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In order to investigate cosmic particle accelerators, like fast rotating neutron stars
or supernova remnants, the very-high-energy (VHE: E > 100 GeV) γ-radiation
generated during these processes is detected by imaging atmospheric Cherenkov
telescopes (IACTs). With the H.E.S.S. telescopes, which are an array of four
such IACTs located in Namibia, many data sets have already been collected and
particularly the Galactic plane has been observed extensively. In the Galactic
Centre region, it has detected two strong point sources (G 0.9+0.1 and Sagittarius
A∗) and an extended band of diffuse emission, located at the position of the giant
molecular cloud in the Galactic Centre.
In this work H.E.S.S. data from the Galactic Centre region is analyzed with an
event correlation method in order to find out if there are populations of weak
sources that cannot be detected individually by classical methods.
First, the event correlation method is compared to the ring background method
and then, it is verified in Monte Carlo simulations. For the generation of the re-
quired null hypothesis maps different methods that randomize the data at small
scales are explained and analyzed. The findings of the simulations then tell how
strongly the data may be randomized without changing the large-scale distribu-
tions and how many point sources and how many events per source there would
have to be in the data in order to get detected.
According to the correlation analysis, there are no small-scale anisotropies in the
event distribution, which means that the VHE γ-radiation from the Galactic Cen-
tre region (minus the emission from Sagittarius A∗ and G 0.9+0.1) is consistent
with diffuse emission only.
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1 Introduction

1.1 Motivation for VHE γ-ray astronomy

In order to learn more about cosmic objects, astronomers capture the light they
emit, which comes in a wide range of energies. Observing these objects with
telescopes sensitive to very high energies (VHE; E > 100 GeV) enhances our
understanding of the universe.
Within these objects, charged particles are accelerated and then react to form
VHE γ-rays. Such a particle can be a relativistic p+ that hits a nucleus, thereby
creating a π0 which then decays to 2 γ or an e− transfering energy to a γ-photon
via Inverse Compton Scattering. As the emitted light is neither deflected by
electric nor magnetic fields, it conserves the information about its origin even
after it transits the Galactic Magnetic Field.

Among the cosmic particle accelerators are:

SNRs (Supernova Remnants): exploded stars whose shock waves transfer ki-
netic energy to particles over a long period of time (several 1000 years)

PWNe (Pulsar Wind Nebulae): neutron stars with a very short period of rota-
tion and a strong magnetic field, which produces focused beams of charged
relativistic particles that hit their surrounding gas cloud

AGN (Active Galactic Nuclei): an AGN is the center region of a galaxy con-
taining a supermassive (≈ 108 solar masses) black hole, which accelerates
matter on its accretion disc and emits relativistic jets

Investigating the mechanisms that lead to particle acceleration is subject of cur-
rent research and thus, measuring their γ-ray spectrum supplies crucial informa-
tion.

1.2 Detecting γ-rays

The flux of γ-rays in the TeV-range is so low, approximately 1 particle per m2

per year, that satellite based detectors with their small detection areas of around
1 m2 cannot capture significant signals. Ground-based telescopes on the other
hand cannot detect γ-rays directly, because the atmosphere is not transparent
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to high-energetic photons. But when such a photon enters the atmosphere and
interacts with the nucleus of an atom (this happens typically at a height of 10
km), it transforms into an e− and an e+ (pair production), which in turn collide
with other nuclei generating more γ-photons (Bremsstrahlung). This process
continues and generates an air shower of secondary particles moving faster than
the speed of light in air.
During their flight these particles emit Cherenkov radiation within an angle of
about 1◦, which then overlaps and passes the air with little interaction. This blue
light flash arrives at the ground and illuminates a circle of ∼ 250 m in diameter
for a time span of only some nanoseconds. Although it is very weak (∼ 100
photons per m2), it can be detected with very sensitive photomultiplier tubes.
The camera images are then approximated as ellipses (Hillas-parametrization)
and the energy and direction of the photon can be reconstructed. Unfortunately,
relativistic hadrons cause similar air showers and thus, similar Cherenkov light
patterns are seen by the camera.
Although cuts on the Hillas-parameters can remove more than 99% of the hadronic
events, a high background level still remains.

1.3 The H.E.S.S. experiment

H.E.S.S. is a system of four Imaging Atmospheric Cherenkov Telescopes located
in Namibia and stands for High Energy Stereoscopic System. Its name also
refers to Victor Hess, the discoverer of cosmic radiation.
The telescopes are pointed at a position in the sky and counts the arriving events
with a field of view of 5◦. Its point spread function is a superposition of two
Gaussians that depends on the zenith angle, but is here approximated by one
Gaussian with a width of just σpsf = 0.1◦ for tests.
Cosmic rays with energies ranging from 100 GeV to 100 TeV can be detected.
Thanks to the huge detector area of 105 m2 the time required for a 5σ detection
of a source with the flux of the Crab Nebula is just 30 seconds and since 2002
H.E.S.S. has detected more than 60 Galactic VHE γ-ray sources [6].

