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We present nonlinear uplift Ansätze for all the bosonic degrees of freedom and dual fields in the S7

reduction of D ¼ 11 supergravity to maximal SO(8) gauged supergravity and test them for the SOð7Þ�
invariant solutions. In particular, we complete the known Ansätze for the internal components of the

metric and four-form flux by constructing a nonlinear Ansatz for the internal components of the dual

seven-form flux. Furthermore, we provide Ansätze for the complete set of 56 vector fields, which are given

by more general structures than those available from standard Kaluza-Klein theory. The novel features

encountered here have no conventional geometric interpretation and provide a new perspective on Kaluza-

Klein theory. We study the recently found set of generalized vielbein postulates and, for the S7

compactification, we show that they reduce to the E7ð7Þ Cartan equation of maximal SO(8) gauged

supergravity in four dimensions. The significance of this framework for a higher-dimensional under-

standing of the embedding tensor and other gauged maximal supergravities is briefly discussed.
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I. INTRODUCTION

In this article, we continue the investigation of the
generalized geometry underlying maximal supergravity
on the basis of the SOð1; 3Þ � SUð8Þ invariant reformula-
tion [1] of D ¼ 11 supergravity, which has been further
developed in very recent work [2–4]. Our main concern
here will be the question of whether the consistency results
of standard Kaluza-Klein theory can be extended to the
‘‘nongeometrical’’ structures that arise in this context, and
in particular from the vector and form fields and their
duals. Focusing on D ¼ 11 supergravity [5], and more
specifically on its S7 compactification [6,7] to maximal
gauged SO(8) supergravity in four dimensions [8], is am-
ply justified by the fact that this theory presents by far the
richest structure of all Kaluza-Klein models studied so far,
but of course, we expect our results to be relevant also in a
more general context.

The question of whether a four-dimensional theory can
be obtained by dimensional reduction from higher dimen-
sions, and the question of whether a given compactification
of a higher-dimensional theory can be associated with a
consistent truncation is clearly an important and pertinent
one. Consistency here by definition is taken to mean that
any full solution of the lower-dimensional theory should
admit an uplift to a full solution of the nonlinear higher-
dimensional field equations. However, establishing such a
relation and its consistency is far from obvious in all but
the most trivial examples. In particular, due to the generic
emergence of non-Abelian gauge theories in Kaluza-Klein
compactifications, we have to deal with gauged supergrav-
ities. The most efficient framework for understanding these

theories (in any dimension) is the embedding tensor for-
malism [9–12]. Therefore, any general scheme that aims to
address the issue of the higher-dimensional origin of four-
dimensional theories should provide a higher-dimensional
perspective on the embedding tensor. Furthermore, given a
consistent truncation, yet another challenging task is to
give explicit uplift Ansätze for all relevant fields, some-
thing that standard Kaluza-Klein theory cannot give for
fields other than the graviton and the vector fields.
In Ref. [1], a 4þ 7 splitting of D ¼ 11 supergravity is

considered with an appropriate decomposition of all
11-dimensional fields with respect to this splitting, while
retaining full on-shell equivalence to the original theory.
This reformulation has manifest local SU(8) invariance,
and emphasizes and generalizes the structures that would
appear upon a toroidal reduction of the theory to four
dimensions [13,14]. The construction of Ref. [1] relies on
an analysis of the supersymmetry transformations of the
redefined fields, and a crucial object that emerges from
the supersymmetry transformation of the graviphoton is an
SU(8) tensor, the generalized vielbein. The graviphoton

gives rise to vector fields upon reduction. However, in the

reduced theory these are complemented by other vector

fields. In particular, the three-form potential also contrib-

utes to the vector degrees of freedom. The supersymmetry

transformation of these vectors in the D ¼ 11 theory gives
rise to yet another generalized vielbein [2]. The observa-

tion made in Ref. [4] is that by considering dualization of

11-dimensional fields, a full set of 56 vectors is obtained

whose supersymmetry transformations give rise naturally

to an E7ð7Þ vielbein in 11 dimensions.

The emergence [4] of E7ð7Þ structures in D ¼ 11 super-

gravity gives a new perspective on the extent to which

duality symmetries play a role in the full unreduced

D ¼ 11 theory and the necessity to transcend usual notions
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of geometry.1 However, the framework that is developed in
Ref. [4]—based on the SU(8) invariant reformulation [1] of
D ¼ 11 supergravity and extending the recent results of
Ref. [2]—is also the most natural setting in which to
understand the 11-dimensional origins of four-dimensional
gauged theories. The construction in Ref. [4] highlights
structures in 11 dimensions that are manifest in the reduced
theory, enabling one to address questions concerning uplift
Ansätze and the appearance of particular gaugings in four
dimensions from a reduction point of view.

In this paper, we use the S7 reduction to maximal gauged
supergravity to illustrate the effectiveness of the frame-
work presented in Ref. [4]. In particular, we extend the
Kaluza-Klein Ansätze for the graviphoton [16–18] and the
vector associated with the three-form potential [2] to vec-
tors associated with dual fields, revealing novel features.
These Ansätze allow us to derive a nonlinear Ansatz for the
internal components of the six-form potential complement-
ing the nonlinear Ansätze for the internal components of
the metric [19] and the three-form potential [2]. A remark-
able feature of this analysis is the existence of a nonlinear
Ansatz not only for a dual field, but for all fields.

To illustrate the novelty of the present construction,
let us first recall some well-known facts from standard
Kaluza-Klein theory [16–18]. Starting from the higher-
dimensional vielbein EM

AðzÞ � EM
Aðx; yÞ, where the

higher-dimensional coordinates fzMg are split into four-
dimensional coordinates fx�g and internal coordinates
fymg, respectively, one proceeds from the Ansatz

EM
Aðx; yÞ ¼ ��1=2e0�� B�

mem
a

0 em
a

 !
; (1)

where em
aðx; yÞ is the vielbein associated with the internal

manifold on which the higher-dimensional theory is as-
sumed to be compactified, � � det em

a, and e0�� is the

Weyl rescaled vierbein of the compactified theory; the
triangular form of EM

A is arrived at by making partial
use of the local Lorentz symmetry of the higher-
dimensional theory. A consistent truncation for the spin-2
field (graviton) is achieved simply by setting

e0��ðx; yÞ � e0��ðxÞ;
that is, by dropping all dependence on the internal coordi-
nates. Likewise, for the vectors B�

mðx; yÞ, the exact con-

sistent Ansatz has been known for a very long time [16–18];
it reads

B�
mðx; yÞ ¼ KmI ðyÞAI

�ðxÞ; (2)

where the index I labels the Killing vectors KmI ðyÞ on the
internal manifold. It is a key result of Kaluza-Klein theory
that the non-Abelian gauge interactions of the compactified

theory then originate from the commutator of two Killing
vector fields

½KmI@m;K
nJ @n� ¼ fIJKKpK@p; (3)

where fIJK are the structure constants of the isometry

group of the internal manifold. In this way the gauge group
of the compactified theory is completely explained in geo-
metric terms.While this has been well understood for many
decades, the main difficulty in establishing the full consis-
tency of the Kaluza-Klein reduction resides in the scalar
sector, in particular involving the search for consistent
Ansätze for the internal vielbein em

aðx; yÞ and other fields
of a tensorial nature under internal symmetries. The main
focus of the present work, then, is to develop a similar
theory for ‘‘nongeometrical’’ vector fields andmatter fields,
and in particular, for those fields arising from dual fields in
higher dimensions, for which no readily applicable formu-
las are available from general Kaluza-Klein theory—hence
the need for a ‘‘generalized geometry.’’
The structure of the paper is as follows: In Sec. II, we

review the main results of Ref. [4]. We briefly discuss how
the consideration of dual fields in 11 dimensions can be
used to construct 56 vectors, the supersymmetry transfor-
mations of which give rise to a set of generalized vielbeine
that are parametrized by the ‘‘internal’’ components of the
11-dimensional metric, three-form potential and its dual
six-form. The generalized vielbeine can be viewed as
components of an E7ð7Þ matrix and the supersymmetry

transformations of the bosonic fields can be cast into a
form that mirrors the analogous supersymmetry transfor-
mations in four dimensions. Furthermore, the generalized
vielbein postulates [1,4] are summarized in Sec. II C.
Specializing to the S7 reduction of D ¼ 11 supergravity

to maximal SO(8) gauged supergravity in four dimensions
in Sec. III, we use the results summarized in Sec. II to
derive nonlinear Ansätze for all bosonic degrees of free-
dom. In particular, extending the result in Ref. [2], we give
Kaluza-Klein Ansätze for all 56 vector fields. These
Ansätze include not only Killing vector fields on S7, but
also tensors and the potential for the volume form on S7,
which is not globally defined. Comparing the 11- and four-
dimensional supersymmetry transformations of the vec-
tors, along the lines of Refs. [2,19], allows us to express
the generalized vielbeine in terms of the four-dimensional
scalars. These relations are then used to find a nonlinear
Ansatz for the internal components of the six-form dual
potential. The set of Ansätze for the vectors and the internal
components of the metric, three-form potential and its dual
comprise a set of uplift formulas for all bosonic degrees of
freedom. In section V, we test the nonlinear Ansatz for the
six-form field by explicitly checking that the Ansatz repro-
duces the internal component of the six-form potential of
the SOð7Þ� invariant solutions of D ¼ 11 supergravity
[20,21] from the scalar expectation values of the SOð7Þ�
invariant stationary points [22] of maximal SO(8) gauged

1For alternative approaches to generalized geometry and a list
of recent references with bibliographies, see Ref. [15].
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supergravity. The possibility to perform such explicit
checks of all formulas against various nontrivial compac-
tifications is a feature that distinguishes our formalism
from other approaches to generalized geometry.

