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Abstract

Soils of temperate forests store significant amounts of organic matter and are consid-
ered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) turnover has been
studied using the ∆14C values of bulk SOC or different SOC fractions as observational
constraints in SOC models. Further, the ∆14C values of CO2 evolved during the incuba-5

tion of soil and roots have been widely used together with ∆14C of total soil respiration
to partition soil respiration into heterotrophic respiration (HR) and rhizosphere respi-
ration. However, these data have not been used as joint observational constraints to
determine SOC turnover times. Thus, we focus on: (1) how different combinations of
observational constraints help to narrow estimates of turnover times and other param-10

eters of a simple two-pool model, ICBM; (2) if a multiple constraints approach allows
determining whether the soil has been storing or losing SOC. To this end ICBM was
adapted to model SOC and SO14C in parallel with litterfall and the ∆14C of litterfall as
driving variables. The ∆14C of the atmosphere with its prominent bomb peak was used
as a proxy for the ∆14C of litterfall. Data from three spruce dominated temperate forests15

in Germany and the USA (Coulissenhieb II, Solling D0 and Howland Tower site) were
used to estimate the parameters of ICBM via Bayesian calibration. Key findings are: (1)
the joint use of all 4 observational constraints (SOC stock and its ∆14C, HR flux and
its ∆14C) helped to considerably narrow turnover times of the young pool (primarily by
∆14C of HR) and the old pool (primarily by ∆14C of SOC). Furthermore, the joint use all20

observational constraints allowed constraining the humification factor in ICBM, which
describes the fraction of the annual outflux from the young pool that enters the old
pool. The Bayesian parameter estimation yielded the following turnover times (mean
± standard deviation) for SOC in the young pool: Coulissenhieb II 1.7±0.5yr, Solling
D0 5.7±0.7yr and Howland Tower 1.1±0.5yr. Turnover times for the old pool were25

380±61yr (Coulissenhieb II), 137±30yr (Solling D0) and 188±45yr (Howland Tower),
respectively. (2) At all three sites the multiple constraints approach was not able to de-
termine if the soil has been losing or storing carbon. Nevertheless, the relaxed steady
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state assumption hardly introduced any additional uncertainty for the other parameter
estimates. Overall the results suggest that using ∆14C data from more than one carbon
pool or flux helps to better constrain SOC models.

1 Introduction

Soils store around 3000 Pg C of soil organic carbon (SOC) (Jobbágy and Jackson,5

2000; Tarnocai et al., 2009). This means that soils contain roughly 4 times more carbon
than the atmosphere, and 6 times more carbon than the vegetation (Prentice et al.,
2001). About 100 Pg C each year are emitted to the atmosphere from soils (Bond-
Lamberty and Thomson, 2010). A considerable part of this soil CO2 efflux is the product
of soil organic matter decomposition via soil organisms. Apart from the importance10

of soil organic carbon in the global terrestrial carbon cycle as the largest terrestrial
carbon pool and as the source of one of the largest terrestrial carbon fluxes, soil organic
matter turnover is a key factor for soil fertility and nutrient resupply. Jenny et al. (1949)
were the first to study soil organic matter turnover with a process based model. In
this seminal paper SOC was modeled as one homogenous pool which decomposes15

according to first-order kinetics, analogous to nuclear decay. Since then a multitude
of different SOM models have been devised which vary in their degree of complexity
(Manzoni and Porporato, 2009). In general, with the better accessibility of personal
computers and the rapid increase in computing capacity more and more multi-pool
models were developed.20

For years, fractionation techniques were developed in the hope that organic mat-
ter could be physically and chemically separated into pools that could be related to
conceptual models of carbon cycling. This strategy is often referred to as “measur-
ing the modelable” (Elliott et al., 1996). Though this approach seems to be successful
for specific models and fractionation procedures (e.g. Zimmermann et al., 2007), the25

premise that measured fractions should represent “unique and non-composite pools”
(Smith et al., 2002) is still difficult to fulfill. On the other hand the notion of “model-
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ing the measurable” (Elliott et al., 1996) has been put forward and may, for example,
lead to the inclusion of microbial dynamics in SOC models (Scharnagl et al., 2010).
Microbial biomass data from chloroform fumigation methods could then serve as an
additional observational constraint. In fact, these two related strategies can lead to
a useful co-evolution and refinement of both experimental and modeling approaches,5

given technical and conceptual advances. However, an abundance of soil observations
already exist that have to date not been adequately used to test carbon cycle mod-
els. The strategy we suggest here could be described as “considering the measured”,
meaning that one should check which variables have been measured at a certain site
and compare it with modeled output variables. Using the model outputs together with10

inverse modeling, soil processes and model parameters can be studied. We propose
to use SOC stocks and heterotrophic respiration fluxes in order to link observations
of soil C pools and fluxes (Kuzyakov, 2011) together with their respective ∆14C val-
ues to constrain the parameters of a simple serial two-pool SOC turnover model – the
Introductory Carbon Balance Model (Andrén and Kätterer, 1997).15

The 14C content of bulk SOC or different SOC fractions has been successfully used
as an observational constraint in SOC models to calculate turnover times of SOC
(Trumbore, 1993; Gaudinski et al., 2000; Schulze et al., 2009). Although these authors
demonstrated the potential of this approach, they were looking for one single best pa-
rameter set, rather than treating the effect of measurement uncertainty on parameter20

uncertainty in a formal way. Further, the 14C value of CO2 evolved during the incubation
of soil and roots has been widely used together with 14C content in total soil respira-
tion to partition soil respiration (SR) into heterotrophic respiration (HR) and rhizosphere
respiration (RR) (e.g. Gaudinski et al., 2000; Trumbore, 2006 – for an overview; Muhr
and Borken, 2009; Muhr et al., 2010). To our knowledge, these two approaches of us-25

ing radiocarbon in soil science research have not been used as joint constraints for
the estimation of decomposition rates and other parameters of SOC models. How-
ever, Schmidt et al. (2011) proposed that the 14C content of respired CO2 and leached
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dissolved organic carbon could be used as additional constraints in model-data com-
parisons.

Wutzler and Reichstein (2007) have shown a possible trade-off between the com-
monly used equilibrium or steady-state assumption of many SOC models and the es-
timation of SOC turnover times. For a soil with SOC stocks below equilibrium a cal-5

ibration of turnover times assuming SOC stocks at equilibrium would yield too fast
turnover time estimates. In their modeling study Wutzler and Reichstein (2007) pro-
posed a transient correction for decay rates to account for possible disturbances in the
past. In the model-data comparison framework we propose, we tackled this issue from
a different perspective by introducing and calibrating parameters relaxing the steady-10

state assumption. A similar approach has been by taken by Carvalhais et al. (2010)
who introduced steady state relaxing parameters to allow for vegetation and soil car-
bon pools out of equilibrium in the ecosystem model CASA. Hence, we try to constrain
the source/sink function of the soil by subjecting these additional parameters to the
previously described observational constraints.15

To properly quantify the effect of uncertainties in measurements on the uncertainty of
parameter estimates, we performed a Bayesian calibration with a Monte Carlo Markov
Chain (MCMC) algorithm and data from three spruce dominated sites in the US and
Germany. More specifically we wanted to address the following questions:

(i) How do combinations of different observational constraints – ranging from mea-20

surements of SOC stock, 14C of SOC, heterotrophic respiration, to measurements of
14C of heterotrophic respiration – influence the parameter and prediction uncertainties
of ICBM?

(ii) How well can the net carbon balance be constrained with a multiple constraints
approach by relaxing the steady state assumption?25
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2 Material and methods

2.1 The Introductory Carbon Balance Model (ICBM)

The Introductory Carbon Balance Model is a published two-pool serial model with
first-order reaction kinetics (Hénin and Dupuis, 1945; Andrén and Kätterer, 1997) We
adapted this model to the requirements prescribed by the use of 14C data and a relaxed5

steady state assumption. We refer to this modified version of ICBM as I14CBM. While
the original model had only one type of litterfall as input (Andrén and Kätterer, 1997),
in I14CBM carbon enters the first SOC pool – the young pool Y – as aboveground and
belowground litter input (iL and iR, upper half of Fig. 1). Carbon in the Y pool is de-
composed according to first-order kinetics with the decomposition rate kY . A part h of10

the outflow from Y is not directly mineralized to CO2, but transferred via humification
(h) into the old pool O (Fig. 1). Mineralization of carbon in the old pool O also follows
first-order kinetics with the decomposition rate kO:

dY
dt

= iL+ iR − r · kY ·Y (1)

dO
dt

= r ·h · kY ·Y − r · kO ·O (2)15

Andrén and Kätterer (1997) devised a parameter r (external response factor) that
should comprise the influence of abiotic conditions on decomposition, like soil moisture
and temperature, and equally affect the decomposition rates of Y and O. Throughout
this study the influence of external factors like climatic and edaphic conditions is not20

explicitly accounted for, and r is set to 1. This means that these external effects are
lumped into the other parameters, and should be reflected in the variation of the de-
composition rates kY and kO and the humification coefficient h across the different
sites.

