MAX-PLANCK-INSTITUT

FUR
INFORMATIK

Dynamic rectangular point location,
with an application to

the closest pair problem

Michiel Smid

MPI-1-91-101 March 1991

Im Stadtwald
W 6600 Saarbriicken

Germany

Dynamic rectangular point location, with an
application to the closest pair problem*
Michiel Smid

Maz-Planck-Institut fiir Informatik
D-6600 Saarbricken, Germany

March 11, 1991

Abstract
In the k-dimensional rectangular point location problem, we have to store
a set of n non-overlapping axes-parallel hyper les in a data
such that the following fons can be p d efficiently: point location

queries, insertions and deletions of hyperrectangles, and splitting and merging of
hyperrectangles. A linear size data structure is given for this problem, allowing
queries to be solved in O((logn)*~'loglogn) time, and allowing the four up-
date operations to be performed in O((logn)?loglog n) amortized time. If only
queries, insertions and split ions have to be supported, the loglogn fac-
tors disappear. The data structure is based on the skewer tree of Edelsbrunner,
Haring and Hilbert and uses dynamic fractional cascading.

This result is used to obtain a linear size data structure that maintains the
closest pair in a set of n points in k-dimensional space, when points are inserted.
This structure has an O((logn)*~!) amortized insertion time. This leads to an
on-line algorithm for computing the closest pair in a point set in O(n(logn)*~1)
time. In the planar case, these two latter results arc optimal.

1 Introduction

The point location problem is one of the problems in computational geometry that
has received considerable attention. In this problem, we have to store a subdivision
of k-dimensional space in a data structure, such that for a given query point, we
can find the region that contains it. Many data structures have been proposed for
this problem, especially for the planar version. See e.g. the books of Preparata and
Shamos [8] and Edelsbrunner [4].

In this paper, we consider the case where the subdivision consists of a collec-

les, or k-boxes for

tion of non-overlapping k-dimensional axes-parallel hyper

“This work was supported by the ESPRIT II Basic Resear:h Actions Program, under contract
No. 3075 (project ALCOM).

short. Edelsbrunner, Haring and Hillert [5] considered the static case of this prob-
lem and introduced the skewer tree for solving it. In the present paper, we show
how this skewer tree can be adapted such that k-boxes can be inserted, deleted,
split and merged. We also equip the skewer tree with dynamic fractional cascad-
ing (see Mehlhorn and Niher [6]) to speed up the query algorithm. The result is
a data structure of linear size, that allows point location queries to be solved in
O((log n)*~*loglog n) time, such that the four update operations can be carried out
in O((log n)?loglogn) amortized time. For the special case, where only insertions
and split operations have to be supported the loglogn factors can be omitted.

In the second part of this paper, we apply the skewer tree to obtain an efficient
data structure for the closest pair problemn. In this problem, we are given a set of
points in k-dimensional space and we have to compute, or maintain, the closest
pair. For the static case, the closest pair can be computed in O(nlogn) time,
which is optimal. (See [8,13].) For the dynamic case, there are data structures by
Dobkin and Suri [3] and Smid [10] that can handle semi-online updates in O((log n)?)
time using linear space, for the planar case. Supowit [12] gives a structure that
performs deletions in O((log n)*) amortized time using O(n(log n)*~!) space. Finally,
Smid [9,11] gives two data structures for fully on-line updates. The first one has
linear size and performs updates in O(n?**logn) time, whereas the second one has
O(n(logn)**) size and performs updates in O((logn)*+?) amortized time.

For the case where only points are inserted, no better results are known. In this
paper, it is shown how the structure for rectangular point location can be used to
obtain a linear size data structure that maintains the closest pair in O((logn)*~")
amortized time per insertion. In the planar case, this gives an optimal data structure.

As an application, this leads to an on-line algorithm that computes the closest
pair in a point set in O(n(logn)*~1) time. Again, in the planar case this is optimal.

The rest of this paper is organized as follows. In Section 2, we define the skewer
tree for the two-dimensional version of the rectangular point location problem. In
that section, we only consider the operations point location, insert and split. The
balance condition for this data structure is non-standard, although it resembles that
of BB[aJ-trees. The method of keeping the skewer tree balanced is a new variation of
the partial rebuilding technique. In order to speed up the query algorithm, we equip
the skewer tree with a version of dynamic fractional cascading, where only insertions
have to be supported.

In Section 3, we analyze the amortized time of the insert and split algorithms.
The main difficulty is in proving that the amortized time for insert and split opera-
tions is bounded by O((logn)?). It turns out that the amortized rebalancing costs
dominate the overall update time. In Section 4, we generalize the skewer tree to the
k-dimensional case, using standard methods. Then, in Section 5, we show how the
skewer tree can be adapted such that delete and merge operations can be supported
as well. Since we need fully dynamic fractional cascading here, the time complexities
increase by a factor of O(loglogn).

In the second part of the paper, we consider the dynamic closest pair problem,

where points are inserted. In Section 6, we give a data structure for this problem that
uses the skewer tree as a substructure. The data structure maintains a collection
of k-dimensional boxes having sides of length at least the current minimal distance.
Each box contains a limited number of points. If a point is inserted, we only have
to compare the new point with the points that are contained in a constant number
of surrounding boxes. If a box contains too many points, it is split into a constant
number of boxes, each of which has sides of length at least the current minimal
distance.

We finish the paper in Section 7 with some concluding remarks and open prob-
lems.

2 Rectangular point location, the planar case

We first consider a special case of the planar rectangular point location problem. We
are given a set of n axes-parallel rectangles that do not overlap, i.e., the interiors of
the rectangles are pairwise disjoint. Each rectangle has the form [ay : by] X [az : b)-
Rectangles may be infinite, i.e., a,a; € R U{—o0o} and by;b, € RU {+00}. The
rectangles do not necessarily partition the entire plane. We want to store these
rectangles in a data structure such that the following four operations can be carried
out efficiently.

Point location: Given a query point p, find the rectangles—if any—that con-
tain p. If p lies on the boundary of a rectangle, there may be several rectangles that
contain p. Since the rectangles do not overlap, a query point is contained in at most
four rectangles.

Insertion: Insert an axes-parallel rectangle. The new set of rectangles must still
be non-overlapping.

Horizontal split: The operation hsplit(s) replaces rectangle [a; : b1] X [as : bs]
by the rectangles [a; : by] x [a : 5] and [ay : by] X [5 : by). This operation is defined for
bounded as for unbounded rectangles. That is, we assume that —oo < a; < by < 00
and —oo < az < s < by < co. See Figure 1.

Vertical split: The operation vsplit(t) replaces rectangle [a; : b1] X [az : bs] by
the rectangles [a; : t] X [az : by] and [t : b;] X [as : b]. Again, this operation is defined
for bounded as for unbounded rectangles. That is, we assume that —oo < aj < t <
by < 00 and —o00 < az < by < o0. See Figure 1.

Edelsbrunner, Haring and Hilbert [5] introduced the skewer tree for the static
version of this problem.

The skewer tree: Let V be a set of lappi parallel it
The skewer tree is recursively defined as follows.

1. If V is empty, the skewer tree is also empty.

2. Assume that V is non-empty. Let [be a vertical line that intersects at least
one rectangle of V in its interior. The skewer tree for the set V' consists of a

3

by

hsplit(s) s
az
1 1

Figure 1: Horizontal and vertical splits.

binary tree—called the skeleton tree—in which each node contains additional
information:

(a) In the root of the tree, we store the size of V', the line [and (a pointer to)
a balanced binary search tree T, that is defined as follows. Let V, be the
set of all rectangles in V that are intersected by in their interiors or that
touch [with their right boundaries. Let W, be the set of y-coordinates of
the top and bottom sides of the rectangles in V,. (Each y-coordinate is
represented exactly orice.) For convenience, we add —oco and 400 to W,.
Then T, stores the values of W, in increasing order. With each value s,
we store the rectangle below(s) resp. above(s), which is the rectangle in
V. that has its top resp. bottom side at height s. If below(s) or above(s)
does not exist, then the value of this variable is nil.

(b) The root r has two subtrees. The left subtree is a skewer tree for all
rectangles in V' that lie completely to the left of I Similarly, the right
subtree is a skewer tree storing all rectangles in V' that lie completely to
the right of [or that touch ! with their left boundaries.

The height of a skewer tree is defined as the height of its skeleton tree. In order
to guarantee that this height is logarithmic in the number of rectangles, we require
the following condition.

