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Abstract

We present non-linear uplift ansätze for all the bosonic degrees of freedom and dual fields in the
S7 reduction of D = 11 supergravity to maximal SO(8) gauged supergravity and test them for
the SO(7)± invariant solutions. In particular, we complete the known ansätze for the internal
components of the metric and 4-form flux by constructing a non-linear ansatz for the internal
components of the dual 7-form flux. Furthermore, we provide ansätze for the complete set of
56 vector fields, which are given by more general structures than those available from standard
Kaluza-Klein theory. The novel features encountered here have no conventional geometric inter-
pretation and provide a new perspective on Kaluza-Klein theory. We study the recently found
set of generalised vielbein postulates and, for the S7 compactification, we show that they reduce
to the E7(7) Cartan equation of maximal SO(8) gauged supergravity in four dimensions. The
significance of this framework for a higher-dimensional understanding of the embedding tensor
and other gauged maximal supergravities is briefly discussed.

http://arxiv.org/abs/1309.0266v1


1 Introduction

In this article we continue the investigation of the generalised geometry underlying maximal su-
pergravity on the basis of the SO(1,3)× SU(8) invariant reformulation [1] of D = 11 supergravity,
which has been further developed in very recent work [2, 3, 4]. Our main concern here will be the
question of whether the consistency results of standard Kaluza-Klein theory can be extended to the
‘non-geometrical’ structures that arise in this context, and in particular from the vector and form
fields and their duals. Focusing on D = 11 supergravity [5], and more specifically on its S7 com-
pactification [6, 7] to maximal gauged SO(8) supergravity in four dimensions [8] is amply justified
by the fact that this theory presents by far the richest structure of all Kaluza-Klein models studied
so far, but of course, we expect our results to be relevant also in a more general context.

The question of whether a four-dimensional theory can be obtained by dimensional reduction
from higher dimensions, and the question of whether a given compactification of a higher-dimensional
theory can be associated with a consistent truncation is clearly an important and pertinent one.
Consistency here by definition is taken to mean that any full solution of the lower-dimensional
theory should admit an uplift to a full solution of the non-linear higher-dimensional field equations.
However, establishing such a relation and its consistency is far from obvious in all but the most trivial
examples. In particular, due to the generic emergence of non-abelian gauge theories in Kaluza-Klein
compactifications, we have to deal with gauged supergravities. The most efficient framework for
understanding these theories (in any dimension) is the embedding tensor formalism [9, 10, 11, 12].
Therefore, any general scheme that aims to address the issue of the higher-dimensional origin of
four-dimensional theories should provide a higher-dimensional perspective on the embedding tensor.
Furthermore, given a consistent truncation, yet another challenging task is to give explicit uplift
ansätze for all relevant fields, something that standard Kaluza-Klein theory cannot give for fields
other than the graviton and the vector fields.

In [1], a 4 + 7 splitting of D = 11 supergravity is considered with an appropriate decomposition
of all eleven-dimensional fields with respect to this splitting, while retaining full on-shell equivalence
to the original theory. This reformulation has manifest local SU(8) invariance, and emphasises and
generalises the structures that would appear upon a toroidal reduction of the theory to four dimen-
sions [13, 14]. The construction of [1] relies on an analysis of the supersymmetry transformations of
the redefined fields and a crucial object that emerges from the supersymmetry transformation of the
graviphoton is an SU(8) tensor, the generalised vielbein. The graviphoton gives rise to vector fields
upon reduction. However, in the reduced theory these are complemented by other vector fields. In
particular, the three-form potential also contributes to the vector degrees of freedom. The super-
symmetry transformation of these vectors in the D = 11 theory gives rise to yet another generalised
vielbein [2]. The observation made in [4] is that by considering dualisation of eleven-dimensional
fields, a full set of 56 vectors is obtained whose supersymmetry transformations give rise naturally
to an E7(7) vielbein in eleven dimensions.

The emergence [4] of E7(7) structures inD = 11 supergravity gives a new perspective on the extent
to which duality symmetries play a role in the full unreduced D = 11 theory and the necessity to
transcend usual notions of geometry. 1 However, the framework that is developed in [4]—based on
the SU(8) invariant reformulation [1] of D = 11 supergravity and extending the recent results of
[2]—is also the most natural setting in which to understand the eleven-dimensional origins of four-
dimensional gauged theories. The construction in [4] highlights structures in eleven dimensions that
are manifest in the reduced theory, enabling one to address questions concerning uplift ansätze and
the appearance of particular gaugings in four dimensions from a reduction point of view.

In this paper, we use the S7 reduction to maximal gauged supergravity to illustrate the effec-

1For alternative approaches to generalised geometry and a list of recent references with bibliographies, see [15].
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tiveness of the framework presented in [4]. In particular, we extend the Kaluza-Klein ansätze for
the graviphoton [23, 24, 25] and the vector associated with the three-form potential [2] to vectors
associated with dual fields, revealing novel features. These ansätze allow us to derive a non-linear
ansatz for the internal components of the six-form potential complementing the non-linear ansätze
for the internal components of the metric [26] and the three-form potential [2]. A remarkable feature
of this analysis is not only the existence of a non-linear ansatz for a dual field, but for all fields.

To illustrate the novelty of the present construction, let us first recall some well-known facts from
standard Kaluza-Klein theory [23, 24, 25]. Starting from the higher-dimensional vielbein EM

A(z) ≡
EM

A(x, y), where the higher-dimensional coordinates {zM} are split into four-dimensional coordi-
nates {xµ} and internal coordinates {ym}, respectively, one proceeds from the ansatz

EM
A(x, y) =

(

∆−1/2e′µ
α Bµ

mem
a

0 em
a

)

, (1)

where em
a(x, y) is the vielbein associated to the internal manifold on which the higher-dimensional

theory is assumed to be compactified, ∆ ≡ det em
a and e′µ

α is the Weyl rescaled vierbein of the

compactified theory; the triangular form of EM
A is arrived at by making partial use of the local

Lorentz symmetry of the higher-dimensional theory. A consistent truncation for the spin-two field
(graviton) is achieved simply by setting

e′µ
α(x, y) ≡ e′µ

α(x),

that is, by dropping all dependence on the internal coordinates. Likewise, for the vectors Bµ
m(x, y),

the exact consistent ansatz has been known for a very long time [23, 24, 25]; it reads

Bµ
m(x, y) = KmI(y)AI

µ(x), (2)

where the index I labels the Killing vectors KmI(y) on the internal manifold. It is a key result
of Kaluza-Klein theory that the non-abelian gauge interactions of the compactified theory then
originate from the commutator of two Killing vector fields

[

KmI∂m , KnJ ∂n
]

= fIJ
KKpK∂p, (3)

where fIJ K are the structure constants of the isometry group of the internal manifold. In this way
the gauge group of the compactified theory is completely explained in geometric terms. While this
has been well understood for many decades, the main difficulty in establishing the full consistency
of the Kaluza-Klein reduction resides in the scalar sector, in particular involving the search for
consistent ansätze for the internal vielbein em

a(x, y) and other fields of a tensorial nature under
internal symmetries. The main focus of the present work, then, is to develop a similar theory
for ‘non-geometrical’ vector fields and matter fields, and in particular for those fields arising from
dual fields in higher dimensions, for which no readily applicable formulae are available from general
Kaluza-Klein theory—hence the need for a “generalised geometry”!

The structure of the paper is as follows. In section 2, we review the main results of Ref. [4]. We
briefly discuss how the consideration of dual fields in eleven dimensions can be used to construct 56
vectors, the supersymmetry transformations of which give rise to a set of generalised vielbeine that
are parametrised by the ‘internal’ components of the eleven-dimensional metric, three-form potential
and its dual six-form. The generalised vielbeine can be viewed as components of an E7(7) matrix and
the supersymmetry transformations of the bosonic fields can be cast into a form that mirrors the
analogous supersymmetry transformations in four dimensions. Furthermore, the generalised vielbein
postulates [1, 4] are summarised in section 2.3.
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Specialising to the S7 reduction of D = 11 supergravity to maximal SO(8) gauged supergravity
in four dimensions in section 3, we use the results summarised in section 2 to derive non-linear
ansätze for all bosonic degrees of freedom. In particular, extending the result in Ref. [2], we give
Kaluza-Klein ansätze for all 56 vector fields. These ansätze not only include Killing vector fields
on S7, but also tensors and the potential for the volume form on S7, which is not globally defined.
Comparing the eleven and four-dimensional supersymmetry transformations of the vectors, along
the lines of [26, 2], allows us to express the generalised vielbeine in terms of the four-dimensional
scalars. These relations are then used to find a non-linear ansatz for the internal components of
the six-form dual potential. The set of ansätze for the vectors and the internal components of the
metric, three-form potential and its dual comprise a set of uplift formulae for all bosonic degrees
of freedom. In section 5, we test the non-linear ansatz for the 6-form field by explicitly checking
that the ansatz reproduces the internal component of the 6-form potential of the SO(7)± invariant
solutions of D = 11 supergravity [27, 28] from the scalar expectation values of the SO(7)± invariant
stationary points [29] of maximal SO(8) gauged supergravity. The possibility to perform such explicit
checks of all formulae against various non-trivial compactifications is a feature that distinguishes our
formalism from other approaches to generalised geometry.