Additionally, we introduced the parameters biasiL and biasiR which should account for25

a potential bias in litterfall measurements by assuming that the actual litterfall is a mul-
13808
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tiple of the observed litterfall. Potential bias may arise if only leaf litterfall was sampled
or the location of litterfall traps was unrepresentative. Hence, biasiL and biasiR are two
dimensionless parameters that express the ratio between the “real” and observed lit-
terfall (Fig. 1). This technique of accounting for under- or overestimated carbon input
fluxes has been successfully used in studies modeling the decay of organic matter in5

marine sediments. Here, sediment traps were suspected to underestimate the carbon
flux to the sediment (Soetaert and Herman, 2009).

In order to adapt ICBM for radiocarbon data, we essentially replicated Eqs. (1)
and (2) as an additional 14C-module of ICBM. Only radioactive decay of 14C had
to be added as an additional process with λ, the radioactive decay constant for10
14C = 1

8267 yr−1 (Stuiver and Polach, 1977):

d14Y
dt

=14iL+14iR − r · kY ·14Y − λ·14Y (3)

d14O
dt

= r ·h · kY ·14Y − r · kO ·14O − λ·14O (4)

We used the atmospheric ∆14C record as a proxy for the 14C input via root and leaf15

litter input. In Fig. 1 a small inset graph shows a part of this record from 1900 to 2011
covering the prominent “bomb peak” resulting from aboveground nuclear weapons dur-
ing the late 1950s and early 1960s (Hua and Barbetti, 2004). Based on the atmospheric
∆14C record and the definition of ∆14C (Stuiver and Polach, 1977) as

∆14C =


(

14C
C

)
SN

AABS
−1

 ·1000, (5)20

where
(

14C
C

)
SN

denotes the
14C
C -ratio of the sample, normalized for isotope fractionation

and AABS the
14C
C -ratio of the standard (0.95 times specific activity of NBS Oxalic Acid
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I (SRM 4990B) normalized to a δ13CVPDB of −19 %� and decay corrected to 1950,
AABS = 1.176 ·10−12, according to Karlen et al. (1968) and Stuiver (1980)), the 14C
input via iL and iR was calculated as:

14iL(t) = AABS ·
(

1+
∆14COATM

2 (t − tlagL)

1000

)
· iL(t) (6)

14iR(t) = AABS ·
(

1+
∆14COATM

2 (t − tlagR)

1000

)
· iR(t) (7)5

∆14COATM
2 (t) is the atmospheric ∆14C signal in year t , and tlagL and tlagR describe

the time lag between photosynthetic fixation of 14C, its allocation to leaves, fruits, twigs
(L) and fine roots (R) and its addition to SOC as aboveground and belowground litter
input. tlagL and tlagR are introduced as additional model parameters influencing the10

14C-module of ICBM (Fig. 1), but were set to fixed values based on measurements at
the different sites (Sect. 2.2.4).

Throughout this work we tried to challenge the assumption that total SOC and dif-
ferent SOC pools are in steady state. Dropping the steady-state assumption leads to
the problem of initializing the different conceptual SOC pools (Yeluripati et al., 2009).15

The most common way to deal with initialization problems of conceptual and non-
measurable SOC pools is to perform spin-up runs of the model under an undisturbed
environment. Then estimates about initial SOC pools are retrieved based on a recon-
structed disturbance history (Falloon and Smith, 2000; Wutzler and Reichstein, 2007;
Yeluripati et al., 2009). Due to its simplicity the steady-state equations for the ICBM can20

still be derived relatively easily:

YSS =
iRini + iLini

r · kY
(8)

OSS =
h · kY ·YSS

kO
=

h · (iRini + iLini)

r · kO
(9)
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where YSS and OSS describe steady state and initial pool sizes of Y and O. iLini and
iRini denote the amount of aboveground and belowground litter input at the beginning
of the simulation period. This amount of litter input is assumed to be representative for
the period before the simulation begins. In an analog way we can devise steady state
pool sizes for 14Y and 14O:5

14YSS =
14iRini+

14iLini

r · kY + λ
(10)

14OSS =
h · kY ·

14YSS

kO + λ
(11)

where 14iLini and 14iRini is the initial 14C input via litter input according to Eqs. (6) and
(7). Here, the assumption is that ∆14COATM

2 (t) was more or less constant before 1950.10

Actually ∆14COATM
2 (t) did vary prior to 1950 due to natural causes and the Suess effect,

nevertheless ∆14COATM
2 (start− tlag(L,R)) was taken as the initial ∆14C signature of litter

input, where start denotes the starting year of simulations. We took the latest year we
give in Table 1 under “Stand history” as the starting year for the simulations at the
different sites.15

Contrary to the approach taken by Yeluripati et al. (2009), preliminary modeling ex-
ercises showed that it is not feasible to simultaneously treat the initial model pools Yini,
14Yini, Oini and 14Oini as unknown parameters, because of the inherent link between Yini

and 14Yini, and Oini and 14Oini via ∆14C. There is no reason to assume a discrepancy in
the behavior of C and 14C prior to 1950; hence we have to assume that deviations from20

steady state have the same direction for C and 14C. Consequently, two additional pa-
rameters fY and fO (Fig. 1) were introduced for the non-steady state version of I14CBM
that allow for a relative deviation of initial values from the steady state of the respective
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pools:

Yini = fY ·YSS; 14Yini = fY ·14YSS (12)

Oini = fO ·OSS; 14Oini = fO ·14OSS (13)

2.2 Site descriptions and data5

2.2.1 Atmospheric ∆14C record

We constructed a time series of tropospheric ∆14CO2 measurements from Vermunt
(1959–1976) and Schauinsland (1976–2011) (personal communication by Ingeborg
Levin, 2011), which are representative for sites influenced by fossil fuel emissions
(Levin and Kromer, 2004). From the individual samples we calculated time-weighted10

averages for the summer months May to August which are commonly used for a good
representation of the ∆14C values in the vegetation (Levin and Kromer, 2004). For the
years 1955–1958 these time weighted averages were appended with data from the
Northern Hemisphere Zone 1 compilation by Hua and Barbetti (2004). This compila-
tion is representative for the Northern Hemisphere north of 40◦ N and consists of tree15

ring data from Kiel (Germany), Hungary and Bear Mountain (New York, USA). Prior
to 1955 the UW 14C atmospheric single year data set from 1510 to 1954 was used
(Stuiver and Braziunas, 1993; Stuiver et al., 1998).

2.2.2 Study sites

We used data from three spruce dominated forest ecosystems in Germany and the20

USA (Table 1) to calibrate the parameters of I14CBM: The Howland Forest research
site is a spruce-fir forest in east-central Maine, USA. The stand was selectively logged
around 1900, but has remained undisturbed since then (Hollinger et al., 1999). Richard-
son et al. (2010) report a mean stand age of around 110 yr with a maximum of about
215 yr. The soil can be classified as a Typic Podsol (IUSS Working Group WRB, 2007)25

or Typic Haplorthod according to the soil taxonomy of the United States Department
13812
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of Agriculture (1999) (Fernandez et al., 1993; Gaudinski et al., 2001). Due to the hum-
mocky topography the organic layer varies considerably in thickness (Gaudinski, 2001).
Oi, Oe and Oa horizons of varying thickness have been separated and could possibly
be designated as a mor-like humus.