From a four-dimensional point of view, the 56 vector
fields include the full set of electric and magnetic vectors
that can be gauged. In Sec. IV, we show that the generalized
vielbein postulates determine exactly which of the vector
fields are gauged in theS7 compactification. In particular,we
show that upon inserting the Ansätze relevant for the S7

compactification given inSec. III, themagnetic vector fields,
which come from the reduction of the three-form potential,
drop out of the expressions. Moreover, the generalized viel-
bein postulates reduce to the E7ð7Þ Cartan equation with an

SO(8) gauge covariant derivative. The SO(8) gauge fields
are solely electric and arise from the graviphoton and the
six-form potential. More generally, for any compactifica-
tion, the generalized vielbein postulates reduce to the four-
dimensional Cartan equation with the appropriate gauge
covariant derivative. Therefore, the generalized vielbein
postulates provide an understanding of how the gauge vec-
tors are selected from the 56 vector fields available. This
goes some way towards establishing the origin of the em-
bedding tensor in the higher-dimensional D ¼ 11 theory.

We conclude in Sec. VI with a brief, general discussion
of other compactifications that could lead to more general
gaugings in four dimensions. Of particular interest are
examples of compactifications where both electric and
magnetic vectors are gauged. We also discuss the possibil-
ity of using our framework to provide an 11-dimensional
perspective on the recently discovered continuous family
of SO(8) gauged supergravities [23].

In summary, the key results and issues raised in this
paper are as follows:

(i) Kaluza-Klein theory is developed for ‘‘nongeomet-
ric’’ vector fields.

(ii) Consistent nonlinear Ansätze are obtained for all
fields, including dual fields.

(iii) All formulas can be tested against nontrivial com-
pactifications ofD ¼ 11 supergravity and the asso-
ciated stationary points of N ¼ 8 supergravity.

(iv) With 56 ‘‘electric’’ and ‘‘magnetic’’ vectors present
in all D ¼ 11 relations, one can now study the
higher-dimensional origins of the embedding
tensor.

(v) Preliminary evidence is presented that the
!-deformed SO(8) gaugings of Ref. [23] corre-
spond to !-deformations of D ¼ 11 supergravity.

The conventions and index notations used in this paper
are as in Refs. [1,4].

II. DUAL FIELDS AND E7ð7Þ IN D ¼ 11
SUPERGRAVITY

In Ref. [4], the two generalized vielbeine previously
known from the literature [1,2] are completed to an E7ð7Þ

matrix in 11 dimensions by constructing two further
generalized vielbeine that are intimately related to the
dualization of the metric and the three-form potential in
11 dimensions. While the significance of this construction
from an 11-dimensional point of view is clear in that it
establishes the role of the E7ð7Þ duality group in the full

D ¼ 11 theory, its importance from a practical point of
view in relating the four-dimensional maximal supergrav-
ity to D ¼ 11 supergravity is what will be addressed in
this paper. In particular, the results of Ref. [4] give uplift
Ansätze for all bosonic degrees of freedom including a
nonlinear Ansatz for the six-form potential dual to the
three-form potential. We will illustrate this in great detail
for the S7 compactification of D ¼ 11 supergravity in the
following sections, but from the generality of our results it
should be clear that our construction furnishes similar
information for other compactifications of D ¼ 11 super-
gravity. Consequently, we will first summarize the general
results in this section, without reference to any specific
compactification.

A. Dual vector fields and generalized vielbeine

Working in the context of the SU(8) invariant reformu-
lation of D ¼ 11 supergravity, one identifies certain
SU(8) objects starting from an analysis of the fermionic
sector [1].2 In the bosonic sector, the most prominent of
these objects are the so-called generalized vielbeine, which
can be regarded as components of an E7ð7Þ matrix in 11

dimensions. The generalized vielbeine appear when one
considers the supersymmetry transformation of those com-
ponents of the elfbein, three-form potential and their dual
fields which in a proper reduction to four dimensions
would give rise to vector fields. However, it is important
to keep in mind the main feature of the present analysis
(and of Ref. [1]), namely that we retain the full coordinate
dependence on all 11 coordinates throughout. Therefore,
we will not be dealing with a dimensional reduction in
the strict sense of the word, but rather a 4þ 7 split and a
subsequent reformulation of the theory. Furthermore, the
reformulated theory is on-shell equivalent to the original
D ¼ 11 supergravity of Ref. [5] at all stages of the
construction.
Let us therefore first consider the spin-1 sector of the

theory. In the direct dimensional reduction of D ¼ 11
supergravity to four dimensions there appear only 28 vec-
tor fields, namely [14]

B�
m and B�mn ¼ A�mn � B�

pApmn: (4)

The first seven of these are just the standard Kaluza-Klein
vector fields in the decomposition of the elfbein displayed
in Eq. (1), while the second set of vectors originates from
the three-form field AMNP. As explained in our previous

2See also Sec. 3.1 of Ref. [4] for a brief description of the
SU(8) invariant reformulation.
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work [4], this set of vector fields is complemented by
another set of vectors related to the dual fields in 11
dimensions, viz.3

B�m1...m5
¼ A�m1...m5

� B�
pApm1...m5

�
ffiffiffi
2

p
4

ðA�½m1m2
� B�

pAp½m1m2
ÞAm3m4m5�; (5)

B�m1...m7;n¼A�m1...m7;nþð3~c�1Þ
�ðA�½m1...m5

�B�
pAp½m1...m5

ÞAm6m7�n
þ ~cA½m1...m6

ðAj�jm7�n�B�
pAjpjm7�nÞ

þ
ffiffiffi
2

p
12

ðA�½m1m2
�B�

pAp½m1m2
ÞAm3m4m5

Am6m7�n:

(6)

The vector components in Eq. (5) thus originate from the
six-form Að6Þ which is the dual potential associated with

the three-form potential Að3Þ, whence it is clear that these

fields are simultaneously defined only on shell, as ex-
plained in Ref. [4]. The vector fields in Eq. (6) are related
to the dual gravity field in 11 dimensions, and are defined
only up to a real constant ~c. While the precise relation of
A�m1...m7;n to the D ¼ 11 fields is not known, the inde-

terminacy encoded in the parameter ~c can be traced back
to the fact that dual gravity does not give rise to scalar
degrees of freedom in the 4þ 7 split. We also note that
the nonlinear modifications in these equations which in-
volve the Kaluza-Klein vectors B�

m can be understood

geometrically via the conversion of curved to flat indices,
whereas the remaining nonlinear modifications are re-
quired by the consistency of the supersymmetry varia-
tions, but have no direct explanation in terms of
11-dimensional geometry.4

Thus, in all we have identified 56 such vector fields in
11 dimensions, starting from the fields of D ¼ 11 super-
gravity and their duals. These make up part of the
bosonic sector of our reformulation of D ¼ 11 super-
gravity in the framework of the ‘‘generalized geometry’’
introduced in Ref. [4]. However, not all of these vector
fields will correspond to independent propagating vec-
tors in a given compactification of the D ¼ 11 theory. In
particular, for compactifications related to N ¼ 8 super-
gravity and deformations thereof, we know that there
can be at most 28 propagating spin-1 degrees of

freedom. This is most easily seen in the T7 reduction
of Ref. [14], where the seven ‘‘electric’’ vectors from
B�

m (corresponding to the seven Killing vectors on T7)

combine with 21 ‘‘magnetic’’ vectors from B�mn to give

28 Abelian vector fields. The other 28 vectors corre-
spond to their four-dimensional duals such that the 11-
dimensional duality relations reduce to the ‘‘twisted self-
duality constraint’’ of Ref. [14] in the reduction to four
dimensions. For nontrivial compactifications of the the-
ory, the situation is, however, much more complicated
because of the appearance of non-Abelian gauge inter-
actions, for which the usual (Abelian) dualization of
vector fields does not work.
A judicious analysis of the supersymmetry transforma-

tions of these 56 vector fields [1,2,4] leads to the general-
ized vielbeine. For the vector fields in Eq. (4), the latter
can be directly obtained from theD ¼ 11 theory, while the
variation of B�m1...m5

in Eq. (5) is determined from the

variation of Að6Þ [4]. The supersymmetry transformation of

B�m1...m7;n is also given in Ref. [4], but it cannot be obtained

from the D ¼ 11 theory. It can, however, be obtained by
imposing consistency with the supersymmetry variations
of the other vector fields. Somewhat lengthy computations
show that [4]

�B�
m ¼

ffiffiffi
2

p
8

emAB

h
2

ffiffiffi
2

p
�"A’B

� þ �"C�
0
��

ABC
i
þ H:c:; (7)

