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Abstract

Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide
support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are
suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the
most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous
experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently
there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify
different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties
are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the
cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases
and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a
mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth
phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a
relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific
growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided
which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as
well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall,
we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.
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Introduction

Production of bio-pharmaceuticals in cell culture is frequently

described by unstructured and segregated models. Although the

compartmental structure of cells and the underlying metabolic

pathways are not taken into account explicitly, these models can

provide a sound mechanistic description of the considered process,

used e.g. for model-based experimental design, process optimiza-

tion, or controller synthesis. A main advantage of these models is

that they can be tailored to particular growth phases and process

conditions. This is important since cell growth and product

formation depend on a variety of factors, e.g. the availability of

substrates, inhibitors, or changes in the cultivation conditions (e.g.

oxygen, temperature, pH [1,2]). However, within a particular

experimental setting, only some of these factors actually contribute

to the observed cell dynamics. To obtain a concise model of the

process, it is necessary to identify apparent phases and the main

influencing factors of cell growth and product formation.

Identifying concisely the most relevant factors influencing cell

growth and product formation with respect to experimental data is

however very challenging. This is, first, because the kinetics and

the kinetic parameters are often unknown since they are highly cell

specific and may even vary among isogenic populations [3].

Hence, the kinetic parameters have to be identified de novo for

each cell line and in many cases also for each batch run. Second,

available measurement data is in general uncertain, and the errors

are frequently non-homogeneous, outliers may corrupt the data,

and the magnitude of uncertainty is typically significant. The

uncertainty affects the attainable precision of the parameter

estimates, which has to be determined; and if outliers are not taken

into account, this can lead to biased parameter estimates or to

falsely reject hypotheses, see e.g. [4]. Third, in many situations the

observed dynamics arises from the combination of several factors

influencing cell growth and metabolism. This increases the

complexity of the models which describe this behavior and thus

complicates testing, parameter estimation and analysis, see e.g.

[1,2]. Finally, a rigorous criterion is required for testing and, if

possible, rejecting hypotheses considering uncertain data.

So far, there only exist approaches to address some of the

challenges mentioned above. For example, the most frequently
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considered approach to the hypotheses testing and parameter

estimation problem is to infer the optimal parameters from the

available experimental data, see e.g. [5,6] for a comprehensive

overview. To this end, an optimization problem is constructed

where the model parameters are optimized considering e.g. the

ordinary least squares or an appropriate information criterion in

case of model selection, see e.g. [7] and references therein. Solving

such optimization problems however can be difficult, because they

are non-convex in general due to nonlinear system equations, see

e.g. [8]. By employing a stochastic strategy (sampling, grid) for

choosing initial parameters and conditions to achieve some desired

global property of the solution, this limitation can be partially

overcome, e.g. Monte Carlo based approaches such as simulated

annealing [9] and multiple-shooting [10], or evolutionary algo-

rithms [11], see for an in depth review [12]. Though, for a

comprehensive and conclusive evaluation of options for process

design and optimization, the optimal kinetic parameters do not

provide sufficient information, in particular if the uncertainties are

significant. Evaluating the precision of the parameters however

can be very challenging for nonlinear system and non-homoge-

neous uncertainties, see e.g. [5,13,14]. So far, re-sampling

techniques have been considered for this purpose, e.g. bootstrap,

jackknife, and Monte-Carlo statistical methods, see [15–17] and

references therein. These approaches are also frequently consid-

ered for uncertainty and sensitivity analysis, although they are

typically limited to systems with few unknown parameters and

uncertain initial conditions, see [18].

In this paper, we present a structured approach to identify the

phases and the main influencing factors of cell growth and

metabolism. The approach is based on a recently developed set-

based method for invalidation and estimation, which is applicable

to nonlinear dynamic systems and uncertain data. It builds on a

semidefinite programming relaxation and efficient outer-bounding

techniques [19–21], and is supported by the ADMIT toolbox [22].

Advantageously, the set-based method provides rigorous certifi-

cates of infeasibility used for falsification of model hypotheses, and

guaranteed set-valued estimates used to determine the confidence

intervals and the optimal values of the parameters and states. The

set-based method for falsification and estimation is tailored here

for characterizing the cell growth process, and extended to detect

outliers in the data, to determine the parameter sensitivities, and to

study robustness properties of the proposed models.

Particularly, we investigated the suspension growth of the

human cell line AGE1.HN [23] in bioreactor and shaker flask in

serum-free medium. Besides cell concentrations, the uptake of

glucose and glutamine as well as the release of ammonia and

lactate were measured. We distinguished two apparent cell growth

phases by outer-bounding the specific growth rate as a function of

time considering the observed increase of viable cell concentration.

The first phase is characterized by a maximum and constant

specific growth rate. This phase is described consistently by a

relatively simple segregated model including the main metabolites

and the dynamics of viable and dead cells. The second phase is

characterized by a declining specific growth rate until growth

completely ceases, where glucose limitation and the pH of the

medium are the governing mechanisms for the decline of the

specific growth rate in both cultivation systems.