From a four-dimensional point of view, the 56 vector fields include the full set of electric and
magnetic vectors that can be gauged. In section 4, we show that the generalised vielbein postulates
determine exactly which of the vector fields are gauged in the S7 compactification. In particular,
we show that upon inserting the ansätze relevant for the S7 compactification given in section 3,
the magnetic vector fields, which come from the reduction of the 3-form potential, drop out of the
expressions. Moreover, the generalised vielbein postulates reduce to the E7(7) Cartan equation with
SO(8) gauge covariant derivative. The SO(8) gauge fields are solely electric and arise from the
graviphoton and the 6-form potential. More generally, for any compactification, the generalised
vielbein postulates reduce to the four-dimensional Cartan equation with the appropriate gauge
covariant derivative. Therefore, the generalised vielbein postulates provide an understanding of
how the gauge vectors are selected from the 56 vector fields available. This goes some way towards
establishing the origin of the embedding tensor in the higher-dimensional D = 11 theory.

We conclude in section 6 with a brief, general discussion of other compactifications that could lead
to more general gaugings in four dimensions. Of particular interest are examples of compactifications
where both electric and magnetic vectors are gauged. We also discuss the possibility of using our
framework to provide an eleven-dimensional perspective on the recently discovered continuous family
of SO(8) gauged supergravities [30].

In summary, the key results and issues raised in this paper are:

• Kaluza-Klein theory is developed for ‘non-geometric’ vector fields.

• Consistent non-linear ansätze are obtained for all fields, including dual fields.

• All formulae can be tested against non-trivial compactifications of D = 11 supergravity and
the associated stationary points of N = 8 supergravity.

• With 56 ‘electric’ and ‘magnetic’ vectors present in all D = 11 relations, one can now study
the higher-dimensional origins of the embedding tensor.

• Preliminary evidence is presented that the ω-deformed SO(8) gaugings of [30] correspond to
ω-deformations of D = 11 supergravity.

The conventions and index notations used in this paper are as in [1, 4].
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2 Dual fields and E7(7) in D = 11 supergravity

In Ref. [4], the two generalised vielbeine previously known from the literature [1, 2], are completed
to an E7(7) matrix in eleven dimensions by constructing two further generalised vielbeine that are
intimately related to the dualisation of the metric and the three-form potential in eleven dimensions.
While the significance of this construction from an eleven-dimensional point of view is clear in that
it establishes the role of the E7(7) duality group in the full D = 11 theory, its importance from the
practical point of view of relating the four-dimensional maximal supergravity to D = 11 supergravity
is what will be addressed in this paper. In particular, the results of [4] give uplift ansätze for all

bosonic degrees of freedom including a non-linear ansatz for the six-form potential dual to the
three-form potential. We will illustrate this in great detail for the S7 compactification of D = 11
supergravity in the following sections, but from the generality of our results it should be clear that
our construction furnishes similar information for other compactifications of D = 11 supergravity.
Consequently, we will first summarise the general results in this section, without reference to any
specific compactification.

2.1 Dual vector fields and generalised vielbeine

Working in the context of the SU(8) invariant reformulation of D = 11 supergravity one identifies
certain SU(8) objects starting from an analysis of the fermionic sector [1]. 2 In the bosonic sector
the most prominent of these objects are the so-called generalised vielbeine, which can be regarded
as components of an E7(7) matrix in eleven dimensions. The generalised vielbeine appear when one
considers the supersymmetry transformation of those components of the elfbein, three-form potential
and their dual fields which in a proper reduction to four dimensions would give rise to vector fields.
However, it is important to keep in mind the main feature of the present analysis (and of [1]), namely
that we retain the full coordinate dependence on all eleven coordinates throughout. Therefore, we
will not be dealing with a dimensional reduction in the strict sense of the word, but rather a 4+7
split and a subsequent reformulation of the theory. Furthermore, the reformulated theory is on-shell
equivalent to the original D = 11 supergravity of [5] at all stages of the construction.

Let us therefore first consider the spin-one sector of the theory. In the direct dimensional reduc-
tion of D = 11 supergravity to four dimensions there appear only 28 vector fields, namely [14]

Bµ
m and Bµmn = Aµmn −Bµ

pApmn. (4)

The first seven of these are just the standard Kaluza-Klein vector fields in the decomposition of the
elfbein displayed in (1), while the second set of vectors originates from the three-form field AMNP .
As explained in our previous work [4], this set of vector fields is complemented by another set of
vectors related to the dual fields in eleven dimensions, viz. 3

Bµm1...m5
= Aµm1...m5

−Bµ
pApm1...m5

−
√
2

4

(

Aµ[m1m2
−Bµ

pAp[m1m2

)

Am3m4m5], (5)

2See also section 3.1 of Ref. [4] for a brief description of the SU(8) invariant reformulation.
3Note the slight change in notation here compared with that used in [4]. In particular, here, we reserve the notation

Bµm1 ...m5
for the vector whose supersymmetry transformation gives rise to the generalised vielbein em1...m5AB. A

similar change of notation is made for the fourth vector. In addition, the arbitrary constant c̃ here is related to c in
[4] by c̃ = 5!c/

√
2.
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Bµm1...m7,n = Aµm1...m7,n + (3c̃ − 1)
(

Aµ[m1...m5
−Bµ

pAp[m1...m5

)

Am6m7]n

+ c̃A[m1...m6

(

A|µ|m7]n −Bµ
pA|p|m7]n

)

+

√
2

12

(

Aµ[m1m2
−Bµ

pAp[m1m2

)

Am3m4m5
Am6m7]n. (6)

The vector components in (5) thus originate from the six-form A(6) which is the dual potential
associated with the three-form potential A(3), whence it is clear that these fields are simultaneously
defined only on-shell, as explained in [4]. The vector fields (6) are related to the dual gravity field
in eleven dimensions, and are defined only up to a real constant c̃. While the precise relation
of Aµm1...m7,n to the D = 11 fields is not known, the indeterminacy encoded in the parameter c̃
can be traced back to the fact that dual gravity does not give rise to scalar degrees of freedom
in the 4+7 split. We also note that the non-linear modifications in these equations which involve
the Kaluza-Klein vectors Bµ

m can be understood geometrically via the conversion of curved to
flat indices, whereas the remaining non-linear modifications are required by the consistency of the
supersymmetry variations, but have no direct explanation in terms of eleven-dimensional geometry. 4

Thus, in all we have identified 56 such vector fields in eleven dimensions, starting from the
fields of D = 11 supergravity and their duals. These make up part of the bosonic sector of our
reformulation of D = 11 supergravity in the framework of the “generalised geometry” introduced
in [4]. However, not all of these vector fields will correspond to independent propagating vectors
in a given compactification of the D = 11 theory. In particular, for compactifications related to
N = 8 supergravity and deformations thereof, we know that there can be at most 28 propagating
spin-one degrees of freedom. This is most easily seen in the T 7 reduction of [14], where the seven
‘electric’ vectors from Bµ

m (corresponding to the seven Killing vectors on T 7) combine with 21
‘magnetic’ vectors from Bµmn to give 28 abelian vector fields. The other 28 vectors correspond to
their four-dimensional duals such that the eleven-dimensional duality relations reduce to the ‘twisted
self duality constraint’ of [14] in the reduction to four dimensions. For non-trivial compactifications
of the theory the situation is, however, much more complicated because of the appearance of non-
abelian gauge interactions, for which the usual (abelian) dualisation of vector fields does not work.