1.4 Data

H.E.S.S. provides a list of γ-ray event candidates, whose arrival direction is then
used to create an event map of the observed region. In cases where exception-
ally many events are located inside of a small area it is very probable that it
is a γ-source and the standard analysis methods can confirm a detection. How-
ever, often the sources are weak compared to the background level and thus, no
significant detection is achieved.
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The data used in this work is shown in figure 3.1 (a). It consists of ∼ 300, 000
events distributed around the Galactic Centre

1.5 Analysis of the Galactic Centre region

Investigating the Galactic Centre in order to resolve its composition and to un-
derstand the accelerator mechanisms is a current research topic in astroparticle
physics. It has been extensively observed with the H.E.S.S. telescopes both dur-
ing the Galactic Plane survey [4] and during the investigation of the black hole
Sagittarius A∗ [1] and the supernova remnant G 0.9+0.1 [2], in which VHE γ-ray
emission from both these sources was detected.
Figure 1.1 shows a γ count map of the Galactic Centre region with Sagittarius
A∗ and G 0.9+0.1 clearly visible. After substraction of these two strong point
sources, an extended band of diffuse γ-ray emission becomes visible (see figure
1.2), which is probably caused by accelerated protons and nuclei [3]. The position
of the band coincides with the position of the giant molecular cloud (see the white
contours indicating its density) found earlier [10].
However, apart from the diffuse emission, there may also be unresolved point
sources, whose signals are too faint to be detected individually [7].
Here, a method is studied that estimates the significance of a detection of small-
scale anisotropies in the event maps and applies it to the data taken from the
Galactic Centre in order to search for populations of weak point sources.
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These are the plots published in [3]:

Figure 1.1: Excess map (background removed) of the Galactic Centre region

Figure 1.2: Same map after substraction of the two point sources
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2 Studying the event correlation
method in cases with isotropic
background

In this chapter, the event correlation method is explained and compared to the
ring background method by means of toy Monte Carlo simulations. In particular,
it is investigated how much the methods benefit from an increased number of
sources and source events.
Although the event maps provided by the H.E.S.S. telescopes have complicated
background distributions and sources of different strength and morphology, the
event maps used in this chapter are extreme simplifications (see 2.3), in order to
place emphasis on the characteristics of the analysis methods.

2.1 Ring background method

The ring background method is a standard method in γ-ray astronomy for esti-
mating the significance of an excess of events at an arbitrary position x in the
field of view by comparing Non (the number of events in an circle around x) with
Noff (the number of events in a ring around x):

Exemplary sketch of the on- and off-regions used in the

ring background method. To include most of the source

events, but not too much of the background, the radius

of the on-region is chosen to be r0 = 1.5σpsf and the

inner radius of the off-region r1 = 3 r0. As an area ratio

of α = 1
7 is usually chosen, the outer radius of the off-

region can then be calculated to r2 = 4 r0. For a detailed

description of the ring background method (taking also

exposure time etc. into account) see [5].

Combined with the formula proposed by [8],

S(Non, Noff, α) =
√

2

(
Non ln

[
1 + α

α

Non

Non +Noff

]
+Noff ln

[
(1 + α)

Noff

Non +Noff

]) 1
2

,(2.1)

the significance of a signal at position x can be calculated and a significance map
can be created (see figure 2.1 (b)).

8



]°Lon [
-3 -2 -1 0 1 2 3

]°
L

at
 [

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) event map

]°Lon [
-3 -2 -1 0 1 2 3

]°
L

at
 [

-1.5

-1

-0.5

0

0.5

1

1.5

-4

-3

-2

-1

0

1

2

3

4

(b) significances of map with sources

]°Lon [
-3 -2 -1 0 1 2 3

]°
L

at
 [

-1.5

-1

-0.5

0

0.5

1

1.5

-4

-3

-2

-1

0

1

2

3

4
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Figure 2.1: from top to bottom: binned event map (bin width = 0.02◦ with 50
sources (marked by red circles) à 20 events on isotropic background
(50,000 events altogether), ring background map of the above map
showing the Li-Ma-significances (pre-trial) and for comparison the
ring background map of a pure isotropic background map with 50,000
events
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To correct for fluctuations of the background (see figure 2.1 (c)), a trial factor is
usually introduced, which normalizes the Li-Ma-significance by considering the
number of tested positions. However, in this study the significances are not scaled
by a trial factor, because the detection error measure defined on page 15 already
considers this effect.