The Coulissenhieb II site is a mature Norway spruce (Picea abies L.) stand in the5

Fichtelgebirge mountains in northeastern Bavaria, Germany. Schulze et al. (2009) re-
port that according to the forest administration the area has been clear cut during the
16th and 18th century for timber supply of the local mining industry. In 1867 the stand
was afforested with Norway spruce, so that the average stand age was around 140 yr
in 2008. The winter storm Kyrill severely damaged the stand in 2007, causing a consid-10

erable thinning (Muhr et al., 2009). The soil is classified as a Haplic Podzol according
to the IUSS Working Group (2007) with sandy loam texture and a mor-like forest floor
consisting of Oi, Oe and Oa horizons (Schulze et al., 2009). High base saturation in
the Oa horizon (54 %) and lower base saturation of 12–16 % in the subsoil indicates
past superficial forest liming (Hentschel et al., 2009).15

The Solling roof project is a 71 yr old (2004) Norway spruce (Picea abies L.) planta-
tion at the Solling plateau in Lower Saxony, Germany. The Solling roof project consists
of four different plots, of which three are covered by transparent roofs underneath the
canopy. In this work only ∆14CSOC and ∆14CHR data from the ambient control plot with-
out a roof was used. This plot is mostly referred to as Solling D0 (Bredemeier et al.,20

1998).
Table 1 gives an overview of the most important characteristics of all three sites,

such as soil type, humus form, mean annual temperature and precipitation.
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2.2.3 General methods

Measurements of soil organic carbon stocks

The soil organic carbon stock on an area basis (kgCm−2) was calculated as

SOCstock =
Horizons∑

i=1

SOCcontent,i ·BDi ·depthi · (1−CFi ), (14)

where i denotes the individual horizons/layers and SOCcontent,i is a SOC content or5

mass fraction
(

kg C
kg dry soil

)
, BDi is a soil bulk density

(
kg dry soil

m3

)
, depthi is the thickness

of the sampled horizon/layer i and CFi is the volume fraction of coarse fragments,
namely stones and roots CF = stone volume+ root volume

soil volume . The correction for coarse frag-
ments is necessary, as stones contain no organic carbon and (live) roots are generally
not summarized under SOM (dead soil organic matter according to Rodeghiero et al.,10

2009).

Soil respiration measurements

Two types of soil respiration chambers of the class of closed chambers were used:
closed dynamic chambers were used at Howland and Coulissenhieb II, whereas at
Solling closed static chambers were used. Generally, in closed chambers the CO2 flux15

is estimated by measuring the increase of CO2 in the chamber’s head space during
a known period of time (Pumpanen et al., 2004, 2009). The soil CO2-C efflux can
then be determined from the increase of the CO2 concentration ∆c

∆t . In closed static
chambers the CO2 concentration increase ∆c

∆t is determined from air sampled with
syringes, which are then analyzed for CO2 with a CO2 analyzer (Borken et al., 1999;20

Pumpanen et al., 2009). In closed dynamic systems ∆c
∆t is determined with portable

infrared gas analyzers with the air circulating between the chamber and the analyzer
(Pumpanen et al., 2009).
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Soil incubations

The ∆14C signature of HR was determined by incubating root-free soil samples at con-
stant temperature for several days. CO2 evolved during the incubations is sampled and
analyzed for ∆14C. Two different sampling methods were applied: At Howland Forest
samples from each horizon were taken, transferred to 100 ml jars and incubated for5

12 days. The amount of CO2 evolved during the incubation was measured, and the col-
lected CO2 was analyzed for ∆14C. ∆14C for bulk heterotrophic respiration can then be
calculated as described in Eq. (16) (Gaudinski, 2001). At Coulissenhieb II and Solling
a different sampling approach was taken. Instead of incubating disturbed soil samples
from individual horizons, complete soil cores were taken. Roots were either manually10

removed from the soil cores at the Coulissenhieb II site (Muhr et al., 2008, 2009) or
left in the soil cores under the assumption that root fragments die after 10 days and are
not able to respire anymore (Lemke, 2007). Hence, the ∆14C signature of CO2 evolved
during the incubation of soil cores represents the bulk ∆14C of HR.

Measuring radiocarbon signatures15

∆14C values were determined with accelerator mass spectrometry (AMS). The ra-
diocarbon signatures are reported in relation to an oxalic acid standard (0.95 times
the specific activity of NBS Oxalic Acid I (SRM 4990B) normalized to a δ13CVPDB of
−19 %�) (Stuiver and Polach, 1977). The δ13CVPDB value of the samples was used
to account for isotopic fractionation that occurred during sample formation (Stuiver and20

Polach, 1977). The preparation of AMS graphite targets followed procedures described

in Xu et al. (2007). The final determination of the
14C
12C

-ratio of AMS graphite targets from
all three different sites was performed at the Keck-CCAMS facility of University of Cali-
fornia, Irvine, USA.
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Calculation of ∆14C signatures for bulk SOC stock

In order to calculate a bulk ∆14C value for the whole soil profile, we used a SOC stock
based weighting approach:

∆14CSOC,bulk =

∑Horizons
i=1 ∆14CSOC,i ·SOCstock,i

SOCstock
, (15)

where ∆14CSOC,i is the ∆14C value of the horizon i , SOCstock is the total SOC stock of5

the whole profile as defined in Eq. (14), and SOCstock,i is the SOC stock of one horizon.

Calculation of ∆14C signatures of bulk heterotrophic respiration

Similar to Gaudinski (2001) a flux-weighted average was calculated as a bulk ∆14C
value of heterotrophic respiration from individual incubation samples, when incubations
have been conducted per horizon (Howland) and not on soil cores including several10

horizons (Coulissenhieb and Solling):

∆14CHR =

∑Jars
i=1 F (CO2)i ·BDi ·depthi ·∆

14Cincubation,i∑Jars
i=1 F (CO2)i ·BDi ·depthi

, (16)

where F (CO2)i is the CO2 produced in jar i , BDi is the bulk density of the soil horizon
in jar i , depthi is the thickness of the soil horizon in jar i , and ∆14Cincubation,i is the ∆14C
of CO2 evolved during incubation.15

Partitioning of soil respiration

Soil respiration SR can be partitioned into heterotrophic respiration (HR) and root
(autotrophic) respiration (RR) using a variety of approaches. They range from root-
exclusion experiments, like trenching and tree girdling experiments, to isotopic ap-
proaches, like continuous or pulse labeling of plants in 14CO2 or 13CO2 atmosphere or20
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using the bomb-14C signal as a pulse label (Kuzyakov, 2006). At all three sites in this
work, an isotopic approach using the bomb-14C signal was applied. The measurement
of the ∆14C signature of total soil respiration (∆14CSR) and its components (∆14CHR

and ∆14CRR) allows partitioning SR into HR and RR using a simple two-source mixing
model (Phillips and Gregg, 2001). On short time-scales the radioactive decay of 14C5

can be neglected and the atmospheric ∆14C signal can be used as a label that allows
distinguishing between plant-derived CO2 (RR) and SOM-derived CO2. Plant-derived
CO2 normally closely follows the ∆14C signature of the atmosphere, whereas SOM-
derived CO2 greatly differs from the atmospheric ∆14C signal due to longer residence
times of C in SOM pools. The ∆14C signature of plant-derived CO2 can, however, differ10

from the current atmospheric signal if carbon from storage pools and not only recently
assimilated carbon is metabolized (Czimczik et al., 2006; Muhr et al., 2009). ∆14CSR

is then a mixture of ∆14CHR and ∆14CSR, that can be described by the following mass
balance equations:

SR = HR+RR (17)15

∆14CSR ·SR = ∆14CHR ·HR+∆14CSR ·RR (18)

Based on this equation we can calculate the proportion of heterotrophic respiration in
total soil respiration (fHR):

fHR =
HR
SR

=
∆14CSR −∆14CRR

∆14CHR −∆14CRR

(19)20

Data uncertainties

Data uncertainties were calculated using the basic rules for error propagation for sums
and differences, and/or products and quotients (Taylor, 1997). If the propagation of
errors for a quantity could not be broken down into steps that use the basic rules, the
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general formula for propagation of errors was applied: If q is any function of several
variables x , . . .,z with δx , . . .δz then the uncertainty δq can be calculated as:

δq =

√(
∂q
∂x

·δx
)2

+ . . .+
(
∂q
∂z

·δz
)2

(20)

The uncertainties of SOCstock, ∆14CSOC,bulk, ∆14CHR and HR were calculated this way.