A judicious analysis of the supersymmetry transformations of these 56 vector fields [1, 2, 4] leads
to the generalised vielbeine. For the vector fields (4) the latter can be directly obtained from the
D = 11 theory, while the variation of Bµm1...m5

in (5) is determined from the variation of A(6)

[4]. The supersymmetry transformation of Bµm1...m7,n is also given in Ref. [4], but it cannot be
obtained from the D = 11 theory. It can, however, be obtained by imposing consistency with the
supersymmetry variations of the other vector fields. Somewhat lengthy computations show that [4]

δBµ
m =

√
2

8
emAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c., (7)

δBµmn =

√
2

8
emnAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c., (8)

δBµm1 ...m5
=

√
2

8
em1...m5AB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c., (9)

δBµm1...m7,n =

√
2

8
em1...m7,nAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c., (10)

4A geometrical explanation might, however, follow from E10 where the ‘vielbein’ comprises not only the gravita-
tional, but also the three- and six-form fields.
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where ϕA
µ and χABC are the (chiral) fermions in the SU(8) invariant reformulation, and where

γ′µ = e′µ
αγα with the Weyl rescaled vierbein e′µ

α from (1). The scalar coefficients in front of the
fermionic bilinears make up the generalised vielbeine, and are given by [1, 2, 4]

emAB = i∆−1/2Γm
AB , (11)

emnAB = −
√
2

12
i∆−1/2

(

ΓmnAB + 6
√
2AmnpΓ

p
AB

)

, (12)

em1...m5AB =
1

6!
√
2
i∆−1/2

[

Γm1...m5AB + 60
√
2A[m1m2m3

Γm4m5]AB

− 6!
√
2
(

Apm1...m5
−

√
2

4
Ap[m1m2

Am3m4m5]

)

Γp
AB

]

, (13)

em1...m7,nAB = − 2

9!
i∆−1/2

[

(Γm1...m7
Γn)AB + 126

√
2 An[m1m2

Γm3...m7]AB

+ 3
√
2× 7!

(

An[m1...m5
+

√
2

4
An[m1m2

Am3m4m5

)

Γm6m7]AB

+
9!

2

(

An[m1...m5
+

√
2

12
An[m1m2

Am3m4m5

)

Am6m7]pΓ
p
AB

]

.

(14)

These objects carry SU(8) indices A,B, . . . and are to be regarded as SU(8) tensors in a specific
gauge, as explained in [1]. As also shown there, one thereby enlarges the original tangent space
symmetry from SO(7) to a local SU(8) symmetry that acts on the chiral fermions. Observe that the
new vielbein components, em1...m5AB and em1...m7,nAB, which originate from the variations of the
dual vectors (5) and (6), themselves depend on the dual six-form field Am1...m6

, and hence again are
only defined on-shell.

2.2 Emergence of E7(7) structure

One can make the relation of the above expressions to E7(7) more explicit by combining the matrix
blocks into a single 56-bein in eleven dimensions [4]

V(z) =
(

VMN

AB(z) , VMNAB(z)
)

(15)

by means of the identifications

Vm8
AB =

√
2

8
emAB , VmnAB = −3

2
emnAB ,

Vmn
AB = −3

2
∆ǫmnp1...p5ep1...p5AB, Vm8AB =

9
√
2

2
∆ǫn1...n7en1...n7,mAB. (16)

This E7(7) vielbein is equivalent (see [4]) to the one considered in Ref. [31] in the context of another
proposal to realise an exceptional geometry. Note that complex conjugation acts by raising or
lowering the SU(8) indices, viz.

(

VMN

AB

)∗
= VMNAB ,

(

VMN

AB
)∗

= VMNAB , (17)

6



but leaves the position of the SL(8,R) indices M, N unaffected. The 56-bein V(z) as defined above is a
coset element of E7(7)/SU(8) written in terms of the decomposition of the 56 of E7(7) under initially
its SL(8,R) and then GL(7,R) subgroups

56 → 28⊕ 28 → 7⊕ 21⊕ 21⊕ 7. (18)

The world indices m,n, . . . labeling the seven-dimensional directions and originally transforming
under seven-dimensional diffeomorphisms thus become associated with the GL(7,R) subgroup of
E7(7). In contrast to [4] we have adjusted the normalisation of the matrix blocks in such a way that
V(z), as defined in (16) satisfies the following identity

VMNABVMNCD − VMN

ABVMN

CD = iδCD
AB . (19)

This is simply the statement that the inverse of an E7(7) matrix is related to its complex conjugate;
more specifically, (19) is a necessary condition expressing the fact that any E7(7) matrix automatically
belongs to Sp(56,R) [14, 8]. The direct verification of (19) by substitution of (11)–(14) into (16) is
straightforward.

The vectors can be arranged into a similar object of the form (Bµ
MN,Bµ MN) such that

Bµ
m8 = −1

2
Bµ

m, Bµmn = 3
√
2Bµmn,

Bµ
mn = 3

√
2∆ǫmnp1...p5Bµp1...p5 , Bµm8 = −18∆ǫn1...n7Bµn1...n7,m. (20)

Thereby the 28+28 vectors are combined into a 56 of E7(7). In this language, the supersymmetry
transformations (7)–(10) can be compactly written as

δBµ
MN = −1

2
VMN

AB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c.,

δBµ MN = −1

2
VMNAB

[

2
√
2εAϕB

µ + εCγ
′
µχ

ABC
]

+ h.c.. (21)

In [4] we have also shown that the matrix blocks making up the 56-bein (15) transform uniformly
under local supersymmetry

δVMN

AB(z) = −
√
2ΣABCDVMNCD(z) , δVMNAB(z) = −

√
2ΣABCDVMN

CD(z) (22)

with the complex self-dual tensor

ΣABCD ≡ ε[AχBCD] +
1

24
ǫABCDEFGHεEχFGH (23)

where we have discarded a local SU(8) rotation that also acts uniformly on all components. In the
form (21) and (22) the supersymmetry variations of compactified maximal supergravity can be read
off directly from the D = 11 formulae.

2.3 Generalised vielbein postulates

The generalised vielbeine satisfy certain differential constraints derived in [1, 4]. These constraints
are generalisations of the vielbein postulate in Riemannian geometry which establishes the relation
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between affine and spin connections. For our subsequent analysis, here we only need their components
along the four space-time directions, which are [1, 4]

Dµe
m
AB +

1

2
∂nBµ

nemAB + ∂nBµ
menAB +QC

µ [Ae
m
B]C + PµABCDe

mCD = 0, (24)

DµemnAB +
1

2
∂pBµ

pemnAB + 2∂[mB|µ|
pen]pAB + 3∂[mB|µ|np]e

p
AB

+QC
µ [AemnB]C + PµABCDemn

CD = 0, (25)

Dµem1...m5AB +
1

2
∂pBµ

pem1...m5AB − 5∂[m1
B|µ|

pem2...m5]pAB +
3√
2
∂[m1

B|µ|m2m3
em4m5]AB

− 6∂[m1
B|µ|m2...m5p]e

p
AB +QC

µ [Aem1...m5B]C + PµABCDem1...m5

CD = 0,

(26)

Dµem1...m7,nAB − 1

2
∂pBµ

pem1...m7,nAB − ∂nBµ
pem1...m7,pAB + 5∂[m1

B|µ|m2m3
em4...m7]nAB

− 2∂[m1
B|µ|m2...m6

em7]nAB +QC
µ [Aem1...m7,nB]C + PµABCDem1...m7,n

CD = 0, (27)

where 5

Dµ ≡ ∂µ −Bµ
m∂m. (28)

In comparison with equation (88) of [4] the generalised vielbein postulate for em1...m7,nAB has been
simplified by using the Schouten identity over eight indices. The connection coefficients Qµ and Pµ

appearing in these equations are valued in the E7(7) Lie algebra, and are related to the connections
and four-form field strengths of D = 11 supergravity as follows [1]

QA
µB = −1

2 [e
m

a∂mBµ
nenb − (epaDµep b)] Γ

ab
AB −

√
2

12 ∆
−1/2e′µ

α
(

FαabcΓ
abc
AB − ηαβγδF

βγδaΓaAB

)

,

(29)

PµABCD = 3
4 [e

m
a∂mBµ

nenb − (epaDµep b)] Γ
a
[ABΓ

b
CD] −

√
2
8 ∆−1/2e′µ

αFabcαΓ
a
[ABΓ

bc
CD]

−
√
2

48 ∆
−1/2e′µαη

αβγδFaβγδΓb[ABΓ
ab
CD]. (30)

Below we will use them in a slightly modified form, again adapted to the S7 compactification.