Balance condition: Let a be a real number such that 1/2 < a < 1. For each
node v of the skeleton tree, let n, be the total number of rectangles that are stored
in the subtree of v (including node v itself), and let d(v) be the depth of v in the
skeletori tree. (The root has depth 0.) Then we require that n, < a®(*)n, where n is
the current number of rectangles that are stored in the entire data structure.

Such a skewer tree is called a-balanced. If o = 1/2, the skewer tree is called
perfectly balanced.

Remark: A subtree of an a-balanced skewer tree is not necessarily a-balanced.

Also, the root of the skeleton tree always satisfies the balance condition.
The proof of the following lemma is trivial and, therefore, omitted.

Lemma 1 An a-balanced skewer tree that stores n rectangles has height at most
|(log n)/(log(1/))] = O(logn).

Point location in an a-balanced skewer tree: Suppose we have to find the
rectangles that contain the query point p = (p1,pz). Then we start in the root r of
the skewer tree. We perform a binary search with the y-coordinate p; in the search
tree T, that is stored with . This gives us two values s and ¢, such that s < p; < t.
If p, > s and p € above(s), then we report this rectangle above(s). Otherwise, if
p2 = s, we report those rectangles of below(s) and above(s) that contain p.

If p is contained in the interior of a reported rectangle, then the search procedure
is finished. Otherwise, we proceed recursively: If p lies to the left of the line [that
is stored in the root, we proceed our search in the left subtree. Otherwise, p lies on
or to the right of I, in which case we proceed in the right subtree.

By Lemma 1, the skewer tree has height O(logn). Therefore, we do a logarithmic
number of binary searches with the y-coordinate p,, each taking O(logn) time. It
follows that the query time is bounded by O((logn)?).

We now improve the query time to O(logn) by using t1e technique of dynamic
fractional cascading. See Chazelle and Guibas [2] and Mehl1orn and Niher [6]. The
reader is assumed to be familiar with this data structuring technique. We use the
terminology of Mehlhorn and Niher [6].

Dynamic fractional cascading: The cataloguc graph is the skeleton tree and
the range R(e) of each edge € in this catalogue graph is the set of real numbers. The
catalogue C(v) of a node v in the catalogue graph is the list of y-coordinates that are
stored in the binary search tree that is stored with v, extended with —oco and +oo.
Instead of this binary search tree, we store in each node v an augmented catalogue
A(v) as described in [6]. Note that C(v) C A(v). These augmented catalogues are
implemented as balanced binary search trees. Elements in C(v) are called proper,
those in A(v) \ C(v) are called non-proper. Each proper element s contains the
values below(s) and above(s) that have the same meaning as before. There are
bridges bétween the augmented catalogues of adjacent nodes of the catalogue graph,
as described in [6]. Finally, we store in each node v a data structure that solves the
SPLIT-FIND problem. This structure is used for finding proper elements that are
next to non-proper elements. See [6].

Building a perfectly balanced skewer tree: Given the set V of n non-
overlapping rectangles, we first compute the median of the z-coordinates of their
right boundaries. Let [be the vertical line having its z-coordinates equal to this
median. Then we partition V into three sets V., V; resp. Vs, consisting of the
rectangles that lie completely to the left of I, that are intersected by I in their

interiors or touch I with their right boundaries resp. that lie completely to the right
of I or touch ! with their left boundaries.

Next, we create the root r of the skewer tree, in which we store the line I,
the size of V, a list containing the rectangles in V; in sorted y-order, an empty
augmented catalogue A(r) and an empty SPLIT-FIND structure. Finally, we repeat
this algorithm for the sets V. and Vs, leading to augmented binary trees that become
the left and right sons of 7.

In this way, we have built the skeleton tree of the final skewer tree. Each node
contains a sorted list of the rectangles that have to be stored there. To finish the
building algorithm, we do the following for cach node v of the skeleton tree: Insert—
in increasing order—the y-coordinates of the top and bottom sides of the rectangles
that are stored with v, and the values —co and +oo, into the augmented cata-
logue A(v). With each y-value s, we store the corresponding values of below(s) and
above(s).

Lemma 2 An a-balanced skewer tree, equipped with fractional cascading, has size
0O(n) and can be built in O(nlogn) time.

Proof: A skewer tree that is not equipped with fractional ding has size O(n),
because the skeleton tree has linear size, and each rectangle is stored only twice,
once as an above-value and once as a below-value. In [6], it is shown that dynamic
fractional ding i the space lexity by at most a constant factor.

This proves that the data structure has linear size.

To prove the bound on the building time, first note that the above algorithm
builds a perfectly balanced skewer tree.-

Using a linear time median algorithm (see [1]), the skeleton tree and the partition
of V such that each rectangle is stored at the coriect node can be computed in
O(nlogn) time. If n, rectangles are stored at node v, then it takes O(5, n, logn,) =
O(n logn) time to order these rectangles according to their heights. After this has
been done, we have to insert the O(n) y-coordinates into the augmented catalogues.
Since we insert these values in increasing order, each value knows its position already.
In [6], it is shown that each such insertion takes O(1) amortized time, because the
SPLIT-FIND structure needs only constant amortized time per operation. Therefore,
this final step of the algorithm takes O(n) time. This proves that the entire building
algorithm takes O(nlogn) time. B

Point location using fractional cascading: To answer a query with query
point p = (p1,p2), We use basically the same algorithm as before, except that we
only do a binary search in the augmented catalogue that is stored with the root of
the skewer tree. Afterwards, we follow bridges and use the SPLIT-FIND structures
to locate p; in the appropriate augmented catalogues. See [6] for details.

Lemma 3 In an a-balanced skewer tree, equipped with fractional cascading, a point
location query can be answered in O(logn) time.

Proof: First note that the query algorithm is correct. We only sketch the proof
of the time bound. For more details, see [6]. Let vo,v1,...,v, be the path in the
skeleton tree that is followed with the z-coordinate of the query point p = (p1,p2)-
Note that m = O(logn). Clearly, this path can be computed in O(logn) time.
We have to locate the y-coordinate p, in each catalogue C(v;), i = 1,2,...,m, and
report all rectangles that contain p. The time needed to locate p; in the augmented
catalogue of the root is bounded by O(logn). Then we have to perform a FIND-
operation to locate p, in the catalogue itself. This FIND-operation takes constant
time in the worst case. Once p; is located in the augmented catalogue of the root,
it can be located in the other augmented catalogues A(v;), i = 2,...,m, in O(1)
time per augmented catalogue. Finally, by performing FIND-operations, p, can be
located in each catalogue C(v;), i = 2,...,m, in O(1) time per catalogue. It follows
that the total query time is bounded by O(m + logn) = O(logn). B

Next, we give the algorithms for the insert and split operations.

Insertion: To insert a rectangle R into an a-balanced skewer tree, we do the
following: We start in the root of the skeleton tree, and follow a path until we reach
the first node v such that the vertical line that is stored in this node intersects R in
its interior or touches the right boundary of R. In each node that is visited during
this walk, we increase the number of rectangles that are stored in its subtree by one.
Then we do a binary search in the augmented catalogue A(v) to locate the position
where R has to be inserted. Then, we inisert the y-coo:dinates of the top and bottom
sides of R—together with the appropriate values for below and above—into A(v),
as described in [6]. If these y-coordinates are present already, we only update the
appropriate below- and above-values.

If we do not find node v, we end our search in a node w of the skeleton tree, one
of whose sons is missing—namely the one to which the search wants to proceed. In
this case, we give w a new son, i.e., we insert a node u with an empty catalogue
C(u) and an edge (w,u) into the catalogue graph, as described in [6]. This will
give node u a non-empty augmented catalogue A(w). Then, we store in u a vertical
line that intersects the interior of R and the number of rectangles that are stored
in u—which is equal to one. Finally, we insert into A(u), the y-coordinates of the
top and bottom sides of the rectangle R and the values —oco and +oo0, as described
in [6], together with the appropriate above- and below-values.

The problem of rebalancing the skewer tree is considered below.

Horizontal split: To perform the operation hsplit(s) on the rectangle R = [a; :
by] x [a : by], we first search for the node v in the skeleton tree, whose augmented
catalogue “contains” R. In each node that is visited during this walk, we increase
the number of rectangles that are stored in its subtree by one. Then, we do a binary
search in the augmented catalogue A(v) to locate the positions of a; and b;. We
replace the rectangle above(az) resp. below(b;) by the lower resp. upper part of the
rectangle R. Finally, we insert the y-coordinate s into A(v), as described in [6],

together with the appropriate values below(s) and above(s).
Later, we consider the problem of rebalancing the skewer tree.