The overall aim of this work was to obtain conclusive answers

about the phases and influencing factors of AGE1.HN cell growth

and metabolism. This aim was achieved by using and extending a

set-based method. The structure of the paper is as follows: We first

describe measurement uncertainties based on an assay validation,

and introduce the most relevant aspects of the considered set-

based approach. We then identify two different growth phases for

AGE1.HN cells in our batch experiments. Subsequently, the

growth phases are analyzed in detail, and the main influencing

factors of AGE1.HN cell growth are identified. Finally, we discuss

briefly the design of complementary experiments and conclude the

paper.

Materials and Methods

The methods used in this study are based on the set-based

estimation and analysis framework outlined in [20,21]. We here

focus on a conceptual description of the framework and its

premises, particularly how to obtain an appropriate uncertainty

description of the available data. Details about the relaxation step

are provided in Text S1. The study is made available for download

for the ADMIT toolbox [22] (File S1). A complementary classical

sensitivity and outlier analysis is provided in the Text S3.

Model and data uncertainty description
We consider the reaction environment well mixed, and can

neglect inherent stochastic effects because the amount of initial

cells and substrate molecules is very large as well as the occurring

reactions are sufficiently fast. Therefore, the cell growth process

studied here can be described by ordinary differential equations.

In general, the system’s equations typically derive from balancing,

considering a set of relevant compounds x(t)[Rnx (here concen-

trations of the cells and extra-cellular metabolites) and their

reactions. Frequently used kinetics for unstructured models are

mass action, Monod, or Hill kinetics with constant reaction

parameters p[Rnp , see e.g. [24–26]. The polynomial model

equations (for 0ƒtƒtN ) are then given by

_xxi(t)~fi(x(t),p,w(t)) i[f1, . . . ,nxg, ð1Þ

where w(t)[Rnw denotes inputs or time-variant parameters for

sake of generality. If the initial conditions and the model

parameters are known precisely, such a model allows us to make

predictions about the outcome of an experiment by numerical

simulation. Though, if the kinetics, the parameters, or the initial

conditions are unknown, they have to be identified from

experimental data beforehand. In the present case, batch culture

experiments (refer Cultivations) have been performed for this

purpose. We denote the observations of the extra-cellular

metabolites and cell concentrations by

~xxi(tj), i[f1, . . . ,nxg, j[f0,1, . . . ,Ng: ð2Þ

For this study, we used an assay validation, see e.g. [27,28], to

quantify the measurement uncertainties. Particularly, we evaluated

if the variances, for each extra-cellular metabolite and the cell

concentrations, were homogeneously distributed or not using the

F-test. Subsequently, the standard deviation or the relative

standard deviation of the method respectively was used to

determine the respective 1-sigma confidence intervals used

thereafter as hard uncertainty bounds as follows:

Homogeneous (absolute) errors. In case variances are

homogeneously distributed (according to the F-test), we consider

the standard deviation of the method si regarding a calibration

function of first order (two degrees of freedom) to derive the 1-

sigma confidence intervals, see e.g. [29]. The 1-sigma confidence

interval is given by xi(tj)[½xi(tj),�xxi(tj)�, where

Set-Based Analysis of AGE1.HN Cell Growth
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xi(tj)~~xxi(tj){si,

�xxi(tj)~~xxi(tj)zsi:
ð3Þ

Non-homogeneous (relative) errors. In case the variances

are non-homogeneously distributed (according to the F-test), we

consider the relative standard deviation of the method ri (variation

coefficient), see [29] for details. The confidence intervals are then

described by xi(tj)[½xi(tj),�xxi(tj)�, where

xi(tj)~~xxi(tj)(1{ri=100),

�xxi(tj)~~xxi(tj)(1zri=100):
ð4Þ

We furthermore have to take into account that the compounds

are only detectable above a certain threshold. We denote the

limit of detection (LOD) g
i

as the lowest level at which a

compound concentration can be detected. The detection threshold

is taken into account by

~xxi(tj)ƒg
i
[xi(tj)~0: ð5Þ

Note that, for sake of simplicity of notation, we collect the

uncertainty bounds for all measured compounds by sets by

x(tj)[X (tj)(Rnx , j[f0,1, . . . ,Ng: ð6Þ

The sets X (tj) can be conveniently expressed by polytopes,

which is used in our algorithms [22].

A priori knowledge. Very frequently, knowledge about

feasible values of the states or the parameters is available

independent from the experiments. Such information is very

important for testing and estimation, particularly if experimental

data is sparse.

Typically, the system’s states can be constrained by first

principles such as conservation relations (mass, momentum,

energy,...) or symmetry properties, see e.g. [30]. In addition, the

possible parameter values may be constrained by previous

experiments. We denote the available a priori knowledge by

p[P0(Rnp , x(t)[X0(Rnx , w(t)[W0(Rnw ,
ð7Þ

where P0, X0, and W0 are (polytopic) bounding sets of the

parameters, states, and time-variant parameters respectively.

Qualitative data. Qualitative information about the process

can also be relevant for estimation purposes. Exemplary, the

concentration of an extra-cellular metabolite is always non-

negative, and substrates (glucose and glutamine) may only be

consumed; hence, their concentration does not increase during the

process. The by-products lactate and ammonia are released only,

and thus their concentration does not decrease during the process.

