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Abstract

Single subject functional Magnetic Reso-
nance Imaging (fMRI) has proved to be a
useful tool for mapping functional areas in
clinical procedures such as tumour resec-
tion. Using fMRI data, clinicians assess
the risk, plan and execute such procedures
based on thresholded statistical maps. How-
ever, because current thresholding methods
were developed mainly in the context of
cognitive neuroscience group studies, most
single subject fMRI maps are thresholded
manually to satisfy specific criteria related
to single subject analyses. Here, we pro-
pose a new adaptive thresholding method
which combines Gamma-Gaussian mixture
modelling with topological thresholding to
improve cluster delineation. In a series of
simulations we show that by adapting to the
signal and noise properties, the new method
performs well in terms of over and underes-
timation of the true activation border. We
also show through simulations and a motor
test-retest study on ten volunteer subjects
that adaptive thresholding improves reliabil-
ity, mainly by accounting for the global signal
variance. This in turn increases the likeli-
hood that the true activation pattern can be
determined.
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1. Introduction

The final outcome from fMRI analyses is a map show-
ing which areas are most likely involved in certain
sensori-motor or cognitive skills. After appropriate
data pre-processing, a General Linear Model (GLM)
is fitted to the measured signal and a T-test looking
for differences between conditions or between a given
condition versus rest is performed. The result is a 3D
volume of T-values. Given these T-values, each voxel
is labelled as being active (involved in the task) or not-
active (not involved in the task) based on an ad-hoc
threshold. This procedure has been successfully used
in the context of cognitive neuroscience group studies
for population inference. However, three major prob-
lems need to be addressed in order to improve infer-
ence at the subject level when used for clinical decision
making, namely: (i) the impact of signal-to-noise ratio
(SNR) on thresholding, (ii) the relative importance of
Type I versus Type II error rates, and (iii) the spatial
accuracy of the thresholded maps. In this paper we in-
vestigate how these issues affect statistical maps and
describe a new adaptive thresholding method which
improves cluster delineation.

The aim of our approach is to perform inference on the
cluster level and at the same time provide a good bal-
ance between false positive and negative errors in the
delineation of activation borders. We therefore pro-
pose a Gamma-Gaussian mixture model as a method
to account for a distributions of T-values in Statistical
Parametric Maps (SPM) (Woolrich et al., 2005) and
set a threshold specific to the data at hand (Pendse
et al., 2009). A natural way to determine this thresh-
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old is to take the crossing point between the Gaus-
sian, the model corresponding to no activation, and
the Gamma distribution, the model corresponding to
positive activations. This crossing point thus separates
signal from noise, and consequently provides a good
trade-off between false positive and negative rates. Fi-
nally, once this threshold is established, topological in-
ference via False Discovery Rate (FDR) correction over
clusters (Chumbley & Friston, 2009) is used to correct
for the number of tests performed while accounting
for spatial dependencies across voxels, thereby explic-
itly controlling for Type I cluster rate. This heuristic
approach combines advantages of the different meth-
ods mentioned above. Specifically it relies on a simple
model of the SPM, allows adaptive thresholding, and
accounts for multiple comparisons in the context of
topological inference.

2. Methods and Materials
2.1. Gamma-Gaussian mixture model

Following Woolrich et al. (2005), the T-value distribu-
tion from a SPM is modelled using a Gamma-Gaussian
mixture model, with the Gaussian distribution as a
model for the null distribution (no activation) and
Gamma distributions as models for the negative (deac-
tivation) and positive (activation) distributions. Note
that due to high degrees of freedom in a typical f{MRI
experiment, i.e. the number of time points greatly
exceeds number of regressors, a normal distribution
is good approximation of Students t-distribution. In
practice, three different models are fitted, namely:

p(x) =N(x|p, o) (1)
p(z) =rnN(z|p,0) + taGamma(z + plk,0)  (2)
p(z) =rpGamma(x — pulkp,0p)
+ 7y N(z|p, o) (3)
+ maGamma(x + ulka, 04)