Since faint sources yield a low significance and every position on the map is
examined independently, one would expect that even many weak sources can not
be detected with the ring background method. Furthermore, if many sources are
placed on the map, the probability of a source being located inside of the ring is
increased, leading to a higher background level and lower significances.
Figure 2.2 shows the distribution of the maximum significances obtained with
the ring background method if there is a minimum distance of 0.2◦ between all
sources. The detection performance of the ring background method depends on
the number of source events, but not on the number of sources, although the
probability of a detection might increase slightly with the number of sources,
because of the higher probability of a source being located on a region with
upwards fluctuating background. In average, a map without any sources contains
at least one bin with a significance of more than 4σ.

In a more realistic scenario, in which sources may overlap, the ring background
method performs better, because the superposition of weak sources resembles one
stronger source, leading to higher significances (see figure 2.3). Also, without the
constraints of a minimum distance, more sources can fit on a map and maps with
up to 100 sources are examined.
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Figure 2.2: Ring background method: maximum significances for maps with
and without sources. Minimum distance between two sources is 0.2◦.
The number of events (source events plus background) is 50,000.
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Figure 2.3: Ring background method: maximum significances for maps with
and without sources. No minimum distance between two sources is
required⇒ sources may overlap. The number of events (source events
plus background) is 50,000.
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2.2 Event correlation method

The idea of this method [9] is to consider all events on a map and return a
global measure for the deviation from a map with background events only (null
hypothesis map). If there are several point sources that are too weak to be
detected individually, one could measure the anisotropy of the event distribution
at the scale of the point spread function (σpsf ∼ 0.1◦ for H.E.S.S.) and sum up
all the contributions of these sources:
Given a map M with n events, every event xi is regarded as the centre of a
possible point source and in a region Ri around it, the distances to all ni events
Ri
j are calculated and stored in a histogram

f(M, r) =
1

N

n∑
i=1

ni∑
j=1

δ(|xi −Ri
j|, r). (2.2)

The regions Ri are circles with a radius of ∼ 2σpsf, which is a good compromise
between including most of the events of a possible source and neglecting most of
the extrinsic events. The factor 1

N
normalizes the histogram by dividing by the

sum of event pairs in the map with distance smaller than the radius of R.
The correlation function φ is then defined as

φ(M, r) =
f(M, r)

f0(r)
, where (2.3)

f0(r) =
1

n

n∑
i=1

f(M i
0, r) (2.4)

is an approximation of the null hypothesis, calculated by averaging the distance
distributions of several null hypothesis maps M i

0. If φ(M, r) lies significantly
above 1, M probably contains anisotropies at angular distances r.
As f shows large fluctuations (see figure 2.4 (a)), it is difficult to choose a fixed r.
On the other hand, choosing an arbitrary r in order to maximize the significance
demands a trial factor.
A solution is to integrate f and thus stabilizing it:

F (M, r) =

nbins(r)∑
k=1

f(M, rk) . (2.5)

Similarly to φ, the correlation function Φ becomes

Φ(M, r) =
F (M, r)

F0(r)
, (2.6)

with F0 analogously obtained as f0. Now, if Φ(M, r) lies significantly above 1,
M probably contains anisotropies at angular distances [0, r[.
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Figure 2.4 (b) shows the integrated correlation function, Φ(M, r), for maps with
and without sources. It is much more stable than φ and can distinguish best
between random map and map with sources at r sim0.1◦.
Large r include more source events, but also more background events. That is
why r should not be chosen to be much bigger than σpsf = 0.1◦.
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Figure 2.4: Correlation functions φ and Φ of a map with 50 sources à 20 events on
isotropic background (50, 000 events altogether). Also, the correlation
functions of pure background maps (50, 000 events) are shown.

In figure 2.5 the influence of the number of sources and source events is shown for
the case that sources may not be located on top of each other. As expected, the
method is sensitive to the number of events per source and moreover, in opposite
to the ring background method, it is sensitive to the number of sources, even
if they do not overlap (compare 2.5 to 2.2). If the sources are not constrained
to a minimum distance from each other, the event correlation method performs
comparable to the ring background method (compare 2.6 to 2.3).
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Figure 2.6: Event correlation method: significances for maps with and without
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2.3 Comparison

Detection error measure

Because the ring background method returns a significance of a signal for a po-
sition on a map whereas the event correlation method returns a significance for
the signals at all positions on a map, it is difficult to compare the two meth-
ods directly. To circumvent it, an approximation of the type 1 and 2 errors is
calculated. Let

• M i
0 be a set of m maps containing background only (H0 or null hypothesis

maps),

• M j
1 a set of n maps containing background and sources (H1 or alternative

hypothesis maps) and

• F (M) the function that returns the signal in map M (max. significance for
the ring background method and Φ(0.1) for the event correlation).