�B�mn ¼
ffiffiffi
2

p
8

emnAB

h
2

ffiffiffi
2

p
�"A’B

� þ �"C�
0
��

ABC
i
þ H:c:; (8)

�B�m1...m5
¼

ffiffiffi
2

p
8
em1...m5AB

h
2

ffiffiffi
2

p
�"A’B

�þ �"C�
0
��

ABC
i
þH:c:;

(9)

�B�m1...m7;n

¼
ffiffiffi
2

p
8

em1...m7;nAB

h
2
ffiffiffi
2

p
�"A’B

� þ �"C�
0
��

ABC
i
þ H:c:;

(10)

where ’A
� and �ABC are the (chiral) fermions in the

SU(8) invariant reformulation, and where �0
� ¼ e0����

with the Weyl rescaled vierbein e0�� from Eq. (1). The

scalar coefficients in front of the fermionic bilinears make
up the generalized vielbeine, and are given by [1,2,4]

emAB ¼ i��1=2�m
AB; (11)

emnAB ¼ �
ffiffiffi
2

p
12

i��1=2
�
�mnAB þ 6

ffiffiffi
2

p
Amnp�

p
AB

�
; (12)

3Note the slight change in notation here compared with that
used in Ref. [4]. In particular, here, we reserve the notation
B�m1...m5

for the vector whose supersymmetry transformation
gives rise to the generalized vielbein em1...m5AB. A similar change
of notation is made for the fourth vector. In addition, the
arbitrary constant ~c here is related to c in Ref. [4] by ~c ¼
5!c=

ffiffiffi
2

p
.

4A geometrical explanation might, however, follow from E10

or E11, where the ‘‘vielbein’’ comprises not only the gravita-
tional, but also the three-form and six-form fields.
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em1...m5AB ¼ 1

6!
ffiffiffi
2

p i��1=2

�
�m1...m5AB þ 60

ffiffiffi
2

p
A½m1m2m3

�m4m5�AB � 6!
ffiffiffi
2

p �
Apm1...m5

�
ffiffiffi
2

p
4

Ap½m1m2
Am3m4m5�

�
�p
AB

�
; (13)

em1...m7;nAB ¼ � 2

9!
i��1=2

�
ð�m1...m7

�nÞAB þ 126
ffiffiffi
2

p
An½m1m2

�m3...m7�AB

þ 3
ffiffiffi
2

p � 7!

�
An½m1...m5

þ
ffiffiffi
2

p
4

An½m1m2
Am3m4m5

�
�m6m7�AB þ 9!

2

�
An½m1...m5

þ
ffiffiffi
2

p
12

An½m1m2
Am3m4m5

�
Am6m7�p�

p
AB

�
:

(14)

These objects carry SU(8) indices A; B; . . . and are to be
regarded as SU(8) tensors in a specific gauge, as explained
in Ref. [1]. As also shown there, one thereby enlarges
the original tangent space symmetry from SO(7) to a local
SU(8) symmetry that acts on the chiral fermions. Observe
that the new vielbein components, em1...m5AB and em1...m7;nAB,
which originate from the variations of the dual vectors (5)
and (6), themselves depend on the dual six-form field
Am1...m6

, and hence again are only defined on shell.

B. Emergence of E7ð7Þ structure
One can make the relation of the above expressions to

E7ð7Þ more explicit by combining the matrix blocks into a

single 56-bein in 11 dimensions [4],

V ðzÞ ¼ ðV MN
ABðzÞ;V MNABðzÞÞ; (15)

by means of the identifications

Vm8
AB ¼

ffiffiffi
2

p
8

emAB; VmnAB ¼ � 3

2
emnAB;

Vmn
AB ¼ � 3

2
��mnp1...p5ep1...p5AB;

Vm8AB ¼ 9
ffiffiffi
2

p
2

��n1...n7en1...n7;mAB:

(16)

This E7ð7Þ vielbein is equivalent (see Ref. [4]) to the one

considered in Ref. [24] in the context of another proposal
to realize an exceptional geometry. Note that complex
conjugation acts by raising or lowering the SU(8) indices,
viz.

ðV MN
ABÞ� ¼ V MNAB; ðV MN

ABÞ� ¼ V MNAB; (17)

but leaves the position of the SLð8;RÞ indices M, N
unaffected. The 56-bein V ðzÞ as defined above is a coset
element of E7ð7Þ=SUð8Þ written in terms of the decom-

position of the 56 of E7ð7Þ under initially its SLð8;RÞ and
then its GLð7;RÞ subgroups:

56 ! 28 � 28 ! 7 � 21 � 21 � �7: (18)

The world indices m; n; . . . labeling the seven-dimensional
directions and originally transforming under seven-
dimensional diffeomorphisms thus become associated
with the GLð7;RÞ subgroup of E7ð7Þ. In contrast to

Ref. [4], we have adjusted the normalization of the matrix
blocks in such a way that V ðzÞ, as defined in Eq. (16),
satisfies the following identity:

V MNABV MNCD �V MN
ABV MN

CD ¼ i�CD
AB : (19)

This is simply the statement that the inverse of an E7ð7Þ
matrix is related to its complex conjugate; more specifi-
cally, Eq. (19) is a necessary condition expressing the fact
that any E7ð7Þ matrix automatically belongs to Spð56;RÞ
[8,14]. The direct verification of Eq. (19) by substitution
of Eqs. (11)–(14) into Eq. (16) is straightforward.
The vectors can be arranged into a similar object of the

form ðB�
MN;B�MNÞ, such that

B�
m8 ¼ � 1

2
B�

m; B�mn ¼ 3
ffiffiffi
2

p
B�mn;

B�
mn ¼ 3

ffiffiffi
2

p
��mnp1...p5B�p1...p5

;

B�m8 ¼ �18��n1...n7B�n1...n7;m:

(20)

Thereby, the 28þ 28 vectors are combined into a 56 of
E7ð7Þ. In this language, the supersymmetry transformations

in Eqs. (7)–(10) can be compactly written as

�B�
MN ¼ � 1

2
V MN

AB

h
2
ffiffiffi
2

p
�"A’B

� þ �"C�
0
��

ABC
i
þ H:c:;

�B�MN ¼ � 1

2
V MNAB

h
2
ffiffiffi
2

p
�"A’B

� þ �"C�
0
��

ABC
i
þ H:c:

(21)

In Ref. [4], we have also shown that the matrix blocks
making up the 56-bein [Eq. (15)] transform uniformly
under local supersymmetry

�V MN
ABðzÞ ¼ � ffiffiffi

2
p

�ABCDV MNCDðzÞ;
�V MNABðzÞ ¼ � ffiffiffi

2
p

�ABCDV MN
CDðzÞ

(22)

with the complex self-dual tensor

�ABCD � �"½A�BCD� þ 1

24
�ABCDEFGH �"E�FGH; (23)

where we have discarded a local SU(8) rotation that
also acts uniformly on all components. In the forms of
Eqs. (21) and (22), the supersymmetry variations of com-
pactified maximal supergravity can be read off directly
from the D ¼ 11 formulas.
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C. Generalized vielbein postulates

The generalized vielbeine satisfy certain differential
constraints derived in Refs. [1,4]. These constraints are
generalizations of the vielbein postulate in Riemannian
geometry which establishes the relation between affine
and spin connections. For our subsequent analysis, here
we only need their components along the four space-time
directions, which are [1,4]

D�e
m
AB þ 1

2
@nB�

nemAB þ @nB�
menAB þQC

�½Ae
m
B�C

þ P�ABCDe
mCD ¼ 0; (24)

D�emnAB þ 1

2
@pB�

pemnAB þ 2@½mBj�j
pen�pAB

þ 3@½mBj�jnp�e
p
AB þQC

�½AemnB�C þP�ABCDemn
CD ¼ 0;

(25)

D�em1...m5AB þ 1

2
@pB�

pem1...m5AB � 5@½m1
Bj�j

pem2...m5�pAB

þ 3ffiffiffi
2

p @½m1
Bj�jm2m3

em4m5�AB � 6@½m1
Bj�jm2...m5p�e

p
AB

þQC
�½Aem1...m5B�C þ P�ABCDem1...m5

CD ¼ 0; (26)

D�em1...m7;nAB � 1

2
@pB�

pem1...m7;nAB � @nB�
pem1...m7;pAB

þ 5@½m1
Bj�jm2m3

em4...m7�nAB � 2@½m1
Bj�jm2...m6

em7�nAB
þQC

�½Aem1...m7;nB�C þ P�ABCDem1...m7;n
CD ¼ 0; (27)

where5

D� � @� � B�
m@m: (28)

In comparison with Eq. (88) of Ref. [4], the generalized
vielbein postulate for em1...m7;nAB has been simplified by

using the Schouten identity over eight indices. The con-
nection coefficients Q� and P� appearing in these equa-

tions are valued in the E7ð7Þ Lie algebra, and are related to

the connections and four-form field strengths of D ¼ 11
supergravity as follows [1]:

QA
�B ¼ � 1

2
½ema@mB�

nenb � ðepaD�epbÞ��ab
AB

�
ffiffiffi
2

p
12

��1=2e0��ðF�abc�
abc
AB � �����F

���a�aABÞ;
(29)

P�ABCD ¼ 3

4
½ema@mB�

nenb � ðepaD�epbÞ��a
½AB�

b
CD�

�
ffiffiffi
2

p
8

��1=2e0��Fabc��
a
½AB�

bc
CD�

�
ffiffiffi
2

p
48

��1=2e0���
����Fa����b½AB�ab

CD�: (30)

Below, we will use them in a slightly modified form, again
adapted to the S7 compactification.

