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Abstract

Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides
impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of
nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near
shell closures, one can also derive the neutron-star crustal composition.

The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough mea-
suring the mass of82Zn, which allowed constraining neutron-star crust composition to deeper layers [1]. We perform
a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear
models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the
N = 50 andN = 82 closed neutron shells for the crustal composition is confirmed.
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1. Introduction

Neutron stars (NS) are among the most compact objects known.They are the result of the collapse of massive
stars and are composed mainly - but not completely - of neutrons. After their rather violent birth in core-collapse
supernovae, they cool quite quickly (via the emission of neutrinos) within a minute and reach a state of (small tem-
perature) equilibrium. The equilibrium composition of a neutron star reflects the surprising but logical result of a very
wide range of physics [2]: from stable nuclides on the surface, to exotic nuclides in the crust, exotic forms of matter
(a series of so-called pasta phases [3]) to a core that may even contain unbound quarks.

A widely-used concept for modeling astrophysical environments at high densities is nuclear matter, a homo-
geneous, infinite medium composed of protons and neutrons, characterized by a certain equation of state (EOS).
Some of the properties of this EOS could be inferred from experimental observations. Neutron stars are the as-
trophysical objects with the closest resemblance to a nuclear-matter environment. However, in neutron stars, the
EOS is probed at extremes of isospin and densities beyond thesaturation density of symmetric nuclear matter of
ρ0 ≃ 0.16 fm−3

≃ 2 × 1014 g/cm3. Therefore the equation of state of nuclear matter has to be extended from sym-
metric nuclear matter to describe neutron matter, and with the assumption ofβ-equilibrium then neutron-star matter.
Furthermore, electrons have to be added to maintain electric charge neutrality. A realistic formulation of the EOS is
required for a robust neutron-star model, because the EOS has a direct impact on the possible combinations of mass
and radius, which obey hydrostatic equilibrium in general relativity.

Neutron-star models based on different EOS still differ strongly in their predictions for the properties of a neutron
star. Even though there are many neutron stars with masses measured by radio astronomy [4] (in this context they are
called pulsars, due to their pulsed radio signal), the associated fundamental quantity of a neutron star, the radius, is
extremely difficult to extract from astronomical observations, due to their size of only 10 to 20 km. However, this field
has made significant progress in the last years by theoretical modeling of observations of low-mass X-ray binaries or
cooling neutron stars [5, 6, 7, 8]. A recent breakthrough wasthe discovery of a relatively heavy neutron star – the
pulsar J1614-2230 with 1.97(4) solar masses – which ruled out several neutron-star models [9, 10]. A very exciting
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future perspective is gravitational wave astronomy. Recently, a tight correlation between the frequency peak of the
post-merger gravitational-wave emission and the radius ofa 1.6 solar mass neutron star has been demonstrated [11].

Correctly modeling neutron-star matter requires a proper description of nuclear interactions, and especially three-
body forces. Alternatively, effective models in the form of density functionals can be used.The theoretical description
of the stability of nuclides close to the drip line and the equation of state of neutron-star matter is sensitive to details of
the nuclear Hamiltonian. The proper saturation of nuclear matter has been imposed as an almost necessary condition
for any nuclear potential [12]. The exact location of the drip lines along the nuclear chart is of utmost importance to
understand the basic concept of nuclear stability and the underlying theory of the nuclear force [13]. Still today, a
consistent description of the nuclear force remains a challenge [14].

The so-called rapid and slow neutron-capture processes (r-and s-process) of stellar nucleosynthesis are responsible
for the origin of most of the neutron-rich, heavy elements [15]. To date, the site of a successful r-process nucleosyn-
thesis is still unknown [16]. A possible site, complementary to the supernova-induced r-process, is the ejection of
neutron-star matter by a merger of two neutron star. This allows an robust r-process to occur as the ejected clump
vaporizes into the interstellar medium and undergoes nuclear reactions. This scenario could explain at least part of
the total enrichment of the heavy r-process elements in the Galaxy [16, 17]. The neutron-star crust offers the required
ingredients for a successful r-process, because of the presence of neutron-rich material, i.e., with a low electron frac-
tion [17]. In the outer crust, the electron fraction is directly given by the charge-to-mass ratio of the heavy nuclei. On
the other hand, the nuclear binding energy is the decisive quantity for establishing whether or not a certain isotope is
present in the neutron-star crust. Precise mass measurements are thus valuable input for the composition of the crust
and r-process nucleosynthesis [2].

