k—2) for k>4 and m >k + 2logk + 1. D

v

Proof of Theorem 4.1 :

We apply Lemma 5.1 to heaps of height m — |2logm]|, m — |2logm] + 2,... and
Lemma 5.2 to heaps of height m — |2logm| + 1, m — |2logm| + 3,... until the
construction stops with a heap of height m (with k = m — [4logm| and m > 50
all constraints about m and k are satisfied). Hence we will have total complexity

Tm > (2(m_ l_zlogm_')+k_2)_(2m—2+2m—3+_._+2m—L2103m_]—1)
> 2™ . (3m —8logm —2)- (1 — ;)

= % +(3logn —8loglogn —2)- (1 — =5=) - D

ogn

6 . Conclusions

For any given m, we showed how to construct a heap of height m which forces Bottom-
Up-Heapsort to make nearly -g-nlogn comparisons. This matches the upper bound asymp-
totical up to low-order terms ([W90]). Furthermore, this problem is closely related to the
old problem of finding the best case for the classical Heapsort algorithm; the immediate
consequence is that Heapsort needs only asymptotical nlogn + O(nlogn) comparisons for
our heap. Another open problem about both variants of Heapsort is their average running
time. We refer to [W90] for details and [SS] for a good bound on the average running
time.

Acknowledgements

We would like to thank C. Uhrig and B.P. Sinha for their previous joint work. We
would also like to thank S. Meiser for providing some tools to produce nice TeX-pictures
(even if they are not perfect).

11

[C8Ta)

[C87b]

[FSUJ

[MDR]

[M84]

[W90]

[W91]

[Wi64]

References

S. Carlsson
”A variant of HEAPSORT with almost optimal number of comparisons”
Information Processing Letters 24 (1987), 247-250

S. Carlsson
” Average-case results on HEAPSORT”
BIT 27 (1987), 2-17

R. Fleischer, B. Sinha, C. Uhrig
” A lower bound for the worst case of bottom-up-heapsort”
Technical Report No. A23/90, University Saarbriicken, December 1990

C.J.H. McDiarmid, B.A. Reed
?Building heaps fast”
Journal of Algorithms 10 (1989), 352-365

K. Mehlhorn

”Data Structures and Algorithms, Vol. 1, Sorting and Searching”
Springer Verlag, Berlin, 1984

I. Wegener

"BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beating on
average QUICKSORT (if n is not very small)”

MFCS’90, Lecture Notes in Computer Science, 516-522, 1990

I. Wegener

”?The worst case complexity of McDiarmid and Reed’s variant of
BOTTOM-UP-HEAPSORT is less than nlogn + 1.1n”

Proc. STACS 1991, 137-147

J.W.J. Williams
” Algorithm 2327
Communications of the ACM 7 (1964), 347-348

12

Figure 3.1

oo
H' H
—_—
F F
N A\ /
—00 G —00
Figure 3.2
F
L _\ Fy
F
Figure 3.3

Figure 3.4

13

	z_0001_mitCover
	z_0001_nachPS
	z_0002_nachPS
	z_0003_nachPS
	z_0004_nachPS
	z_0005_nachPS
	z_0006_nachPS
	z_0007_nachPS
	z_0008_nachPS
	z_0009_nachPS
	z_0010_nachPS
	z_0011_nachPS
	z_0012_nachPS
	z_0013_nachPS
	z_0014_nachPS
	zz_cover-hinten_2099-2897-300dpi