III. NONLINEAR ANSÄTZE FOR MAXIMAL
SUPERGRAVITY ON S7

We will now illustrate the usefulness of the results in
the foregoing section by specializing to the S7 compactifi-
cation of D ¼ 11 supergravity [6,7], where our formalism
furnishes numerous new insights and results, most notably
with regard to the dual fields of D ¼ 11 supergravity. To
this aim, we will present a detailed analysis of the non-
linear Ansätze and the generalized vielbein postulate in the
context of the S7 compactification.

A. Compactification on S7

To begin with, and for the reader’s convenience, here we
collect some relevant (and well-known) formulas, see e.g.
Refs. [3,7], related to the seven-sphere. Denoting the S7

background covariant derivative by D
�
m, we recall that S7

admits eight Killing spinors �IðyÞ obeying�
D
�
m þ 1

2
im7e

�
m
a�a

�
�I ¼ 0; (31)

where I; J; . . . ¼ 1; . . . ; 8, and e
�
m
a
is the siebenbein on the

round S7. Written out in components, the Killing spinors
�I
A are orthonormal matrices; that is,

�A
I �

J
A ¼ �I

J; �A
I �

I
B ¼ �A

B: (32)

The 28 Killing vectors KmIJðyÞ and their derivatives
Kmn

IJðyÞ can then be represented as bilinears in terms of
Killing spinors, viz.

KmIJ ¼ ie
�ma ��I�a�

J; Kmn
IJ ¼ e

�
m
ae

�
n
b ��I�ab�

J; (33)

clearly,

D
�
nK

IJ
m ¼ m7K

IJ
mn ) D

�
mK

IJ
n þD

�
nK

IJ
m ¼ 0: (34)

Hence, D
�
nK

nIJ ¼ 0. Observe the different ‘‘canonical’’
positions of the world indices on Km and Kmn, and
the fact that both of these are always and by definition
related to the ‘‘flat’’ objects by means of the S7 background

siebenbein and its inverse. The vector fields KIJ �
KmIJD

�
m generate the SO(8) isometry group of the seven-

sphere via the Lie bracket

½KIJ; KKL� ¼ �8m7�
½Ij½KKL�jJ�; (35)

5Below, we will work with a slightly modified operator D�
adapted to the S7 compactification, cf. Eq. (59).
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or equivalently

KnIJD
�
nK

mKL � KnKLD
�
nK

mIJ ¼ �8m7�
½Ij½KKmL�jJ�:

(36)

However, in standard Kaluza-Klein geometry, there is no
corresponding interpretation for the tensor fields Kmn

IJ

[nor for Eq. (47) below].

B. The nonlinear Ansätze

The nonlinear Ansätze for maximal supergravity are
obtained by comparing the supersymmetry transforma-
tions in Eq. (21) with the analogous supersymmetry
transformations of the vectors in D ¼ 4 maximal super-
gravity [8,12]:

�A�
IJ ¼�1

2
ðuijIJ þvijIJÞ

h
2

ffiffiffi
2

p
�"i’j

�þ �"k�
0
��

ijk
i
þH:c:;

(37)

�A�IJ ¼�1

2
iðuijIJ �vijIJÞ

h
2
ffiffiffi
2

p
�"i’j

�þ �"k�
0
��

ijk
i
þH:c:

(38)

We will refer to the 28þ 28 vector fields A�
IJ and A�IJ

as ‘‘electric’’ and ‘‘magnetic’’ vectors, respectively.
In order to relate the D ¼ 4 vectors to the vector

fields identified in the previous section, we now need to
choose appropriate Kaluza-Klein Ansätze for all vectors in
Eqs. (4)–(6). For the Kaluza-Klein vector B�

m, this Ansatz

is well known, as we explained in the Introduction; choos-
ing appropriate normalizations, we have

B�
mðx; yÞ ¼ �

ffiffiffi
2

p
4

KmIJðyÞA�
IJðxÞ; (39)

where KmIJ are the 28 Killing vectors defined in Eq. (33).
However, for the remaining vector fields, and in particular
for those arising from the dual fields in higher dimensions,
there are no such Ansätze available from general Kaluza-
Klein theory, and therefore we have to proceed in a differ-
ent manner. In fact, for the ‘‘nongeometrical’’ vector fields
B�mnðx; yÞ, the appropriate Ansatz was already found in

Ref. [2]; it reads6

B�mnðx; yÞ ¼ 1

24
Kmn

IJðyÞA�IJðxÞ: (40)

We stress that the ‘‘canonical’’ position of the world in-
dices as defined in Ref. [2] is in accord with the position of

indices on B�
m and B�mn. We emphasize again that, unlike

for the standard Kaluza-Klein vector, there is a priori no
geometric argument to fix the Ansatz for B�mn.

Furthermore, the normalization had to be determined in
Ref. [3] by comparison with the D ¼ 4 theory.
Adopting the Kaluza-Klein Ansätze (39) and (40) for B�

m

and B�mn, respectively, and comparing the 11-dimensional

supersymmetry transformations (7) and (8) with the respec-
tive four-dimensional transformations (37) and (38) gives a
relation between the generalized vielbeine emAB and emnAB and
the four-dimensional scalars uij

IJ and vijIJ. More precisely,

the identification between 11-dimensional and 4-dimensional
SU(8) indices is made by means of the orthonormal Killing
spinors on the round sphere �i

A, which convert ‘‘curved’’ SU
(8) indices A; B; . . . (appropriate to the D ¼ 11 theory) into
‘‘flat’’ SU(8) indices i; j; k; . . . (appropriate to maximal
D ¼ 4 gauged supergravity) and vice versa in the terminol-
ogy of Ref. [25]. Hence,

Xijk... ¼ �A
i �

B
j �

C
k . . .XABC... ,

XABC... ¼ �i
A�

j
B�

k
C . . .Xijk...

(41)

for any SU(8) tensor by orthonormality of the Killing spinors
[Eq. (32)]. Accordingly, we define

emijðx; yÞ � emABðx; yÞ�i
AðyÞ�j

BðyÞ;
emnijðx; yÞ � emnABðx; yÞ�i

AðyÞ�j
BðyÞ:

(42)

The nonlinear Ansätze derived in previous work are then
given by

emijðx; yÞ ¼ KmIJðyÞ½uijIJ þ vijIJ�ðxÞ; (43)

emnijðx; yÞ ¼ �
ffiffiffi
2

p
12

iKmn
IJðyÞ½uijIJ � vijIJ�ðxÞ: (44)

The Ansätze for the remaining vectors originating from
the dual D ¼ 11 fields are more tricky and, in fact, can
only be arrived at by imposing consistency of the relevant
supersymmetry variations. More specifically, our analysis
implies the identifications

B�m1...m5
ðx; yÞ

¼ � 1

4 	 6! ðKm1...m5

IJ � 6 	 6!	�m1...m5pK
pIJÞðyÞA�

IJðxÞ;
(45)

B�m1...m7;nðx;yÞ
¼� 1

9!
ffiffiffi
2

p ð�� m1...m7
Kn

IJþ6	7!	� ½m1...m6
Km7�n

IJÞðyÞA�IJðxÞ;

(46)

where

Km1...m5

IJ ¼ ie
�
m1

a1 . . . e
�
m5

a5 ��I�a1...a5�
J (47)

6Note that the difference between the coefficient in the Ansatz
for B�mn here and in Ref. [2] is due to differing conventions for
F ¼ dA. In Ref. [2], this constant was fixed based on the tests of
the nonlinear flux Ansatz in Ref. [3] where F ¼ 4@A. However,
here, as in much of the related literature, we use the convention
F ¼ 4!@A.
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is again a bilinear in the Killing spinors. The quantity

	
�
m1...m6

ðyÞ is defined such that

7!@½m1
	
�
m2...m7� ¼ m7 �

�
m1...m7

; (48)

and is thus to be regarded as a potential for the volume
form on the round seven-sphere.

While the first terms on the right-hand side of the
Ansätze (45) and (46) are not completely unexpected, the
crucial new feature in comparison with formulas (39) and
(40) is the presence of the nonglobally defined field

	
�
m1...m6

. One way of understanding its presence in the

above Ansätze is to observe that the components of the
field strength Fð4Þ along the four dimensions F�
�� is

nonzero and, for maximally symmetric solutions, is pro-
portional to the volume form in four dimensions [6].
Equivalently, this nonzero component of the three-form
potential A�
� can be viewed as a nonzero component of

its six-form dual along the seven-dimensional directions
[4], namely

Am1...m6

 	

�
m1...m6

: (49)

Thus, even for the S7 solution [7] where the scalar expec-
tation values are essentially trivial, one would have to
obtain such a nonzero value for Am1...m6

from a nonlinear

Ansatz. Indeed, the coefficients in Ansätze (45) and (46)
have been fixed by requiring consistency with the S7

solution. In fact, the ‘‘vacuum expectation value’’ of the
six-form field will be nonvanishing for any nontrivial
compactification (that is, other than the T7 reduction of
Ref. [14]) of D ¼ 11 supergravity.