2.2.4 Measurements and data processing5

Howland Forest

The total soil organic carbon stock at the Howland Tower site was calculated with
Eq. (14) based on carbon content measurements in 1997 from n = 1 soil pit reported
in Gaudinski (2001) and data of spatial heterogeneity, coarse fraction volume (CF)
and bulk density (BD) from n = 24 quantitative soil pits reported by Fernandez et al.10

(1993). Here, we excluded the measurements from the BC horizon, because for the
second sampling of ∆14CSOC in 2007 measurements were only performed up to the
Bs horizon (personal communication Sue Trumbore, 2011). Because the SOC stock
(10 ± 2kgCm−2; mean ±SE) we calculated is only based on one soil pit, its standard
error is considerable larger than standard errors of the SOC stock (11.0±0.5kgCm−2;15

mean ±SE) in other studies (Richardson et al., 2010) that are based on the data from
Fernandez et al. (1993). Bulk values of ∆14CSOC up to the Bs horizon (bottom depth
40 cm) were calculated with Eq. (15) using the horizon specific SOC stocks from 1997
and ∆14C values from 1997 and 2007. The 2007 ∆14C values were weighted with the
horizon specific SOC stocks from 1997. ∆14CSOC values stem from only n = 1 soil pit.20

The horizon specific standard errors for SOC stocks are based on estimates from Fer-
nandez et al. (1993) and the standard errors for the ∆14C values were used to calculate
a standard error for the stock weighted average with Eq. (20). Incubations of horizon
specific soil samples were performed in 1999 and 2010 (personal communication Car-
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los Sierra and Sue Trumbore, 2011). Bulk ∆14CHR values and their associated uncer-
tainty were calculated using Eqs. (16) and (20). An fHR of 0.55±0.13 (mean ±SE) was
calculated only with data from 1997 (Eqs. 19 and 20), as ∆14CSR values were not avail-
able for 2010. The atmospheric ∆14C signal in 1997 was used as a proxy for ∆14CRR
measurements. This fHR value was used to calculate HR from an annual time series5

(1997–2009) of soil respiration measurements at the tower site from n = 8 collars (per-
sonal communication Kathleen Savage, 2011). Standard errors for HR were calculated
via error propagation using the standard errors of SR and fHR. Average annual leaf litter
input at the Howland Forest is about 0.155 kgCm−2 (personal communication Kathleen
Savage, 2011). As no data on belowground litter input for Howland were available, we10

simply assumed that belowground litter input would be of the same order of magnitude
as aboveground litter input. Based on lag times for different types of aboveground litter
we used a tlagL (Eq. 6) of 5 yr (Gaudinski, 2001, p. 121). A tlagR of 10.5 yr (Eq. 7) was
calculated from the ∆14C of roots < 0.5mm and 0.5–1 mm (Gaudinski, 2001, p. 151).

Coulissenhieb II15

The total soil organic carbon stock at the Coulissenhieb II site (15.1±0.9kgCm−2,
mean ±SE) is based on measurements of n = 9 soil pits (0.7m×0.7m) including the
organic horizons (Oi, Oe and Oa) and the mineral horizons (Ea, Bsh, Bs and Bv, bot-
tom depth 52 cm) (Schulze et al., 2009). A bulk value of ∆14C of SOC was calculated
with Eq. (15) using horizon specific SOC stocks and ∆14C values reported by Schulze20

et al. (2009). ∆14C values of SOC were determined for n = 3 of the 9 soil pits. The hori-
zon specific standard errors for SOC stocks and ∆14C values were used to calculate
a standard error for the stock weighted average with Eq. (20). A ∆14CHR signature, that
ought to be representative for the year 2007, was calculated as the arithmetic mean of
∆14CHR values obtained from 6 different incubations. The incubations were performed25

with soil cores from a control plot on 6 different sampling dates in the period from 3 Au-
gust 2006 to 16 October 2007 (Muhr and Borken, 2009; Muhr et al., 2009). The ∆14CHR
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of each sampling date was based on n = 3 replicates. The standard error related to the
∆14CHR,2007 value was calculated via error propagation from the standard errors of the

individual sampling dates. The calculated ∆14CHR was assigned to the measurement
year 2007. ∆14CSR, ∆14CHR and ∆14CRR values of the individual sampling dates were
used to calculate fHR and the related standard errors (Eq. 19). The arithmetic mean5

of the individual fHR values is 0.82±0.06 (mean ±SE). This value was used to cal-
culate HR for the years 2006–2008 with HR = fHR ·SR. Standard errors for HR were
calculated via error propagation using the standard errors of SR and fHR. Aboveground
litter input (iL) data was only available from the adjacent Coulissenhieb I site with an
average needle litter input of 0.103±0.017kgCm−2yr−1 (mean ±SD) (Berg and Ger-10

stberger, 2004). A crude annual estimate for belowground litter input from fine roots
(iR) of 0.206kgCm−2yr−1 was obtained by summing up monthly estimates of fine root
mortality based on the sequential coring method that were reported in studies on the
effect of drought and soil frost on the fine-root system (Gaul et al., 2008a, b). Based on
∆14C measurements of fresh spruce litter (Schulze et al., 2009) tlagL was set to 6 yr.15

For tlagR we calculated a root biomass weighted lag time of 8 yr from fine root biomass
data (Gaul et al., 2008a) and ∆14C measurements of live roots in different depths (Gaul
et al., 2009).

Solling D0

The total soil organic carbon stock at the Solling D0 was calculated as a combination20

of SOC stock measurements for the organic layer from an adjacent spruce forest in
1993 (personal communication Werner Borken and Jan Muhr, 2011) and SOC stock
measurements for the mineral soil in 1997 (personal communication Werner Borken
and Jan Muhr, 2011). The individual SOC stock measurements are based on n = 61
replicates for the Oi+Oe, n = 40 replicates for the Oa and n = 5 replicates for min-25

eral soil horizons. The combined Oi+Oe horizon was split into Oi and Oe based on
data in Lemke (2007) (personal communication Werner Borken and Jan Muhr, 2011).
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Standard errors of the individual horizons were used to calculate the standard error
of SOC stock up to 30 cm. A bulk value of ∆14CSOC (68±12%�; mean ±SE, bottom
depth 20 cm) was calculated with Eq. (15) using horizon specific SOC stocks and ∆14C
values for the Solling D0 site that were collected during a PhD thesis (Lemke, 2007).
∆14C values of SOC were determined with n = 3 replicates. The horizon specific stan-5

dard errors for SOC stocks and ∆14C values were used to calculate a standard error
for the stock weighted average with Eq. (20). In July 2004 an incubation experiment
yielded a ∆14CHR signature of 119.4±1.2%� (mean ±SE) (personal communication
Jan Muhr, 2011). Together with ∆14CSR and ∆14CRR signatures from Solling D0 the
∆14CHR signature was used to calculate fHR (0.69±0.03; mean ±SE) using equations10

18 and 20. This value was used to calculate HR for 2004 with HR = fHR ·SR . Standard
errors for HR were calculated via error propagation using the standard errors of SR
(personal communication Jan Muhr, 2011) and fHR. As an annual estimate of above-
ground litter input the annual average of foliage litter input (0.109 kgCm−2yr−1) on the
roof control plot (D2) was used. Fine root biomass and necromass measurements in15

different depths from the roof control plot (D2) (Murach et al., 1993) were used to cal-
culate fine root mortality with the compartmental flow method (Murach et al., 2009).
These data from 1992 give an estimate of fine root mortality of 0.094 kgCm−2yr−1. For
the Solling D0 site we used the same tlagL and tlagR as for Coulissenhieb II.