Vertical split: To perform the operation vsplit(t) on the rectangle R = [a; : by]x
[az : by, we again first search for the node v in the skeleton tree, whose augmented
catalogue “contains” R. Let I be the vertical line that is stored in v. Assume that [
intersects the left part of the rectangle R in its interior or touches its right boundary.
(The symmetric case is treated analogously.) We search in the augmented catalogue
A(v) for the values az and by, and replace the rectangles above(a;) and below(b;) by
the left part of R. Then, we use the above insertion algorithm to insert the right
part of R into the skewer tree.

The problem of rebalancing the skewer tree is considered below.

Rebalancing the skewer tree: After an insert or split operation, the skewer
tree might not satisfy the balance condition anymore. To keep the skewer tree
balanced, we use a variation of the partial rebuilding technique (see e.g.[7]):

During the update operation, we have inserted y-coordi in the d
catalogue of exactly one node. Starting in that node, we walk back to the root of the
skeleton tree and find the highest node w that does not satisfy the balance condition
of the a-balanced skewer tree anymore. (Note that the root of the skeleton tree never
gets out of balance.) Then we rebuild the complete subtree rooted at the father of
w as a perfectly balanced skewer tree. More precisely, we do the following:

If the father of w is the root of the skeleton tree, then we rebuild the complete
data structure as a perfectly balanced skewer tree. Otherwise, let v be the father
of w and let u be the father of v. We delete the edge between u and v from the
catalogue graph. (This removes all bridges between the augmented catalogues A(u)
and A(v).) Then, we rebuild the SPLIT-FIND structure corresponding to A(w).

Next, we perform the first part of the building algorithm to construct the skeleton
tree of a perfectly balanced skewer tree for the rectangles that are stored in the
subtree of v. Then we have in each node of this skeleton tree, a sorted list of the
y-coordinates that have to be stored there.

We add this skeleton tree S, to the old skewer tree, as follows: We insert the root
of S, and an edge between u and this root into the catalogue graph. Then we insert
the nodes and edges of S, into the catalogue graph, as described in [6]. (At this
moment, all catalogues of the nodes in S, are empty. The augmented catalogues,
however, are non-empty.) For each node of S,, we insert the y-coordinates of the
top and bottom sides of the rectangles that are stored there, and the values —oo and
+oo0, into its augmented catalogue, one after anothe:, in increasing order. We also

insert the appropriate above- and below-values.

In Section 3, we analyze the amortized time complexity of the insert and split
operations. We mention here that the above update algorithms correctly maintain
the a-balanced skewer tree. In particular, it remains true that for each node v in the
skelcton tree, all rectangles in its left resp. right subtree lie completely to the left of

I resp. lie completely to the right of I or touch [with their left boundaries, where
is the vertical line that is stored in v. Also, the only nodes that might get out of
balance during an update operation must lie on the search path to the node where
the update was performed. This is because the value of n only increases. Finally, it
is shown in Lemma 6 that after a rebalancing operation, the resulting skewer tree is
again a-balanced.

We finish this section by stating the complexity of the a-balanced skewer tree.

Theorem 1 For the problem of point location in a set of n non-overlapping pla-
nar azes-parallel rectangles, there exists a data structure that has a query time of
O(logn), in which insert and split operations take O((log n)?) amortized time, that
can be built in O(nlogn) time, and that has size O(n).

Proof: The bounds on the query time, building time and size follow from Lemmas 2
and 3. The bound for the amortized update time will be proved in Section 3. B

3 Analysis of the insert and split operations

In this section, we complete the proof of Theorem 1. First, we prove an upper bound
on the size of subtrees of the skewer tree.

Lemma 4 Let u be a node in the skeleton tree of an a-balanced skewer tree and let
d(u) be the depth of this node. Then the entire subtree of u, i.e., the subtree of the
skeleton tree rooted at u, together with the augmented catalogues that are stored in
the nodes of this subtree, has size O(a(“)n). Here, n is the number of rectangles that
are stored in the entire skewer tree.

Proof: Let st(u) denote the subtree of the skeleton tree rooted at u. By definition
of a-balancedness, st(u) stores at most a®)n rectangles. Therefore, this subtree has
at most this number of nodes. So it remains to show that the augmented catalogues
that are stored in the nodes of st(u) have size O(a%“)n).

For a node u, define f'(u) := u, if u is the root of the skeleton tree, and f(u) :=
the father of u in the skeleton tree, otherwise. For k > 1, define f*+}(u) := f3(f*(u)).

We prove that there is a constant ¢, such that for any positive integer k and any
node u of the skeleton tree,

p> |A(v)rs§c(§)'a“<"*'n O T e o

vEat(u) Y ven(rt(w)

In this equation, a is a constant that occurs in the analysis of dynamic fractional
cascading. See [6]. It will turn out that a > 6/a suffices.

The proof of (1) is by induction on k. The basis of the induction is the case
k=1. Let C(v) be the catalogue that belongs to node v, i.e., the list consisting
of the proper elements of the augmented catalogue A(v). Let u be a node in the

skeleton tree. Our balance condition guarantees that e [C(v)] < c'ad®n, for
some constant ¢'. Let B(v,w) denote the number of bridges between the augmented
catalogues A(v) and A(w). Dynamic fractional cascading guarantees that B(v,w) <
2+(|A(v)|+]A(w)|)/a, see [6, page 219]. Let E denote the set of edges in the skeleton
tree. Note that a non-root and non-leaf node in the skeleton tree is connected to 3
other nodes. We have

2 A = X eI+ X X B(w)

vt (u) veat(u) vest (u) (v,w)EB

< datny Y Y (v)IHA(W)I)

vEst (u) (v,w)EE
< c'ad(“)nﬁrﬁfst(u)\rf»— Z |A(v|+— > Y lAw)
@ yeat(u) (v,w)€E
3

< a4 gatp 43 Z JA(T)H- > JAE)
@ veat(u) @ veat(fi(w)
< catipy 8 > A)l,

@ et (Fi(w))

for any constant ¢ > ¢’ + 6.
‘We have shown that there is a constant ¢, such that for any node u of the skeleton
tree,

> @) <ca®ntd S jaw).)
vEst(u) vEst(f1(w))

Hence, we have proved (1) for k = 1. Now assume that (1) holds for k and any
node u. Then :

6 6*
> 1Av>1<2 () arin + () = e
vEst (u) vEst(f¥(u))
Apply (2) to the rightmost summation. Then we get:

S ol < Se(®) a4 (8) (ca‘“‘("”n > |A(v)|)

vEst(u) i vEst(fr+1(u)).

(@ e (7 £ o

vEst (f1+1(u))

k

1

™

= 0
&

<

™

=0
In the last line, we used the inequality a?(*() < a(9-k_ This is in fact an equality
if k < d(u). If k > d(u), then d(f*(u)) = 0, because f*(u) is the root of the skeleton
tree. Since 1/2 < & < 1, we have in that case a?(/*()) =1 < gd()-k,
This proves that (1) holds for all values of k. Now we can complete the proof of
the lemma. First, we bound the first summation on the right-hand side in (1):

k-1

S, (g)‘adm—;" < cad(u)ni (%) e (ad(u)n)’
=0

i=0

10

because a > 6/a. The second summation on the right-hand side in (1) is bounded
above by (6/a)* times the size of the entire skewer tree. Hence, it is bounded above
by (6/a)* O(n). This holds for every positive k. Take k sufficiently large such that
(6/a)* O(n) = O(1). Then

[A(v)| = O(a™™n) + O(1) = O(a¥™n).
vEat (u)

Hence, the augmented catalogues of the nodes in st(u) have size O(a¥“)n). This
finishes the proof. B

In the next lemma, we bound the time needed in a rebalancing operation. Note
that this time bound is not a function of the number of rectangles that are stored in
the rebuilt subtree. This number can be much smaller.

Lemma 5 Suppose that during an insert or split operation, we rebuild a subtree with
root v. This rebuilding takes O(a**)nlogn) time.

Proof: If v is the root of the skelcton tree, the time bound follows from Lemma 2.
So assume that v is not the root. Let n be the number of rectangles that are stored
in the subtree rooted at v, and let u be the father of v. Consider the rebalancing
algorithm.