As before, comparing the four-dimensional supersym-
metry transformations (37) and (38) with their higher-
dimensional analogues (9) and (10) gives

em1...m5ijðx; yÞ ¼
1

6!
ffiffiffi
2

p ðKm1...m5

IJ � 6 	 6!	�m1...m5pK
pIJÞðyÞ

� ½uijIJ þ vijIJ�ðxÞ; (50)

em1...m7;nijðx;yÞ¼
2

9!
ið�� m1...m7

Kn
IJþ6 	7!	� ½m1...m6

Km7�n
IJÞðyÞ

�½uijIJ�vijIJ�ðxÞ; (51)

where we have again converted ‘‘curved’’ to ‘‘flat’’ SU(8)
indices by means of the relations in Eq. (41).

The fact that we now have two expressions for the
generalized vielbeine, one in terms of 11-dimensional
fields [Eqs. (11)–(14)], and one in terms of four-
dimensional scalars [Eqs. (43), (44), (50), and (51)], allows
us to derive nonlinear Ansätze for internal fields. The
nonlinear Ansatz for the metric [19] is found by consider-
ing the expression

emABe
nAB; (52)

which gives [19]

��1gmnðx;yÞ¼1

8
KmIJKnKLðyÞ

�½ðuijIJþvijIJÞðuijKLþvijKLÞ�ðxÞ: (53)

Similarly, the nonlinear flux Ansatz [2] is found by
considering the expression

emn
ABepAB; (54)

which gives7

Amnpðx;yÞ ¼�
ffiffiffi
2

p
96

i�gpqðx;yÞKmn
IJKqKLðyÞ½ðuijIJ �vijIJÞ

� ðuijKLþvijKLÞ�ðxÞ; (55)

where one uses the metric Ansatz (53) to compute �gpq in

the equation above. Now, considering

em1...m5ABe
nAB (56)

gives a nonlinear Ansatz for the internal six-form compo-
nents. It is simple to show that by equating the contraction
of the two vielbeine using definitions (11) and (13) on one
side and definitions (43) and (50) on the other gives

Anm1...m5
�

ffiffiffi
2

p
4

An½m1m2
Am3m4m5�

¼ �
ffiffiffi
2

p
16 	 6!�gnpðKm1...m5

IJ � 6 	 6!	�m1...m5qK
qIJÞ

� KpKL½ðuijIJ þ vijIJÞðuijKL þ vijKLÞ�; (57)

where the internal metric and three-form potential compo-
nents are derived using Ansätze (53) and (55). We note that
the complete antisymmetry of Am1...m6

in all six indices

is not manifest from this expression; our explicit tests for
the SOð7Þ� invariant solutions (see Sec. V) show, however,
that this consistency requirement is met in nontrivial
examples.
An Ansatz for the six-form potential can also be obtained

by considering the fourth generalized vielbeine em1...m7;nAB.

The relation of this Ansatz to Ansatz (57) above will not be
obvious, but clearly the two Ansätze must be equivalent.
This completes the set of uplift Ansätze for all bosonic
degrees of freedom from maximal gauged supergravity to
11 dimensions.

IV. GENERALIZED VIELBEIN POSTULATES
AND THE S7 COMPACTIFICATION

The generalized vielbein postulate for emAB plays an
important role in establishing the consistency of the S7

reduction of D ¼ 11 supergravity [25,26]. In particular, in

7See footnote 6 for an explanation of the extra factor of 6
between this expression and the nonlinear flux Ansatz in
Refs. [2,3].
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Ref. [25] it is shown that upon the S7 compactification, the
d ¼ 4 generalized vielbein postulate reduces to the E7ð7Þ
Cartan equation of gauged maximal supergravity, to wit

V�1ðxÞð@� � gAIJ
� ðxÞXIJÞV ðxÞ ¼ Q�ðxÞ þ P�ðxÞ; (58)

where XIJ generate the compact SO(8) subgroup inside
SLð8;RÞ � E7ð7Þ, and g is the gauge coupling constant. In

this section, then, we explore the generalized vielbein
postulates in a more general context than Refs. [25,26]
by investigating the full set of relations [Eqs. (24)–(27)] for
the extra vielbein components [Eqs. (11)–(14)], hence
taking into account the full set of 56 vector fields identified
in Sec. II A. The presence of both electric and magnetic
vectors in these relations indicates that our construction
should eventually allow one to derive more general gaug-
ings of N ¼ 8 supergravity from compactification, and
thereby to understand how the embedding tensor emerges
from the D ¼ 11 theory upon different compactifications.
However, here we will concentrate on the S7 compactifi-
cation, as this case already by itself provides a wealth of
new insights, in particular concerning the role of dual
vector fields in non-Abelian gaugings. We will briefly
return to the more general case in the final section,
postponing a detailed discussion to later work.

One issue that we will specifically address and resolve in
this section is the following: The fact that not all of the 56
vector fields can correspond to independent propagating
degrees of freedom, and the generic emergence of non-
Abelian gauge interactions for nontrivial compactifications
(for which the standard Abelian dualization linking electric
and magnetic vectors no longer works), immediately raises
the question of how the theory can dispose of the unwanted
vectors and thereby ensure the consistency of compactified
theory. Here we will establish the consistency of the equa-
tions for the S7 compactification by explicitly showing how
the magnetic vector fields drop out of the generalized
vielbein postulates, leaving only electric gaugings.

For the S7 compactification, the reduction Ansatz of the
vector fields and the generalized vielbeine are given by
Eqs. (39), (40), (45), (46), (43), (44), (50), and (51),
respectively. To adapt to the S7 compactification, we in-
troduce a minor modification by replacing Eq. (28) with

D� ¼ @� � B�
mD

�
m; (59)

and the connections in Eqs. (29) and (30) with

QA
�B ¼ � 1

2
½emaD

�
mB�

nenb � ðepaD�epbÞ��ab
AB

�
ffiffiffi
2

p
12

��1=2e0��ðF�abc�
abc
AB � �����F

���a�aABÞ;
(60)

P�ABCD ¼ 3

4
½emaD

�
mB�

nenb � ðepaD�epbÞ��a
½AB�

b
CD�

�
ffiffiffi
2

p
8

��1=2e0��Fabc��
a
½AB�

bc
CD�

�
ffiffiffi
2

p
48

��1=2e0���
����Fa����b½AB�ab

CD�; (61)

that is, replacing the partial derivative @m with the S7 back-

ground covariant derivative D
�
m everywhere. Likewise, this

replacement is to be made everywhere in the vielbein postu-
late [Eqs. (24)–(27)].
As before [cf. Eq. (41)], we have to convert SU(8)

indices in order to relate the connection coefficients above
to their four-dimensional counterparts for the S7 compac-
tification. This change of basis is covariant for all fields,
with the exception of [25]

Qi
�j ¼ �i

A�
B
j

�
QA

�B � i

ffiffiffi
2

p
4

m7A
KL
� KnKLe

�
n
a�aAB

�
: (62)

Using the Killing spinor equation and the equation above,

D�e
m
AB þQC

�½Ae
m
B�C

¼ ð@� � B�
mD

�
mÞ½�i

AðyÞ�j
BðyÞemijðx; yÞ� þQC

�½Ae
m
B�C;

¼ �i
A�

j
BD�e

m
ij þ im7B�

me
�
m
a�a

C½Ae
m
B�C þQC

�½Ae
m
B�C;

¼ �i
A�

j
BðD�e

m
ij þQk

�½ie
m
j�kÞ: (63)

Analogous relations hold for the other generalized
vielbeine:

D�emnABþQC
�½AemnB�C ¼�i

A�
j
BðD�emnijþQk

�½iemnj�kÞ;
(64)

D�em1...m5AB þQC
�½Aem1...m5B�C

¼ �i
A�

j
BðD�em1...m5ij þQk

�½iem1...m5j�kÞ; (65)

D�em1...m7;nAB þQC
�½Aem1...m7;nB�C

¼ �i
A�

j
BðD�em1...m7;nij þQk

�½iem1...m7;nj�kÞ: (66)

The noncovariant term in Eq. (62) thus ensures that we
can freely convert between ‘‘curved’’ and ‘‘flat’’ SU(8)
indices in all relations.
Let us first consider the generalized vielbein postulate

for emAB, which is already analyzed in Ref. [25]. The super-
symmetry transformation of the graviphoton B�

m gives

rise to the generalized vielbein emAB [Eq. (7)]. In Kaluza-
Klein theory, the exact Ansatz relating the graviphoton
to the four-dimensional vector field is given by the the
Killing vectors of the internal space [Eq. (39)]. As we have
already mentioned, this Ansatz, via Eqs. (37) and (7), also
furnishes an Ansatz (43) for the generalized vielbein emAB.
The emergence of the SO(8) covariantization of the
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four-dimensional derivative is then easily seen to be a
consequence, in accordance with general Kaluza-Klein
theory, of the appearance of the commutator of two
Killing vector fields in