3 Non-linear ansätze for maximal supergravity on S
7

We will now illustrate the usefulness of the results in the foregoing section by specialising to the S7

compactification of D = 11 supergravity [6, 7], where our formalism furnishes numerous new insights
and results, most notably with regard to the dual fields of D = 11 supergravity. To this aim, we
will present a detailed analysis of the non-linear ansätze and the generalised vielbein postulate in
the context of the S7 compactification.

3.1 Compactification on S7

To begin with, and for the reader’s convenience, here we collect some relevant (and well-known)
formulae, see e.g. [7, 3], related to the seven-sphere. Denoting the S7 background covariant derivative

5Below we will work with a slightly modified operator Dµ adapted to the S7 compactification, cf. (59).

8



by
◦

Dm, we recall that S7 admits eight Killing spinors ηI(y) obeying

(

◦

Dm + 1
2 im7

◦

em
aΓa

)

ηI = 0, (31)

where I, J, ... = 1, ..., 8, and
◦

em
a is the siebenbein on the round S7. Written out in components, the

Killing spinors ηIA are orthonormal matrices, that is

ηAI η
J
A = δIJ , ηAI η

I
B = δAB . (32)

The 28 Killing vectors KmIJ(y) and their derivatives Kmn
IJ(y) can then be represented as bilinears

in terms of Killing spinors, viz.

KmIJ = i
◦

ema ηIΓaη
J , Kmn

IJ =
◦

em
a ◦

en
b ηIΓabη

J ; (33)

clearly,
◦

DnK
IJ
m = m7K

IJ
mn ⇒

◦

DmKIJ
n +

◦

DnK
IJ
m = 0 . (34)

Hence,
◦

DnK
nIJ = 0. Observe the different ‘canonical’ positions of the world indices on Km and

Kmn, and the fact that both of these are always and by definition related to the ‘flat’ objects by

means of the S7 background siebenbein and its inverse. The vector fields KIJ ≡ KmIJ
◦

Dm generate
the SO(8) isometry group of the seven-sphere via the Lie bracket

[

KIJ ,KKL
]

= −8m7δ
[I|[KKL]|J ] (35)

or equivalently

KnIJ
◦

DnK
mKL −KnKL

◦

DnK
mIJ = −8m7δ

[I|[KKmL]|J ]. (36)

However, in standard Kaluza-Klein geometry there is no corresponding interpretation for the tensor
fields Kmn

IJ (nor for (47) below).

3.2 The non-linear ansätze

The non-linear ansätze for maximal supergravity are obtained by comparing the supersymmetry
transformations (21), with the analogous supersymmetry transformations of the vectors in D = 4
maximal supergravity [8, 12]:

δAµ
IJ = −1

2(uij
IJ + vijIJ)

[

2
√
2εiϕj

µ + εkγ
′
µχ

ijk
]

+ h.c., (37)

δAµIJ = −1
2 i(uij

IJ − vijIJ)
[

2
√
2εiϕj

µ + εkγ
′
µχ

ijk
]

+ h.c. . (38)

We will refer to the 28 + 28 vector fields Aµ
IJ and AµIJ as ‘electric’ and ‘magnetic’ vectors, respec-

tively.
In order to relate the D = 4 vectors to the vector fields identified in the previous section, we

now need to choose appropriate Kaluza-Klein ansätze for all vectors (4), (5) and (6). For the
Kaluza-Klein vector Bµ

m this ansatz is well-known, as we explained in the introduction; choosing
appropriate normalisations, we have

Bµ
m(x, y) = −

√
2

4
KmIJ(y)Aµ

IJ(x), (39)

9



where KmIJ are the 28 Killing vectors defined in equation (33). However, for the remaining vector
fields, and in particular for those arising from the dual fields in higher dimensions, there are no
such ansätze available from general Kaluza-Klein theory, and therefore we have to proceed in a
different manner. In fact, for the ‘non-geometrical’ vector fields Bµmn(x, y) the appropriate ansatz
was already found in [2]; it reads 6

Bµmn(x, y) =
1

24
Kmn

IJ(y)AµIJ (x). (40)

We stress that the ‘canonical’ position of the world indices as defined in Ref. [2] is in accord with
the position of indices on Bµ

m and Bµmn. We emphasise again that, unlike for the standard Kaluza-
Klein vector, there is a priori no geometric argument to fix the ansatz for Bµmn. Furthermore, the
normalisation had to be determined in [3] by comparison with the D = 4 theory.

Adopting the Kaluza-Klein ansätze (39) and (40) for Bµ
m and Bµmn, respectively, and com-

paring the eleven-dimensional supersymmetry transformations (7) and (8) with the respective four-
dimensional transformations (37) and (38) gives a relation between the generalised vielbeine emAB and
emnAB and the four-dimensional scalars uij

IJ and vijIJ . More precisely, the identification between
11-dimensional and 4-dimensional SU(8) indices is made by means of the orthonormal Killing spinors
on the round sphere ηiA, which convert ‘curved’ SU(8) indices A,B, . . . (appropriate to the D = 11
theory) into ‘flat’ SU(8) indices i, j, k, . . . (appropriate to maximal D = 4 gauged supergravity) and
vice versa in the terminology of [32]. Hence,

Xijk··· = ηAi η
B
j η

C
k · · ·XABC··· ⇔ XABC··· = ηiAη

j
Bη

k
C · · ·Xijk··· (41)

for any SU(8) tensor by orthonormality of the Killing spinors (32). Accordingly, we define

emij (x, y) ≡ emAB(x, y)ηi
A(y)ηj

B(y)

emn ij(x, y) ≡ emnAB(x, y)ηi
A(y)ηj

B(y). (42)

The non-linear ansätze derived in previous work are then given by

emij (x, y) = KmIJ(y)
[

uij
IJ + vijIJ

]

(x), (43)

emnij(x, y) = −
√
2

12
iKmn

IJ(y)
[

uij
IJ − vijIJ

]

(x). (44)

The ansätze for the remaining vectors originating from the dual D = 11 fields are more tricky
and, in fact, can only be arrived at by imposing consistency of the relevant supersymmetry variations.
More specifically, our analysis implies the identifications

Bµm1...m5
(x, y) = − 1

4 · 6!
(

Km1...m5

IJ − 6 · 6!
◦

ζm1...m5pK
pIJ
)

(y) Aµ
IJ(x), (45)

Bµm1...m7,n(x, y) = − 1

9!
√
2

(

◦

ηm1...m7
Kn

IJ + 6 · 7!
◦

ζ [m1...m6
Km7]n

IJ
)

(y) AµIJ(x), (46)

where
Km1...m5

IJ = i
◦

em1

a1 · · · ◦

em5

a5 η̄IΓa1...a5η
J (47)

6 Note that the difference between the coefficient in the ansatz for Bµmn here and in Ref. [2] is due to differing
conventions for F = A. . In [2], this constant was fixed based on the tests of the non-linear flux ansatz in [3] where
F = 4∂A. However, here, as in much of the related literature, we use the convention F = 4!∂A.
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is again a bilinear in the Killing spinors. The quantity
◦

ζm1...m6
(y) is defined such that

7! ∂[m1

◦

ζm2...m7] = m7
◦

ηm1...m7
, (48)

and is thus to be regarded as a potential for the volume form on the round seven-sphere.
While the first terms on the right hand side of the ansätze (45) and (46) are not completely

unexpected, the crucial new feature in comparison with formulae (39) and (40) is the presence of the

non-globally defined field
◦

ζm1...m6
. One way of understanding its presence in the above ansätze is to

observe that the components of the field strength F(4) along the four dimensions Fµνρσ is non-zero
and, for maximally symmetric solutions is proportional to the volume form in four dimensions [6].
Equivalently, this non-zero component of the three-form potential Aµνρ can be viewed as a non-zero
component of its six-form dual along the seven-dimensional directions [4], namely

Am1...m6
∼

◦

ζm1...m6
. (49)

Thus, even for the S7 solution [7] where the scalar expectation values are essentially trivial, one
would have to obtain such a non-zero value for Am1...m6

from a non-linear ansatz. Indeed, the
coefficients in ansätze (45) and (46) have been fixed by requiring consistency with the S7 solution.
In fact, the ‘vacuum expectation value’ of the six-form field will be non-vanishing for any non-trivial
compactification (that is, other than the T 7 reduction of [14]) of D = 11 supergravity.