By Lemma 9 in [6], the edge between u and v can be deleted from the catalogue
graph in O(|A(u)|+|A(v)|) time. The SPLIT-FIND structure for A(x) can be rebuilt
in O(|A(u)|) time. (Note that there is no loglog-factor here, because we only need a
structure for the SPLIT-FIND problem. In the case where also deletions are possible,
we need a UNION-SPLIT-FIND structure, introducing a doubly-logarithmic term.)

By Lemma 2, it takes O(mlogm) time to build the skeleton tree, together with
the sorted list of rectangles in the nodes, for the m rectangles.

To add this skeleton tree st(v) to the complete skewer tree, we insert nodes and
edges into the catalogue graph. By Lemma 9 in [6], this takes time proportional to

S @A)+ 2 3 (1A + AW)D,
z€x(v) (z0)€E

where E is the set of edges in st(v). This expression is bounded by the summation
O(Zzex(w |A(z)]), which—by Lemma 4—is bounded by O(a®™ n) = O(a%®) n).

Finally, we insert the O(m) y-coordinates into the augmented catalogues. Since
we know the position where each y-coordinate is inserted, and because we only have
a SPLIT-FIND structure, each of these insertions takes O(1) amortized time. It
follows that the total time for this final step of the algorithm is bounded by O(m).

We have shown that the total time for the rebalancing operation is bounded by
O(mlogm + a®®) n +m), which is bounded by O(a%*)n), because—by the balance
condition—m < a?*)n. (Note that we rebuild the subtree rooted at v, because the
subtree rooted at one of its sons was the highest node out of balance. Therefore, the

upper bound on m holds.) B

Next, we show that the rebalancing algorithm indeed results in an a-balanced
skewer tree, and that expensive rebuilding operations seldom occur. If during an
update, node w is the highest node that is out of balance, then we say that node w
causes the rebalancing operation.

Lemma 6 The rebalancing algorithm correctly rebuilds an a-balanced skewer tree.
Furthermore, let w be a node in the skeleton tree of an «a-balanced skewer tree, and
assume that during the current update, w causes a rebalancing operation. Let n be
the number of rectangles that are stored in the entire data structure at this moment.
Then, if node w causes a rebalancing operation again, there must have been at least
(2a — 1)/(2a) a®™) nn updates in the subtree of w.

Proof: Since node w causes the rebalancing operation, we rebuild the subtree rooted
at its father v. (Note that the root of the skeleton tree never causes a rebalancing
operation. Therefore, node v exists.) Let m be the number of rectangles that are
stored in the subtree of v.

At the moment of the rebalancing operation, node v is not out of balance. There-
fore, m < a?®) n.

Consider a node u # v in the skeleton tree of the rebuilt subtree. Since we
rebuild a structure as a perfectly balanced skewer tree, there are at most (1/2)%®) m
rectangles in the subtree rooted at u. Here, d'(u) is the depth of u in the subtree
rooted at v. It follows that the number of rectangles that are stored in the subtree
of u is at most

@'(u) d'(u)
@) =)

because d'(u) > 1.

In particular, this number is at most a()n. This proves that after the rebalanc-
ing operation, the resulting data structure is again a-balanced.

Consider the update where node w causes a rebalancing operation again, and let
n' be the total number of rectangles at this moment. Note that n' > n. At this
moment, the subtree rooted at w stores more than a¥*) n' > a¥“) n rectangles. We
saw above that after the previous rebalancing operation caused by w, its subtree
contained at most (1/(2a))a?™)n rectangles. It follows that the number of updates
in the subtree of w since the previous rebalancing operation must be at least

1\4® 1\4M) 1
(%) Q'+, (E) oy < Ea"(")n,

1

Qd) = L gt 2
2a

% d) .

Note that (2a — 1)/(2a) > 0, because 1/2 < a < 1. This proves the lemma. B

Lemma 7 In an a-balanced skewer tree, insert and split operations can be performed
in O((log n)?) amortized time.

Proof: First, we consider the time needed in the update algorithms before a new leaf
is added to the skeleton tree and before rebalancing is done. To perform an insert or
split operation, we walk down the skeleton tree and do a constant number of binary
searches in at most two augmented catalogues. This takes O(logn) time. Then, the
information of the below- and above-valu:s can be adapted in O(1) time. Finally,
we insert a constant number of y-coordin.ites in an augmented catalogue. In [6], it
is shown that this takes O(1) amortized time, because we only have a SPLIT-FIND
structure. Hence, this part of the update algorithms takes O(log n) amortized time.

Consider a fixed node w in the skeleton tree, and consider a sequence of updates
that occur in the subtree of w, from the moment that w causes a rebalancing opera-
tion until the next moment that w causes a rebalancing operation. (The first moment
is included in this sequence, the second one not.) By Lemma 6, this sequence has
length Q(a®() n). During this seq; w is ible for one rebuilding of the
subtree rooted at its father v. By Lemma 5, this rebuilding takes O(a?®) nlogn)
time. During this sequence, several leafs may have been added to the subtree of
w. The time to add these leaves is bounded above by the time to build the entire
subtree rooted at w. Hence, this time is also bounded by O(ad®) nlogn). It follows
that this node w contributes an amortized time to the rebalancing complexity that
is bounded by

0(a*®) nlogn)/Q(a¥™) n) = O(logn).
During an update we visit O(logn) nodes in the skeleton tree—not counting here
nodes visited during rebalancing operations—each coatributing O(log) amortized
time to the update time. This proves that the total amortized update time is bounded
by O((logn)?). W

This concludes the analysis of the update algorithms for the skewer tree. Hence,
the proof of Theorem 1 is completed.

4 Generalization to higher dimensions

We now generalize the results obtained so far to the k-dimensional case. A k-
dimensional boz, or k-boz for short, is an axes-paralld| hyperrectangle of the form

[ay: by] X [ag 1 by) X ... X [ak ¢ by,

where a¢; € R U {—oc0} and b; € RU {0}, i = 1,...,k. In the k-dimensional
rectangular point location problem, we are given a set of non-overlapping k-boxes,
on which the following operations have to be performed.
Point location: Given a query point p in k-space, find the boxes—if any—that
contain p. Since the boxes do not overlap, a query gives at most 2* answers.
Insertion: This operation inserts a k-box into the set. The new set of boxes
must still be non-overlapping.

Split operation: The operation i-split(s) replaces the box [ay : by]X... X [ay : by]
by the two boxes

[y s ba) X oo X (@1 2 bioa] X [ai 8] X [@ipn 2 biga] X .o X [a : bi]

and
lan : ba) X oo X [@iy £ bima) %[5 2 b X [aign = biga] X - X [k B

This operation is defined for 1 <i < k and a; < s < b;.

The data structure for solving this problem s a direct generalization of the skewer
tree of the preceding sections. The static version, without fractional cascading, was
introduced in [5].

The k-dimensional skewer tree: Let V be a set of non-overlapping k-boxes.
For k = 2, a 2-dimensional skewer tree for the set V was defined in Section 2. Let
k> 2. If V is empty, the skewer tree is also empty.

Assume that V is non-empty. Let o : z; = f; be a hyperplane in k-space. Let
V., Vo, resp. V; be the set of boxes [a; : by] X ... x [a : by] in V such that by < By,
a1 < Bi < by resp. By < a1. The hyperplane is assumed to be chosen such that V is
non-empty.

The k-dimensional skewer tree for the set V is an augmented binary search tree—
called the skeleton tree—having the following form:

1. There is a root that contains the size of V, the hyperplane ¢ and (a pointer
to) a (k — 1)-dimensional skewer tree for the set Vj, which is obtained from Vy
by deleting in each k-box the first interval.

2. The root contains pointers to its left and right sons, which are k-dimensional
skewer trees for the sets V_ and V.

The k-dimensional skewer tree contains 2-dimensional skewer trees as substruc-
tures. In these 2-dimensional structures, the below- and above-values are k-boxes
instead of planar rectangles. We equip the 2-dimensional structures with dynamic
fractional cascading.

Balance condition: Let 1/2 < a < 1. A k-dimensional skewer tree storing
n boxes is called a-balanced, if for each node v of the skeleton tree, the subtree of
v—which is a k-di ional skewer tr t at most a%®)n boxes, and if the
(k — 1)-dimensional skewer tree that is stored with v is also a-balanced. Here, d(v)
is the depth of v in the skeleton tree.

If & = 1/2, the skewer tree is called perfectly balanced.