A striking observable related to mass measurements is the fact that crossing a magic proton or neutron number
produces a sharp drop in the corresponding one-particle or two-particle separation energy, an effect well established
as a signature for magicity. In the light nuclides, the disappearance of this effect has been regarded as evidence for
the reduction of the shell gap (the so-called “shell quenching” phenomenon) [18], while an enhancement of the effect
would be, on the contrary, evidence for the emergence of a newmagic number. The evolution of the magic numbers
N = 50 andN = 82 far from stability affects the equilibrium composition of the neutron-star crustand potentially
the predicted elemental abundance. Dramatic changes in nuclear structure far from stability are very challenging for
theory and the correct prediction of shell evolution far from stability is perhaps the strongest challenge for the different
nuclear models and corresponding nuclear interactions.

The article highlights some very recent advances in determining the properties of neutron stars through nuclear
mass spectrometry. In a first part, the link from nuclear masses to the nuclear-matter EOS will be established, based
on state-of-the-art calculations starting from two- and three-body interactions derived within chiral effective field
theory (chiral EFT). In a second part, recent constraints onthe equilibrium composition of the neutron-star crust
will be presented, determined by the mass measurement of82Zn [1]. The robustness of the determined equilibrium
composition to different global mass models used to supplement the experimentally unavailable data will be explored.

2. Nuclear interaction and the equation of state

One of the long-standing goals of theoretical nuclear physics is the development of a nuclear Hamiltonian, allow-
ing the description, in a unified microscopic picture, of theproperties of all nuclear systems. A direct link to the un-
derlying theory of quantum chromodynamics (QCD) has been difficult to establish due to the highly non-perturbative
character of the theory at the nuclear energy scale. The historical approach was to build the so-called “realistic” poten-
tials, designed to fit the low-energy nucleon-nucleon scattering data and the properties of few-nucleon systems, such
as the binding energy of the deuteron [12, 19]. The major testof realistic potentials has come from the comparison of
their predictions with the properties of light and medium-mass nuclides, through ab initio [20] and shell-model [21]
calculations. Apart from the two-body content of nuclear interactions, three-body forces arise at a fundamental level
in low-energy nuclear theory due to the finite size of the nucleons, the internal structure of which can be virtually
excited in a three-body process [22]. Recently, a new class of realistic potentials has been developed, based on chiral
EFT, using as starting point the symmetries of the QCD Lagrangian and only retaining the degrees of freedom rele-
vant for low-energy nuclear theory. Three-body forces arise naturally in the chiral EFT expansion of the Hamiltonian
[23]. Most recently, several groups have provided a consistent description of neutron matter based on chiral EFT
interactions [24, 25, 26, 27].
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Figure 1: Neutron matter energy per nucleon as a function of density for chiral EFT calculations with three-body forces at next-to, next-to, next-to
leading order (N3LO) [24], Skyrme forces BSk19-21 [28], theEOS of Friedman and Pandharipande (FP) [29] and of Akmal, Pandharipande and
Ravenhall (APR) [30]. For details, see text.