As before, comparing the four-dimensional supersymmetry transformations (37) and (38) with
their higher-dimensional analogues (9) and (10) gives

em1...m5 ij(x, y) =
1

6!
√
2

(

Km1...m5

IJ − 6 · 6!
◦

ζm1...m5pK
pIJ
)

(y)
[

uij
IJ + vijIJ

]

(x), (50)

em1...m7,nij(x, y) =
2

9!
i
(

◦

ηm1...m7
Kn

IJ + 6 · 7!
◦

ζ [m1...m6
Km7]n

IJ
)

(y)
[

uij
IJ − vijIJ

]

(x), (51)

where we have again converted ‘curved’ to ‘flat’ SU(8) indices by means of relations (41).
The fact that we now have two expressions for the generalised vielbeine, one in terms of eleven-

dimensional fields, equations (11)–(14), and one in terms of four-dimensional scalars, equations (43),
(44), (50) and (51), allows us to derive non-linear ansätze for internal fields. The non-linear ansatz
for the metric [26] is found by considering the expression

emABe
nAB , (52)

which gives [26]

∆−1gmn(x, y) =
1

8
KmIJKnKL(y)

[

(uijIJ + vijIJ)(uij
KL + vijKL)

]

(x) . (53)

Similarly, the non-linear flux ansatz [2] is found by considering the expression

emn
ABepAB , (54)

which gives 7

Amnp(x, y) = −
√
2

96
i∆ gpq(x, y)Kmn

IJKqKL(y)
[

(uijIJ − vijIJ)(uij
KL + vijKL)

]

(x) , (55)

7See footnote 6 for an explanation of the extra factor of 6 between this expression and the non-linear flux ansatz in
[2, 3].

11



where one uses the metric ansatz (53) to compute ∆gpq in the equation above. Now, considering

em1...m5ABe
nAB (56)

gives a non-linear ansatz for the internal six-form components. It is simple to show that by equating
the contraction of the two vielbeine using definitions (11) and (13) on one side and definitions (43)
and (50) on the other gives

Anm1...m5
−

√
2

4
An[m1m2

Am3m4m5]

= −
√
2

16 · 6! ∆ gnp

(

Km1...m5

IJ − 6 · 6!
◦

ζm1...m5qK
qIJ
)

KpKL
[

(uij
IJ + vijIJ)(u

ij
KL + vijKL)

]

,

(57)

where the internal metric and three-form potential components are derived using ansätze (53) and
(55). We note that the complete antisymmetry of Am1...m6

in all six indices is not manifest from
this expression; our explicit tests for the SO(7)± invariant solutions (see section 5) show, however,
that this consistency requirement is met in non-trivial examples.

An ansatz for the six-form potential can also be obtained by considering the fourth generalised
vielbeine em1...m7,nAB. The relation of this ansatz to the ansatz (57) above will not be obvious, but
clearly the two ansätze must be equivalent. This completes the set of uplift ansätze for all bosonic
degrees of freedom from maximal gauged supergravity to eleven dimensions.

4 Generalised vielbein postulates and the S7 compactification

The generalised vielbein postulate for emAB plays an important role in establishing the consistency
of the S7 reduction of D = 11 supergravity [32, 33]. In particular, in [32] it is shown that upon the
S7 compactification, the d = 4 generalised vielbein postulate reduces to the E7(7) Cartan equation
of gauged maximal supergravity, to wit

V−1(x)
(

∂µ − gAIJ
µ (x)XIJ

)

V(x) = Qµ(x) + Pµ(x), (58)

where XIJ generate the compact SO(8) subgroup inside SL(8,R) ⊂ E7(7), and g is the gauge cou-
pling constant. In this section, then, we explore the generalised vielbein postulates in a more general
context than [32, 33] by investigating the full set of relations (24)–(27) for the extra vielbein com-
ponents (11)–(14), hence taking into account the full set of 56 vector fields identified in section 2.1.
The presence of both electric and magnetic vectors in these relations indicates that our construction
should eventually allow one to derive more general gaugings of N = 8 supergravity from compact-
ification, and thereby to understand how the embedding tensor emerges from the D = 11 theory
upon different compactifications. However, here we will concentrate on the S7 compactification, as
this case already by itself provides a wealth of new insights, in particular concerning the role of dual
vector fields in non-abelian gaugings. We will briefly return to the more general case in the final
section, postponing a detailed discussion to later work.

One issue that we will specifically address and resolve in this section is the following: The fact
that not all of the 56 vector fields can correspond to independent propagating degrees of freedom, and
the generic emergence of non-abelian gauge interactions for non-trivial compactifications (for which
the standard abelian dualisation linking electric and magnetic vectors no longer works), immediately
raises the question of how the theory can dispose of the unwanted vectors and thereby ensure the
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consistency of compactified theory. Here we will establish consistency of the equations for the S7

compactification by explicitly showing how the magnetic vector fields drop out of the generalised
vielbein postulates, leaving only electric gaugings.

For the S7 compactification the reduction ansatz of the vector fields and the generalised vielbeine
are given by equations (39), (40), (45), (46), and equations (43), (44), (50), (51), respectively. To
adapt to the S7 compactification we introduce a minor modification by replacing (28) by

Dµ = ∂µ −Bµ
m

◦

Dm, (59)

and the connections (29) and (30) by

QA
µB = −1

2

[

ema

◦

DmBµ
nenb − (epaDµep b)

]

Γab
AB −

√
2

12 ∆
−1/2e′µ

α
(

FαabcΓ
abc
AB − ηαβγδF

βγδaΓaAB

)

,

(60)

PµABCD = 3
4

[

ema

◦

DmBµ
nenb − (epaDµep b)

]

Γa
[ABΓ

b
CD] −

√
2
8 ∆−1/2e′µ

αFabcαΓ
a
[ABΓ

bc
CD]

−
√
2

48 ∆
−1/2e′µαη

αβγδFaβγδΓb[ABΓ
ab
CD], (61)

that is, replacing the partial derivative ∂m by the S7 background covariant derivative
◦

Dm everywhere.
Likewise this replacement is to be made everywhere in the vielbein postulate equations (24)–(27).

As before (cf. (41)) we have to convert SU(8) indices in order to relate the connection coefficients
above to their four-dimensional counterparts for the S7 compactification. This change of basis is
covariant for all fields, with the exception of [32]

Qi
µj = ηiAη

B
j

(

QA
µB − i

√
2
4 m7Aµ

KLKnKL ◦

en
aΓaAB

)

. (62)

Using the Killing spinor equation and the equation above,

Dµe
m
AB +QC

µ [Ae
m
B]C =

(

∂µ −Bµ
m

◦

Dm

) [

ηiA(y)η
j
B(y)e

m
ij (x, y)

]

+QC
µ [Ae

m
B]C ,

= ηiAη
j
BDµe

m
ij + im7Bµ

m ◦

em
aΓa

C[Ae
m
B]C +QC

µ [Ae
m
B]C ,

= ηiAη
j
B

(

Dµe
m
ij +Qk

µ[ie
m
j]k

)

. (63)

Analogous relations hold for the other generalised vielbeine:

DµemnAB +QC
µ [AemnB]C = ηiAη

j
B

(

Dµemnij +Qk
µ[iemnj]k

)

, (64)

Dµem1...m5AB +QC
µ [Aem1...m5B]C = ηiAη

j
B

(

Dµem1...m5ij +Qk
µ[iem1...m5j]k

)

, (65)

Dµem1...m7,nAB +QC
µ [Aem1...m7,nB]C = ηiAη

j
B

(

Dµem1...m7,nij +Qk
µ[iem1...m7,nj]k

)

. (66)

The non-covariant term in (62) thus ensures that we can freely convert between ‘curved’ and ‘flat’
SU(8) indices in all relations.