Such a qualitative information, exemplary the non-decreasing

dynamics, can be taken into account by constraints of the form

qi( _xx(t),x(t),p,w(t))ƒ0, i[f1, . . . ,nqg: ð8Þ

Invalidation, estimation, and analysis
The invalidation and estimation problem are tackled in our

approach by combining the model equations and the data within

the following optimization problem

OP :

min c(x,p)s:t:

_xxi~fi(x,p,w) i[f1, . . . ,nxg
qi( _xx,x,p,w)ƒ0 i[f1, . . . ,nqg
x(tj)[X (tj) j[f0, . . . ,Ng
p[P0, x(t)[X0, w(t)[W0

8>>>>>>>><
>>>>>>>>:

ð9Þ

Hereby, c(x,p) denotes a (polynomial) objective function. Solu-

tions of above problem provide the desired results. We denote the

solution OP by c�.
In particular, if above OP has no solution for any choice of

c(x,p), then by construction, the model is inconsistent with the data,

i.e. there exists no state trajectory which connects all measure-

ments. This way, a model hypothesis is falsified. To obtain the

precision of a the parameter, we determine its bounding set. To

this end, consider the objective c(x,p)~pi of OP, and the

respective solution c�. This solution defines by construction a

lower bound of the parameter, p
i
~
:

c�ƒpi. To obtain an upper

bound, we consider c(x,p)~{pi, and respectively piƒ{c�~
:

�ppi.

The interval pi[½pi
,�ppi� is denoted the parameter uncertainty

interval. Analogously, state uncertainty intervals can be obtained

by solving OP. Finally, for optimization purposes, the weighted

sum of least squares can be considered, i.e.

c(x,p)~
X

1ƒiƒnx
0ƒjƒN

1

ai

(xi(tj){~xxi(tj))
2, ð10Þ

where ai denotes the weighting factors.

Due to nonlinear model equations, the OP is typically non-

convex and may be ill-posed, see e.g. [31]. Thus, finding the

desired optimum or showing that no solution exists, is difficult in

general. To obtain the desired results, we consider first a

discretization of the polynomial ODEs. In a next step, the non-

convex OP is relaxed into a semidefinite, and hence convex,

optimization problem (SDP), as outlined for the present settings in

Text S1. Note that, SDPs can be solved in polynomial time with

arbitrary precision [32,33], e.g. via primal-dual interior-point

methods. Note also that relaxation tightness is very difficult to

quantify in general besides some particular problem classes, see

e.g. [34]. However, the relaxation error can be decreased e.g. by

taking additional constraints into account, see e.g. [35], or by

applying partitioning strategies (e.g. bisectioning). Performance

can be increased by relaxing the SDP further into an linear

optimization problem following the relaxation hierarchy proposed

by [35].

The most important relation of the relaxed (SDP) and the

original optimization problem (OP) is that any solution of the

original is also a solution of the relaxed one. This implies that no

feasible solutions are missed. Furthermore, if both problems are

feasible, then the optimum of SDP is a lower bound for the global

minimum of OP. Infeasibility certificates or lower bounds are

obtained via the dual problem of SDP, see e.g. [36]. An

infeasibility certificate provides a rigorous falsification criterion,

e.g. for testing model hypotheses of the specific growth rate:

Set-Based Analysis of AGE1.HN Cell Growth
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Invalidation. If the dual SDP is unbounded, then OP has no

feasible solution. Hence, the model hypothesis is inconsistent with the data and

rejected.

Dual feasible solutions are used for estimation, i.e. to determine

the uncertainty intervals of the parameters and the states.

Estimation. The parameter uncertainty interval pi[½pi
,�ppi� (state

uncertainty interval ½xi(tj), �xxi(tj)� respectively) is obtained from two feasible

solutions of the dual SDP.

We focus on estimating the parameter and state 1-sigma

(68.3%) confidence intervals, although more general set-valued

estimates can be obtained if required. For obtaining an optimal

estimate, a branch-and-bound algorithm is considered, see

Text S1.

Remark: The computational complexity is as follows: For

invalidating one model hypothesis, one SDP had to be solved.

To obtain a parameter confidence interval, two SDPs had to be

solved. For branch-and-bound parameter optimization, 64 SDPs

had to be solved for each parameter. On a standard 2.4 GHz Intel

desktop with 4 GB RAM using the ADMIT toolbox [22], the

underlying SDPs for the exponential growth phase were solved in

approx. 10 s, and for the complete time course of the

measurements were solved in approx. 60 s.

Parameter sensitivity. The ‘spread’ of a parameter uncer-

tainty interval indicates the range of possible variations of that

parameter. Because any parameter value outside the interval leads

to invalidity of the model by construction, the larger the interval,

the less important is such a parameter variation regarding

invalidity; vice versa, a parameter is sensitive, if already small

variations leads to rejection of the model (hypothesis). To measure

this sensitivity of the parameters, we evaluate the largest possible

variation of a parameter pi which does not lead to rejection; the

sensitivity is derived from the 1-sigma confidence limits of the

parameters, and is given by

j~j(pi) ~
:

ffiffiffiffi
p

i

�ppi

s
: ð11Þ

By definition, we have 0ƒjƒ1. The closer the sensitivity index

j of a parameter pi is to 1, the more sensitive is the parameter

(j~1 means that already a small variation of the parameter leads

to rejection of the model). Sensitive parameters have sensitivity

indices between 0:5ƒjƒ1, i.e. less than a 4-fold variation of the

nominal parameter is possible. Values between 0:1ƒjƒ0:5
indicate less sensitive, and jƒ0:1 insensitive parameters (i.e.

more than 100-fold variation is possible). The proposed indices are

compared with classical local and Latin hypercube based global

parameter sensitivity analysis in the Text S3.