Then the overlap E of the histograms of F (M i
0) and F (M j

1 ) is the normalized
sum of all cases where F (M i

0) ≥ F (M j
1 ):

E =
1

mn

m∑
i=1

n∑
j=1

F (M i
0) ≥ F (M j

1 ) (2.7)

The more signal is detected in the M j
1 , the more F (M j

1 ) is shifted to the right,
the less the histograms of F (M i

0) and F (M j
1 ) overlap and the smaller E gets.

Now, if a description on how to generate M i
0 and M j

1 is given, the performance
of a method can be parametrized by only one number.

Generation of simplicistic H0 and H1 maps

In order to emphasize the methods’ characteristics and prevent side effects of
complex models, in this chapter the following simplicistic model is assumed for
the generation of maps:

• sources are isotropically distributed over the map

• sources must be at least 2σpsf away from the border

• a constant number of events per source is randomly distributed around each

source, following the distance distribution p(r) = 1√
2πσ

e−
r2

2σ2

• background events are isotropically distributed over the map (isotropic ex-
posure)

• the sum of events is the same in all maps
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Technical Issues

If the on-region of the ring gets too small, low statistics can lead to large fluc-
tuations of the Li-Ma-significance. That happens near the border of the map
(see Figure 2.1, where the size of the on-region may be reduced down to half the
original size. Therefore, the significances of all bins, whose distance to the border
is less than the radius of the on-region, are ignored.
To ensure equal conditions for both methods and because similar problems may
also occur during the event correlation, all events which lie within the border
region may only passively contribute to the correlation function, which means
that a distance to them may be counted, but not a distance from them. That
means that at least one of the two events must not lie within the border region.

Results

Here, the event correlation method is compared to the ring background method
by measuring the overlap E. Figure 2.7 shows that if sources may not overlap,
the event correlation method can benefit from an increased number of sources,
while the ring background method cannot. For example, when using the event
correlation method, only 12% of the maps with 40 sources à 30 source events are
not detected as maps containing sources, while with the ring background method,
24% are not detected as maps containing sources.
If sources may overlap, the ring performs better and is comparable to the event
correlation method (see figure 2.8). As the ring background method could not
detect anything in the H.E.S.S. data, this plot also gives an idea of the upper
limit of weak sources in the Galactic Centre region.
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Figure 2.7: Comparison for different numbers of sources and source events on
isotropic background, 50, 000 events total. Minimum distance be-
tween two sources is 0.2◦.
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Figure 2.8: Comparison for different numbers of sources and source events on
isotropic background, 50, 000 events total. No minimum distance be-
tween two sources is required ⇒ sources may overlap.
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3 Analyzing H.E.S.S. data from the
Galactic Centre

In this chapter, the distribution of the γ-ray event candidates from the Galactic
Centre is examined with respect to small-scale anisotropies by applying the event
correlation method.
At first, several ways of generating H0 maps that randomizes the small-scale
structures of the data are investigated and it is verified that the randomization of
pure background maps does not affect the correlation function. Artificial maps
that feature similar large-scale distributions as the data are therefore created and
analyzed.
Then, these maps with source populations distributed on them are analyzed
in order to learn about the number and strengths of sources necessary for a
detection.
To prevent a detection due to the already known two strong point sources, all
events in a small circle around them are excluded from the analysis. Also the
large-scale distributions, which are caused by varying exposure time of the tele-
scope and diffuse emission from the molecular cloud, could lead to false detections
and are therefore included into the background model.
The region of interest is a rectangle of size 4◦×2◦ around the Galactic Centre (see
figure 3.1), because it contains most of the diffuse emission (see figure 1.2). To
prevent border effects during the analysis, the map is extended in every direction.
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Figure 3.1: binned event map of the region of interest, bin width: 0.02◦
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3.1 Generation of H0 maps

H0 maps can be generated based on a model of the large-scale distributions or by
scattering the H1 map. To verify that a generated H0 map M0 has approximately
the same large-scale structure as the H1 map M1, the difference between M0 and
a smoothed version of M1 is estimated by calculating the mean squared error of
their binned versions:

