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1 Introduction and summary

Ideal fluid flows in 2 + 1 space-time dimensions have two positive quadratic conserved

quantities, the energy and the enstrophy (vorticity squared). As such, when exciting the

fluid one generates two turbulent cascades, the direct and the inverse. In the direct cascade

the enstrophy flows to length scales smaller than the excitation scale, while in the inverse

cascade energy flows to length scales larger than the excitation scale. The vorticity statistics

and its scaling properties characterizes both the direct and the inverse turbulent cascades

of two-dimensional fluid flows [1].

In the fluid/gravity correspondence framework, fluid flows are related to black brane

dynamics. The aim of this paper is to construct the holographic relativistic and non-

relativistic vorticity in terms of the gravitational black brane data. We will then outline

the expected statistical scaling structure of the geometry. In the following we summarize

the results.

The ideal stress-energy tensor of relativistic CFT hydrodynamics in flat 2+1 space-time

dimensions reads (up to an overall constant)

Tµν = T 3 (ηµν + 3uµuν) , (1.1)

where T is the temperature, and uµ is the 3-velocity vector satisfying uµu
µ = −1. The

three independent degrees of freedom of the hydrodynamics are encoded in the covector

cµ ∼ Tuµ, which will appear naturally in the gravitational description. The hydrodynamics

equations ∂µT
µν = 0 can be written in a projected form as

Pνσ∂µT
µσ = Ωµνu

µ = 0, uν∂µT
µν = ∂µs

µ = 0 , (1.2)
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where Pµν = ηµν + uµuν , s
µ = T 2uµ is the entropy current, and Ωµν is a two-form that is

used to define the relativistic enstrophy

Ωµν = ∂[µ(Tuν]) . (1.3)

The first equation in (1.2) is the relativistic Euler equation, and the second is the

conservation of the entropy current. We can write the two-form (1.3) as

Ωµν = ξǫµνλu
λ , (1.4)

for some real scalar function ξ.

The fluid dynamics is encoded in the dynamics of an event horizon in the gravitational

dual description in one higher space dimension. The fluid temperature is mapped to the

horizon surface gravity, while the fluid velocity corresponds to the horizon normal. One

can define a complex function in terms of the bulk Weyl tensor CABCD,

Ψ2 = CABCDℓ
AmBm̄CnD , (1.5)

where
(

ℓA,mB, m̄C , nD
)

is a null tetrad basis in the Newman-Penrose formalism. Ψ2 is one

of the five complex Weyl scalars that represent the ten real variables of the Weyl tensor. Its

imaginary part is the horizon vorticity and is a measure for the strength of the precession

of an infalling observer. The real part, called tendicity, is a measure the strength of the

tidal stretching of an infalling observer. We will see that the function ξ is given by the

imaginary part of Ψ2, ξ = ImΨ2, while up to the cosmological constant Λ, the real part of

Ψ2 is proportional to the divergence of the velocity 3-vector ReΨ2 − Λ/6 ∼ ∂µu
µ.

When studying non-relativistic flows, the hydrodynamic equations (1.2) become the

incompressible Euler equations. Since the velocity vector is divergence free ∂iv
i = 0, it is

completely determined by its curl, that is by the vorticity scalar ω = ǫij∂
ivj satisfying the

Euler equation dω
dt

= 0. Indeed, we will show that ω ∼ ImΨ2 and that it determines the

horizon geometry uniquely. The real part of Ψ2 is just a constant Λ/6 in this case.

The paper is organized as follows. In the section 2 we briefly review the structure

of the horizon dynamics and derive the relativistic and non-relativistic Euler equations

from the horizon geometry. In section 3 we construct the holographic vorticity in both

the relativistic and non-relativistic cases. We show that the horizon geometry is uniquely

determined in the non-relativistic case by one real scalar function corresponding to the fluid

vorticity. In section 4 we discuss the expected scaling structure of the horizon geometry in

the turbulent regime.

2 The horizon geometry

2.1 Review of null surfaces dynamics

In the following we will briefly review some of the analysis of [2–4] on the dynamics of null

surfaces, which will be relevant for us. Denote the four coordinates of the bulk space-time

by xA = (r, xµ), µ = 0, 1, 2. xµ are coordinates on the horizon H, and r is a transverse

– 2 –
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coordinate to it. One can choose r = 0 as the location of the horizon. We denote the null

normal to the horizon by ℓA. In fact it is both normal and tangent to the horizon and

tangent to its null generators. In components ℓA = (0, ℓµ).

The pullback of the bulk metric gAB into H is the degenerate horizon metric γµν . Its

null directions are the generating light-rays of H, i.e. γµνℓ
ν = 0. The Lie derivative of γµν

along ℓµ is the second fundamental form

θµν =
1

2
Lℓγµν . (2.1)

We can decompose θµν into the shear tensor σ
(H)
µν and the expansion θ:

θµν = σ(H)
µν +

1

2
θγµν . (2.2)

In fact, θµν = 0 at the ideal fluid order that we will be working with.