Uncertainty analysis. Uncertainty analysis deals with the

issue of investigating how uncertainty in initial conditions and

parameters propagates to the model outputs, see e.g. [18]. This is

of particular relevance because investigating only the nominal

system’s behavior (e.g. regarding fixed parameters and initial

condition) does not provide insight into qualitative features such as

robustness or sensitivity of the model. To evaluate the model’s

dynamics under uncertainties, we perform a reachability analysis,

i.e. we outer-bound the feasible system’s states given uncertain

initial states and parametric uncertainties, i.e. the beforehand

estimated parameter confidence intervals.

Outlier analysis. Outliers often arise due to faults, changes

in systems environment, human or instrument error, or simply

through natural deviations in populations, see e.g. [37]. As pointed

out by [38], outliers may contain valuable information, can

however lead to reject falsely a hypothesis or biased parameter

estimates. Therefore it is important to identify outliers prior to

modeling. Their detection is achieved here as follows: We

introduce initially an additional pessimism of 10% (relative error)

for dead cells (Xd ) and 5% for the other five state variables. Based

on this pessimism, we can estimate the model parameters and

perform a reachability analysis as described before. By comparison

of the so obtained reachable state sets with the measurement data,

outliers can be detected and removed; Finally, the pessimism is

reduced and the procedure is repeated until all outliers are

detected and no pessimism is required any more.

Note that the proposed outlier detection approach is model-

generic; a consequence is that outliers are classified regarding a

particular model (hypothesis). The main advantage of this

approach is that even without removing all outliers, the model

can be analyzed and the parameters can be refined. In turn, the

estimates improve when outliers are removed from the data. The

detected outliers are furthermore validated considering a Grubbs

test and the method of least trimmed squares in the Text S3. Thus,

the proposed outlier analysis allows us to differentiate the rigorous

invalidation criterion. We now allow for the possibility that the

measurement data can be corrupted by some (few) outlying

observations. However, if e.g. consecutive outliers are detected, a

careful investigation is required; consecutive outliers in general

constitute a rejection criterion and motivate model changes.

Remark: The computational complexity for the outlier detection

phase is as follows. A reachability analysis (state estimation) has to

be performed for each state at each time step (2.5 h). For the

complete time course of the measurements (0ƒtƒ160 h), thus

768 SDPs had to be solved. Additionally, the 8 parameters were

evaluated (16 SDPs). We iterated 3 times the overall procedure,

summing up to approx. 2400 SDP evaluations (1200 SDP

evaluations for the exponential growth phase). After identification

of the outliers, the additional pessimism was dropped, and the

overall procedure once more employed.

Cultivations
The batch experiments were carried out with AGE1.HN cells

[23] provided by ProBioGen AG, Berlin. This novel human cell

line was immortalized by insertion of particular genes [39] and

was then adapted to grow in suspension in a chemically defined

medium (42-Max-UB, TeutoCell AG, Bielefeld, Germany). The

medium was supplemented with 30 mM glucose and 5 mM

glutamine. A stirred tank reactor (DasGip, Jülich, Germany) with a

working volume of 500 ml was used to perform the bioreactor

experiments. Temperature and dissolved oxygen concentration

were controlled at 37uC and 40% pO2 respectively. The pH value

was controlled to 7.15. In contrast to this, in the shaker

experiments (baffled shaker flasks, corning, working volume 150

ml) the initial pH value was 7.27, but allowed to decrease during

the process. The temperature in the incubator was set to 37uC and

the CO2 concentration was about 5%. Cell numbers were

measured via automatic cell counting using the Vi-CELLTM XR

(Beckmann Coulter, Brea (CA), USA). This cell counter discrim-

inates dead and viable cells using the trypan blue method.

Concentrations of main metabolites were determined enzymati-

cally with the bioprofile 100plus (Nova Biomedical, Waltham

(MA), USA) [40,41].

In the following we outline a structured approach for modeling

and analyzing cell growth using above set-based methods

exemplary for AGE1.HN cells. Note that the approach can be

applied directly to other cell lines or process conditions.

Set-Based Analysis of AGE1.HN Cell Growth
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Results and Discussion

Growth of mammalian cells depends on various factors,

essentially on the availability of the substrates glucose (Glc) and

glutamine (Gln). As a by-product of Glc and Gln consumption,

lactate (Lac) and ammonia (Amn) are released. Basic properties of

cell growth have been described in various publications for

hybridoma [42,43], myeloma [44] and CHO cells considering

unstructured models, refer also [45,46], and metabolic shifts have

been investigated for AGE1.HN cells using metabolic flux analysis

[23]. In general, substrate and by-product yield factors as well as

the specific growth rate strongly depend on the cell line, the used

medium, and the process strategy (batch or continuous). In this

work, we studied growth and metabolism of AGE1.HN cells using

batch experiments in two commonly used environments, a shaker

flask and a bioreactor. The experimental data is provided in the

Text S2. A summary of the measurement errors obtained by assay

validation is shown in Tab. 1.