The building algorithm for the skewer tree is similar to that in Section 2 and is
left to the reader.

Lemma 8 A k-dimensional skewer tree storing n bozes has size O(n). A perfectly
balanced skewer tree can be built in O(nlogn) time.

14

Proof: Let S(n, k) denote the size of the skewer tree. Then, by Theorem 1, S(n,2) =
O(n). For k > 2, we have

S(n,k) = O(1) + S(no,k — 1) + S(n_, k) + S(ns, k),

for some 0 < ng < nand n_,ny > 0, such that no+n_+n, = n. Using this relation,
it follows easily that S(n, k) = O(n).
Similarly, the building time T(n, k) satisfies T(n,2) = O(nlogn), and for k > 2,

T(n, k) = O(n) + T(no, k — 1) + T(n_, k) + T(ny, k),

for some ng > 0 and 0 < n_,n; < n/2, such that ng + n_ + ny = n. It follows that
T(n, k) = O(nlogn). B

Point location: Let p = (pi1,...,px) be a query point. If k = 2, we use the
query algorithm of Section 2 that uses fractional cascading.

Assume that k > 2. We do a query with point p' = (py,...,pk) in the (k — 1)-
dimensional skewer tree that is stored in the root. For each (k — 1)-box found, we
check whether p lies in the corresponding k-box. If it loes, we report the k-box. Let
o :z; = 3 be the hyperplane stored in the root. If p; < 31, we do a query with p in
the left subtree of the root, using the same algorithm recursively, unless this subtree

is empty, in which case the query stops. Otherwise, if p > 81, we do a query with p
in the right subtree of the root, unless it is empty.

Lemma 9 A point location query in an a-balanced k-dimensional skewer tree can
be solved in O((logn)*~*) time.

Proof: First note that the query algorithm is correct. Let Q(n, k) denote the query
time. Then, by Theorem 1, Q(n,2) = O(logn). Let k > 2. Since the skeleton
tree has height O(logn), and since each (k — 1)-dimensional query gives at most
251 = O(1) answers, we have Q(n,k) = O(logn)Q(n,k — 1). This shows that
Q(n,k) = O((logn)*™"). W

The constant factor in the query time can be exponential in k. This, however,
only occurs if the query point lies on the boundary of many boxes. If the query point
lies in the interior of a box, the constant will be small.

Insertion: Suppose we want to insert the k-box B = [ay : by] X ... X [ay : b]. If
k = 2, we use the algorithm of Section 2. So assume that k > 2. We search in the
skeleton tree for the first node v, such that the hyperplane o, : 1 = B stored there,
satisfies @; < B < by. In each node that is visited during this walk, we increase the
number of boxes that are stored in its subtree by one.

If node v exists, then we insert the (k — 1)-box B'—which is obtained from B
by deleting the first interval—into the (k — 1)-dimensional skewer tree that is stored
in v, using the same algorithm recursively.

15

If v does not exist, we end in a node w one of whose sons—the one to which
the search wants to proceed—is missing. In this case, we give w a left or right
subtree—depending on the position of B w.r.t. the hyperplane stored in w—which
is a k-dimensional skewer tree for box B.

The problem of rebalancing is considered later.

Split operation: Let 1 < i < k. Suppose we want to perform the operation
i-split(s) on the k-box B = [ay : by] X ... X [ax : b). If k = 2 and @ = 1, we use
the vertical split algorithm of Section 2. If k = i = 2, we use the horizontal split
algorithm of Section 2.

Assume that k > 2. We search in the skeleton tree for the first node v, such that
the hyperplane o, : 2, = f stored there, satisfies ay < £ < by. If i > 1, we increase
in each visited node the number of boxes stored in its subtree by one.

Next, if i > 1, we perform the operation i-split(s) on the (k — 1)-box B' in
the (k — 1)-dimensional skewer tree that is stored in v, using the same algorithm
recursively. Here, B' is obtained from B by deleting the first interval.

Otherwise, i = 1. Assume that a; < f; < s, i.e., the “left” part of the k-box to be
split is intersected by the hyperplane @, in its interior or touches o, with its “right”
boundary. (The case s <) < by is treated analogously.) We search for box B in
the (k — 1)-dimensional skewer tree T, that is stored with v. (Note that B is stored
twice in exactly one 2-dimensional skewer subtree of T, once as a below-value and
once as an above-value.) Then we replace the two occurrences of B by the “left”
part of the box. Finally, we use the above insertion algorithm to insert the “right”
part of B into the data structure.

The problem of rebalancing is treated below.

Rebalancing: After the update has been carried out, we walk back to the root
of the skeleton tree and we find the highest node w tht does not satisfy the balance
condition anymore. Then we rebuild the complete su rtree rooted at the father of w
as a perfectly balanced skewer tree.

Lemma 10 In an a-balanced k-dimensional skewer tree, insert and split operations
can be performed in O((logn)?) amortized time.

Proof: Let I(n,k) denote the amortized insertion time. According to Theorem 1,
I(n,2) = O((log n)?). Let k > 2. Note that Lemma 6 also holds in the k-dimensional
case. Consider the insert algorithm. It takes O(log n) time to search for node v. Each
node on the search path contributes O(log n) amortized time to the rebalancing costs.
(This can be proved in exactly the same way as in Lemma 7.) If node v exists, we
spend at most I(n,k — 1) time in the skewer tree that is stored with v. Otherwise,
if v does not exist, we add a skewer tree that stores the new box. In the same
way as in the proof of Lemma 7, we can bound the amortized time for adding this
skewer tree by O(logn). It follows that I(n,k) = O((logn)?) + I(n,k — 1). Using
this relation, it follows easily that I(n) = O((logn)?). Similarly, let S(n, k) denote

16

the amortized time for a split operation. Then, S(n,k) = O((logn)?) + I(n, k).
Therefore, S(n, k) = O((logn)?). This proves the lemma. B

This concludes the analysis of the k-dimensional skewer tree. The next theorem
summarizes the results of this section.

Theorem 2 For the problem of point location in a set of n non-overlapping k-
dimensional bozes, there ezists a data structure with a query time of O((logn)*™"),
in which insert and split operations take O((log n)?) amortized time, that can be built
in O(nlogn) time, and that has size O(n).

5 A fully dynamic data structure

Until now, we considered the case where the update operations are insertions and
splits. In this section, we show how the structure can be adapted to allow deletion
and merge operations to be performed as well. Since we need fully dynamic fractional
cascading for this case, the time complexities increase by a factor of O(loglogn).
As before, we are given a set of non-overlapping k-boxes. Besides the operations
point location, insertion and i-split(s), there are the following two operations:
Deletion: This operation deletes a k-box from the set.
Merge operation: The operation i-merge takes two k-boxes

[@1: ba) X oon X [@icy 2 bima] X @i+ 8] X [@ipn Biga] X oo X [an 2 i)

and
XX [aimy s bima] X [s 26 X [@ipn 2 bia] XX [ak 2 B,

a1
and merges them together to obtain the new k-box [a; : b1] X ... X [ak : b]. This
operation is defined for 1 <7 < k and a; < s < b;.

The data structure for this fully dynamic problemis the a-balanced k-dimensional
skewer tree, adapted as follows. Instead of SPLIT-FIND structures, we store data
structures for the UNION-SPLIT-FIND problem with the augmented catalogues. In
order to keep the skewer tree balanced, we require that each node v—except the
root—stores at most a(*) ng boxes in its subtree, where ng is the number of boxes
that are present at the start of the algorithm. Hence, the value of n is kept fixed
during a sequence of updates. After no/2 updates, the complete data structure will
be rebuilt. Then, the value of ng is set to the number of boxes that are present at
that moment.

In this adapted skewer tree, the operations point location, insertion and i-split(s)
are performed as before, except that we now use the UNION-SPLIT-FIND structure.
The rebalancing algorithm is also the same as before, except that we rebalance as
soon as a non-root node v contains more than a®*)ny boxes in its subtree. The
operations deletion and i-merge are given below.

Deletion: Suppose we want to delete the k-box B = [ay : by] X ... X [ax : b]. If
k = 2, we search in the skeleton tree for the first node v, such that the vertical line {
stored with v intersects B in its interior or touches B on its right boundary. During
this search, we decrease in each visited node the number of boxes that are stored in
its subtree by one. Then we delete the y-coordinates of the top and bottom sides of B
from the augmented catalogue A(v), and we adapt some below- and above-values.
Note that if this rectangle was the last one that intersects I, then node v itself is not
deleted. In this case, the catalogue C(v) will only cor tain the values —co and +oo.
The augmented catalogue A(v), however, will contair more elements.