2.3 Bayesian calibration20

Process-based models in geosciences tend to be overparameterized with regard to
data availability (van Oijen et al., 2005). Hence, it does not make sense to apply pa-
rameter fine-tuning, i.e. looking for one best parameter set, but rather to show how well
we can constrain the uncertainty about model parameters with the data at hand. The
Bayesian approach is suited to deal with overparameterized models because we are25

able to include prior knowledge about model parameters θ by updating the prior distri-
bution of parameters p(θ ) with the data-likelihood p(y | θ ) to the posterior distribution
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of parameters p(θ | y) (Reichert and Omlin, 1997; Gelman et al., 2004):

p(θ | y) ∝ p(y | θ ) ·p(θ ) (21)

The posterior density p(θ | y) describes the probability of parameters given the
model and the observations y. It is a combination of the prior probability of a parameter
set θ and the likelihood that we observe the observations y given this parameter set5

θ (Gelman et al., 2004). Numerical algorithms like the class of Markov chain Monte
Carlo (MCMC) algorithms are commonly used to generate a sample from the posterior
density p(θ | y) (van Oijen et al., 2005). The essential property of all MCMC algo-
rithms is that at each iteration the approximate distributions are improved, so that they
eventually converge to the target distribution, the posterior p(θ | y). After proving con-10

vergence of the MCMC algorithm all drawn samples can be used to make inferences
about θ by simple summary statistics (e.g. mean, standard deviation and percentiles)
or histograms and kernel density estimates which provide insight on the distribution of
p(θ | y).

2.3.1 Prior parameter distributions15

Based on concluding remarks by Andrén and Kätterer (1997) a broad prior for the
humification coefficient h was derived from the mass fraction remaining after a 5–10 yr
litterbag experiment. Berg (2000) reported a remaining mass fraction of 0.26 for Norway
spruce litter in litterbag experiments. We used this value as the mode for a logit-normal
distribution with the 99th percentile at 0.9 (Fig. 2e). Since the decomposition rates20

kY and kO are theoretically bound at zero, a log-normal distribution was chosen for
these two parameters, with modes at 1 yr−1 and 0.006 yr−1 (the latter is the default
recommendation by Andrén and Kätterer, 1997). The 99th percentile for kY was set to
7 yr−1, and to 1

15 yr−1 for kO (Fig. 2a and b).
Berg and Gerstberger (2004) reported that the ratio of foliar litter input to total above-25

ground litter input is dependent on stand age: in a Scots pine chronosequence the rel-
ative size of the foliar litter fraction was 83 % in a 18 to 25 yr-old stand, 68 % in a 55 to
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61 yr-old stand and 58 % in a 120 to 126 yr-old stand. This corresponds to a possible
biasiL factor between 1.2 and 1.7 when only foliar litter input was measured. Hence, we
set the mode for biasiL to 1 and the 99th percentile to 1.5. Because we assumed that an
overestimation of aboveground litter input due to unrepresentative location of litter traps
had the same probability as the underestimation, we assigned a normal distribution to5

biasiL which was truncated at 0 (Fig. 2c). The same prior was used for biasiR (Fig. 2d).
Similarly, truncated normal distributions with mode = 1 and 99th percentile = 1.5 (trun-
cation at 0) were used for the deviation of steady state parameters, fY and fO, so that
a priori the highest probability was assigned to Y and O pools in steady state (Fig. 2f
and g).10

2.3.2 Joint constraints calibration experiment

Under the assumption that the measurement errors were normally distributed we for-
mulated the data-likelihood function for the individual observational constraints i as:

p(y | θ )i =
∏

t ∈ myrs

1
√

2πσi (t)
exp

(
−1

2
·
(

ICBMi (t)−Obsi (t)

σi (t)

)2
)

, (22)

where t ∈ myrs denote the years in which measurements were made, σi (t) the un-15

certainty associated with the measurement Obsi (t), and ICBMi (t) the model predicted
value. In order to study how combinations of different observational constraints influ-
ence the posterior parameter uncertainty, we devised a set of multiple constraints cal-
ibrations experiments with 4 runs containing different combinations of observational
constraints i (Table 2). The multi-objective data-likelihood is then simply defined as the20

product of the the individual p(y | θ )i in Run(XY ):

p(y | θ )Run(XY ) =
∏

i ∈ Run(XY )

p(y | θ )i (23)

We then used a variant of the standard Metropolis–Hastings algorithm, the delayed
rejection and adaptive Metropolis (DRAM) algorithm (Haario et al., 2006), to sample
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from the posterior distribution p(θ |y). In the adaptive Metropolis part of this algorithm
the generation of new proposal parameter sets θ is made more efficient by learning
from the accepted parameter sets thus far (Haario et al., 2001). The delayed rejection
part of DRAM improves the efficiency by scaling the proposal covariance matrix with
a predefined factor, if the proposed parameters set is rejected (Haario et al., 2006).5

We used the DRAM implementation of Soetaert and Petzoldt (2010). The Monte Carlo
Markov chains (MCMC) were started from 5 overdispersed starting parameter sets θ

using the data-likelihood function as defined in Eq. (23) and the priors θ as defined
in Sect. 2.3.1. These overdispersed starting points were retrieved by Latin hypercube
sampling from the entire range of the prior distributions. In short, Latin hypercube sam-10

pling means that the prior parameter space is subdivided into equally sized segments
and a set of starting parameters is constructed by randomly drawing one value for each
parameter out of the segments. We can be sure that the 5 chains have converged if af-
ter thousands of iterations the chains have forgotten about their initial values. We mon-
itored convergence using the potential scale reduction factor R̂ as defined in Gelman15

et al. (2004). All MCMCs presented here have a point scale reduction factor R̂ < 1.025.
Following recommendations by Gelman et al. (2004) the first half of all MCMCs were
discarded and not used to draw a sample p(θ | y) (burn-in). The second halves of the
5 chains were then merged and treated as a sample from p(θ | y).

2.3.3 Information content of different constraints20

We used two measures to quantify the information gain in moving from the prior p(θ )
to the posterior p(θ | y). We computed the relative reduction of the interquartile range
between the prior of certain parameter θ and its posterior:

∆IQR = 1−
IQR(p(θ|y))

IQR(p(θ))
(24)
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where IQR denotes the interquartile range. ∆IQR was used to quantify the reduction in
uncertainty for individual parameters. When we want to take a multidimensional look at
combinations of parameters, ∆IQR becomes an undefined quantity.

In this case we used the Kullback–Leibler divergence, DKL, to quantify informa-
tion content of the different datastreams. DKL is a dimensionless measure for the5

dissimilarity between two probability density functions (PDF), e.g. the Kullback–
Leibler divergence between the posterior p(θ | y) and the prior p(θ ) is denoted as
DKL
(
p(θ | y) ‖ p(θ )

)
. Since an accurate estimation of DKL based on PDF estimates

of p(θ | y) and p(θ ) is not possible in higher dimensions (number of elements in θ ),
we used a DKL estimator based on a k-nearest neighbor (k-NN) search (Boltz et al.,10

2009). This k-NN-based DKL estimate does not explicitly estimate the PDFs, but allows
to directly estimate DKL from samples of p(θ ) and p(θ | y), as retrieved by Bayesian
calibration (Boltz et al., 2009).

3 Results and discussion

The results of all three sites will be presented and discussed in a comparative fashion15

to highlight similarities and differences between the sites. The results of the calibration
at Howland Forest will be used to highlight common characteristics in a more detailed
fashion, while differences for the two other sites are pointed out.

3.1 Information content of different observational constraints

The degree to which the posterior parameter distributions are constrained compared to20

the prior parameter distribution, depends on three factors: the observational constraints
included in the calibration, its related measurement uncertainties, and the parameter
in question (Fig. 3).

Using only SOC as observational constraint (Run(SOC)) already narrows the pos-
terior distribution of kO by 23, 50 and 51 % at Howland Tower, Coulissenhieb II and25
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Solling D0 (Fig. 3). Also the ∆IQR of the humification coefficient is somewhat bet-
ter constrained in Run(SOC) compared to the prior (Fig. 3), but the violinplots of h
still covers the whole range of possible values (e.g. Figure 4a at Howland Forest and
Figs. A1a and A2a).

SOC together with ∆14CSOC (Run(+∆14CSOC)) considerably narrows the estimates5

for the humification factor h and the decomposition rate of the old pool kO. Compared
to the prior the interquartile ranges of h and kO are reduced in Run(+∆14CSOC) by
73–88 and 83–95 %, respectively (Fig. 3). The other parameters were not considerably
constrained by the observational constraints SOC+∆14CSOC.