Identification of growth phases
Before analyzing the cell growth dynamics and the main

metabolites in detail, we identified the cell growth phases based on

the observed viable cell concentration Xv and a simple mechanistic

model given by

_XX v~(m{Kd )Xv, ð12Þ

where m the unknown specific growth rate, Kd the specific cell

death rate, and Xv denotes the concentration of viable cells. We

considered the specific cell death rate fixed (Kd~0:003 h{1, data

not shown) and outer-bounded the specific growth rate consider-

ing m~m(t) as an unknown and time-variant parameter.

Particularly, we estimated the 1-sigma confidence interval of m(t)
at each time sample. The results are depicted in Fig. 1.

The time-dependent specific growth rate is used subsequently to

distinguish qualitatively different phases of growth of AGE1.HN

cells. We characterized the first phase by the time interval where a

constant specific growth rate mmax is apparent, i.e.

m(t)~mmax~const: ð13Þ

Such a constant maximum specific growth rate corresponds to an

exponential growth dynamic. This first phase starts at the

beginning of the experiments (t~0 h), and terminates at that time

point when the specific growth rate can not be considered constant

any more, compare Fig. 1. The phase lasts in the bioreactor for a

maximum of 125 h, and in the shaker for a maximum of 128 h.

After the phase of maximum growth, the specific growth rate

decreases until growth completely ceases, as shown in Fig. 1. The

second phase terminates when no cell growth is observed any

more, i.e. when m(t)~0. Thus, we characterized the second

growth phase by the time interval where

0ƒm(t)vmmax: ð14Þ

For both experiments, cell growth is observed for a maximum of

180 h. The final phase is characterized by a declining cell

concentration, i.e.

m(t)v0, ð15Þ

observed for t§180 h.

The identification of the growth phases so far is based on the

dynamics of the viable cell concentration alone. In the following,

we investigated the first two indicated growth phases more

comprehensively by taking the dynamics of the metabolites into

account.

Phase of exponential cell growth
To investigate the exponential growth phase, we considered a

mechanistic description of the uptake of glucose (Glc) and

glutamine (Gln), the release of lactate (Lac) and ammonia

Table 1. Statistical analysis of the measurement errors by
validation assay.

Amn Glc �Gln Lac Xd
� Xv

�

[mM] [mM] [mM] [mM] [106cells

ml
] [106cells

ml
]

LOD (g
i
) 0.30 3.91 0.82 2.98 0.00 0.00

SD of the
method (si)

0.03 0.39 (0.08) 0.30 (0.02) (0.02)

% SD of the
method (ri)

(2.1%) (1.9%) 5.9% (1.7%) 6.2% 6.2%

monotonic
behavior

8 : : 8 8 8

�non-homogeneous variance. LOD: limit of detection. SD: standard deviation.
% SD: relative standard deviation.
doi:10.1371/journal.pone.0068124.t001

Figure 1. Outer bounding of the specific growth rate and identification of growth phases. Depicted is the 1-sigma confidence interval of
the specific growth rate for the bioreactor (left) and the shaker (right) experiment. Phase I: exponential cell growth. Phase II: decreasing cell growth.
Phase III: declining cell concentration.
doi:10.1371/journal.pone.0068124.g001

Set-Based Analysis of AGE1.HN Cell Growth
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(Amn), as well as the dynamics of dead (Xd ) and viable cells (Xv),

following [46] and references therein:

d=dtAmn~
mmax

Y ’X=Amn

XvzKdegGln

d=dtGlc~ {
mmax

Y ’X=Glc

Xv

d=dtGln~ {
mmax

Y ’X=Gln

Xv{KdegGln

d=dtLac~
mmax

Y ’X=Lac

Xv

d=dtXd~ KdXv{KlysXd

d=dtXv~ (mmax{Kd )Xv:

ð16Þ

Model (16) describes cell growth under ideal conditions. It

includes the uptake of Glc and Gln, the release of Lac and Amn,

and the lysis of dead cells. In addition, the spontaneous

degradation of Gln to Amn is taken into account (see e.g. [46]

and references therein). Note that this basic model does not

include feedbacks, i.e. the specific growth rate mmax does not

depend on the concentration of substrates or released products.

Note also that the simple model (16) is only valid for non-negative

concentrations and for low levels of accumulated by-products.

Parameter estimation and sensitivities. Besides the values

of the parameters Kdeg and Klys, which are known from previous

experiments (data not shown, see Tab. 2), the parameters of the

model (16) were unknown. To estimate the four yield factors, the

death rate Kd , and the specific growth rate mmax, we considered

the available data in Phase I, and took the 1-sigma confidence

intervals of the measurements into account. As a remark, the

estimation does not depend on a guess neither for the initial

parameters nor the initial conditions. Instead, the range of initial

parameters covers several orders of magnitudes, compare Tab. 2,

and also the initial conditions were uncertain.

Subsequently, we determined the 1-sigma (68.3%) parameter

confidence intervals and evaluated their sensitivity according to

Eq. (11). The results are shown in Fig. 2 and Tab. 2. Results

showed that all the unknown parameters are sensitive. Conversely,

this means that the experimental data contains sufficient

information for identification of the unknown parameters. We

found the maximum specific growth rate mmax is the most sensitive

parameter (j&0:9); the sensitivities j of the yield factors range

from 0.6–0.9.