Only last year, calculations for the calcium isotopic chainwith a chiral EFT potential containing three-body forces
have successfully described the doubly-magic nucleus48Ca starting from the40Ca core, which has posed problems
for shell-model calculations using exclusively two-body nuclear interactions [31]. The calcium isotopic chain is an
intriguing case of nuclear magicity at neutron numberN = 32. The high energy of the assumed first 2+ excited state
in 52Ca suggest the enhancement of theN = 32 subshell gap [32]. Very recent Penning-trap mass measurements of
51,52Ca, performed at TRIUMF with the TITAN experiment, show verylarge discrepancies from the AME extrapola-
tions [33], suggesting significant structural changes in the region [34]. Time-of-flight mass measurements at NCSL
of scandium isotopes53−55Sc hint at a drop in the two-neutron separation energy atN = 32, but the large uncertainties
do not allow drawing a definite conclusion [35]. A very recentbreakthrough came through the measurement of the
masses of53,54Ca [36] at ISOLDE [37] with the ISOLTRAP experiment [38, 39].The minute yield and short half-life
of these isotopes were prohibitive for a Penning trap mass measurement. The masses of53,54Ca were thus determined
directly with the multi-reflection time-of-flight mass separator (MR-TOF MS) with a precision better than parts-per-
million (ppm). (For details on the MR-TOF MS, see [40, 41]) Shell-model calculations performed for the calcium
isotopic chain with a chiral EFT potential containing three-body forces agree well with the experimental data, as well
as with calculations with phenomenological potentials, such as KB3G and GXPF1A [34]. The chiral EFT potential,
including its three-body part, is constrained only by nucleon-nucleon scattering data and the properties of only two
light nuclides:3H and4He. These recent results support chiral EFT as a promising global approach for nuclear theory.

The equation of state plays a central role in astrophysical observations, one application being NS matter and the
structure of NS [42, 43, 44, 3]. The description of neutron matter with microscopic calculations based on chiral
EFT interactions has been tackled recently by Hebeler and co-workers. They were able to constrain the properties
of neutron-rich matter below nuclear densities to a much higher degree than is reflected in many commonly used
EOS [45, 46, 47]. In their calculations, they include three-body forces to the third order and provide theoretical
uncertainties. Just recently, they included also the subleading three-body forces for the first time and all leading
four-nucleon (4N) forces. In Fig. 1 the neutron matter energy band of their calculation is shown including evaluated
theoretical uncertainties. The band includes the use of different nucleon-nucleon potentials, uncertainties in the three-
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Figure 2: The depth profile of a neutron star of 1.4 solar mass and 10 km radius. The scale on the right indicates the nuclidiccomposition in
β-equilibrium of the outer crust as determined by measured masses [48] and the recent82Zn result [1].

body forces, and in the many- body calculation, for details see [24]. Their results not only provide constraints for the
nuclear EOS as well as neutron-rich matter in astrophysics but also agree with other recent work [25, 26, 27]. One
hope is that these models will be extended to provide also allthe necessary mass data for probing the composition of
neutron stars.

Figure 1 also shows the neutron-matter equations of state (internal energy per nucleon as a function of density)
for forces BSk19-21 at subnuclear densities and zero temperature [28]. Goriely and colleagues have used in their fit
for the effective forces BSk19-21 constraints from neutron-matter calculations as well as mass data. They can thus
consistently provide not only a description of neutron matter but also of binding energies of all nuclides. However, in
their fit they used other realistic neutron matter EOS mainlyat supersaturation densities. Two of these EOSs (FP [29]
and APR [30]) are also shown in Fig. 1. Despite some deviations at lowest densities the different calculations show
an good agreement. The neutron matter EOS is generally of great importance for the very neutron-rich neutron star
EOS and should help provide a consistent description of the very asymmetric nuclei formed in the crust.

3. The outer-crust composition of neutron stars in β-equilibrium

Neutron stars are the remnants of core-collapse supernova explosions. After having reachedβ-equilibrium, their
surface contains the nuclides56Fe and62Ni, which have the highest binding energy per nucleon. Note that 56Fe
has been observed in the accretion disk around neutron stars[49]. Three distinct regions are thought to compose a
neutron star (Fig. 2): a locally homogeneous core and two concentric shells characterized by different inhomogeneous
phases forming a solid crust [42, 50, 51, 44]. The “outer crust”, consists of a crystal of ionized atoms coexisting
with a quantum gas of electrons. At these extreme pressures encountered in the interior of neutron stars, the electrons
are squeezed into the nuclides, shifting the equilibrium toheavier and more neutron-rich isotopes. Burrowing into
the crust, nuclides become more and more neutron-rich up to the point where neutrons start to drip out. At the so-
called neutron-drip density (about 4· 1011 g/cm3), unbound neutrons form a separate additional phase. This marks
the transition to the “inner crust”, a lattice-like structure of nuclear systems immersed in a sea of unbound neutrons
and electrons. The similarity of this state to that of a crystal lattice in a sea of conducting electrons gave rise to use
the model of the Wigner-Seitz cell (WS approximation) [52, 53]. The WS cells, with an associated lattice energy, are
possibly transformed by further pressure into different exotic shapes, called nuclear pasta [54], due to a frustration
of the system with respect to Coulomb and surface energies. Deeper into the star, the crust dissolves into a uniform
liquid of nucleons and leptons and the core is reached.