MSE(M0, Gσ(M1)) ,

with the mean squared error defined as

MSE(A,B) =
1

n

n∑
k=0

(Ak −Bk)
2 ,

for two maps A and B containing n bins each. G denotes the Gaussian smoothing
operator of width σ, which should not be larger than σpsf , because otherwise, also
the large-scale structures are destroyed. A good compromise between destruct-
ing small-scale structures and preserving large-scale structures can be found by
comparing Gσ(H1) (see figure 3.2) to the exposure map and the molecular cloud
(see figure 3.7 (a) and (b)). Now, assuming that the MSE is an adequate measure

for the estimation of the structural similarity, if

MSE(M i
0, Gσ(M1) ≤ MSE(M1, Gσ(M1))

for several H0 maps M i
0 and the H1 map M1, the model is regarded as suitable.

In order to find the best parameter (set) for a method generating H0 maps, the
distribution of MSE(M i

0, Gσ(M1)) is compared to MSE(M1, Gσ(M1)) by calculat-
ing the difference

d = MSE(M1, Gσ(M1))− 1

m

m∑
i=0

MSE(M i
0, Gσ(M1)) ,

which measures how much more similar the M i
0 are to Gσ(M1) than M1 is. Nor-

malizing the MSE(M i
0, Gσ(M1)) to µ = 0 and σ = 1 turns all MSEs into signifi-

cances, which makes it easy to compare among different Gσ. In the following, all
MSEs will be normalized MSEs (depending on H0) and thus,

d = MSE(M1, Gσ(M1)) .

Note that all errors are first calculated after having excluded the two strong point
sources.
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(a) M1
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(b) Gσ=0.05◦(M1)
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(c) Gσ=0.10◦(M1)
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(d) Gσ=0.20◦(M1)

Figure 3.2: H1 map smoothed by Gσ
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3.1.1 Scattering the H1 map in longitude and latitude

Given M1, a scattered version

M0 = SσS(M1)

is obtained by translating each event xi by a random vector sampled from a 2D
Gaussian distribution of width σS:

xnew
i = xi + gσ

This procedure applies to all events in the data set, not only to those inside
of the region of interest. Otherwise, events get scattered out of the region of
interest without any outside events being scattered into it, which would lead to
low densities at the borders. For the same reason, exclusion regions are used only
after the scattering.

Figure 3.3 shows examples of H0 maps obtained for different SσS , whose large-
scale structures are compared to the large-scale structures of M1, assuming that
G0.1◦ models these structures well. The distributions of the normalized (µ = 0,
σ = 1) mean squared errors of SσS(M1) along with the mean squared error of the
H1 map (blue mark) are also shown.
If most of the H0 maps are more similar to the smoothed H1 map than the H1

map is (blue mark ≥ 0), the model is probably not too inaccurate.

After having chosen a σG, the differences d for different SσS are calculated and
shown in figure 3.3.
With σS starting from 0, the small-scale structures of M1 are increasingly de-
stroyed, making SσS(M1) more and more similar to GσG(M1), until events start
getting scattered so heavily that even the large-scale structures are destroyed and
events are scattered out of the exclusion regions.
So the best σS is where d is maximal because then, the small structures of M1

are destroyed and it is closest to the smoothed M1.

3.1.2 Scattering the H1 map in longitude

Because the diffuse emission is extended mainly in longitude, scattering too much
in latitude would result in H0 maps not having a structure which is present in
the H1 map. The operator TσT generates H0 maps

M0 = TσT (M1) .

by translating each event xi in longitude, by a random distance sampled from a
1D Gaussian distribution:

xnew
i = xi + gσT

Figure 3.4 shows H1 scattered in longitude by TσT along with the plots of the
mean squared errors.
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3.1.3 Sampling from smoothed data

When events are scattered, they might be scattered out of the exclusion region
and create higher event densities there, which might lead to false detections. If
the H1 map is smoothed by σU (such that large-scale structures still remain) and
then interpreted as a probability distribution, event positions can be sampled
from it and the generated H0 maps have exactly as many events as the H1 map.
The operator U generates H0 maps in such a way:

M0 = UσU (M1) .