Otherwise, if k > 2, we search in the skeleton tree for the first node v, such that
the hyperplane o, : z; = 3 stored there, satisfies ¢; <) < by. During this search,
we decrease in each visited node the number of boxe: that are stored in its subtree
by one. Then we delete the (k — 1)-box B'—which i obtained from B by deleting
the first interval—from the (k — 1)-dimensional skewe - tree that is stored in v, using
the same algorithm recursively.

After the deletion, the data structure will still satisfy the balance condition,
because no is kept fixed. Therefore, no rebalancing operation is necessary.

Merge operation: Suppose we want to perform the operation i-merge on the
two boxes [a; : by]X...x[a; : 8]x...x [ax : b] and [ay : by] X...X[s 2 b]x...x[ax : bi]-

First suppose that k = i = 2. Then we have to perform the inverse of a hori-
zontal split: We search for the first node v in the skeleton tree whose vertical line
intersects the two rectangles in their interiors or touches their right boundaries.
During this search, we decrease in each visited node the number of boxes that are
stored in its subtree by one. Then we delete the y-coordinate s from the augmented
catalogue A(v), and we adapt some below- and above-values.

If k = 2 and i = 1, we do the inverse of a vertical split: We search in the
skeleton tree with both rectangles, until we reach the first node v whose vertical
line I intersects one of the two rectangles in its interior or touches its right boundary.
Assume that [intersects the left rectangle in its interior or touches its right boundary.
(The symmetric case is handled analogously.) Then we replace the two occurrences
of this left rectangle in the augmented catalogue A(v)—once as a below-value and
once as an above-value—by the new rectangle. Next. we delete the right rectangle
from the skewer tree using the above algorithm.

Now assume that k > 2. We search in the skeleton tree for the first node v, such
that the hyperplane o, : z; = f; stored there, satisfies a; < B < by. If i > 1, we
decrease in each visited node the number of boxes that are stored in its subtree by
one.

Then, if i > 1, we perform the operation i-merge on the two (k — 1)-boxes—that
are obtained by removing the first interval—in the (k — 1)-dimensional skewer tree
that is stored with v, using the same algorithm recursively.

Otherwise, i = 1. Assume that a; < B; < s. (The case s < §; < b; is treated
analogously.) We search for the “left” box B in the (k — 1)-dimensional skewer
tree T, that is stored in v. (This box is stored twice in a 2-dimensional skewer

18

subtree of T,, once as a below-value and once as an above-value.) Then we replace
the two occurrences of this “left” box by the merged box. Finally, we use the above
deletion algorithm to delete the “right” box from the data structure.

Also in this case, no rebalancing operation needs to be performed.

Theorem 3 For the problem of point location in a set of n non-overlapping k-
dimensional bozes, there ezists a data structure with O((logn)*"*loglogn) query
time, in which insert, delete, split and merge operations take O((log n)?loglogn)
amortized time, that can be built in O(nlogn loglogn) time, and that has size O(n).

Proof: The heights of the various binary trees that are contained in the skewer tree
are all bounded by O(log o). Since we rebuild the entire data structure after no/2
updates, the current number of boxes—n—satisfies no/2 < n < 3no/2. Therefore,
the heights of all binary trees are bounded by O(log7).

The proofs of the complexity bounds are basically the same as those in Sections 2-
4. The O(loglogn) terms come from the fact that we use 2 UNION-SPLIT-FIND
structure.

Rebuilding of the data structure after no/2 updates adds only O(lognloglogn)
to the amortized update time. B

6 Maintaining the closest pair in a point set

In this section, we show how the skewer tree can be used to obtain an efficient data
structure that maintains the closest pair in a point set if points are inserted. The
method works for an arbitrary L-distance. Let p = (p1,...,px) and g = (g1, %)
be two points in k-dimensional space. Then the L-distance dy(p, g) between p and
qis defined by

1/t
(pyg) = (Z\P‘—q.l') ,
if 1 <t < oo, and for ¢t = oo, it is defined by
deo(p, 9) 1= max [pi — il-

In the rest of this section, we fix ¢, and we measure all distances in the L,-metric.
We write d(p,g) for di(p, q)-

Before we define the data structure, we prove some results that are needed in the
analysis.

Lemma 11 Let V be a set of points in k-dimensional space, and let the distance

of a closest pair in V be at least equal to §. Let I be a positive integer. Then any
k-dimensional cube having sides of length 1§ contains at most (lk + 1)* points of V.

19

Proof: Assume w.l.o.g. that the k-cube has the form [0 : [§]*. Partition this cube
into (Ik + 1)* subcubes

[i18/(k +1) £ (ix + 1)8/(k + 1)) x ... x [ik8/(k + 1) = (i + 1)6/(k + 1),

where the i,’s are integers such that 0 <i; <lk+1—1,for 1 <j <k.

Assume that the cube contains at least (Ik +1)* +1 points of V. Then one of the
subcubes contains at least two points of V. These two points have a distance that
is at most equal to the L,-diameter of this subcube. This diameter, however, is at
most k x §/(k + 1) < 6. This contradicts the fact that the minimal distance of V is
at least 6.

Lemma 12 LetV be a set of points in k-dimensional space, and let § be the distance
of a closest pair in V. Let B be a k-dimensional boz that contains more than (2k+2)*
points of V. Fori=1,...,k, define m; resp. M; as the minimal resp. mazimal i-th
coordinate of any point in V 1\ B. Then there is an i, such that M; — m; > 26.

Proof: Assume that M; — m; < 2§ for all 7 = 1,...,k. Then, there is a k-cube B’
having side lengths 2§ that contains all points of V' N B. By the previous lemma,
however, the cube B' contains at most (2k +2)* points of V. This is a contradiction.
| |

6.1 The closest pair data structure

Now we are ready to introduce the data structure that maintains the closest pair in
a point set.

The data structure: Let V be a set of n points in k-dimensional space. If
logn < 2(1 + 1/k)*/:=1) the data structure consists of the closest pair (P,Q) and
the distance § between these points.

Assume that n is such that logn > 2(1 + 1/k)¥/*=1). Then, the data structure
consists of the following.

1. There is a pair (P, Q) that maintains the current closest pair.
2. There is a variable 6 that maintains the distance d(P, Q).

3. At each moment, k-space is partitioned into non-overlapping k-boxes. Each k-
box in this partition has sides of length at least §. Each k-box of the partition
contains at least one and at most (2k)*(logn)*~! points of V.

-~

. The k-boxes of the partition are stored in an a-balanced k-dimensional skewer
tree of Section 4 that can handle insert and split operations. With each box, we
store a list of those points in V that are contained in this box. (These points
are stored in an arbitrary order. If a point is on the boundaries of several
boxes, then it is stored in only one of these boxes.)

20

Remark: The choice of the constant 2(1 + 1/k)*(*1) will become clear later. Note
that

A 'i T+ 1/k) = 1/k + O((1/k)?).

Therefore,
(14 1/k)E = exp (1/k + O((1/K))) = - +1/k + O((1/k)?).

Hence, if we forget about the quadratic term, the data structure is built if logn >
24 2/k, or

> gk = 4 Bk = g +0((1/k)).

8In2
T
First, we show how this data structure can be built. In [8,13], it is shown how
the closest pair and their distance can be computed in O(nlogn) time, using O(n)
space. In Section 4, we have shown how a perfectly balanced skewer tree can be
built in O(nlogn) time. So it remains to be shown how the partition of k-space
into k-boxes can be computed. We give a recursive algorithm that computes this
partition.

The partitioning algorithm: Let V be a set of n points in k-space, where
k > 1. Let 6 be the distance between a closest pair in V. This variable § is a global
variable, i.e., in recursive calls it does not get a new value.

If |V| = 1, then the partition consists of one k-box, namely the entire space. So
assume that [V] > 1.

Order the points of V with respect to their last coordinates. Let p be a smallest
point in this ordered set. Let a; be the last coordinate of point p. Let i > 1, and
assume that ay, ..., a; are computed already.

If there is a point in V having a last coordinate lying in the half-open interval
(a; : a; + 8, then we set a;;; := a; + 6. Otherwise, we set a;4; to the value of the
last coordinate of a first point in the ordered set V that lies “to the right” of the
hyperplane z; = a;. If there are no points to the right of this hyperplane, then ;11
is not defined, and the construction of the a;’s stops.