In a next step, we estimated the optimal parameter values

regarding the least squares criterion (10) by using the proposed

branch-and-bound scheme, see Text S1. The optimization results

are depicted in Fig. 2. As expected, the confidence intervals were

not symmetric regarding the optimal parameter values, which

results from non-homogeneous errors and nonlinearity of the

estimation problem.

Comparing both setups, the maximum specific growth rate is

found to be larger in the bioreactor than in the shaker flask. In

conclusion, the bioreactor provided more suitable growth condi-

tions for AGE1.HN cells. Furthermore, the yield factors for the

substrates, Y ’X=Glc and Y ’X=Gln, are significantly lower in the

Table 2. Summary of parameters corresponding to the bioreactor and shaker flask experiment.

par. unit references bioreactor shaker

[p
i
,�ppi] opt j [p

i
,�ppi] Opt j

mmax 1

h

2e-2–1.3e-1 [1.54,1.91]e-2 1.90e-2 0.90 [1.26,1.48]e-2 1.44e-2 0.92

Y’X=Glc 109

mmol

6e-2–1.7e0 [0.93,1.93]e-1 1.44e-1 0.69 [1.41,3.75]e-1 2.00e-1 0.61

Y’X=Gln 109

mmol

3e-2–1.6e0 [3.31,6.23]e-1 4.69e-1 0.73 [5.37,11.4]e-1 6.98e-1 0.69

Y’X=Lac 109

mmol

7e-2–2.5e-1 [6.20,8.28]e-2 8.22e-2 0.87 [7.58,9.60]e-2 7.76e-2 0.89

Y’X=Amn 109

mmol

5.0e-1–2.0e0 [3.98,6.03]e-1 5.63e-1 0.81 [4.69,7.55]e-1 6.13e-1 0.79

Kd 1

h

2.8e-4–3e-1 [1.66,3.45]e-3 2.66e-3 0.69 [5.09,12.4]e-4 7.20e-4 0.64

KGlc mM 1.5e-1–1.0e0 [0.89,2.43] 1.45 0.61 –�

KGln mM 6e-2–8.0e-1 [0.01,1.35] 0.26 0.11 [0.13,1.52] 0.49 0.29

KpH pH –2 [0.51,4.91] 3.01 0.32

KAmn mM 1.0e0–2.0e1 –� [5.16,15.8] 7.21 0.57

KLac mM 8.0e0–1.4e2 –� [27.7,72.9] 54.4 0.62

Kdeg 1

h
1.5e-31 –

Klys 1

h
1.0e-21 –

N 1

h

7.15e0 –

Literature values taken from [42,56–61]. p
i

and pi denote the lower and upper limit of the 1-sigma parameter confidence interval. j denotes the sensitivity coefficient

(Eq. 11). 1unpublished data. 2pH constant. � insensitive parameter.
doi:10.1371/journal.pone.0068124.t002
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bioreactor, i.e. the substrates are utilized more efficiently in the

bioreactor than in the shaker to form viable cells.

Uncertainty and outlier analysis. To evaluate the effect of

uncertain parameters and to detect outliers, we estimated the

reachable states of Model (16) regarding the determined param-

eter confidence intervals. The results are depicted in Fig. 3. The

results showed that the model is rather robust with respect to

parametric variations as expected, because the variations did not

lead to significant or qualitatively different behavior.

Furthermore, by direct comparison of the reachable states with

the measurement data, outliers were detected, see Fig. 3. Besides

some lactate measurements from the shaker flask, we detected only

few and isolated outliers. These isolated outliers can probably be

explained from sampling or sample preparation errors, as well as the

fact that we only considered the 1-sigma confidence limits of the

parameters. Subsequently, we removed the outliers from the data set.

On the other hand, consecutive outliers as found for lactate in

the shaker flask (see Fig. 3, right), can neither be explained by

sampling nor sample preparation errors nor by statistics.

Consecutive outliers typically indicate a model mismatch, i.e. a

significant deviation of considered kinetics, e.g. additional

metabolic pathways. Here, the mismatch might be explained by

additional utilization of pyruvate. Pyruvate is present in the used

medium in low concentrations, and subsequent utilization can

induce an additional release of Lac at the beginning of the

experiment. Because the concentrations of pyruvate were not

measured for the experiment, we decided to not include the

respective pathway explicitly. Further experiments which measure

the concentration of pyruvate have to be considered to investigate

this hypothesis in detail.

In summary, both parameter and uncertainty analysis support-

ed the proposed model. Only isolated outliers have been detected,

besides lactate dynamics in the shaker flask. The model parameters

are all sensitive, and the uncertainty analysis demonstrated

robustness of the proposed model with respect to parametric

uncertainties.

Phase of decreasing cell growth
We next considered the decrease in the specific growth rate with

progressing time. In particular, we aimed to provide a concise

model which describes consistently the observed dynamics for

0ƒtƒ180 h, i.e. covering the complete time course of both

experiments.