Example H0 maps sampled from GσG(M1) with the corresponding histograms
for d along with the graph for d(σG) are shown in figure 3.5. Although with this
randomization method events are not scattered out of the exclusion regions, there
are high event densities around the exclusion regions anyway, because during the
smoothing the events of the exclusion regions are smeared out and then new
events are sampled from that distribution (see the ring with higher event density
around the left exclusion region in figure 3.5 (b)).
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(a) M1
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(b) G0.1◦(M1)

]°Lon [
-3 -2 -1 0 1 2 3

]°
L

at
 [

-1.5

-1

-0.5

0

0.5

1

1.5

0

2

4

6

8

10

12

14

16

18

20

(c) example H0 map: S0.1◦(M1)
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(d) example H0 map: S0.2◦(M1)
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(f) distribution of normalized
MSE(S0.2◦(M1), G0.1◦(M1)) for H0

maps and MSE(M1, G0.1◦(M1)) in blue
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Figure 3.3: Scattering in longitude and latitude: S0.1◦(M1) and S0.2◦(M1) com-
pared to M1 assuming G0.1◦(M1) models the large-scale structure of
M1 well
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(a) M1
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(b) G0.1◦(M1)
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(c) example H0 map: T0.1◦(M1)
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(d) example H0 map: T0.2◦(M1)
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Figure 3.4: Scattering in longitude: T0.1◦(M1) and T0.2◦(M1) compared to M1 for
G0.1◦(M1)
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(a) M1
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(b) G0.1◦(M1)
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(c) example H0 map: U0.1◦(M1)
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(d) example H0 map: U0.2◦(M1)
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(e) distribution of normalized
MSE(U0.1◦(M1), G0.1◦(M1)) for H0
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Figure 3.5: Sampling from the smoothed H1 map: U0.1◦(M1) and U0.2◦(M1) com-
pared to M1 for G0.1◦(M1)
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3.2 Verification of the randomization algorithms

This section investigates in Monte Carlo simulations if the generated H0 maps are
valid by comparing artificial maps without sources to the H0 maps generated from
them. If new structures that affect the result of the event correlation function
are introduced or removed, this effect must be considered.

3.2.1 Artificial maps

The artificial maps have to be very similar to the data and are therefore generated
according to the known large-scale event distributions:

• 270.000 events are distributed according to the exposure map (see figure
3.6 (a)).

• 5000 events are distributed according to the density of the molecular cloud
(see figure 3.6 (b)).

• Sagittarius A∗ and G 0.9+0.1 are simulated by adding two point-sources at
their positions with 4000 and 1500 events, respectively (see figure 3.6 (c)).

Figure 3.7 then shows an example of a final artificial map next to the data for
comparison.
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(c) two strong point sources

Figure 3.6: Components of an artificial map without sources
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(a) data
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Figure 3.7: Event map generated according to the exposure map and the density
of the molecular cloud, with the two strong point sources included.
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3.2.2 H1 maps without sources compared to their H0 maps

The values of the correlation functions at 0.1◦ before (M1) and after randomiza-
tion (M0), normalized to the mean correlation function of the randomized maps,
are shown in figure 3.8. The correlation function is nearly independent of slight
scattering (see (a), (b), (d) and (e)) and slight scattering in longitude performs a
bit better than slight scattering in longitude and latitude (compare (b) and (e):
the red curve in (e) is less shifted to the right than in (b)), because the structures
caused by the diffuse emission, which are extended mostly in longitude, are not
destroyed.
Strong scattering unexpectedly shifts the mean of the H1 maps to the left (see (c)
and (f)), which means that during the scattering, new structures that affect the
correlation function must have been introduced to the H0 maps. Most probably,
events from the two strong point sources are scattered out of the exclusion regions
(see figure 3.10). The reason for the correlation function being less prone to strong
longitude-latitude scattering is that it scatters the events of the strongest point
source Sagittarius A∗at (0◦, 0◦) nearly according to the exposure map (compare
3.10 (b) to 3.7 (a)).

Figure 3.9 shows the effect on the correlation function of randomizing maps with
the above methods for the complete range of σ from 0.02◦ to 0.2◦. It tells for a
given size of an exclusion region how much the map may be randomized without
affecting the correlation function.
If, for example, the radii of the exclusion regions are chosen to be r1 = r2 = 0.3◦,
scattering in longitude and latitude may be done with σS up to 0.16◦ (see 3.9 (a)).
For scattering in longitude only, the range for σT is similar (see 3.9 (b)). When
H0 maps are sampled from a smoothed H1 map, all σU < 0.08◦ and σU > 0.12◦

affect the correlation function and must therefore not be chosen.
The shape of the curves suggests a superposition of effects that influence the
correlation function (as mentioned above: scattering events out of the exclusion
regions and destruction of large-scale structures). So to be sure, they are inves-
tigated independently.
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Figure 3.8: Effect of randomization methods on the correlation function for H1

maps without sources (red) compared to the corresponding H0 maps
created from them (black), depending on randomization. The values
of the correlation functions at 0.1◦ are histogrammed after normal-
ization to µ = 0 and σ = 1 for H0 maps, thus yielding significances.
Exclusion radii are r1 = r2 = 0.3◦.
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Figure 3.9: Shift of the mean correlation function (significance) of artificial H1

maps with background modeled according to the large-scale
distributions also present in the data without a population of
weak sources depending on randomization for different exclusion radii31