Let us first consider the generalised vielbein postulate for emAB , which is already analysed in [32].
The supersymmetry transformation of the graviphoton Bµ

m gives rise to the generalised vielbein
emAB , equation (7). In Kaluza-Klein theory, the exact ansatz relating the graviphoton to the four-
dimensional vector field is given by the the Killing vectors of the internal space, (39). As we
have already mentioned, this ansatz, via equations (37) and (7), also furnishes an ansatz (43) for
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the generalised vielbein emAB . The emergence of the SO(8) covariantisation of the four-dimensional
derivative is then easily seen to be a consequence, in accordance with general Kaluza-Klein theory,
of the appearance of the commutator of two Killing vector fields in

(∂µ −Bµ
n

◦

Dn)e
m
ij +

◦

DnBµ
menij (67)

and the fact that
◦

DmBµ
m = 0 for any Killing vector. More precisely, plugging these ansätze into

the generalised vielbein postulate (24) and using equation (63), the latter reduces to

∂µe
m
ij −

√
2

8

◦

DnK
nIJAµ

IJemij +

√
2

4

(

KnIJ
◦

DnK
mKL −KnKL

◦

DnK
mIJ

)

Aµ
IJ
[

uij
KL + vijKL

]

+ Qk
µ[ie

m
j]k + Pµijkle

mkl = 0. (68)

Using equation (36), the first three terms in the generalised vielbein postulate (68) reduce to

KmIJ
(

δIK∂µ − 2
√
2Aµ

IK
)

[

uij
KJ + vijKJ

]

= 0, (69)

which is a contraction of the SO(8) gauge covariant derivative on the scalar fields. Denoting

w+
ij
IJ = uij

IJ + vijIJ , w−
ij
IJ = i

[

uij
IJ − vijIJ

]

(70)

and by w+ij
IJ and w−ij

IJ their complex conjugates, respectively, the generalised vielbein postulate
gives

KmIJ
(

DSO(8)
µ w+

ij
IJ +Qk

µ[iw
+
j]k

IJ + Pµijklw
+kl

IJ

)

= 0, (71)

where the SO(8) gauge covariant derivative is defined as

DSO(8)
µ w±

ij
IJ = ∂µw

±
ij
IJ − 2

√
2m7Aµ

K[Iw±
ij
J ]K . (72)

Thence, we identify Aµ
IJ as the SO(8) gauge fields and

√
2m7 as the SO(8) gauge coupling. Thus,

the generalised vielbein postulate reduces to a particular component of the E7(7) Cartan equation
with SO(8) covariant derivatives, as claimed above.

While this part of the argument was already given in [32], the SO(8) covariantisation on the
other components of the generalised vielbein cannot be traced back to geometrical arguments of this
type. In Ref. [32] it is argued that equation (71) in fact implies the E7(7) Cartan equation with
SO(8) covariant derivatives. However, here, by considering all of the generalised vielbein postulates,
we can see that this equation follows directly upon compactification on S7. In other words, the rest
of the generalised vielbein postulates give rise to the ‘missing’ components of the Cartan equation
in (58). We will show this in turn for each of the generalised vielbein postulates (25)–(27).

The generalised vielbein postulate for emnAB , (25), becomes, after conversion to ‘flat’ SU(8)

indices using equation (64) and again using
◦

DmBµ
m = 0,

Dµemn ij + 2
◦

D[mB|µ|
pen]p ij + 3

◦

D[mB|µ|np]e
p
ij + Qk

µ[iemn j]k + Pµijklemn
kl = 0. (73)

The new feature here is the presence of the ‘magnetic’ vectors Bµmn, which according to equation
(40) could in principle lead to gauging of magnetic vector fields in the four-dimensional theory.
However, note that the relations between emnAB , (44), and Bµmn, (40), and the four-dimensional
fields are not made with respect to Killing vectors but via the tensor KIJ

mn, which from the Killing
spinor equation satisfies

◦

DpKmn
IJ = 2m7

◦

gp[mKn]
IJ . (74)
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This immediately implies that
◦

D[mB|µ|np] = 0. (75)

Hence, the magnetic vector fields drop out of relation (25) in the S7 reduction, thus ensuring that
effectively only the 28 electric vectors appear in the four-dimensional theory with their non-abelian
interactions, while the magnetic vectors all decouple! Using equations (34) and (74), the generalised
vielbein postulate then further simplifies to

∂µemnij +
1

12
m7Aµ

IJw−
ij
KL
(

Kp
[m

IJKn]p
KL −K[m

IJKn]
KL
)

+Qk
µ[iemnj]k +Pµijklemn

kl = 0, (76)

which, using equation (136), gives another component of the E7(7) Cartan equation:

Kmn
IJ
(

DSO(8)
µ w−

ij
IJ +Qk

µ[iw
−
j]k

IJ + Pµijklw
−kl

IJ

)

= 0. (77)

Next we consider the third equation, (26), which becomes, using
◦

DmBµ
m = 0 and equations (65)

and (75),

∂µem1...m5ij −Bµ
p

◦

Dpem1...m5ij − 5
◦

D[m1
B|µ|

pem2...m5]pij − 6
◦

D[m1
B|µ|m2...m5p]e

p
ij

+ Qk
µ[iem1...m5j]k + Pµijklem1...m5

kl = 0. (78)

In this case the reduction ansätze (45) and (50) not only contain tensors, rather than Killing vectors,

but they also contain the potential for the volume-form on the round 7-sphere
◦

ζ , which is not globally
defined. As we shall see below, these terms are not only crucial for obtaining the correct non-linear
flux ansätze, but equally crucial in the reduction of the generalised vielbein postulate.

Inserting the reduction ansätze for the generalised vielbeine and the vector fields and using
equations (133), (34) and (74), we obtain

Bµ
p

◦

Dpem1...m5ij =
1

4 · 6!Aµ
IJw+

ij
KLKpIJ

(

m7
◦

ηm1...m5pqK
qKL + 6 · 6!

◦

Dp

◦

ζm1...m5qK
qKL

+ 6 · 6!m7

◦

ζm1...m5qK
q
p
KL
)

, (79)

◦

D[m1
B|µ|m2...m5p]e

p
ij = − 1

4 · 6!Aµ
IJw+

ij
KLKpKL

(

m7
◦

ηm1...m5pqK
qIJ − 6 · 6!

◦

D[m1

◦

ζm2...m5p]qK
qIJ

− 6 · 6!m7

◦

ζ q[m1...m5
Kq

p]
IJ
)

. (80)

Hence,

Bµ
p

◦

Dpem1...m5ij + 6
◦

D[m1
B|µ|m2...m5p]e

p
ij

=
1

4 · 6!Aµ
IJw+

ij
KL
(

7m7
◦

ηm1...m5pqK
pIJKqKL + 6 · 7!

◦

D[p

◦

ζm1...m5q]K
pIJKqKL

+ 6 · 6!m7

◦

ζm1...m5qK
pIJKq

p
KL + 36 · 6!m7

◦

ζ q[m1...m5
Kq

p]
IJKpKL

)

,

=
1

4 · 6!m7Aµ
IJw+

ij
KL
(

◦

ηm1...m5pqK
pIJKqKL + 48 · 6!

◦

ζm1...m5qδ
IKKqJL

+ 30 · 6!
◦

ζ pq[m1...m4
Kq

m5]
IJKpKL

)

, (81)
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where in the second equality above we have used equations (48) and (135). A straightforward
substitution of the ansätze (39) and (50) also gives

5
◦

D[m1
B|µ|

pem2...m5]pij =
5m7

8 · 6!Aµ
IJw+

ij
KLKp

[m1

IJ
(

◦

ηm2...m5]pqrK
qrKL + 12 · 6!

◦

ζm2...m5]pqK
qKL

)

.

(82)

Now, using the identity

5Kp
[m1

IJ ◦

ηm2...m5]pqrK
qrKL = 2Kp

r
IJ ◦

ηm1...m5pqK
qrKL (83)

and equation (136), the first terms on the right hand side of equations (81) and (82) precisely combine
to give

1

6!
m7Aµ

IJw+
ij
KL ◦

ηm1...m5pqδ
IKKpqJL = − 2

6!
m7Aµ

IJw+
ij
KLδIKKm1...m5

JL. (84)

Moreover, the third term on the right hand side of equation (81) cancels the second term on the
right hand side of equation (82). Therefore, in all, equation (78) simplifies to

(

Km1...m5

IJ − 6 · 6!
◦

ζm1...m5pK
pIJ
) [

DSO(8)
µ w+

ij
IJ +Qk

µ[iw
+
j]k

IJ + Pµijklw
+kl

IJ

]

= 0. (85)

Using equations (71) and (133), the above equation implies

KmnIJ
(

DSO(8)
µ w+

ij
IJ +Qk

µ[iw
+
j]k

IJ + Pµijklw
+kl

IJ

)

= 0. (86)

Finally, we consider the generalised vielbein postulate for em1...m7,n, which using the same equa-
tions as before, simplifies to

∂µem1...m7,nij −Bµ
p

◦

Dpem1...m7,nij − ∂nBµ
pem1...m7,pij − 2∂[m1

B|µ|m2...m6
em7]nij

+Qk
µ[iem1...m7,nj]k + Pµijklem1...m7,n

kl = 0. (87)