To determine the crustal composition, one has to assume thatthe neutron-star crust within the WS approximation
is in full thermodynamic equilibrium. To determine the equilibrium composition of a given cell, the principle of
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minimization of the Gibbs free energy is used. For a given pressure, this will depend on the lattice energy, the electron
energy and - what is interesting from the point of view of nuclear physics: the binding energy of the nucleus. The other
quantities are from well-known classical (atomic) physicsand thermodynamics so the modeling of these systems is
relatively robust. To determine the depth profile, the integration of the relativistic hydrostatic Tolman-Oppenheimer-
Volkoff (TOV) equations over a pressure column is required [50]. Such a calculation fixes also the total abundances of
all nuclear species in the crust [55]. Because of nuclear shell effects, the exotic nuclides residing in neutron-star crusts
accumulate around the magic neutron numberN = 50 andN = 82. The sequence of nuclides that occur in the outer
crust of nonaccreting cold neutron stars was investigated by Baym, Pethick, and Sutherland (BPS) in what has become
a landmark paper in 1971 [50]. Not all nuclides which are relevant for calculating the equilibrium composition of the
outer crust have an experimentally known mass. For these nuclides, the mass is calculated using mass models, which
extrapolate semi-empirically from the known masses into unmeasured regions. Baym et al. used the mass data from
the droplet model of Myers and Swiatecki [56].

Using known masses and state-of-the-art nuclear mass models, the equilibrium composition of the outer crust
had already been robustly determined to a depth of about 212 mfor a canonical neutron star of 1.4 solar mass and
10 km radius [57, 58]. Since the different mass models used predict different equilibrium compositions, the crustal
composition can only be pinned down by high-precision mass measurements. The most exotic nuclides predicted in
the crust at theN = 50 shell,82Zn has been determined with the Penning-trap mass spectrometer ISOLTRAP [1].
The calculations performed there were restricted to the three most recent Brussels-Montreal mass tables HFB-19,
HFB-20, and HFB-21 since they are also constrained to reproduce the EOS of neutron matter from calculations with
realistic nucleon-nucleon potentials. Figure 2 shows the sequence of nuclides of the outer crust of a neutron star inβ-
equilibrium, taken from [48] and in the case of82Zn from [1]. With the new mass value, the nuclide82Zn is no longer
present in the crust due to it being considerably less bound than predicted by HFB-19. The experimentally determined
equilibrium composition of a cold, nonaccreting and non-rotating neutron star of 1.4 solar mass and 10 km radius is
now constrained to a new depth of 223 m.

4. Results and Discussion

Extending our previous studies from 2006 [57], we are now in the position to investigate how different nuclear
mass tables react in predicting the crustal composition inβ-equilibrium using also new measurements of nuclear
binding energies [48] and in particular the new mass value of82Zn.

To determine the EOS of the outer crust of neutron stars, it isnecessary to identify for each given pressure the
nucleus which minimizes the thermodynamic potential whichis in this case the Gibbs free energy per baryon or baryon
chemical potential. AtT = 0, the pressure and baryon chemical potential can be derivedby standard thermodynamic
relations from the total energy densityǫtot. In the most simple case, formulated by BPS, the energy density has only
contributions from the mass of a given nucleusWN, the Coulomb lattice energyWL and from electronsǫe:

ǫtot = nN(WN +WL) + ǫe , (1)

wherenN is the number density of the nucleus. For a more accurate description, higher order corrections of the
Coulomb and electron contribution can be implemented, likeelectron binding, screening or Thomas-Fermi, exchange,
correlation or zero-point motion energy [59, 60]. In the present calculations we include only the most important of
these corrections, namely for electron binding, screening, and exchange energy in the same formulation as used in
[61] which was partly taken from [60] who use results from [59] in the ultra-relativistic limit. For a selection of the
mass models discussed below we provide data files of the detailed crustal composition and the EOS on one of the
authors’ personal homepage.1

With these crust calculations, the results from [1] for the three mass tables HFB-19, HFB-20, and HFB-21 could
be reproduced. The only exception being126Mo which is predicted by HFB-19 in our calculations, but which occurs
only in the narrow density interval (2.09322− 2.09399)· 1011 g/cm3. Furthermore, the location of the drip line differs
as well, due to the different definition used here (and previously in [56]). We use analgorithm which determines the
most asymmetric even-even nuclei with positive two-neutron separation energies and connect them by straight lines.
Using this definition, all predicted nuclides lie in front ofor on the dripline.

1Seehttp://phys-merger.physik.unibas.ch/~hempel/eos.html.
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In a second step, other nuclear mass models which predicted82Zn to be present in the crust, were re-evaluated.
The sequence of nuclides in the outer crust has been calculated for the nuclear mass models HFB-8 [62, 63], MSk7
[64, 65], and SkP [66, 67, 68] (for details, see [57, 69]). Since the mass of82Zn is less bound than predicted, it is no
longer present in the outer crust. As an example, Fig. 3 showsthe change in the sequence of nuclides for the mass
model SkP mapped along the chart of nuclides. Further nuclides measured by ISOLTRAP and part of the sequence
are marked by blue squares, the black crosses denote the AME2012 data base [48]. The new sequence including
the ISOLTRAP mass value of82Zn is depicted by the red dashed line. It can also be seen from the plot that the last
nucleus of the outer crust, i.e., before neutrons start to drip out, is located on the respective drip line of the model,
which is true for all our calculations. In Fig. 4 the sequenceof nuclides of the outer crust of a neutron star for the mass
model SkP is compared to the mass model MSk7 – which also exhibits a change due to the new mass value – and the
mass model HFB-21, which has been discussed in [1] and which did not exhibit a change of the crustal composition.
The charge number is plotted as a function of density, where the two regions of nuclides with magic neutron number
N ≈ 50 andN ≈ 82 are delimited. None of the nuclides in the upper half of thegraph have been measured yet. The
thick (thin) lines show the sequence of nuclides with (without) the new mass value of82Zn. Note, while the change
in the sequence of nuclides is quite substantial for the massmodel SkP, the mass model MSk7 exhibits only a slight
change around a density of 7· 1010g/cm3.

A set of 25 nuclear mass tables (the 21 mass tables used in [57], the mass model SLy6 of [69] and HFB19,20,21
of [70]) were checked for the appearance of82Zn, all of them showing that it is not a nucleus present in neutron stars.
The new mass measurement discussed here further enhances the effect observed before [50, 71, 60, 57, 28]: nuclides
in the outer crust are predicted to have predominantly neutron numbers at theN = 50 and 82 magic shells. In a
previous paper [69] we confirmed the crucial role of nuclear shell effects in the chemical composition of neutron stars
in β-equilibrium also for a mass model which includes triaxial nuclear deformations. So this result is quite robust.