3.2.3 Influence of exclusion regions

To investigate the influence of the size of the exclusion regions, the events of the
two strong point sources are counted that land outside of the exclusion regions
after randomization (see figure 3.10 and 3.11). The influence on the correlation
function is shown in figure 3.12, where these two sources are placed on an isotropic
background in order to eliminate effects caused by a complex background model
and to focus on the effects of these point sources and their exclusion regions only.
For the two strong point sources used in the simulations, a good compromise are
exclusion regions with radii of r1 = r2 = 0.3◦ and σ < 0.1◦.
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(b) lon-lat-scattering with σS = 0.2◦
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(c) lon-scattered with σT = 0.2◦
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(d) sampled from map with σU = 0.2◦

Figure 3.10: The two strong point sources randomized by different methods. The
exclusion regions are marked by black circles.
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Figure 3.11: Ratio of events outside of the exclusion region after randomizing for
different radii r of the exclusion regions
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Figure 3.12: shift of the mean correlation function (significance) at r = 0.1◦ for
maps with the two strong point sources on isotropic background
and varying exclusion regions
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3.2.4 Influence of large-scale structures

The influence of the randomization on the large-scale structures is examined by
calculating the correlation functions for the same H1 maps as before, but without
the two strong point sources (see figure 3.9).
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Figure 3.13: artificial H1 map without Sagittarius A∗ and G 0.9+0.1

Figure 3.14 shows that already slight scattering changes the map so much that
the correlation function is so heavily affected that the randomization algorithms
can not be used for analysis. However, without the two strong point sources,
there are neither exclusion regions and that makes the correlation function more
dependent on the randomization of the map, because the area with the highest
event density and strongest gradients is not masked anymore.
In the simulations, those regions are excluded, the effect becomes less problematic
and the randomization methods can be used after all.
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Figure 3.14: maps without the two strong point sources (⇒ no exclusion regions)
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3.2.5 Conclusion

There are two reasons why randomizing a map influences the correlation function:

1. events leave the exclusion regions

2. large-scale structures are destroyed

The radii for the exclusion regions will be r1 = r2 = 0.3◦, because they contain
most of the events of the two strong point sources, while not masking too many
of the other events. The analysis indicates that for these radii the recommended
range for randomization parameters is

• σS < 0.12◦ for scattering in longitude and latitude,

• σT < 0.12◦ for scattering in longitude only and

• σU = [0.08◦, 0.12◦] for sampling from the smoothed map.

In the following, σS = σT = σU = 0.1◦ will be used.

37



3.3 Analyzing artificial H1 maps with weak source
populations

First, an H1 map is created, like before, by distributing events according to the
exposure map and the density of the molecular cloud, plus two strong point
sources added at the same location as in the data. Then, some weak sources
are distributed on the map. Again, the number of events on this H1 map is
approximately the number of events in the data.

3.3.1 Source modeling

The sources are assumed to be point-like and their strengths and positions should
be distributed like the already known sources.

The number of sources N with strength S follows a log(N)-log(S) distribution

N(S) = S−γ ,

which will be used to sample source strengths from (see figure 3.15 (a)). As the
generation of extremely strong sources, which are not in the data set anyway, has
to be avoided, there will be a cutoff at a maximal source strength of S1 = 120.
With the median source strength S also given, the minimal source strength S0

can be calculated to:

S0 = (2S
2−γ − S2−γ

1 )
1

2−γ , because∫ S

S0

N(S)S dS =
1

2

∫ S1

S0

N(S)S dS .

Figure 3.15 (a) shows the distribution the source strengths are sampled from for
γ = 3 and S = 80.
The latitude distribution of the Galactic VHE-γ-ray sources that have been found
so far (see figure 3.15 (b)) will be used to sample the source positions in latitude;
the longitudes positions are equally probable. There are no constraints on the
distance between two sources, so it is possible that several sources overlap.
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(c) Example map with sources generated according to (a) and (b)
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(d) Example of a final H1 map containing background events due to exposure, events from
diffuse emission, the two string point sources and several weak point sources

Figure 3.15: Sampling source positions and strengths
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3.3.2 Results

Figure 3.16 (see detailed description there) shows the histogrammed values of the
correlations functions at r = 0.1◦ for different numbers of sources and different
randomization algorithms with randomization parameters σS = σT = σU = 0.1◦.
The red histogram shows Φ for H1 maps and the black histogram shows Φ for H0

maps, which are obtained by applying the randomization operators S, T and U
to the H1 maps.