A similar calculation to the one outlined above for the em1...m5AB gives

Bµ
p

◦

Dpem1...m7,nij = −
√
2

2 · 9!Aµ
IJw−

ij
KL
(

5m7
◦

ηm1...m7
KpIJKKL

pn + 36 · 7!
◦

D[m1|
◦

ζp|m2...m6
KpIJKKL

m7]n

+ 6 · 7!m7

◦

ζ [m1...m6

(

Km7]
IJKKL

n −Km7]
KLKIJ

n

)

)

,

(88)

∂nBµ
pem1...m7,pij = −

√
2

2 · 9!m7Aµ
IJw−

ij
KLKp

n
IJ
(

◦

ηm1...m7
Kp

KL + 6 · 7!
◦

ζ [m1...m6
Km7]p

KL
)

, (89)

2∂[m1
B|µ|m2...m6

em7]nij =

√
2

2 · 9!Aµ
IJw−

ij
KL
(

6m7
◦

ηm1...m7
KpIJKKL

pn

+ 36 · 7!
◦

D[m1|
◦

ζp|m2...m6
KpIJKKL

m7]n

+ 6 · 7!m7

◦

ζ [m1...m6
Km7]p

IJKp
n
KL
)

, (90)
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where we have used equations (34), (48), (74), (133) and antisymmetrisations over eight indices,
which vanish, to simplify the expressions above. It is now simple to verify, using equations (135)
and (136), that

Bµ
p

◦

Dpem1...m7,nij + ∂nBµ
pem1...m7,pij + 2∂[m1

B|µ|m2...m6
em7]nij

=
4
√
2

9!
m7Aµ

KIw−
ij
JK
(

◦

ηm1...m7
KIJ

n + 6 · 7!
◦

ζ [m1...m6
Km7]n

IJ
)

. (91)

Hence equation (87) reduces to

Km
IJ
(

DSO(8)
µ w−

ij
IJ +Qk

µ[iw
−
j]k

IJ + Pµijklw
−kl

IJ

)

= 0, (92)

where we have used equation (77) to eliminate the expression proportional to
◦

ζ .
To sum up: in the reduction of (24), the SO(8) gauge covariant derivative arose from the geomet-

rical properties of Killing vectors on S7. However, for the other generalised vielbeine the emergence
of the SO(8) gauge covariant derivative is not so direct. Indeed, the reduction of the other gen-
eralised vielbein postulates is particularly novel given that the postulates (25)–(27) contain fields
(Bµmn and Bµm1...m5

) for which the identification with the four-dimensional vector fields is not made
with the S7 Killing vectors, but with more general structures on the 7-sphere. We stress again that

in the derivation of the last two equations, (86) and (92), the
◦

ζ terms in the ansätze are crucial
for obtaining the SO(8) gauge covariant terms. Therefore, the SO(8) gauge covariant derivatives
emerge, not in spite of but because of these more general structures.

The results that we have obtained from the reduction of the generalised vielbein postulates,
equations (71), (77), (86) and (92), can be summarised as

KaIJ
(

DSO(8)
µ w±

ij
IJ +Qk

µ[iw
±
j]k

IJ + Pµijklw
±kl

IJ

)

= 0, (93)

KabIJ
(

DSO(8)
µ w±

ij
IJ +Qk

µ[iw
±
j]k

IJ + Pµijklw
±kl

IJ

)

= 0. (94)

Since KaIJ and KabIJ form a basis of antisymmetric 28×28 matrices, these equations are equivalent
to

DSO(8)
µ Vij

IJ +Qk
µ[iVj]k

IJ + PµijklVkl
IJ = 0, (95)

where V(x) is the E7(7)/SU(8) coset element parametrised by the scalar fields. In Ref. [32] this
equation was argued, somewhat indirectly, to hold solely on the basis of the generalised vielbein
postulate for emAB , equation (24). Here we see that it naturally follows from the full set of generalised
vielbein postulates.

In summary, we find that, in the case of the S7 compactification both Bµ
m and Bµm1...m5

con-
tribute to the electric vector fields, while the magnetic vector fields drop out of the expressions.
Indeed, from equations (39) and (45) we see that this is natural because Bµ

m and Bµm1...m5
project

onto different SO(8) components of the electric vector field Aµ
IJ .

5 A first test of the non-linear six-form ansatz

In this section we check the consistency of the relations derived in section 3, in particular the
non-linear ansatz for the dual six-form using the relatively simple, yet non-trivial SO(7)± invariant
solutions of gauged supergravity [29] for which the higher-dimensional solutions are known [27, 28].
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For the convenience of the reader, we give a brief description of these solutions from both a four and
higher-dimensional perspective in appendix A. The non-linear metric and flux ansätze, equations
(53) and (55), respectively, have been subjected to some very non-trivial tests, which they have
passed with remarkable success, most recently in [3] (where references to earlier work can also be
found). In particular, these ansätze correctly reproduce the SO(7)± invariant solutions [26, 33, 3].
Therefore, let us consider the non-linear ansatz, equation (57), for the dual six-form potential of the
SO(7)± invariant solutions.

Using the following E7(7) properties satisfied by uijKL and vijKL [8]

uijIJuij
KL − vijIJv

ijKL = δKL
IJ , (96)

uijIJvijKL − vijIJu
ij
KL = 0, (97)

one can show that

(uij
IJ + vijIJ)(u

ij
KL + vijKL) = δIJKL + 2 vIJMNvKLMN + 2Re(uMN

IJvMNKL). (98)

Now, using the form of uijKL and vijKL for the SO(7)± invariant solutions, given in appendix A,
and the following identifies satisfied by CIJKL

± [27, 34]

CIJMN
+ CMNKL

+ = 12δIJKL + 4CIJKL
+ , (99)

CIJMN
− CMNKL

− = 12δIJKL − 4CIJKL
− , (100)

the above equation reduces to

(uij
IJ + vijIJ)(u

ij
KL + vijKL) = (c3 + ǫ s3)δIJKL +

1

2
ǫ cs(c+ s)CIJKL

+ − 1

2
(1− ǫ) cs2CIJKL

− , (101)

where

ǫ =

{

1 SO(7)+

0 SO(7)−
. (102)

Dualising Γm1...m5
and using the identities satisfied by the contraction of CIJKL

± with KmIJ and
KmnIJ (see Ref. [3]) gives

Anm1...m5
−

√
2

4
An[m1m2

Am3m4m5]

=

√
2

4 · 6! ∆ gnp

{

12 · 6!(c3 + ǫs3)
◦

ζm1...m5

p

− cs(c+ s)

3
ǫ
[

◦

ηm1...m5

p
qξ

q + 6 · 6!
◦

ζm1...m5q

(

(3 + ξ)
◦

gpq − (21 + ξ)ξ̂mξ̂n
)]

− (1− ǫ)cs2
◦

ηm1...m5rs

◦

Sprs

}

. (103)

To compare this result, obtained from the uplift formula, with the results directly obtained by solving
the D = 11 field equations, let us first consider the SO(7)+ invariant solution. Using

cs(c+ s) = γ1/2/5, c3 + s3 = 2γ1/2/5 (104)
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and noting that Amnp = 0 for this solution, equation (103) reduces to

Am1...m6
=

√
2

2 · 6!
1

9− ξ
◦

ηm1...m6pξ
p − 3

√
2

◦

ζm1...m6
, (105)

where we have used the form of the metric gmn given in equation (116). Now, taking the exterior
derivative of this equation gives

7!
◦

D[m1
Am2...m7] = − 180

√
2

(9− ξ)2
m7

◦

ηm1...m7
, (106)

which agrees precisely with the expression found by dualising the Freund-Rubin field strength for
the value of γ set by the non-linear ansätze, see equation (120).

Next, consider the SO(7)− invariant solution. Using the expressions for Amnp and gmn in ap-
pendix A, it is simple to show that equation (103) reduces to

Am1...m6
= −3

√
2

◦

ζm1...m6
+

√
2

16 · 6!γ
−1/3

◦

Spq
[m1

◦

ηm2...m6]pq. (107)

However, the second term on the right hand side vanishes by the Schouten identity and the trace-
lessness of the torsion. Hence,

Am1...m6
= −3

√
2

◦

ζm1...m6
, (108)

which agrees with the expression for Am1...m6
given in equation (130) for the particular value of γ

set by the ansätze.