Since γµν is degenerate, one cannot use it to define an intrinsic connection on the

null horizon, as could be done for spacelike or timelike hypersurfaces. The bulk spacetime

connection induces a notion of parallel transport in H, but only along its null generators.

This structure is not fully captured by γµν ; instead, it is encoded by the extrinsic curvature

Θµ
ν , which is the horizon restriction of ∇Aℓ

B

Θµ
ν = ∇µℓ

ν . (2.3)

For a non-null hypersurface, the extrinsic curvature at a point is independent of the

induced metric. For null hypersurfaces, this is not so. Indeed, lowering an index of Θµ
ν

with γµν , we get the shear/expansion tensor θµν

Θµ
ργρν = θµν . (2.4)

This expresses the compatibility of the parallel transport defined by Θµ
ν with the horizon

metric γµν . Contracting Θµ
ν with ℓµ yields the surface gravity κ, which measures the

non-affinity of ℓµ:

Θµ
νℓµ = κℓν . (2.5)

At the ideal fluid order Θµ
ν can be written as

Θµ
ν = cµℓ

ν , cµℓ
µ = κ . (2.6)

In the literature on null horizon dynamics, cµ is known as the “rotation one-form” of the

horizon [5]. As we will see, cµ encodes in its three components all the fluid data, that is the

temperature and the velocity 3-vector. The null Gauss-Codazzi equations that will give

the ideal order Navier-Stokes equations can be written as [2–4]

cµ∂νS
ν + 2Sν∂[νcµ] = 0 , (2.7)

where we defined the area entropy current Sµ = vℓµ, and v is a scalar density equal to

the horizon area density. Note that the entropy current denoted here by Sµ, corresponds

under the map between gravity and the hydrodynamics variables to sµ in (1.2).

– 3 –
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2.2 The fluid/gravity correspondence

2.2.1 Relativistic hydrodynamics

Consider the boosted black brane metric in 3 + 1 dimensions

ds2 = −2uµdx
µdr − F (r)uµuνdx

µdxν +G(r)Pµνdx
µdxν , (2.8)

where F (0) = 0 is the horizon. The horizon quantities defined in the previous section can

be expressed in terms of the Bekenstein-Hawking entropy density s = v/4 = G(0)/4 and

the Hawking temperature T = κ/2π = −F ′(0)/2

Sµ = 4suµ; Θµ
ν = −2πTuµu

ν ; γµν = (4s)Pµν ; cµ = −2πTuµ . (2.9)

A particular example in this class of metrics is the Anti de-Sitter (AdS) black brane, which

satisfies the vacuum Einstein equations with negative cosmological constant (we use units

where Λ = −3)

RAB + 3gAB = 0 . (2.10)

In this case F = (r + R)2f(r + R), where f = 1 − (R
r
)3, and G(r) = (r + R)2. Thus,

s = R2/4 and the Hawking temperature T = κ/2π = (4/3π)R.

Consider (2.8), but with (uµ, T ) slowly varying functions of xµ rather than being

constants. This is no longer an exact solution of (2.10), but rather an approximate solution

at zeroth order in derivatives [6]. Plugging in the zeroth order values (2.9) in Gauss-

Codazzi equations (2.7) and projecting along uµ, we find the conservation of the entropy

current (1.2)

∂µ(su
µ) = θ = 0 . (2.11)

This means that the horizon at r = 0 in the geometry (2.8) is non-expanding at this order

in derivatives. Projecting transverse to uµ we get the ideal relativistic Euler equation (1.2).

Using the definition (1.3) and the zeroth order expressions (2.9) we see that

Ωµν ∼ ∂[µcν] . (2.12)

One can construct a conserved local enstrophy current [7]

Jµ = T−2ΩαβΩ
αβuµ , (2.13)

and correspondingly a conserved relativistic enstrophy

Z =

∫

d2xT−2ΩαβΩ
αβu0 . (2.14)

– 4 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
9

2.2.2 Non-relativistic hydrodynamics

The Navier-Stokes equations for non-relativistic fluid flows v ≪ c is obtained by introducing

a small scaling parameter ε such that ∂i ∼ ε, ∂t ∼ ε2, vi ∼ ε and T = T0

(

1 + ε2p(x)
)

for

constant T0 [8, 9]. The relativistic ideal CFT hydrodynamics equations (1.2) become the

non-relativistic incompressible Euler equations

∂tvi + vj∂jvi + ∂ip = 0, ∂iv
i = 0 , (2.15)

where vi, i = 1, 2 is the velocity vector field and p is the fluid pressure. Taking a divergence

on both sides of (2.15) we see that the pressure is not an independent variable ∇2p =

−∂iv
j∂jv

i. Also, since the vector field is divergence free, one needs to know only its curl

in order to determine it.