Model 1 is fitted using maximum likelihood esti-
mator, and Models 2 and 3 are fitted using an
expectation-maximization algorithm (Dempster et al.,
1977). Gamma components in Models 2 and 3 cor-
respond to activation and deactivation classes. Note
that Gamma components are shifted by the estimated
mean of the noise components (Gaussian distribution).
For each model, Bayesian information criterion (BIC)
is calculated and the model with the highest score is
selected. Compared to other approaches (e.g. Pendse
et al., 2009), the explicit model selection via BIC and
the use of Gamma distributions allows the case when
no signal is present (Model 1) to be determined, and
avoids having to attribute components to noise or ac-

tivations. In the case that Model 1 is selected it is
assumed that the data contains no signal. For Mod-
els 2 and 3, each voxel is assigned a label (activation,
deactivation and noise) corresponding to the compo-
nent with the highest posterior probability. In these
cases, the highest T-value among voxels belonging to
the noise class is chosen as the new cluster forming
threshold. Clusters defined this way undergo topoog-
ical FDR procedure (Chumbley & Friston, 2009). Us-
ing Random Field Theory each cluster gets assigned
a probability value based on it’s extent, clusterform-
ing threshold and estimated image smoothness. These
values are then corrected for FDR.

2.2. Simulations

To investigate the performance of each method, a
total of 2500 time series were simulated with vary-
ing activation sizes and signal stength. FEach SPM
was thresholded using topological FDR with 3 dif-
ferent cluster forming thresholds. Two fixed clus-
ter forming thresholds were used across all 2500
SPMs, specifically a p-values of 0.05 with fam-
ily wise error (FWE) correction (T-value of 4.47)
and 0.001 uncorrected (T-value of 3.19). These
thresholds were chosen as they correspond to de-
faults values used in the SPM software package
(http://www.fil.ion.ucl.ac.uk/spm/) and we re-
fer to them as fixed thresholds (FT 0.05 FWE and
FT 0.001). This contrasts with the cluster forming
thresholds obtained with the Gamma-Gaussian mix-
ture model which by nature change with the data. We
refer to these thresholds as adaptive thresholds (AT).

2.2.1. SPATIAL ACCURACY

For a given true cluster, the degree of underestima-
tion was defined as the number of voxels that were
falsely declared as not active, and the degree of over-
estimation was defined as the number of voxels that
were falsely declared as active. Using these definitions,
cluster borders can be simultaneously overestimated
(voxels declared active that should not be) and under-
estimated (voxels declared non-active that should not
be). Comparisons between AT and FT were performed
in a pairwise manner using a percentile bootstrap on
the Harrel-Davies estimates of the median differences.
Multiple tests correction was applied maintaining FDR,
at the 0.05 level.
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2.3. fMRI data and reliability analyses
2.3.1. SUBJECTS

Eleven healthy volunteers were recruited. One subject
had to be discarded due to problems with executing
the task. Subjects had to move a body part corre-
sponding to a picture finger, foot or lips. A block de-
sign with 3 x 15 sec activation periods with 15 sec rest
periods was used. Four trials were used for training
before data acquisition. Four volumes were acquired
for signal stabilization before stimulus presentation.
There were five repetitions of each activation block.

Scanning was performed using a GE Signa HDx 1.5
T clinical scanner. Each volunteer was scanned twice,
two (eight subjects) or three (two subjects) days apart.
SPMs were computed for each body part and the re-
sulting maps were thresholded with a cluster thresh-
old of 0.05 FDR corrected but using AT and the two
default FT values as in the simulations. For every
subject, contrast and thresholding method, Dice sim-
ilarity (overlap) was calculated between the two ses-
sions. Comparison of thresholding methods was per-
formed using a percentile bootstrap on the differences
between Dice coefficients. Finally, to further investi-
gate the impact of AT and FT on reliability, the Dice
values were computed using multiple threshold combi-
nations between sessions, and AT and FT located in
this space. This allowed an understanding of the un-
derlying behaviour of our reliability metric in relation
to different cluster forming thresholds.