This gives a sequence of intervals (—oo : ai],(a; : @a,...,(a : 0o) for some .
Let o := —oo and ai4; := co. Partition V into subsets Vo, ..., Vi, where V; contains
those points of V' that have their last coordinates in the interval (a; : ais1)-

If k = 1, this is the desired partition of 1-space into 1-boxes, together with the
corresponding partition of V.

Assume that k > 2. For i = 0,1,...,1, do the following. Use the same algorithm
recursively to compute a partition of (k — 1)-space into (k — 1)-boxes for the set
V;, where we take only the first k — 1 coordinates into account. (Note that in
this recursive call, the value of § remains equal to the minimal distance in the k-
dimensional set V.) This gives a collection of (k — 1)-boxes of the form

(b :) X (bg s 2] X +v X (Baet : chet]y

21

together with a corresponding partition of V. Replace each such box by the k-box
(byzex] X (bazea) X onn X (b 2 Cma) X (@i 2 @i

The resulting boxes—for all i together—form the desired partition of k-space, to-
gether with the partition of V.

Lemma 13 Let k > 1 and consider the k-bozes that are computed by the above
algorithm. These bozes are non-overlapping and form a partition of k-space. Each
boz has sides of length at least §. Each boz contains at least one and at most (k+1)*
points of V..

Proof: It is easy to see that the boxes are non-overlapping, that they partition
k-space, and that each of them contains at least one point of V. Let B = (b :
1] X ... % (by : ci] be a box that is computed by the algorithm. It is clear from the
algorithm that ¢; > b; + 6,¢ = 1,...,k. Hence, B hes sides of length at least 6. It
remains to show that B contains at most (k + 1)* points of V. We distinguish two
cases.

If ¢; = b; + &, for all i, then it follows from Lemma 11 that there are at most
(k + 1)* points in B.

Otherwise, let T be the set of indices i for which ¢; :» b;+8. If i € I, then all points
of V that are contained in B have equal i-th coordinates. Hence, if |I| = k, there is
only one point in B, which is certainly at most (k + 1)*. Otherwise, if |I| < k, we
consider the points of V N B as points in (k — |I|)-space, by deleting the coordinates
corresponding to the indices in I. These points are contained in a (k—|I|)-cube with
side lengths §. The distances between these points is at least equal to §. Therefore,
Lemma 11 implies that there are at most (k — |I| +1)*~1 < (k+1)* of these points.
Hence, also in this case, B contains at most (k + 1)* points. B

Remark: Since the partition of k-space is only computed if the number n of points
is such that logn > 2(1 + 1/k)**~1) the number of points in a k-box is at most
(k+1)F < (1/2)*k*(logn)*~* < (2k)*(logn)*~.

Lemma 14 The data structure has size O(n) and can be built in O(nlogn) time.

Proof: First note that the given algorithm correctly builds the data structure.
Since each box in the partition of k-space is non-empty, there are at most n such
boxes. Therefore, the skewer tree has size O(n). Since each point is stored in exactly
one list—corresponding to one of the boxes that contain the point—all these lists
together have size O(n). This proves that the entire data structure has linear size.

The closest pair and the skewer tree can be computed in O(nlogn) time. It
remains to show that the given partitioning algorithm runs in O(nlogn) time. Let
T(n, k) denote this running time. Then

T(n,1) = O(nlogn),

]
T(n,k) = O(nlogn)+ Y T(ni,k—1),ifk>2,
=

22

Figure 2: The 9 point location queries in the planar case.

for integers n; > 1 such that ¥°_; n; = n. Using induction, it follows that T'(n,k) =
O(nlogn), because k is a constant. B

6.2 Inserting a point

We now show how the closest pair is maintained after a point is inserted into the
data structure. If the number n of points is such that logn < 2(1 + 1/k)¥/(-1),
then we just compute the new closest pair from scratch. The first time that logn >
2(1 + 1/k)¥/*-1) we build the complete data structure. From now on, we assume
that logn > 2(1 + 1/k)*/(*-1),

The insert algorithm: Let p = (py,...,px) be the point to be inserted. Then
we perform 3* point location queries in the skewer tree, with query points (p; +
€1y--y Pk + &), for €1,..., & € {—6,0,6}. Each query gives at most 2* answers. So
all queries together give at most 6* different k-boxes. For each of these boxes, we
walk through its list of points. For each point ¢ in these lists, if d(p, q) < &, we set
(P,Q) := (p,q) and § := d(p, q). (See Figure 2.)

Next, we insert p into the list of a k-box it belongs to. If afterwards this list
contains at least (2k)*(logn)*~! points, we perform a split operation on its k-box,
as described below.

Split operation: Suppose we want to split a box B = [a1 : by] X ... X [ag : b
of the partition. Let V' be the set of points that are stored in the list of B.

Fori=1,...,k, we compute the values m; and M;, which are the minimal resp.
maximal i-th coordinate of any point of V'. If M; —m; < 26, for all i = 1, ..., k, the
algorithm stops.

23

Otherwise, we take an index ¢ for which M; —m; > 2§. We compute the median ¢;
of the i-th coordinates of the points of V'. There are three possible cases.

1. If a; + 6§ < ¢; < b; — 6, we perform the operation i-split(c;) on box B in the
skewer tree. We also split the list of box B in two lists corresponding to the
two new boxes. Then, the algorithm is finished.

2.1 a; < ¢ < a; + 6, we perform the operation i-split(a; + &) on box B in
the skewer tree. This gives two new k-boxes B' and B", obtained from B by
replacing the i-th interval by [a; : a; + 8] resp. [a; + & : b;]. We split the list of
box B in two lists corresponding to these two new boxes. Then, we split the
box B' using the same algorithm recursively.

I£6i—6 < c; < b, we perform the operation i-split(8;) on box B in the skewer
tree. This gives two new k-boxes B' and B", obtained from B by replacing the
i-th interval by [a; : b; — 6] resp. [b — & : b;]. We split the list of box B in two
lists corresponding to these two new boxes. Then, we split the box B" using
the same algorithm recursively.

®

Remark: The split operation is called if a box contains at least (2k)*(logn)*~*
points. We assumed that logn > 2(1 + 1/k)¥/(-1). Therefore, (2k)*(logn)*~! >
(2k+2)*. Then, Lemma 12 guarantees that there is an index such that M; —m; > 2§
at the start of the split operation.

If a; = —oco, then a; + § = —oco. Similarly if b; = co. Furthermore, if case 2
resp. 3 applies, then a; resp. b; is finite. Hence, the i-split operations in the above
algorithm are well defined.

Lemma 15 Let m > 2(2k + 2)* be an integer. Let B be a k-boz in the partition
of k-space whose list contains at most m points. Let § be the minimal distance of
the entire set V at the moment the split algorithm is carried out on B. After this
algorithm, the sides of all bozes that have been created have length at least §, and
each such boz contains at least one and at most [m/2] points of V.

Proof: Consider the box B = [a; : by] x ... X [ax : b]. Note that by Lemma 13,
b; —a; > 6, for all j. Let Iy be the number of indices j for which M; — m; > 26.
The proof is by induction on the value of I5.

If Iy = 0, then it follows from Lemma 11 that B contains at most (2k + 2)*
points of V. In this case, the lemma follows because (2k + 2)* < [m/2]. (We saw
already that Ip > 0 at the start of the algorithm. We start the induction at Iy =0,
however, to simplify the proof.)

Let Iy > 0, and suppose that the lemma is proved for smaller values of I. The
algorithm takes an index 7 for which M; —m; > 26.

If case 1 of the algorithm applies, then it is clear that the two new boxes have
sides of length at least §, that they each contain at least one and at most [m/2]
points. Hence, in this case, the proof is completed.

24

Otherwise, assume that case 2 applies. It is clear that box B" has sides of length
at least & and that it contains at most [m/2] points. Since M; — m; > 2§, there is
a point in B’s list whose i-th coordinate is greater than a; + §. Therefore, box B"
contains at least one point.

Consider box B'. This box is non-empty and has sides of length at least §. Let
Ip: be the number of indices j for which M} — m}; > 26, where m} resp. M} is the
minimal resp. maximal j-th coordinate of any point in the list of B'. Note that
Ig = Ig — 1. The algorithm recursively splits box B'. Note that box B' contains
at most m points. Therefore, by the induction hypothesis, the boxes into which B
is split all have sides of length at least §, contain at least one and at most [m/2]
points. Hence, if case 2 applies, the proof is completed.