Figure 2. Outer bounding and optimal parameter estimation. Depicted are the parameter confidence intervals (logarithmic scale,
normalized), and the optimal parameters (vertical bars) regarding the sum of least squares via branch-and-bound.
doi:10.1371/journal.pone.0068124.g002

Figure 3. Uncertainty analysis and outlier detection (exponential growth phase). Reachable state sets are shaded, outliers are in a circle.
doi:10.1371/journal.pone.0068124.g003
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To this end, it was necessary to modify the structure of the basic

model (16), because the model was based on the simplifying

assumption that substrates were (indefinitely) available and by-

product concentrations were low, which is no longer the case

toward the end of the experiments. To describe a substrate uptake

kinetics, we used the Monod equation (see e.g. [47], and below Eq.

(18)). Substrate uptake kinetics also affects the production of Amn

and Lac, because Amn is primarily produced from Gln (see [48]),

and Lac from Glc, see [49]. Therefore, the production of Amn and

Lac directly depends on the availability of the Gln and Glc, which

had to be taken into account. The extended model considered in

the remainder is given by:

d=dtAmn~
mmax

Y ’X=Amn

Gln

GlnzKGln

XvzKdegGln

d=dtGlc~ {
mmax

Y ’X=Glc

Glc

GlczKGlc

Xv

d=dtGln~ {
mmax

Y ’X=Gln

Gln

GlnzKGln

Xv{KdegGln

d=dtLac~
mmax

Y ’X=Lac

Glc

GlczKGlc

Xv

d=dtXd~ KdXv{KlysXd

d=dtXv~ (m{Kd )Xv:

ð17Þ

Furthermore, we had to identify the factors that explain the

declining specific growth rate. In particular, we assumed that this

results from negative feedbacks, e.g. substrate depletion, by-

product side effects, or the pH of the medium in the shaker flask.

To evaluate which of these factors actually contributed to the

observed dynamics, we extended the model as described below.

First, we considered that the specific growth rate may be limited

by either of the substrates Glc or Gln, e.g. [50]:

m~mmax

S

SzKs

, ð18Þ

where S denotes the substrates concentration, and Ks the

(unknown) Monod constant. Second, accumulation of by-products

may influence cell growth, i.e. Amn or Lac [50]. Such an influence

can be described by a non-competitive inhibition mechanism by

m~mmax

KI

IzKI

, ð19Þ

where I is the by-product (inhibitor) concentration, and KI the

respective (unknown) inhibition constant. Third, for bacteria and

hybridoma, the influence of the pH-value on cell growth has been

reported by [51] and [52,53]. Based on their studies, the influence

of the pH on cell growth can be described qualitatively by a

parabola

m~mmax
:(KpH ({pH2z2NpH){N2)z1)~mmax

:gpH , ð20Þ

where N~7:15 (vertex) denotes the pH value where the specific

growth rate is at its maximum, and KpH an unknown parameter.

Notice that all proposed feedback hypotheses contain besides mmax

one unknown parameter. The single factor hypotheses for the

specific growth rate are summarized in Tab. 3, and were analyzed

hereafter. The simultaneous action of several factors is investigated

later on.
Evaluating the feedback hypotheses. For evaluation, we

chose a reverse engineering approach. We already estimated the

specific growth rate m(t) depicted in Fig. 1, which reflects the

‘observed’ cell growth dynamics. In addition, we determined the 1-

sigma confidence limits for the specific growth rate according to

the hypotheses listed in Tab. 3. To this end, we considered the 1-

sigma confidence interval mmax as determined before and

constrained the remaining unknown parameter to the range of

the reported literature values, compare Tab. 2. Thus, we obtained

the ‘hypothetical’ specific growth rate, which were compared with

the ‘observed’ specific growth rate for falsification purposes as

shown in Fig. 4. Exemplary, Fig. 4A and Fig. 4B show the results

for Gln-limitation and Amn-inhibition in the bioreactor, respec-

tively. Because the ‘observed’ and the ‘hypothetical’ specific

growth rate in both cases do not overlap at any time, we found

that neither Gln-limitation nor Amn-inhibition alone explained

the observed growth dynamics. On the contrary, Glc-limitation,

see Fig. 4C, was found a valid hypothesis.

Table 3. Specific growth rate hypotheses.

factor hypothesis bioreactor shaker

Glc
m~mmax

: Glc

GlczKGlc

+3,4 –

Gln
m~mmax

: Gln

GlnzKGln

–1 +

Lac
m~mmax

: KLac

LaczKLac

– +

Amn
m~mmax

: KAmn

AmnzKAmn

2– +

pH m~mmax
:gpH – 4+

doi:10.1371/journal.pone.0068124.t003

Figure 4. Evaluation of feedback hypotheses via invalidation. Comparison of the ‘observed’ (bioreactor) and three ‘hypothetical’ specific
growth rates: Gln-limitation (A, falsified), Amn-inhibition (B, falsified), and Glc-limitation (C, validated).
doi:10.1371/journal.pone.0068124.g004
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The results are summarized in Tab. 3. Results showed, as

expected, that Glc is essential for cell growth in the bioreactor. In

contrast, Gln limitation did not affected growth of AGE1.HN cells.

Furthermore, we showed that the by-products Amn and Lac did

not affected cell growth within the observed concentration ranges

significantly (considering physiologically meaningful inhibition

constants).