ð@� � B�
nD

�
nÞemij þD

�
nB�

menij (67)

and the fact that D
�
mB�

m ¼ 0 for any Killing vector. More

precisely, plugging these Ansätze into the generalized viel-
bein postulate (24) and using Eq. (63), the latter reduces to

@�e
m
ij�

ffiffiffi
2

p
8
D
�
nK

nIJA�
IJemij

þ
ffiffiffi
2

p
4
ðKnIJD

�
nK

mKL�KnKLD
�
nK

mIJÞ
�A�

IJ½uijKLþvijKL�þQk
�½ie

m
j�kþP�ijkle

mkl¼0:

(68)

Using Eq. (36), the first three terms in the generalized
vielbein postulate (68) reduce to

KmIJð�I
K@� � 2

ffiffiffi
2

p
A�

IKÞ½uijKJ þ vijKJ�; (69)

which is a contraction of the SO(8) gauge covariant de-
rivative on the scalar fields. Denoting

wþ
ij
IJ ¼ uij

IJ þvijIJ; w�
ij
IJ ¼ i½uijIJ �vijIJ�; (70)

and with wþij
IJ and w�ij

IJ as their complex conjugates,
respectively, the generalized vielbein postulate gives

KmIJðDSOð8Þ
� wþ

ij
IJ þQk

�½iw
þ
j�k

IJ þ P�ijklw
þkl

IJÞ ¼ 0;

(71)

where the SO(8) gauge covariant derivative is defined as

DSOð8Þ
� w�

ij
IJ ¼ @�w

�
ij
IJ � 2

ffiffiffi
2

p
m7A�

K½Iw�
ij
J�K: (72)

Thence, we identify A�
IJ as the SO(8) gauge fields andffiffiffi

2
p

m7 as the SO(8) gauge coupling. Thus, the generalized
vielbein postulate reduces to a particular component of the
E7ð7Þ Cartan equation with SO(8) covariant derivatives, as

claimed above.
While this part of the argument was already given in

Ref. [25], the SO(8) covariantization on the other compo-
nents of the generalized vielbein cannot be traced back to
geometrical arguments of this type. In Ref. [25], it is
argued that Eq. (71) in fact implies the E7ð7Þ Cartan

equation with SO(8) covariant derivatives. However,
here, by considering all of the generalized vielbein pos-
tulates, we can see that this equation follows directly
upon compactification on S7. In other words, the rest
of the generalized vielbein postulates give rise to the
‘‘missing’’ components of the Cartan equation in
Eq. (58). We will show this in turn for each of the
generalized vielbein postulates [Eqs. (25)–(27)].

The generalized vielbein postulate for emnAB [Eq. (25)]
becomes, after conversion to ‘‘flat’’ SU(8) indices using

Eq. (64) and again using D
�
mB�

m ¼ 0,

D�emnij þ 2D
�
½mBj�j

pen�pij þ 3D
�
½mBj�jnp�e

p
ij

þQk
�½iemnj�k þ P�ijklemn

kl ¼ 0: (73)

The new feature here is the presence of the ‘‘magnetic’’
vectors B�mn, which according to Eq. (40) could in prin-

ciple lead to the gauging of magnetic vector fields in the
four-dimensional theory. However, note that the relations
between emnAB [Eq. (44)] and B�mn [Eq. (40)] and the four-

dimensional fields are not made with respect to Killing
vectors but via the tensor KIJ

mn, which from the Killing
spinor equation satisfies

D
�
pKmn

IJ ¼ 2m7g
�
p½mKn�

IJ: (74)

This immediately implies that

D
�
½mBj�jnp� ¼ 0: (75)

Hence, the magnetic vector fields drop out of relation (25)
in the S7 reduction, thus ensuring that effectively only the
28 electric vectors appear in the four-dimensional theory
with their non-Abelian interactions, while the magnetic
vectors all decouple. Using Eqs. (34) and (74), the gener-
alized vielbein postulate then further simplifies to

@�emnijþ 1

12
m7A�

IJw�
ij
KLðKp

½m
IJKn�p

KL�K½m
IJKn�

KLÞ
þQk

�½iemnj�kþP�ijklemn
kl ¼ 0; (76)

which, using Eq. (B6), gives another component of the
E7ð7Þ Cartan equation:

Kmn
IJðDSOð8Þ

� w�
ij
IJ þQk

�½iw
�
j�k

IJ þ P�ijklw
�kl

IJÞ ¼ 0:

(77)

Next we consider the third equation, (26), which be-

comes, using D
�
mB�

m ¼ 0 and Eqs. (65) and (75),

@�em1...m5ij � B�
pD

�
pem1...m5ij � 5D

�
½m1

Bj�j
pem2...m5�pij

� 6D
�
½m1

Bj�jm2...m5p�e
p
ij þQk

�½iem1...m5j�k

þ P�ijklem1...m5

kl ¼ 0: (78)

In this case, the reduction Ansätze (45) and (50) not only
contain tensors, rather than Killing vectors, but they also
contain the potential for the volume form on the round

seven-sphere 	
�
, which is not globally defined. As we shall

see below, these terms are not only crucial for obtaining the
correct nonlinear flux Ansätze, but also equally crucial in
the reduction of the generalized vielbein postulate.
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Inserting the reduction Ansätze for the generalized
vielbeine and the vector fields and using Eqs. (B3), (34),
and (74), we obtain

B�
pD

�
pem1...m5ij ¼

1

4 	 6!A�
IJwþ

ij
KLKpIJðm7�

�
m1...m5pq

KqKL

þ 6 	 6!D� p	
�
m1...m5qK

qKL

þ 6 	 6!m7	
�
m1...m5qK

q
p
KLÞ; (79)

D
�
½m1

Bj�jm2...m5p�e
p
ij

¼ � 1

4 	 6!A�
IJwþ

ij
KLKpKLðm7�

�
m1...m5pq

KqIJ

� 6 	 6!D� ½m1
	
�
m2...m5p�qK

qIJ

� 6 	 6!m7	
�
q½m1...m5

Kq
p�

IJÞ: (80)

Hence,

B�
pD

�
pem1...m5ij þ 6D

�
½m1

Bj�jm2...m5p�e
p
ij ¼

1

4 	 6!A�
IJwþ

ij
KLð7m7�

�
m1...m5pq

KpIJKqKL þ 6 	 7!D� ½p	
�
m1...m5q�K

pIJKqKL

þ 6 	 6!m7	
�
m1...m5qK

pIJKq
p
KL þ 36 	 6!m7	

�
q½m1...m5

Kq
p�

IJKpKLÞ;

¼ 1

4 	 6!m7A�
IJwþ

ij
KLð�� m1...m5pq

KpIJKqKL þ 48 	 6!	�m1...m5q�
IKKqJL

þ 30 	 6!	�pq½m1...m4
Kq

m5�
IJKpKLÞ; (81)

where in the second equality above we have used Eqs. (48)
and (B5). A straightforward substitution of the Ansätze
(39) and (50) also gives

5D
�
½m1

Bj�j
pem2...m5�pij

¼ 5m7

8 	 6!A�
IJwþ

ij
KLKp

½m1

IJð�� m2...m5�pqrK
qrKL

þ 12 	 6!	�m2...m5�pqK
qKLÞ: (82)

Now, using the identity

5Kp
½m1

IJ�
�
m2...m5�pqrK

qrKL ¼ 2Kp
r
IJ�

�
m1...m5pq

KqrKL (83)

and Eq. (B6), the first terms on the right-hand sides of
Eqs. (81) and (82) precisely combine to give

1

6!
m7A�

IJwþ
ij
KL�

�
m1...m5pq

�IKKpqJL

¼ � 2

6!
m7A�

IJwþ
ij
KL�IKKm1...m5

JL: (84)

Moreover, the third term on the right-hand side of
Eq. (81) cancels the second term on the right-hand
side of Eq. (82). Therefore, in all, Eq. (78) simplifies to

ðKm1...m5

IJ � 6 	 6!	�m1...m5pK
pIJÞ½DSOð8Þ

� wþ
ij
IJ

þQk
�½iw

þ
j�k

IJ þ P�ijklw
þkl

IJ� ¼ 0: (85)

Using Eqs. (71) and (B3), the above equation implies

KmnIJðDSOð8Þ
� wþ

ij
IJ þQk

�½iw
þ
j�k

IJ þ P�ijklw
þkl

IJÞ ¼ 0:

(86)

Finally, we consider the generalized vielbein postulate
for em1...m7;n, which, using the same equations as before,

simplifies to

@�em1...m7;nij � B�
pD

�
pem1...m7;nij � @nB�

pem1...m7;pij

� 2@½m1
Bj�jm2...m6

em7�nij þQk
�½iem1...m7;nj�k

þ P�ijklem1...m7;n
kl ¼ 0: (87)