If case 3 applies, the proof is similar as for case 2. B

Lemma 16 For a boz B whose list contains m points, the split operation takes
O(m + (logn)?) amortized time.

Proof: First note that the number of i-split operations that are performed on the
box is at most Iz < k. By Theorem 2, each i-spli! operation needs O((logn)?)
amortized time to update the skewer tree. With each i-split operation, we compute
a median and split a list of size at most m in two sublists. This can be done in O(m)
time. This proves the lemma, because k is a constant. B

Lemma 17 The insert algorithm correctly maintains the closest pair data structure.

Proof: Let § be the minimal distance just before the insertion of point p. If this
minimal distance changes, there must be a point inside the L;-ball of radius § centered
at p. This ball is contained in the box [p1—& : p1+6] X...X [px—6 : p+6]. Therefore,
it suffices to compare p with all points of the current set V that are in this box. Let

We=Vn(p—6:pi+6x%...x [—8:pp +8))

be the set of these points, and let W' be the set of points that are contained in the
lists corresponding to the at most 6% boxes that result from the 3* point location
queries. The algorithm compares p with all points in W'. Hence, if we show that
W C W', then it is clear that the algorithm correctly maintains the closest pair.

If W = 0, then certainly W C W'. So assume that W # 0. Let ¢ = (q1,...,q)
be a point in W. Assume w.log. that ¢ > p; fori = 1,...,k. Then p; < ¢ <
pi+8fori=1,..,k Let B be the k-box in the partition of k-space whose list
contains g. Assume that ¢ W’'. Then B does not contain any of the 2* points
(p1+ ai,...,px + i), where ay,...,ax € {0,6}. These 2* points are the corners of
the k-box

B':=[p1:p1+6 x...x [p:px+8,
having sides of length §. (Note that in general B’ is not part of the partition of
k-space.) Since ¢ € B, and since B does not contain any of the corner points of B',
it follows that the box B must have at least one side of length strictly less than §.

25

This contradicts the definition of our data structure. Hence, ¢ € W' and, therefore,
W C W'. This proves that the insert algorithm correctly maintains the closest pair.

Consider a box of the partition that is not split during the insertion. Since
the value of & can only decrease, the side lengths of this box remain at least equal
to 6. Clearly, if the box contains at least one point before the insertion, so it does
afterwards. Also, the box still contains at most (2k)*(logn)*~! points, because the
value of n only increases.

If a box is split, then Lemma 15 guarantees that the new boxes have sides of
length at least §, that they contain at least one and at most

[@/2)(2k) (log n)*~1)] < (2k)*(logn)*")

points. (Note that [(2k)*(logn)*~'] > 2(2k + 2)*. Therefore, Lemma 15 can be
applied.) Finally, it is clear that the boxes that are not split together with the new
boxes are non-overlapping and partition k-space. B

Lemma 18 The amortized time to insert a point into the closest pair data structure
is bounded by O((logn)*™").

Proof: By Theorem 2, it takes O((logn)*~") time to perform the 3* point location
queries in the skewer tree. For each of the at most 6* found k-boxes, we walk through
its list of points and compare these with the new point. Since each such list contains
O((log n)*~") points, this step of the insert algorithm takes O((logn)*~") time. The
new point can be inserted in O(1) time into the appropriate list.

If a k-box is split, it contains [(2k)*(logn)*~"] points. By Lemma 16, this op-
eration takes O((logn)*™! + (logn)?) amortized time. It follows from Lemma 15
that each of the boxes that are created during a split operation contains at most
[(1/2)(2k)*(log n)*~*] points. Therefore, at least |(1/2)(2k)*(logn)*"!] points must
be inserted into such a box before it is split again. Charging the O((logn)*~* +
(log n)?) time for the split operation to these |(1/2)(2k)*(log n)*""| insertions, shows
that a split operation adds an amount of time to the overall amortized insertion
time that is bounded by O(1 + (logn)*~*). Since k > 2, this amount is bounded by
O((logn)t). W

This concludes the description of the data structure, the insert algorithm and its
analysis. We summarize the results of this section in the following theorem.

Theorem 4 There ezists a data structure that maintains the closest pair in a set
of n points in k-dimensional space at a cost of O((logn)*~") amortized time per
insertion. The data structure has size O(n) and can be built in O(nlogn) time.

This data structure can be used to give an on-line algorithm for computing the
closest pair in a point set. Then, the points arrive one after another, and the total
number of points is not known in advance. The next point becomes available as soon
as the current point has been inserted.

26

Corollary 1 The closest pair in a set of n points in k-dimensional space can be be
computed on-line in O(n(logn)*~!) time.

It is well-known that it takes Q(nlogn) time to compute the closest pair. (See
e.g. [8].) Therefore, in the planar case, Theorem 4 and Corollary 1 give optimal
results.

7 Concluding remarks

We have given a dynamic data structure for the k-dimensional rectangular point
location problem. If the only dynamic operations are insertions and splits, the
data structure has a query time of O((logn)*"!) and an amortized update time
of O((logn)?). If also deletions and merges have to be supported, these two time
bounds increase by a factor of O(loglogn). The size of the data structure is O(n).

It is an open problem whether a logarithmic factor can be saved in the up-
date times. If during an update no rebalancing is necessary, the update times are
O(log n)—in case only insertions and splits have to be supported. Rebalancing is
responsible for the amortized O((log n)?) time bound on the update times.

One possibility to remove a factor of O(logn) is to investigate whether a logarith-
mic factor can be saved in Lemma 5. We rebuild a subtree as a perfectly balanced
skewer tree. Since we have the old subtree availabl Ithough it is out of bal it
might be possible to rebuild it in O(a%*)n) time. If this is possible, then the update
times in Theorems 1 and 2 resp. Theorem 3 become O(logn) resp. O(log nloglogn).

Another possibility to save a logarithmic factor is to define another balance con-
dition. For example, if it is possible to maintain the skewer tree by rotations—as for
segment trees that are based on BB[a]-trees, see [6]—then maybe the update times
can be improved.

In the second part of the paper, we have shown how the skewer tree can be
used to maintain the closest pair in a point set in O((logn)*~*) amortized time per
insertion. In the planar case, this result is optimal. It is an open problem whether
this amortized time bound can be made worst-case. Note that we use a variation
of the partial rebuilding to rebalance the skewer tree. It is not known at present
whether the general partial rebuilding technique can be made worst-case.

Finally, it would be interesting to improve the insertion time for the closest pair
problem in dimensions greater than two.

References

[1] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan. Time bounds for
selection. J. Comput. System Sci. 7 (1973), pp. 448-461.

[2] B. Chazelle and L.J. Guibas. Fractional cascading I: A data structuring tech-
nique. Algorithmica 1 (1986), pp. 133-162.

27

[3] D. Dobkin and S. Suri. Dynamically computing the mazima of decomposable
functions, with applications. Proc. 30th Annual IEEE Symp. on Foundations of
Computer Science, 1989, pp. 488-493.

[4] H. Edelsbrunner. Algorithms in Combinatoriai Geometry. Springer-Verlag,
Berlin, 1987.

(5] H. Bdelsbrunner, G. Haring and D. Hilbert. Rictangular point location in d
with applications. The Computer Journal 29 (1986), pp. 76-82.

[6] K. Mehlhorn and S. Naher. Dynamic fractional di Algorithmica 5
(1990), pp. 215-241.

[7) M.H. Overmars. The Design of Dynamic Data Structures. Lecture Notes in
Computer Science, Vol. 156, Springer-Verlag, Berlin, 1983.

8] F.P. Preparata and M. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[9] M. Smid. Maintaining the minimal distance of a point set in less than linear
time. Proc. 2nd Canadian Conf. on Computational Geometry, 1990, pp. 1-4.

[10] M. Smid. Algorithms for semi-online updates on decomposable problems. Proc.
2nd Canadian Conf. on C jonal G y, 1990, pp. 347-350.

[11] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic
time. Proc. 2nd Annual ACM-SIAM Symp. on Discrete Algorithms, 1991, pp.
1-6.

[12] K.J. Supowit. New techni for some d 1 t-point and farthest-point
problems. Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990,
pp. 84-90.

(13] P.M. Vaidya. An O(n logn) algorithm for the all-nearest-neighbors problem. Dis-
crete Comput. Geom. 4 (1989), pp. 101-115.

28