The situation in the shaker flask is different, because Glc is

available until the end of the experiment, and shown to be not

responsible for the decrease of the specific growth rate here, see

Tab. 3. Instead, the decrease may be explained by by-product

inhibition, the proposed pH-dependency, or Gln-limitation.

Hence, without additional knowledge, the results appear to be

non-conclusive for the shaker flask. However, since we showed

that cell growth is not affected by Gln-limitation in the bioreactor,

we could rule out this hypothesis for the shaker flask. Furthermore,

since the observed concentration ranges of Amn and Lac were

comparable in the bioreactor and in the shaker flask (both slightly

lower in the shaker), we could rule out Amn nor Lac inhibition

too. For the shaker, only the pH dependency hypothesis remained.

Because it is known that the pH value decreases due to the release

of the acid Lac, we finally concluded that the decrease of the

specific growth rate in the shaker is the result of the acidification of

the medium by Lac.

For further analysis, we determined the unknown parameters

and the corresponding confidence intervals for Glc-limitation

(KGlc) and pH-dependency (KpH ), see Tab. 2. The parameters

were found sensitive and in accord with the literature values.

Finally, for Glc-limitation (bioreactor) and pH-dependence (shaker

flask), we performed an uncertainty and outlier analysis as

described before, see Fig. 5; this analysis demonstrated robustness

against parametric variations, and only few (non-consecutive)

additional outliers.

The considered falsification approach was then used to

investigate the simultaneous action of two factors on cell growth.

To this end, we considered multiplicative superposition, e.g.

superposition of Glc-limitation and Amn-inhibition by

m~mmax

Glc

GlczKGlc

: KAmn

KAmnzAmn
: ð21Þ

Note that it is also possible to study additive superposition of

influencing factors as well as combinations that can be expressed in

terms of Boolean logic.

We evaluated all possible combinations of two influencing

factors for both cultivation systems. In the bioreactor, we found

that only feedbacks including Glc-limitation and excluding Gln-

limitation are consistent with the observations. None of the

combinations could be rejected in the shaker flask. An important

insight is that the feedbacks become more difficult to analyze the

more influencing factors are considered. This is due to the fact that

the number of unknown parameters increases, because each

influencing factor introduces an additional parameter, while the

available information for estimation remains the same. Here, the

parameters became correlated and were therefore found less

sensitive (results not shown).

Finally, to address parameter estimation in future, a design of

experiments should be considered by which the possible influenc-

ing factors are investigated one by one. This avoids superposition

of several influencing factors, and hence more precise parameter

estimates can be expected. For evaluating by-product influences, a

pulse administration during the exponential growth phase will be

advantageous. This pulse should be strong enough to decrease the

influence of uncertainties, within biologically meaningful limits.

Similarly, the influence of pH should be studied explicitly this way.

Conclusions

We proposed a structured approach for analyzing and

characterizing cell growth and metabolism, outlined for

AGE1.HN cells cultured in two commonly used environments.

Figure 5. Uncertainty analysis and outlier detection. Reachable state sets are shaded, outliers are in a circle. Bioreactor: Glc-limitation, Shaker:
pH-dependency.
doi:10.1371/journal.pone.0068124.g005
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The key benefit of the considered set-based methods is their robust

perspective onto falsification, estimation, and analysis while

providing conclusive and guaranteed results. This is of particular

relevance for biological and biotechnological processes, e.g. to

evaluate options for process design and optimization, which

frequently show persistence of the characteristic system behavior

under conditions of uncertainty.

In both experiments, we identified two qualitatively different

growth phases. The first phase was characterized by a constant

maximum specific growth rate corresponding to exponential cell

growth. We demonstrated that this phase could be described very

well by a relatively simple model including the main metabolites as

well as dynamics of viable and dead cells. Besides lactate dynamics

for the shaker flask experiment, only few and isolated outliers were

detected; the model was shown to be robust with respect to

parametric uncertainties. We showed also that the bioreactor

provided more suitable growth conditions than the shaker. The

second phase was characterized by a declining specific growth

rate. To describe the observed dynamics for the complete time

course of both experiments, we extended the previous model

including substrate limitations, and identified the factors which

lead to the decrease of the specific growth rate. By falsification, we

demonstrated that the governing mechanism for this was glucose

limitation in the bioreactor, and the decrease of the pH value due

to the release of lactate in the shaker. Only few additional isolated

outliers were detected; overall the models were in good accord

with the experimental data.

To further investigate the influence of metabolic by-

products onto AGE1.HN cell growth and metabolism, additional

experiments should be considered, i.e. by adding (large amounts

of) by-product, or acid to evaluate the influence of pH, during the

exponential growth phase. Also, the consumption of pyruvate

should be investigated in future experiments. Furthermore, it

would be interesting to extend the here considered mechanistic

description of the viable and dead cell dynamic and main

metabolite concentrations to intra-cellular metabolites. For exam-

ple, extra-cellular fluxes and their error bounds can be calculated,

and then be used to determine unknown intra-cellular fluxes, e.g.

considering dynamic metabolic flux analysis [54,55]. Besides, the

proposed methods should be further developed to include

qualitative data for estimation and analysis.

With this study, we have demonstrated that the set-based

approaches are valuable tools to analyze biotechnological

processes under conditions of uncertainty.
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