In terms of the vorticity of the flow ω we have

∂tω + vi∂iω = 0 . (2.16)

We see that in the absence of friction and an external force there are two conserved quan-

tities, the energy of the flow

E =

∫

d2x
v2

2
, (2.17)

and the enstrophy of the flow

Z =

∫

d2x
ω2

2
. (2.18)

In the direct cascade the enstrophy is transfered to small length scales (compared to the

force scale), while in the inverse cascade the energy is transferred to large scales. The

relativistic two-form (1.3) reduces to the non-relativistic vorticity two-form

Ωµν → T0∂[ivj] = T0ωij , (2.19)

and the conserved relativistic entropy (2.14) becomes the conserved non-relativistic

one (2.18).

While we will be interested mostly in ideal hydrodynamics, note that if we include the

first order corrections to the gravitational description we will get a viscous terms ν∂jjv
i on

the r.h.s. of the Euler equation (2.15) with kinematic viscosity [2–4]

ν =
1

4πT0
. (2.20)

In deriving (2.20), one uses the ratio of the shear viscosity to entropy density in Einstein

gravity η
s
= 1

4π [10].

3 Vorticity and a geometric charaterization of the horizon

Consider the identity formula defining the Riemann tensor,

(∇A∇B −∇B∇A)ℓ
C = RABD

CℓD , (3.1)

– 5 –
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where ℓA is the horizon normal. We now take the pullback to the horizon (in the following

all equalities will hold at the horizon) and use (2.9), which is valid for the fluid background

at lowest order in derivatives. We get

2∇[µcν]ℓ
C = −RµνD

CℓD = −CµνD
CℓD , (3.2)

where CABCD is the Weyl tensor. The last equality holds because we imposed RµBℓ
B = 0.

This reduces to

2∇[µcν]u
ρ = −C

(1)
µνλ

ρuλ, (3.3)

where the superscript refers to the derivative order of the Weyl tensor.

We introduce now a null tetrad basis
(

ℓA, nA,m
A, m̄A

)

. This basis is defined in the

following way: nA is a null co-vector satisfying nAℓA = −1, the mA and m̄A are complex

null vectors satisfying mAℓ
A = mAn

A = m̄An
A = m̄Aℓ

A = 0, and mAm̄
A = 1. If we

contract (3.2) with nA, we find

2∇[µcν] = CµνD
CnCℓ

D . (3.4)

In our fluid setup in the (r, xµ) coordinates

ℓA = (1, 0), ℓA = (0, uµ); nA = (0, uµ), n
A = (1, 0) , (3.5)

while the complex m and m̄ always have µ components and are orthogonal to uµ. This

implies that

2∇[µcν] = C
(1)
µνλru

λ , (3.6)

which is just an identity that we have checked holds for the zeroth order metric (2.8).

Contracting (3.2) with any vector vA, such that vAℓ
A = 0 yields

CµνD
CvCℓ

D = 0 , (3.7)

for a non-expanding horizon. Thus, expanding out CABCDℓ
CnD in terms of the various

Weyl scalars and pulling back to the horizon leads to the following result [11]

C
(1)
µνλru

λ = 4iIm[Ψ2]m[µm̄ν] . (3.8)

This implies

∇[µcν] = 2iIm[Ψ2]m[µm̄ν] . (3.9)

In terms of the fluid variables on the horizon, we can use

2im[µm̄ν] = uλǫλµν , (3.10)

and relate ξ (1.4) to the the Weyl scalar

ξ = ImΨ2 . (3.11)

– 6 –
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In the non-relativistic limit (2.19)

ω =
1

2T0
ImΨ2 . (3.12)

Thus, the imaginary part of Ψ2 gives a complete characterization of the fluid vorticity.

Furthermore, although the NP formalism contains some “gauge” arbitrariness due to the

freedom to select any null tetrad, in the case of a non-expanding horizon Ψ2 is gauge

invariant, i.e. is independent of this choice [11].

The second variable characterizing the horizon geometry is the intrinsic scalar curva-

ture on the cross-sections, R̃. Following [12] one can define the complex function

ΦH =
1

4
R̃− iImΨ2 . (3.13)

In terms of Ψ2 and the bulk curvature this quantity can be re-expressed as

ΦH = −Ψ2 +
1

4
RABq

AB −
1

12
R , (3.14)

where qAB is the projector onto the cross-sections. For our generic boosted black brane

metric (2.8),

qAB =
1

G
Pµν . (3.15)

Thus, ReΦH = −ReΨ2 + (1/4)G−1PµνRµν − (1/12)R. Note that in the vacuum setting,

when the cosmological constant (and any matter fields) are not present, the additional

curvature terms vanish and ReΦH = −ReΨ2.