6 Outlook: magnetic vectors and the embedding tensor

Having established the full consistency of all equations for the S7 compactification we now return to
the most remarkable feature of the vielbein postulate equations (24)–(27), namely the fact that they
simultaneously involve the Kaluza-Klein vectors, the ‘non-geometric vectors’ coming from the three-
form field, and the D = 11 dual vector fields. In principle, it is therefore clear that both ‘electric’
vector fields coming from the reduction of Bµ

m and Bµm1...m5
, and ‘magnetic’ vector fields, coming

from the reduction of Bµmn, can be gauged. This is a feature that our construction shares with
the embedding tensor formalism as applied to gaugings of maximal supergravity in four dimensions
[10, 11, 12]. There as well, one initially works with the full set of 56 electric and magnetic vector
fields, replacing the Cartan equations (58) with the more general ansatz

V−1(x)
[

∂µ − gAIJ
µ (x)ΘIJ AYA − gAµ IJ(x)Θ

IJ
AYA

]

V(x) = Qµ(x) + Pµ(x), (109)

where YA (A = 1, . . . , 133) are the generators of E7(7),
(

ΘIJ A,ΘIJA
)

is the embedding tensor,

and AIJ
µ and AµIJ are the electric and magnetic vectors introduced in (37) and (38), respectively.

The embedding tensor thus transforms in the product 56 ⊗ 133, but a consistent gauging with 28
propagating gauge fields exists only when Θ restricts to the 912 representation of E7(7) in this product
[10, 11, 12] (and in addition satisfies a quadratic identity). The choice of embedding tensor not only
determines the gauge group, but also decides which 28 vector fields out of the initial 56 vectors
become propagating non-abelian vectors. Consequently, studying the vielbein equations (24)—(27)
in parallel with (109) should thus enable one to understand the embedding tensor and its relation to
any particular compactification directly from the eleven-dimensional perspective. Although we will
leave the full exploration of these possibilities to future work, we conclude with some comments.
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In the S7 compactification considered in section 4, the SO(8) gauge covariant derivative term
comes from the following terms in the generalised vielbein postulates:

∂mBµ
n and ∂[m1

B|µ|m2...m6]. (110)

In particular, terms of the form

∂mBµ
m and ∂[mB|µ|np] (111)

do not contribute. The first expression above vanishes because the Kaluza-Klein ansatz for the
graviphoton is given by S7 Killing vectors, which are divergence-free; while the second expression
vanishes because of the form of the Kaluza-Klein ansatz for Bµmn, equation (40), and properties of
S7 Killing spinors.

A natural question to ask is whether one can find examples of compactifications where the ex-
pressions (111), that vanish for the S7 reduction, contribute to the four-dimensional Cartan equation
(109). For example, while the first expression vanishes for Killing vectors, it is non-zero for conformal
Killing vectors, which also form a simple Lie algebra. An interesting question is whether one can
carry out more general reductions of this type.

Furthermore, a particularly interesting class of gaugings to investigate in this context are the
Scherk-Schwarz compactifications [35] and twisted 7-torus flux compactifications [36, 37, 38, 39, 40],
which lead to various gaugings in four dimensions (see [12] for a review of known gaugings in four
dimensions). While the original Scherk-Schwarz reductions on flat groups are known to lead to
electric gaugings [41], flux compactifications provide examples where both electric and magnetic
vector fields contribute to the gauging [38].

A study of the generalised vielbein postulates may also shed light on the higher-dimensional
origins of the recently discovered continuous family of inequivalent maximal SO(8) gauged super-
gravities [30]. While the original SO(8) gauged supergravity [8] in the SL(8,R) symplectic frame only
contains electric gaugings, there is a deformation that allows both electric and magnetic gaugings
in the aforementioned symplectic frame. For a given range of the angle of rotation between gaug-
ings of electric and magnetic vector fields the theory is inequivalent to the original theory. While
D = 11 supergravity apparently cannot explain the existence of these new supergravities, with the
framework presented here it is possible to investigate whether D = 11 supergravity admits an anal-
ogous deformation that rotates Bµ

MN and BµMN, defined in (20), into each other and that would be
implemented by a rotation on the 56-bein (15) in complete analogy with the D = 4 theory [2]. The
S7 compactification of these putative theories would then give rise to the magnetic gaugings in the
deformed theories found in [30].
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A SO(7)± invariant solutions

In this appendix, we summarise the SO(7)± invariant stationary points of maximal gauged super-
gravity [29] and their respective eleven-dimensional counterpart solutions [27, 28]. The non-linear
metric and flux ansätze have been confirmed for these solutions in Ref. [26, 3]. Much of the nec-
essary information regarding these solutions is explained in Ref. [3] and in particular its appendix
A. Therefore, for brevity, we refer the reader there for the definitions of the relevant structures and
content ourselves here with a list of the most important properties of these solutions that will be
relevant for the calculations in section 5.

The scalar profile for the SO(7)+ invariant stationary point is given by [34, 26]

uIJKL = p3δIJKL + 1
2pq

2CIJKL
+ , (112)

vIJKL = q3δIJKL + 1
2p

2qCIJKL
+ , (113)

where constants p and q are such that [29]

c2 = (p2 + q2)2 =
1

2
(3/

√
5 + 1), (114)

s2 = (2pq)2 =
1

2
(3/

√
5− 1). (115)

The eleven-dimensional solution is of the form [27]

gMN = γ7/18 30−2/3(9− ξ)2/3

(

◦

ηµν ,
γ−1/2

9− ξ

[

30
◦

gmn − (21 + ξ) ξ̂mξ̂n

]

)

, (116)

FMNPQ =

(√
6

3
im7 γ

5/6 ◦

ηµνρσ , 0

)

, (117)

where γ is an arbitrary constant, which takes the value

γ = 53/2 (118)

when the solution is constructed via the non-linear ansätze [3]. Note that the determinant of the
siebenbein

∆ = det (em
a) =

√

det(gmn) = γ−7/18 302/3(9− ξ)−2/3. (119)

In addition, due to the existence of the Freund-Rubin term, the dual potential A(6) is non-zero
and of the form

7!D[M1
AM2...M7] =

{

−180
√
10m7 γ

−1/3(9− ξ)−2 ◦

ηm1...m7
[m1 . . . m7]

0 otherwise
. (120)

The scalar profile of the SO(7)− invariant stationary point of maximal supergravity is of the
form [34, 26]

uIJKL = p3δIJKL − 1
2pq

2CIJKL
− , (121)

vIJKL = iq3δIJKL − 1
2 ip

2qCIJKL
− , (122)
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where constants c and s, related to p and q, as above take the values [29]

c2 =
5

4
, s2 =

1

4
. (123)

The eleven-dimensional solution is of the form [28]

gMN = γ7/18
(

◦

ηµν , γ−1/2 ◦

gmn

)

, (124)

FMNPQ =

(

2
√
2im7 γ

5/6 ◦

ηµνρσ,

√
2

6
m7 γ

−1/6 ◦

ηmnpqrst

◦

Srst

)

, (125)

and in particular,

AMNP =















2
√
2 iγ5/6

◦

ζµνρ [µνρ]
√
2

4! γ
−1/6

◦

Smnp [mnp]

0 otherwise

, (126)

where
◦

ζµνρ is the potential for the Freund-Rubin field strength

4! ∂[µ
◦

ζνρσ] = m7
◦

ηµνρσ. (127)

As before, γ is an arbitrary constant that is fixed by the non-linear ansätze to take the value [3]

γ1/3 = 5/4. (128)

Furthermore,
∆ = det (em

a) =
√

det(gmn) = γ−7/18. (129)

The six-form potential for this solution is of the form [4]

AM1...M6
=















√
2

12 i γ
2/3

◦

ζµνρ
◦

Smnp [µνρmnp]

−15
√
2

4 γ−1/3
◦

ζm1...m6
[m1 . . . m6]

0 otherwise

, (130)

where
◦

ζm1...m6
is defined in equation (48).

B Useful identities

We list some useful identities satisfied by 7-dimensional Γ-matrices. These identities already appear
in Refs. [14] and [1].

Γa1...a7 = −iǫa1...a7 , (131)

Γa1...a6 = −iǫa1...a6bΓb, (132)

Γa1...a5 =
i

2
ǫa1...a5bcΓbc, (133)

Γa1...a4 =
i

3!
ǫa1...a4bcdΓbcd, (134)

Γab
ABΓ

b
CD − Γb

ABΓ
ab
CD = 8δ[C|[AΓ

a
B]|D], (135)

Γ
c[a
ABΓ

b]c
CD + Γ

[a
ABΓ

b]
CD = 4δ[C|[AΓ

ab
B]|D]. (136)

These identities are exactly identities (A.1), (A.6) and (A.7) in the appendix A of [1].
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