A similar calculation to the one outlined above for
em1...m5AB gives

B�
pD

�
pem1...m7;nij

¼ �
ffiffiffi
2

p
2 	 9!A�

IJw�
ij
KLð5m7�

�
m1...m7

KpIJKKL
pn

þ 36 	 7!D� ½m1j	
�
pjm2...m6

KpIJKKL
m7�n

þ 6 	 7!m7	
�
½m1...m6

ðKm7�
IJKKL

n � Km7�
KLKIJ

n ÞÞ; (88)

@nB�
pem1...m7;pij

¼ �
ffiffiffi
2

p
2 	 9!m7A�

IJw�
ij
KLKp

n
IJð�� m1...m7

Kp
KL

þ 6 	 7!	� ½m1...m6
Km7�p

KLÞ; (89)

2@½m1
Bj�jm2...m6

em7�nij

¼
ffiffiffi
2

p
2 	 9!A�

IJw�
ij
KLð6m7�

�
m1...m7

KpIJKKL
pn

þ 36 	 7!D� ½m1j	
�
pjm2...m6

KpIJKKL
m7�n

þ 6 	 7!m7	
�
½m1...m6

Km7�p
IJKp

n
KLÞ; (90)

where we have used Eqs. (34), (48), (74), and (B3) and
antisymmetrizations over eight indices, which vanish, to
simplify the expressions above. It is now simple to verify,
using Eqs. (B5) and (B6), that
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B�
pD

�
pem1...m7;nijþ@nB�

pem1...m7;pijþ2@½m1
Bj�jm2...m6

em7�nij

¼4
ffiffiffi
2

p
9!

m7A�
KIw�

ij
JKð�� m1...m7

KIJ
n þ6	7!	� ½m1...m6

Km7�n
IJÞ:

(91)

Hence, Eq. (87) reduces to

Km
IJðDSOð8Þ

� w�
ij
IJ þQk

�½iw
�
j�k

IJ þ P�ijklw
�kl

IJÞ ¼ 0;

(92)

where we have used Eq. (77) to eliminate the expression

proportional to 	
�
.

To sum up, in the reduction of Eq. (24), the SO(8) gauge
covariant derivative arose from the geometrical properties
of Killing vectors on S7. However, for the other generalized
vielbeine, the emergence of the SO(8) gauge covariant
derivative is not so direct. Indeed, the reduction of the
other generalized vielbein postulates is particularly novel
given that the postulates (25)–(27) contain fields (B�mn and

B�m1...m5
) for which the identification with the four-

dimensional vector fields is not made with the S7 Killing
vectors, but with more general structures on the seven-
sphere. We stress again that in the derivation of the last

two equations, (86) and (92), the 	
�
terms in the Ansätze are

crucial for obtaining the SO(8) gauge covariant terms.
Therefore, the SO(8) gauge covariant derivatives emerge,
not in spite of but because of these more general structures.

The results that we have obtained from the reduction of
the generalized vielbein postulates, Eqs. (71), (77), (86),
and (92), can be summarized as

KaIJðDSOð8Þ
� w�

ij
IJ þQk

�½iw
�
j�k

IJ þ P�ijklw
�kl

IJÞ ¼ 0;

(93)

KabIJðDSOð8Þ
� w�

ij
IJ þQk

�½iw
�
j�k

IJ þ P�ijklw
�kl

IJÞ ¼ 0:

(94)

Since KaIJ and KabIJ form a basis of antisymmetric
28� 28 matrices, these equations are equivalent to

DSOð8Þ
� V ij

IJ þQk
�½iV j�k

IJ þ P�ijklV kl
IJ ¼ 0; (95)

whereV ðxÞ is the E7ð7Þ=SUð8Þ coset element parametrized

by the scalar fields. In Ref. [25] this equation was argued,
somewhat indirectly, to hold solely on the basis of the
generalized vielbein postulate for emAB [Eq. (24)]. Here
we see that it naturally follows from the full set of gener-
alized vielbein postulates.

In summary, we find that, in the case of the S7 compacti-
fication, both B�

m and B�m1...m5
contribute to the electric

vector fields, while the magnetic vector fields drop out of
the expressions. Indeed, from Eqs. (39) and (45) we see that
this is natural, because B�

m and B�m1...m5
project onto

different SO(8) components of the electric vector fieldA�
IJ.

V. A FIRST TEST OF THE NONLINEAR
SIX-FORM ANSATZ

In this section, we check the consistency of the relations
derived in Sec. III, in particular the nonlinear Ansatz for the
dual six-form using the relatively simple, yet nontrivial
SOð7Þ� invariant solutions of gauged supergravity [22] for
which the higher-dimensional solutions are known [20,21].
For the convenience of the reader, we give a brief descrip-
tion of these solutions from both a four- and a higher-
dimensional perspective in Appendix A. The nonlinear
metric and flux Ansätze, Eqs. (53) and (55), respectively,
have been subjected to some very nontrivial tests, which
they have passed with remarkable success, most recently in
Ref. [3] (where references to earlier work can also be
found). In particular, these Ansätze correctly reproduce
the SOð7Þ� invariant solutions [3,19,26]. Therefore, let
us consider the nonlinear Ansatz, Eq. (57), for the dual
six-form potential of the SOð7Þ� invariant solutions.
Using the following E7ð7Þ properties satisfied by uijKL

and vijKL [8]

uijIJuij
KL � vijIJv

ijKL ¼ �KL
IJ ; (96)

uijIJvijKL � vijIJu
ij
KL ¼ 0; (97)

one can show that

ðuijIJ þ vijIJÞðuijKL þ vijKLÞ
¼ �IJ

KL þ 2vIJMNv
KLMN þ 2ReðuMN

IJvMNKLÞ: (98)

Now, using the form of uijKL and vijKL for the SOð7Þ�
invariant solutions, given in Appendix A, and the following
identifies satisfied by CIJKL� [20,27],

CIJMNþ CMNKLþ ¼ 12�IJ
KL þ 4CIJKLþ ; (99)

CIJMN� CMNKL� ¼ 12�IJ
KL � 4CIJKL� ; (100)

the above equation reduces to

ðuijIJ þ vijIJÞðuijKL þ vijKLÞ
¼ ðc3 þ �s3Þ�IJ

KL þ 1

2
� csðcþ sÞCIJKLþ

� 1

2
ð1� �Þ cs2CIJKL� ; (101)

where

� ¼
�
1 SOð7Þþ
0 SOð7Þ� : (102)

Dualizing �m1...m5
and using the identities satisfied by the

contraction of CIJKL� with KmIJ and KmnIJ (see Ref. [3])
gives
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Anm1...m5
�

ffiffiffi
2

p
4
An½m1m2

Am3m4m5�

¼
ffiffiffi
2

p
4 	6!�gnp

�
12 	6!ðc3þ�s3Þ	�m1...m5

p

�csðcþsÞ
3

�½�� m1...m5q
p
qþ6 	6!	�m1...m5qðð3þ
Þg�pq

�ð21þ
Þ
̂m
̂nÞ��ð1��Þcs2�� m1...m5rs
S
�prs

	
:

(103)

To compare this result, obtained from the uplift formula,
with the results directly obtained by solving the D ¼ 11
field equations, let us first consider the SOð7Þþ invariant
solution. Using

csðcþ sÞ ¼ �1=2=5; c3 þ s3 ¼ 2�1=2=5 (104)

and noting that Amnp ¼ 0 for this solution, Eq. (103)

reduces to

Am1...m6
¼

ffiffiffi
2

p
2 	 6!

1

9� 

�
�
m1...m6p


p � 3
ffiffiffi
2

p
	
�
m1...m6

; (105)

where we have used the form of the metric gmn given in
Eq. (A5). Now, taking the exterior derivative of this equa-
tion gives

7!D
�
½m1

Am2...m7� ¼ � 180
ffiffiffi
2

p
ð9� 
Þ2 m7�

�
m1...m7

; (106)

which agrees precisely with the expression found by dual-
izing the Freund-Rubin field strength for the value of � set
by the nonlinear Ansätze, see Eq. (A9).

Next, consider the SOð7Þ� invariant solution. Using the
expressions for Amnp and gmn in Appendix A, it is simple to

show that Eq. (103) reduces to

Am1...m6
¼ �3

ffiffiffi
2

p
	
�
m1...m6

þ
ffiffiffi
2

p
16 	 6!�

�1=3S
�pq

½m1
�
�
m2...m6�pq:

(107)

However, the second term on the right-hand side vanishes
by the Schouten identity and the tracelessness of the tor-
sion. Hence,

Am1...m6
¼ �3

ffiffiffi
2

p
	
�
m1...m6

; (108)

which agrees with the expression for Am1...m6
given in

Eq. (A19) for the particular value of � set by the Ansätze.