Finally, Fig. 5 compares the findings of this work using the results from Wolf and colleagues [1] and the finite-
range-droplet model [72], a model which did not predict82Zn from the start to be part of the crustal composition.
We show the sequence of nuclides as a function of density including the new mass value of82Zn. A certain color
corresponds to a single element, where the density intervalof the different isotopes is illustrated. If the color is
combined with a pattern, the corresponding nucleus has a neutron number different fromN=50 orN=82. Full colors
without a pattern show nuclei having these neutron magic numbers. The common sequence to all models is denoted
by “c.s.”, the last nucleus being82Ge. The transition to the inner crust is marked by “IC”. The regions filled with
black and marked with “trans.” show the transitions betweendifferent nuclei. Each of these transitions corresponds
in our approach to a small first-order Maxwell phase transition. In a more sophisticated treatment different mixed
lattices could be used [73]. In Fig. 5 all our main results canbe identified nicely: With the information of the new
measurements,82Zn is not expected to be present in the equilibrated crust of neutron stars any more. For most mass
models, its place in the sequence of nuclei in the outer crustis replaced by nuclei with aN = 50 neutron magic shell.
The magic neutron shellsN = 50 andN = 82 seem to be the dominating effect of nuclear structure regarding the
crustal composition. We see that the transition to the innercrust seems to occur at about the same pressure for all
models while the more recent microscopic models tend to predict a richer variety of species in the crust, with thinner
layers.

Concerning higher order corrections for Coulomb and electron energies: we have found that in the bottom layers
of the outer crust there can be changes in the sequence, namely that additional nuclides appear or that some are
replaced, see also Ref. [69]. This depends on which of these corrections are included and in which form. Even though
the corrections are small, such a behavior is possible if different nuclides have similar Gibbs free energies in the
minimization procedure. However, our results for the non-appearance of82Zn were not influenced by these higher
order corrections.

5. Summary

We have presented different ways in which nuclear masses influence our knowledge ofneutron stars. The informa-
tion available about these objects is based on astrophysical observations, mainly neutron-star mass data. Complemen-
tary to observational constraints are laboratory measurements, which place tight constraints on the range of nuclear
parameters in the EOS. In light of recent mass measurements of 54Ca and82Zn we have illustrated this link regarding
advances in the description of neutron matter as well as the equilibrium composition of a neutron star’s outer crust.
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Phenomenological or microscopic mass models usually produce a large scatter in their predictions for nuclear masses
far from stability [74]. The inclusion of three-body forcesbased on chiral EFT, which originate from a description
of nuclear interactions using the symmetries of QCD, has ledto the successful description of the calcium isotopic
chain. Providing a successful testing ground for calculations using three-body forces in neutron-rich nuclides also
strengthens the description of neutron-star matter. Chamel et al. [58] note that although several realistic calculations
of the EOS of neutron-star matter all agree very closely at nuclear and sub-nuclear densities, they differ greatly in the
predicted density dependence of the symmetry energy at the much higher densities towards the center of neutron stars.
There are also very few data, either observational or experimental, to discriminate between the different possibilities.
Chamel et al. further conclude that fitting the nuclear forceto the mass data is a necessary condition for obtaining
reliable estimates of the masses of the unmeasured highly neutron-rich nuclides, see also [75]. In this context, it is
fascinating that “an atom sheds light on neutron stars” [76].

With the information of the new measurements,82Zn is not expected to be present in the equilibrated crust of
neutron stars any more. For most mass models, its place in thesequence of nuclei in the outer crust is replaced by
nuclei with aN = 50 neutron magic shell. The magic neutron shellsN = 50 andN = 82 seem to be the dominating
effect of nuclear structure regarding the crustal composition. The results presented in this work illustrate the fact thata
single mass measurement influences the elemental composition of the neutron-star outer crust inβ-equilibrium. This
is in contrast to core-collapse r-process scenarios where it is difficult to identify how sensitive the r-process path is to a
single measurement [77]. Some nuclear physics properties of nuclear matter can be studied in terrestrial laboratories
with new neutron-rich radioactive beams. A possible mass measurement program is thus two-fold: to explore the
limit of nuclear stability for enhancing our knowledge of the nuclear force as well as to determine the mass of certain,
neutron-rich nuclides around the neutron shell closureN = 50 andN = 82 to probe the equilibrium composition
of the outer crust of a neutron star. Microscopic approachesnow allow self-consistent modeling of global neutron-
star properties (i.e. the EOS) together with the crustal composition (i.e. binding energies). The predictions do not
diverge from those obtained using binding energies of phenomenological mass models having many free parameters.
Therefore, the latest theoretical advances, combined withthose of mass spectrometry, contribute to robust and more
confident neutron-star models.
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