With the more complex and realistic background and source distributions models,
the event correlation method is still sensitive to populations of weak sources and
benefits from an increased number of sources, while the ring background method
does not (see figure 3.17 for an exemplary comparison using randomization op-
erator S (lon-lat-scattering) for the generation of H0 maps).

The results presented in figure 3.18 indicate the properties of the source popu-
lation (number of sources and mean source strength) required to affect the cor-
relation function and the ring background method. If, for example, there are 50
sources in the data with a median source strength of 100 events, a ∼ 1.5σ detec-
tion is expected with the correlation method and 0 σ with the ring background
method.
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Figure 3.16: Correlation functions at r = 0.1◦ for H1 maps with different numbers
of sources (red) compared to the corresponding H0 maps created
from them (black) with σS = σT = σU = 0.1◦. The values of the
correlation functions are histogrammed after normalization to µ = 0
and σ = 1 for H0 maps, thus yielding significances.
The mean number of events per source is S = 80 and the exclusion
radii around the positions of Sagittarius A∗ and G 0.9+0.1 are r1 =
r2 = 0.3◦.
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Figure 3.17: Comparison of event correlation to ring background for scattering
in longitde and latitude with σS = 0.1◦. Top row: Correlation func-
tions at r = 0.1◦ for H1 maps with different numbers of sources (red)
compared to the corresponding H0 maps. The values of the corre-
lation functions are histogrammed after normalization to µ = 0 and
σ = 1 for H0 maps, thus yielding significances.
Bottom row: maximum significances obtained with the ring back-
ground method, normalized to µ = 0 and σ = 1 for H0 maps.
The mean number of events per source is S = 80 and exclusion radii
are r1 = r2 = 0.3◦.
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Figure 3.18: Mean significances obtained from the correlation function for differ-
ent randomization methods, mean source strengths nsrc.ev and num-
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3.4 Analyzing the data

For the analysis of the data, regions with radii r1 = r2 = 0.3◦ around Sagittarius
A∗ and G 0.9+0.1 are excluded.
Figure 3.19 shows the result of the analysis for the three randomization methods
with randomization parameters σS = σT = σU = 0.1◦. The black histogram
shows the value of the correlation function at r = 0.1◦ for randomized maps,
normalized to µ = 0 and σ = 1 for the correlation functions of the randomized
maps and the red bar shows the value of the correlation function at r = 0.1◦

for the data, normalized in the same way. As the previous simulations have
shown, small-scale anisotropies in the data would have caused the red bar being
far more right. Instead, it lies near 0σ, which means that randomizing the data
has no effect on the correlation function, so there are probably no small-scale
anisotropies in the data.
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Figure 3.19: Value of the correlation function at r = 0.1◦ for the data (red)
normalized with regard to maps randomized by different methods
(black). From top to bottom: scattering in longitude and latitude,
scattering in latitude only, sampling from smoothed map.
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4 Conclusion

4.1 Summary

An event correlation method has been introduced and applied to the analysis of
γ-ray maps of the Galactic Centre. In order to obtain the necessary H0 maps,
different methods for the destruction of small-scale structures have been analyzed
and then used on the data. Monte Carlo simulations have been conducted to ver-
ify that the exclusion regions and randomization strengths used in the analysis
do not change the large-scale distribution of the event map. To the event cor-
relation method, the data appears to be as random as the randomized data, so
there are no small-scale anisotropies, which means that there is no indication for
populations of weak point sources and thus, the observed γ-rays arriving from
the Galactic Centre region are consistent with diffuse emission.

4.2 Outlook

Improved scattering

To allow stronger randomization, events could be scattered along the lines and
areas of equal density. Those lines are all positions where the ∆(M) = 0.

Weighted correlation function

A different correlation function, which is especially sensitive on point sources
with σpdf = 0.1◦ could improve the analysis. Tests on artificial maps have shown
that it is more sensitive than the normal event correlation method.

Local anisotropy

Since H0 maps have an isotropic event distribution in a small circle (r ≤ 0.1◦)
around every position on the map, another way to distinguish H1 maps from H0

maps is to measure how much these local event distributions of the H1 map differ
from an isotropic distribution that has the same number of events:

s =
n∑
i=1

|f(M i
1), f(E(M i

1))| ,
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where f is a function that measures the anisotropy in a small circle around event
i and E is an operator that equally distributes the same number of events in a
circle of the same size.

Other

The same analysis can soon be done with data from H.E.S.S. 2. Also, the analysis
could be done depending on energy ranges.
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