The inclusion of ∆14CHR into the observational constraints (Run(+∆14CHR)) markedly10

reduced the uncertainty of the decomposition rate of the young pool kY compared
to Run(+∆14CSOC) (Fig. 3). The change of the interquartile range, ∆IQR, is between
50 % for Howland Forest and 98 % for Solling D0. These reflect large differences in
observational uncertainties among the studied sites. While the uncertainty ∆14CHR at
Solling D0 was only 1.2%�, at Howland Forest the uncertainties in different years was15

2 and 5%�.
When HR was included in the calibration, biasiL and biasiR are shifted towards higher

values for Howland Forest and Coulissenhieb II (e.g. Figure 4h and i for Howland For-
est). Also ∆IQR was decreased by the inclusion of HR into the calibration (Fig. 3).

The parameters fY and fO, which were introduced to allow for a deviation from steady-20

state, are hardly constrained compared to the prior in all runs. In general, only the
parameters h, kY and kO could be well constrained with the used observational con-
straints.

3.2 Correlations between parameters

As shown in Fig. 5 for the Howland Tower site, there are many strong correlations be-25

tween the different combinations of posterior parameter distributions. Prominent cor-
relations between parameters can be explained by comparing the direction of the cor-
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relation coefficient to the model structure. The highest positive correlation coefficients
were observed between h and kO meaning that a higher value of h can be compen-
sated by a faster decomposition rate of kO. This strong correlation emerges already
in Run(SOC), but is persistent as more datastreams are included (Fig. 5a–d). This is
consistent with what we have to expect from the model structure: if more carbon from5

the young pool is transferred to the old pool, the turnover time must be lowered to get
the same amount of carbon in the old pool.

When ∆14CSOC is included in the calibration, another interesting correlation
emerges: the fO parameter is positively correlated with the decomposition rate of the
old pool (Fig. 5b). This is in line with considerations by Wutzler and Reichstein (2007)10

who found that for soils that have not reached (and are below) their equilibrium stock,
model calibration to the current carbon stock overestimates the decomposition rate of
the slowest pool. They propose a transient correction which prescribes a lower decom-
position rate for the old pool. The correlation between fO and kO in runs with ∆14CSOC
confirms these considerations: If fO was actually below the steady state, but would be15

set to 1, kO would be shifted to faster decomposition rates.
In Run(+∆14CHR) h and kY become negatively correlated (Fig. 5c). This trade-off be-

tween h and kY means that the same ∆14CHR value can achieved by either increasing
the fraction of the decomposition flux (kY ·Y ) that is directly respired (i.e. a lower h) or
by increasing the decomposition flux itself (i.e. a faster kY ).20

In Run(+HR) biasiL and biasiR become strongly negatively correlated; this means
that in I14CBM one of the bias factors could be considered redundant. Due to the fact
that I14CBM models bulk SOC stocks and does not model a depth distribution of root
litter inputs, it is not very relevant which kind of C inputs drive the model. Still, it was
important to distinguish between aboveground and belowground litter input in order25

to allow different lag times to the atmospheric record for root litter input and leaf litter
input.

Nevertheless, the overall strong correlations suggest that the parameter distributions
are stronger constrained than suggested by the marginal distributions (Fig. 5). This
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shall be exemplified with the strong correlations between h and kO: the kernel density
estimates of the posterior parameter distributions of h and kO (e.g. in the diagonal of
Fig. 5d) do not give any information on how likely it is that low values of h are observed
together with very high decomposition rates kO. If we look at the bivariate probability
density plot in the lower triangle of Fig. 5d, we get the answer: It is very unlikely! Hence,5

it is fruitful not only to consider the univariate posterior parameter distribution, but also
to consider correlations between parameters in two or higher dimensional space, which
provide a further constraint for the possible model behavior.

Braakhekke et al. (2013) conclude that the fact they observed strong correlations
between parameters is an indication that the model is overparameterized with respect10

to the available data. Certainly, also I14CBM is overparameterized with regard to the
available data at Coulissenhieb II, Solling D0 and Howland Tower. Strong correlations
between model parameters are, however, not necessarily only a measure for the de-
gree of overparameterization of a model: A comparison between Run(SOC) (Fig. 5a)
and Run(+HR) (Fig. 5d) at the Howland Tower site shows that for Run(SOC) there are15

far fewer correlations between the posterior parameter samples than in Run(+HR). We
can expect that strong correlations between parameters will always exist in modeling
studies based on 14C and C data, because modeling 14C and C in parallel inadvertently
introduces parameters that govern several similar equations (e.g. kY in Eqs. 1 and 3).
Hence, strong correlations between parameters should not only be seen as an indi-20

cation for overparameterization, but also as a reflection of the model structure: If, for
example, the young and the old pool would not be linked via the humification flux, but
received litter input independent from each other, the correlation between kY and kO
would be considerably reduced. In addition, in multiple-constraints calibration settings
correlations between parameters are also an indicator for the strength of trade-offs25

between different objectives/datastreams (Fig. 5a–d)
The features described above for the Howland Forest generally also hold true for the

calibration runs at the two other sites, Coulissenhieb II and Solling D0 (not shown). The
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strength of correlations is obviously slightly different, while the direction and magnitude
of correlations is the same for most of the parameter combinations.

For a similar purpose as correlation matrices (Fig. 5) and the ∆IQR, we can use the
Kullback–Leibler divergence between the joint posterior distribution of several param-
eters to quantify how well the different datastreams overall constrain SOC turnover.5

We present two settings here: The joint posterior of the parameters kY , h and kO is
compared with the joint prior of these parameters (Fig. 6) in which no correlations were
present. The parameters kY , h and kO govern the overall SOC turnover if we do not
account for possible biases in the assumptions or measurements with parameters such
as biasiL or fO. Further, we compared the joint posterior of all parameters with the re-10

spective joint prior to evaluate the overall constraint of different datastreams on the
presented SOC model.

The overall information gain for SOC turnover (joint posterior of kY , h and kO) was
highest for including ∆14C of SOC and HR into the calibration (Fig. 6). Including ∆14CHR
at Solling D0 led to a disproportionate information gain due to the reported low uncer-15

tainty of that datastream at this site (Fig. 6). At Coulissenhieb II the information gain
for Run(+HR) is slightly lower than for Run(+∆14CHR) because of the considerable im-
balance between iL+ iR and HR at this site which led to a considerable shift of biasiL
and biasiR towards higher values. This was accompanied with a concurrent shift of kY
towards faster values (Fig. A1).20

The information gain for the joint posterior of all parameters was always highest
when all datastreams were included (Fig. A1). For Run(+HR), the Kullback–Leibler
divergence did not indicate much information gain for constraining kY , h and kO (Fig. 6)
compared to Run(+∆14C); the information gain for all model parameters (Fig. 6) when
including HR into the calibration is, however, considerable. This underlines that the25

HR data are more important for constraining the biasiL and biasiR parameters than for
constraining the essential SOC turnover parameters, kY , h and kO.
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3.3 Relaxed steady state assumption

Graphical inspection of the overall agreement between the model and the data showed
that I14CBM was in general able to reproduce the data used for calibration (Fig. 7). This
is valid for all sites for the all constraints run, Run(+HR) (not shown for Coulissenhieb
and Solling). This result can be possibly expected for most inverse modeling studies5

at other sites, as practically all SOM models are overparameterized considering the
inherent scarcity of ∆14C data.

Some features, however, are notable: Even with all observational constraints in-
cluded, the joint use of SOC stock, HR, ∆14CSOC and ∆14CHR data did not allow de-
termining if any of the sites has been gaining or losing SOC (Fig. 7), because the10

marginal distributions of the parameters fY and fO generally followed their prior distri-
butions (Fig. 4, A1, A2). Nevertheless, at least some constraint for the fO parameter
was gained through the correlation between fO and kO (Fig. 5b) which emerged when
including ∆14CSOC into the calibration. This shows that only the use of multiple con-
straints (here mainly SOC+∆14C) allowed putting this admittedly weak constraint on15

the source/sink strength of the investigated soils. Nevertheless, this possible trade-
off makes it difficult to simultaneously estimate decomposition rates (e.g. kO) and the
source/sink strength of a soil (e.g. fO), especially for soils with only small deviations
from a steady-state SOC stock. We could potentially resolve this trade-off by prescrib-
ing stronger priors for fO if we are confident about our knowledge of the site history. Or20

better yet, we could estimate a kO for a soil, for which we can be rather sure that the
SOC stocks are in equilibrium. This kO could then serve as a strong prior for a soil with
pretty similar conditions, for which we want to estimate fO.