3. Results

3.1. Simulations
3.1.1. SPATIAL ACCURACY

Due to the fact that the smallest cluster was found
by all of the thresholding methods in only a hand-
ful of runs it was excluded from further analyses; in
other words there were not enough true positives to
reliably estimates border accuracy. For the remaining
cluster sizes, AT outperformed both default FT values
in terms of underestimation of borders, i.e. it showed
fewer false negative voxels, but at the same time it
performed worst in terms of overestimation with more
false positive voxels. However, the difference was such
that AT had a better overall spatial accuracy, i.e.
trade-off between over and underestimation. AT pro-
vided a statistically significant improvement in terms
of the border over /under estimation when compared to
both of the two FT values. As in the cluster analysis
the effect was stronger for lower SNR levels, although
in case of the highest tested SNR, 0.16, FT 0.001 per-

formed equally well as AT.

3.1.2. RELIABILITY EXPERIMENT

For the three evaluated contrasts of the motor task
(finger, foot, lips), AT provided improvement in terms
of between session Dice overlap over both default F'T
values. Mapping of the parameter space showed that
many combinations of thresholds can lead to high Dice
overlap, and that highest values were obtained when
different thresholds between sessions were used. The
reason behind this phenomenon is that maximum T-
values are often shifted between sessions as evidenced
by looking at the joint distribution of T-values. Indeed
the tail of the joint distribution is off-diagonal, mean-
ing that voxels in the second scan session have higher
or lower T-values than the same voxels in the first ses-
sion. This effect is mostly observed when there is a
shift of the overall distribution, i.e. in the context of
a global effect (Friston et al., 1990) such as when tem-
poral noise correlates with the stimuli sequence and
affects the whole brain. AT attempts to estimate and
correct for this effect by allowing the Gaussian com-
ponent to have non-zero mean and having the acti-
vation and non-activation components range fixed to
that mean, leading to a choice of a pair of thresholds
optimal in terms of Dice overlap (see Figure 1).

4. Discussion

Single subject fMRI analyses have different require-
ments than group studies mainly because the SNR is
often lower, and one wants to reveal specific or ex-
pected areas and delineate their spatial extent. For
these reasons, a fixed threshold strategy is rarely
adopted and each subject’s SPM tends to be thresh-
olded differently. Here, we propose a method that
thresholds each subject’s statistical map differently,
but follows an objective criterion rather than a sub-
jective decision. Indeed, we show that our adaptive
thresholding method outperforms default fixed thresh-
olds in terms of spatial accuracy. This increase can also
explain the reliability results. While validity and reli-
ability can be separated in various conditions, we can
infer that, for fMRI, the most valid voxels are the ones
detected reliably. Valid and reliable voxels usually cor-
respond to voxels located at the core of a cluster while
non-valid and non-reliable voxels are located at the
cluster borders. Since AT leads to higher reliability
than FT, we can infer that it also improves clusters
delineation in real data sets.

A major source of noise in fMRI time series relates to
global effects. Because of the shift of the overall T-
value distribution below or above 0, a fixed threshold
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Figure 1. Analysis of the T-map reproducibility of three selected subjects. Heatmasps show between session Dice coeffi-
cients for different pairs of cluster forming thresholds. Finger contrast for Subject 1 illustrates the case where choosing
the same threshold for both session is the optimal course of action; Lips movement contrast for Subject 2 shows a shift
of values between the sessions. This allows AT to choose a lower threshold for the second session and optimize the Dice
coefficient value. Foot contrast for Subject 3 presents a shift in the opposite direction.

strategy can lead to the under or overestimation of the
true signal. By contrast, we show that AT can correct
for global effects by shifting the mean of the Gaussian
component in our Gamma-Gaussian mixture model.
This ability to adapt to noise translates to improved
reliability in a test-retest study on healthy controls.
A similar approach has been used before to remove
global effect biases in a session variability study by
Smith et al. (2005), but not in context of thresholding
statistical maps.

Finally, because AT provides a higher spatial accu-
racy and adapts to noise, it also leads to an increase
in reliability. In the context of single subject fMRI
analysis, and in particular for data used in clinical
procedures such as presurgical planning, it is worth
noting that spatial accuracy is essential. Of particu-
lar interest here, AT showed much lower underestima-
tion than FT, which may be useful in clinical situa-

tions. Increased spatial reliability in healthy controls
also means that one can be confident that the method
will more often detect valid clusters as suggested by the
reduced false negative rate in the simulations. Over-
all, AT therefore achieves a better balance than FT
approaches, and provides a new tool to reliably and
objectively threshold multiple single-subject SPMs.
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