We want to calculate this quantity to first order in derivatives. We use the formula [11]

ReΨ2 =
1

2
CABCDℓ

AnBℓCnD. (3.16)

At zeroth order ReΨ2 = −1
2 and the full expression ReΦH vanishes. This is as expected,

since the curvature of the planar horizon cross-sections should vanish. At first order, the

formula leads to

ReΨ
(1)
2 =

1

2
C(1)
µrνru

µuν , (3.17)

expressing the real part of this Weyl component in terms of the fluid variables. Putting

everything together and imposing the ideal order equation

uλ∂λG

G
= −∂λu

λ, (3.18)

we find

ReΦ
(1)
H =

1

2

uλ∂λG
′

G
−

1

8

G′∂λu
λ

G
, (3.19)

– 7 –
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where prime denotes derivatives with respect to the radial coordinate r. Generically,

uλ∂λG

G
∼ uλ∂λT (3.20)

G′

G
∼

1

T
. (3.21)

Using (1.2) we get

ReΦ
(1)
H ∼

∂λu
λ

T
. (3.22)

In the specific case of the AdS black brane, the proportionality constant is −9/16π. Note

that ReΨ
(1)
2 , a gauge invariant quantity in its own right, is also by itself proportional to

∂λu
λ

T
. Taking the non-relativistic limit we have

ReΦ
(1)
H ∼ ∂iv

i . (3.23)

Thus, in the gravitational description of the two-dimensional non-relativistic incompressible

fluid the real function ImΨ2 characterizes completely the horizon geometry. This is in

parallel to the vorticity that characterizes fully the dual fluid flow.

4 Geometrical scalings from turbulence cascades

Consider a random external force that excites the two-dimensional fluid at a scale L. In

general, the statistics of the flow velocity and vorticity that in generated by the excitation

is not calculable due to the non-linear nature of the fluid equations. An important question

is, however, what are the universal characteristics of the flow statistics. One distinguishes

between a direct cascade and an inverse cascade of the fluid flow. In the direct cascade the

excitation of the fluid is at a large length scales, the dissipation is at small length scales,

and the enstrophy is transfered throughout the scales. It is established numerically and

experimentally that scale invariance is broken in the direct cascade and the correlations

functions of the vorticity are logarithmic [1]

〈ωn(~r, t)ωn(0, t)〉 ∼

[

D ln

(

L

r

)]
2n

3

, (4.1)

where D = 〈ν(∇ω)2〉 is the mean enstrophy dissipation rate. In particular the energy

spectrum is

E(k) ∼ D
2

3k−3 ln−
1

3 (kL) . (4.2)

Relation (3.12) together with (4.1) implies, that once the horizon geometry is excited

and becomes a random surface, the high momentum structure of the correlation functions

of ImΨ2 should such exhibit a logarithmic structure.

In the inverse cascade, turbulence happens at length scales exceeding the force scale

and energy is transferred throughout the scales. Here there is numerical and experimental

evidence that turbulence exhibits scale invariant statistics [1] and perhaps also conformal

invariance [13]. The Kolomogorov-Kraichnan scaling for the velocity vr and the vorticity

ωr at scale r

vr ∼ r
1

3 , ωr ∼ r−
2

3 , (4.3)

– 8 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
9

holds in the inverse cascade. In particular, the energy spectrum E(k) has the scaling

E(k) ∼ k−
5

3 . (4.4)

This scaling has been argued to be observed in gravity [14], in the case of decaying

turbulence.

Consider an isoline of zero vorticity, that is the outer boundaries of a vorticity cluster

of radius l. The vorticity flux through the cluster scales like l
4

3 . By relating this to the

velocity circulation along the boundary, it has been argued in [13] that the perimeter scales

like l
4

3 . Thus, the fractal dimension of the boundary curve is

dfractal =
4

3
. (4.5)

This has been established numerically at the level of several percent accuracy in [13] .

Moreover, it has been shown that the curve is a random SLE curve, signalling that scale

invariance is in some sense enhanced to a conformal invariance.

Thus, the random horizon geometry at large length scales should exhibit the scal-

ings (4.3) and the fractal dimension (4.5) of the isolines ImΨ2 = 0. It would be interesting

to verify this structure numerically (see [15] for a numerical analysis of the horizon vorticity

and tendicity in black holes merger) .

Note also that from the geometrical point of view we can consider the statistics of

the same scalar function ImΨ2 for both the relativistic and the non-relativistic flows. It

is therefore possible that the above universal scale and conformal structures of the non-

relativistic cascades may have an analog or perhaps even having its roots in the turbulent

CFT relativistic fluid flows.
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