At the Howland Tower site modeled SOC stocks in Run(+HR) do not differ much
between the non-steady state and the steady state case (Fig. 7). Not surprisingly,25

the effect of the parameters that allow for a deviation from steady state are seen
more clearly in the time series of modeled HR (panel d in Fig. 7). At all three sites
modeled HR of Run(+HR;non-steady state) rapidly approaches the modeled HR of
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Run(+HR;steady state) (e.g. panel c in Fig. 7). This is due to the fact that HR is dom-
inated by CO2 evolved from the young pool (panel f in Fig. 7). As the young pool only
has mean turnover times TY of 1.1 (Howland Tower), 1.7 (Coulissenhieb II) and 5.7 yr
(Solling D0) in Run(+HR), steady state will be reached rather rapidly. Conversely, the
young pool accounts only for below 10 % of the total SOC stock at all sites (e.g. How-5

land Tower in Fig. 7f), thus the steady state of modeled SOC stock could not be reached
within the simulation period, as mean turnover times of the dominant old pool are 380
(Coulissenhieb), 137 (Solling) and 188 yr (Howland Tower).

The modeled uncertainty of ∆14CHR is varying considerably throughout the time se-
ries: the uncertainty is low before the bomb peak and increases towards the bomb10

peak, drops again and is considerably reduced after the observation point (panel g and
h in Fig. 7). The curve of the modeled ∆14CHR values is beginning to level out, so that
differences in ∆14C of heterotrophic respiration between subsequent years will become
increasingly difficult to detect. This is even more pronounced for the modeled bulk soil
∆14CSOC signature, because bulk ∆14CSOC has nearly reached a plateau phase, where15

values hardly change from year to year. One has to keep in mind, however, that this
does not tell anything about how the bomb peak propagates through the soil profile.
Nevertheless, when looking at the ∆14C signatures of the young and the old pool (panel
i and j in Fig. 7), it becomes obvious that the first peak of ∆14CSOC stems from the peak
of ∆14C in the young pool. The beginning of a plateau phase for ∆14CSOC can then be20

attributed to a mixture of the decreasing ∆14C signature of the young pool and a still
increasing ∆14C signature of the old pool.

One may hypothesize that parameters will be less well constrained in the non-steady
state case when fY and fO do not show a significant deviation from steady state, be-
cause fY and fO introduce additional degrees of freedom that might actually not be25

needed. The marginal density plots in Fig. 8 have the advantage over the violin plots
(e.g. Figure 4) that the posterior probability density is not scaled to 1, so that we can
also use the maximum density as a measure for how well a parameter is constrained.
The marginal density plots in Fig. 8 compare how well the model parameters are con-
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strained in the non-steady state case and steady state case. The maximum posterior
density of kO is reduced at all sites. At Solling D0 also kY is slightly less well constrained
in Run(+HR;non-steady state) than in Run(+HR;steady state). Overall, the marginal
density plots in Fig. 8 suggest that parameters kY , kO and h are well constrained in the
non-steady state as well as in steady state version of Run(+HR) compared to the prior.5

3.4 Discussion of fitted turnover parameters

Giardina et al. (2004) report that only around 10 % of soil respiration is derived from
the decomposition of old soil organic carbon. Taking the proportion of heterotrophic
respiration in total soil respiration, fHR, (Eq. 19) and the contribution of the old pool
O to HR at our three sites into account, we have similar mean contributions of 7.3 %10

(Howland), 6.2 % (Coulissenhieb II) and 13.8 % (Solling-D0) of old soil organic carbon
to soil respiration. Because we used a bulk soil organic matter turnover model, the
turnover times and the humification coefficient give rather diagnostic than mechanistic
insight how much carbon is cycling on the different time scales. The mean turnover
times TY of the young pool of 1.1 (Howland Tower), 1.7 (Coulissenhieb II) and 5.7 yr15

(Solling D0) together with the humification coefficient h of 0.13 (Howland Tower), 0.07
(Coulissenhieb II) and 0.35 (Solling D0) indicate that most of the organic carbon in
these soils is turned over within a relative short period.

For the estimation of kY one has to keep in mind that it vitally depends on the ∆14CHR

value (Fig. 4), and thus by way of 14iL(t) and 14iR(t) also on the lag times tlagL and20

tlagR that we used. Although we do not look at actual root turnover estimates with
the parameter tlagR, but merely at a realistic ∆14C value of root litter input to the soil
organic carbon pool, our tlagR values might be overestimated due to a bias for larger
roots when hand-picking roots. Hence, fast cycling roots with a smaller difference to
∆14COATM

2 might be underrepresented (Gaudinski et al., 2001). In turn, this bias for25

larger roots and a lower tlagR would result in longer TY estimates.
The mean turnover times TO of the old pool (188 yr at Howland, 380 yr at Coulis-

senhieb II, 137 yr at Solling D0) point to the presence of a relatively persistent carbon
13832
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pool that makes up more than 90 % of the soil organic carbon stock. This high con-
tribution of slowly cycling organic carbon can be mainly attributed to the inclusion of
∆14CSOC data into the calibration. Again, this shows the merits of including SOC stocks
and heterotrophic respiration fluxes plus their respective 14C isotopologues. Neverthe-
less, one has to consider that with a bulk SOC model we have to sum and weight SOC5

stocks and SO14C up to certain depth, so that e.g. the Coulissenhieb site with a consid-
ered bottom depth of 52 cm has a much longer turnover time of the old pool than Solling
D0 where we used a bottom depth of 20 cm. Here, vertically explicit SOC turnover and
transport models (e.g. Kaneyuki and Kichiro, 1978; O’Brien and Stout, 1978; Elzein
and Balesdent, 1995; Baisden et al., 2002; Braakhekke et al., 2011), might be helpful10

to resolve different bottom depths for sampling SOC and SO14C. Given the structure
of these models, their turnover times, however, still give more diagnostic than mecha-
nistic insight because they are not considering important processes such as sorptive
stabilization, energy limitation or the recycling of SOM through microorganisms which
should contribute to radiocarbon ages of SOC of more than 1000 yr in the deep soil15

(Conant et al., 2011).

3.5 Interpretation of litter input bias parameters

If the sites are in steady state the bias parameters can be interpreted as a systematic
deviation of HR and litter input because HR = iL+ iR under steady state (Sanderman
et al., 2003). Already by comparing the relation of the used HR, iL and iR to the cal-20

ibrated biasiL and biasiR we see that for Coulissenhieb II and Howland Tower these
two parameters have to be higher than 1. The reasons for a bias at these two sites
can be manifold: The belowground litter input at these sites might have been under-
estimated (sequential coring at Coulissenhieb II and the assumption at Howland that
aboveground litter input is of the same magnitude as aboveground litter input); signifi-25

cant contribution of subsoil SOC turnover to overall heterotrophic respiration. Further,
our partitioning of soil respiration using the bomb-14C signal might have overestimated
the proportion of heterotrophic respiration in total soil respiration, fHR, because the in-
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cubations used to measure ∆14CHR might not be conducted under conditions that are
representative for what is observed over the course of a year in the field.

Furthermore, one could also speculate about recent deviations from steady state for
faster cycling soil components (organic layer). The applied deviation from steady state
parameter, fY , only matters in the first years of the simulation period, but due to its5

fast decomposition rate, the Y pool approaches steady state rather rapidly. Hence, one
could also interpret a bias parameter above 1 as disturbance of the Y pool which led
to a loss of SOC in the young pool. Given the information we have about these two
sites this seems, however, quite unlikely. Nevertheless, at sites where measurements
of aboveground litter input and heterotrophic respiration are available, one could use10

the steady state relation iR = HR− iL as an additional criterion to assess the reliability
of different methods quantifying root turnover (Lukac, 2012).

4 Conclusions

1. The Bayesian parameter estimation was very insightful: Violin plots of posterior
parameter distributions were useful to quickly study the effect of different multi-15

ple constraint experiments. The correlation structure between different posterior
parameter estimates provided useful insights on model behavior and additional
constraints for the parameters.