VI. OUTLOOK: MAGNETIC VECTORS
AND THE EMBEDDING TENSOR

Having established the full consistency of all equations for
the S7 compactification, we now return to the most remark-
able feature of the vielbein postulate equations (24)–(27),
namely the fact that they simultaneously involve the
Kaluza-Klein vectors, the ‘‘nongeometric vectors’’ coming

from the three-form field, and theD ¼ 11 dual vector fields.
In principle, it is therefore clear that both the ‘‘electric’’vector
fields, coming from the reduction of B�

m and B�m1...m5
, and

the ‘‘magnetic’’ vector fields, coming from the reduction of
B�mn, can be gauged. This is a feature that our construction

shares with the embedding tensor formalism as applied
to gaugings of maximal supergravity in four dimensions
[10–12]. There as well, one initially works with the full set
of 56 electric andmagnetic vector fields, replacing the Cartan
equations (58) with the more general Ansatz

V�1ðxÞ½@� � gAIJ
� ðxÞ�IJAYA

� gA�IJðxÞ�IJ
AYA�V ðxÞ ¼ Q�ðxÞ þ P�ðxÞ; (109)

where YA (A ¼ 1; . . . ; 133) are the generators of E7ð7Þ,
ð�IJA;�IJ

AÞ is the embedding tensor, and AIJ
� and A�IJ

are the electric and magnetic vectors introduced in Eqs. (37)
and (38), respectively. The embedding tensor thus transforms
in the product 56 � 133, but a consistent gauging with 28
propagating gauge fields exists only when � restricts to the
912 representation of E7ð7Þ in this product [10–12] (and in

addition satisfies a quadratic identity). The choice of embed-
ding tensor not only determines the gauge group, but also
decides which 28 vector fields out of the initial 56 vectors
become propagating non-Abelian vectors. Consequently,
studying the vielbein equations (24)–(27) in parallel with
Eq. (109) should thus enable one tounderstand the embedding
tensor and its relation to any particular compactification
directly from the 11-dimensional perspective. Although we
will leave the full exploration of these possibilities to future
work, we conclude with some comments.
In the S7 compactification considered in Sec. IV, the

SO(8) gauge covariant derivative term comes from the
following terms in the generalized vielbein postulates:

@mB�
n and @½m1

Bj�jm2...m6�: (110)

In particular, terms of the forms

@mB�
m and @½mBj�jnp� (111)

do not contribute. The first expression above vanishes
because the Kaluza-Klein Ansatz for the graviphoton is
given by S7 Killing vectors, which are divergence-free,
while the second expression vanishes because of the form
of the Kaluza-Klein Ansatz for B�mn, Eq. (40), and prop-

erties of S7 Killing spinors.
A natural question to ask is whether one can find ex-

amples of compactifications where the expressions (111),
that vanish for the S7 reduction, contribute to the four-
dimensional Cartan equation (109). For example, while the
first expression vanishes for Killing vectors, it is nonzero
for conformal Killing vectors, which also form a simple
Lie algebra. An interesting question is whether one can
carry out more general reductions of this type.
Furthermore, a particularly interesting class of gaugings

to investigate in this context are the Scherk-Schwarz

NONLINEAR KALUZA-KLEIN THEORY FOR DUAL FIELDS PHYSICAL REVIEW D 88, 125002 (2013)

125002-13



compactifications [28] and twisted seven-torus flux com-
pactifications [29–33], which lead to various gaugings in
four dimensions (see Ref. [12] for a review of known
gaugings in four dimensions). While the original Scherk-
Schwarz reductions on flat groups are known to lead to
electric gaugings [34], flux compactifications provide ex-
amples where both electric and magnetic vector fields
contribute to the gauging [31].

A study of the generalized vielbein postulates may also
shed light on the higher-dimensional origins of the recently
discovered continuous family of inequivalent maximal
SO(8) gauged supergravities [23]. While the original
SO(8) gauged supergravity [8] in the SLð8;RÞ symplectic
frame only contains electric gaugings, there is a deforma-
tion that allows both electric and magnetic gaugings in the
aforementioned symplectic frame. For a given range of the
angle of rotation between gaugings of electric and mag-
netic vector fields, the theory is inequivalent to the original
theory. While D ¼ 11 supergravity apparently cannot ex-
plain the existence of these new supergravities, with the
framework presented here it is possible to investigate
whether D ¼ 11 supergravity admits an analogous defor-
mation that rotates B�

MN and B�MN, defined in Eq. (20), into

each other and that would be implemented by a rotation on
the 56-bein [Eq. (15)] in complete analogy with the D ¼ 4
theory [2]. The S7 compactification of these putative theo-
ries would then give rise to the magnetic gaugings in the
deformed theories found in Ref. [23].

APPENDIX A: SOð7Þ� INVARIANT SOLUTIONS

In this appendix, we summarize the SOð7Þ� invariant
stationary points of maximal gauged supergravity [22] and
their respective 11-dimensional counterpart solutions
[20,21]. The nonlinear metric and flux Ansätze have been
confirmed for these solutions in Refs. [3,19]. Much of
the necessary information regarding these solutions is ex-
plained in Ref. [3], and in particular its Appendix A.
Therefore, for brevity, we refer the reader there for the
definitions of the relevant structures and content ourselves
here with a list of the most important properties of these
solutions that will be relevant for the calculations in Sec. V.

The scalar profile for the SOð7Þþ invariant stationary
point is given by [19,27]

uIJKL ¼ p3�IJ
KL þ 1

2
pq2CIJKLþ ; (A1)

vIJKL ¼ q3�IJ
KL þ 1

2
p2qCIJKLþ ; (A2)

where constants p and q are such that [22]

c2 ¼ ðp2 þ q2Þ2 ¼ 1

2

�
3=

ffiffiffi
5

p þ 1
�
; (A3)

s2 ¼ ð2pqÞ2 ¼ 1

2

�
3=

ffiffiffi
5

p � 1
�
: (A4)

The 11-dimensional solution is of the form [20]

gMN ¼ �7=18 30�2=3ð9� 
Þ2=3

�
�
�
�
�
;

��1=2

9� 

½30g�mn � ð21þ 
Þ
̂m
̂n�

�
; (A5)

FMNPQ ¼
0
@ ffiffiffi

6
p
3

im7�
5=6�

�
�
��; 0

1
A; (A6)

where � is an arbitrary constant, which takes the value

� ¼ 53=2 (A7)

when the solution is constructed via the nonlinear Ansätze
[3]. Note that the determinant of the siebenbein

� ¼ det ðemaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðgmnÞ

q
¼ ��7=18 302=3ð9� 
Þ�2=3:

(A8)

In addition, due to the existence of the Freund-Rubin
term, the dual potential Að6Þ is nonzero and of the form

7!D½M1
AM2...M7�

¼
��180

ffiffiffiffiffiffi
10

p
m7�

�1=3ð9� 
Þ�2�
�
m1...m7

½m1 . . .m7�
0 otherwise

:

(A9)

The scalar profile of the SOð7Þ� invariant stationary
point of maximal supergravity is of the form [19,27]

uIJKL ¼ p3�IJ
KL � 1

2
pq2CIJKL� ; (A10)

vIJKL ¼ iq3�IJ
KL � 1

2
ip2qCIJKL� ; (A11)

where constants the c and s, related to p and q as above,
take the values [22]

c2 ¼ 5

4
; s2 ¼ 1

4
: (A12)

The 11-dimensional solution is of the form [21]

gMN ¼ �7=18ð�� �
; �
�1=2g

�
mnÞ; (A13)

FMNPQ ¼
�
2

ffiffiffi
2

p
im7�

5=6�
�
�
��;

ffiffiffi
2

p
6

m7�
�1=6�

�
mnpqrstS

� rst
�
;

(A14)

and in particular,
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AMNP ¼

8>>><
>>>:
2

ffiffiffi
2

p
i�5=6	

�
�
� ½�
��ffiffi

2
p
4! �

�1=6S
�
mnp ½mnp�

0 otherwise

; (A15)

where 	
�
�
� is the potential for the Freund-Rubin field

strength

4!@½�	
�

��� ¼ m7 �

�
�
��: (A16)

As before, � is an arbitrary constant that is fixed by the
nonlinear Ansätze to take the value [3]

�1=3 ¼ 5=4: (A17)

Furthermore,

� ¼ det ðemaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðgmnÞ

q
¼ ��7=18: (A18)

The six-form potential for this solution is of the form [4]

AM1...M6
¼

8>>><
>>>:

ffiffi
2

p
12 i�

2=3	
�
�
�S

�
mnp ½�
�mnp�

� 15
ffiffi
2

p
4 ��1=3	

�
m1...m6

½m1 . . .m6�
0 otherwise

;

(A19)

where 	
�
m1...m6

is defined in Eq. (48).

APPENDIX B: USEFUL IDENTITIES

We list some useful identities satisfied by seven-
dimensional � matrices. These identities already appear
in Refs. [1,14].

�a1...a7 ¼ �i�a1...a7 ; (B1)

�a1...a6 ¼ �i�a1...a6b�b; (B2)

�a1...a5 ¼ i

2
�a1...a5bc�bc; (B3)

�a1...a4 ¼ i

3!
�a1...a4bcd�bcd; (B4)

�ab
AB�

b
CD � �b

AB�
ab
CD ¼ 8�½Cj½A�a

B�jD�; (B5)

�c½a
AB�

b�c
CD þ �½a

AB�
b�
CD ¼ 4�½Cj½A�ab

B�jD�: (B6)

These identities are exactly identities (A.1), (A.6), and
(A.7) in Appendix A of Ref. [1].
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