2. The joint use of 4 observational constraints did not allow determining whether
any of the sites has been storing or losing carbon. Nevertheless, the joint calibra-20

tion to SOC stocks and the ∆14C of SOC stocks showed that there is a trade-off
between estimating the source/sink strength of the investigated soils and the de-
composition rate of the old pool. Since the introduction of the relaxed steady state
assumption did not cause a considerable amount of extra uncertainty, we can rec-
ommend the use of a relaxed steady state assumption in order to identify possible25

deviations from steady state.
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3. The relation of heterotrophic respiration to the sum of above- and belowground
litter input is useful to evaluate the reliability of root turnover estimates.

4. The joint use of all 4 observational constraints – SOC stock, ∆14C of SOC stock,
heterotrophic respiration and ∆14C of heterotrophic respiration – gives the tightest
uncertainties ranges for the most essential model parameters of I14CBM: kY , kO5

and h. kY can be primarily constrained by ∆14C of heterotrophic respiration, while
kO can be well constrained with ∆14C of SOC. The transfer coefficient between the
young and the old pool, h, was best constrained by the joint use of all datastreams.

5. The calibration of the I14CBM with the 4 observational constraints provided a good
diagnostic for how much carbon is cycling on the different timescales. The fitted10

parameters show that in the three investigated soils more than 90 % of the soil
organic stock resides in a relatively persistent carbon pool, while the fast cycling
young pool contributes more than 80 % to the overall heterotrophic respiration.

6. Using different datastreams of model output variables to constrain the parameters
of conceptual model pools is a valuable strategy for parameter calibration besides15

“measuring the modelable”, i.e. finding fractions that are relatable to conceptual
model pools, or “modeling the measurable”, i.e. introducing model pools that can
directly be measured.

5 Supporting material

Detailed datasets from all three sites are available upon request by email to Bernhard20

Ahrens (bahrens@bgc-jena.mpg.de).
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Table 1. Location, elevation, dominant tree species, soil type according to IUSS Working Group
WRB, humus form, soil texture , soil pH(CaCl2), mean annual precipitation (MAP), mean annual
air temperature, stand age, and site history of the 3 study sites.

Howland Forest Coulissenhieb II Solling D0

Location 45◦ 10′ N, 68◦ 40′ W 50◦ 08′ N, 11◦ 52′ E 51◦ 31′ N, 9◦ 34′ E
Elevation
(m)

60 770 500

Tree species Picea rubens
Pinus strobus
Tsuga canadensis

Picea abies Picea abies

Soil type Typic Podsol (IUSS Work-
ing Group WRB, 2007)

Haplic Podzol
(IUSS Working Group
WRB, 2007)

Dystric Cambisol
(IUSS Working Group
WRB, 2007)

Humus form Mor Mor Moder
Soil texture formed in coarse-loamy

granitic basal till
sandy loam loam-silt

Soil pH 2.8 (organic layer,
B horizon)

3.3 (Oa)
3.7 (Bs)

3 upper soil
4 deeper mineral soil

MAP (mm) 1000 1160 1090
MAT (◦C) 5.5 5.3 6.4
Stand age
(years)

110 (mean), 215 (maxi-
mum) in 2010

140 in 2008 71 in 2004

Stand
history

selectively logging around
1900, undisturbed since
then

clear cut during the
16th and 18th century
1867 afforestation with
Norway spruce

1880 extensive pasture
1888 afforestation with
Norway spruce
1933 second generation

13843

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/13803/2013/bgd-10-13803-2013-print.pdf
http://www.biogeosciences-discuss.net/10/13803/2013/bgd-10-13803-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 13803–13854, 2013

Bayesian calibration
of a soil organic
carbon model

B. Ahrens et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Order of multiple constraints calibration experiments.

Code Observational constraints included in data-likelihood function

Run(SOC) SOC
Run(+∆14CSOC) SOC+∆14CSOC

Run(+∆14CHR) SOC+∆14CSOC +∆14CHR

Run(+HR) SOC+∆14CSOC +∆14CHR +HR
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Fig. 1. Conceptual overview of the modification of the Introductory Carbon Balance Model as
used in this paper. We call this model setup I14CBM. All parameters except tlagL, tlagR and λ
are calibrated. The dashed lines indicate which pools are affected by the steady state relaxing
parameters fY and fO .
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Fig. 2. Prior distributions used for the model parameters θ . Distributions: (a) kY and (b) kO log-
normal, (c) biasiL and (d) biasiR truncated normal distribution, (e) h logit-normal distribution, (f)
fO and (g) fY truncated normal distributions.
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Fig. 3. Change of interquartile ranges, ∆IQR, between prior and posterior marginal distributions of the
different model parameters at all three sites for the 4 multiple constraints calibration experiments.
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Fig. 3. Change of interquartile ranges, ∆IQR, between prior and posterior marginal distributions
of the different model parameters at all three sites for the 4 multiple constraints calibration
experiments.
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Fig. 4. Howland Tower. Violin plots of the posterior distributions of parameters using different
combinations of observational constraints (legend). The first column shows the prior distribution
of the parameter. The violins show a kernel density estimation of the prior and posterior. The
white dots indicate the median of the parameter set, black boxes indicate the interquartile range
(IQR) between the 25th and 75th percentile, the thin black lines indicate the upper and lower
adjacent values.
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Fig. 5. Correlation matrices of the posterior parameter distributions for the 4 different calibration exper-
iments (a-d). In the lower triangle of each panel, samples of the posterior parameter distribution of two
parameters are plotted against each other (tick marks and labels were left out for clarity). The diagonal
shows a kernel density estimate of the marginal posterior distribution. In the upper diagonal correla-
tion coefficients between the parameters are shown. A gradient from white to red indicates increasingly
strong positive correlations, whereas a gradient from white to blue indicates increasingly strong negative
correlations.
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Fig. 5. Correlation matrices of the posterior parameter distributions for the 4 different calibration
experiments (a–d). In the lower triangle of each panel, samples of the posterior parameter
distribution of two parameters are plotted against each other (tick marks and labels were left out
for clarity). The diagonal shows a kernel density estimate of the marginal posterior distribution.
In the upper diagonal correlation coefficients between the parameters are shown. A gradient
from white to red indicates increasingly strong positive correlations, whereas a gradient from
white to blue indicates increasingly strong negative correlations.
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Fig. 6. Kullback-Leibler divergence, DKL, at all three sites between the joint posterior distributions
p(θ|y) of the n calibration experiments and the joint prior distributions p(θ) of the parameters kY , h and
kO, and of all parameters.
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Fig. 6. Kullback–Leibler divergence, DKL, at all three sites between the joint posterior distribu-
tions p(θ|y ) of the n calibration experiments and the joint prior distributions p(θ) of the param-
eters kY , h and kO , and of all parameters.
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Fig. 7. Posterior predictive uncertainty of several output variables of the I14CBM at the How-
land Tower site. Left column: results of a usual steady state calibration using all observational
constraints Run(+HR). Right column: results of a non-steady state calibration using all observa-
tional constraints Run(+HR). The solid lines display the maximum a posteriori (MAP) prediction
of the respective variable. The shaded bands show the 25 % and 75 % quantile of the respctive
variable. The slightly lighter bands show the 5 % and 95 % quantile of the predictive uncer-
tainty. The gradient of shading is valid for all color codes. Circles with error bars denote the
data values ±SE.
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Fig. 8. Comparison of posterior parameter distributions of the all observational constraints run Run(+HR)
under steady state assumption (black solid line) and under a relaxed steady state assumption (green
dashed line). The additional parameters fY and fO for the non-steady state run are not plotted.
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Fig. A1. Coulissenhieb II. Violin plots of the posterior distributions of parameters using different
combinations of observational constraints (legend). The first column shows the prior distribution
of the parameter. The violins show a kernel density estimation of the prior and posterior. The
white dots indicate the median of the parameter set, black boxes indicate the interquartile range
(IQR) between the 25th and 75th percentile, the thin black lines indicate the upper and lower
adjacent values.
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Fig. A2. Solling D0. Violin plots of the posterior distributions of parameters using different
combinations of observational constraints (legend). The first column shows the prior distribution
of the parameter. The violins show a kernel density estimation of the prior and posterior. The
white dots indicate the median of the parameter set, black boxes indicate the interquartile range
(IQR) between the 25th and 75th percentile, the thin black lines indicate the upper and lower
adjacent values.
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