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Most neuroimaging studies are 
underpowered or in other words have small 
Signal to Noise Ratio (SNR). This is especially 
true for full brain connexelwise [1] analysis 
(see Fig. 1).
A common way of increasing SNR is to 
restrict the search area with a Region of 
Interest (ROI).
ROI definitions have traditionally been binary 
- discarding uncertainty; potentially missing 
strong activations outside of the ROI.
Here we propose a probabilistic approach to 
ROI analysis - pROI.

Left: Symbolic representation of flattened voxels 
(non-active (black) and active (red)). Right: 
Connectivity matrix where each point corresponds 
to one connexel. Below: The relation between SNR 
in the voxelwise (SNRv) and connexelwise (SNRc) 
cases, where n stands for the number of voxels.
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Decision tree within the hierarchical 
framework. First the fitted distributions are 
used to classify each voxel/connexel between 
two categories: “of-interest” or “of-non-
interest”. In the second step, voxels-/
connexels-of-interest are classified as “signal” 
or “noise”.

Simulation results. Two sources of were 
used signal: one weak and one strong 
(left) and set of prior maps (top row 
right): one representing classical (binary) 
ROI approach (with the ROI encompassing 
the weak signal), one representing whole-
brain analysis, and four non-binary priors. 
The “classical ROI” prior misses the 
strong signal, while the “whole-brain” 
prior barely finds the weak signal. Only an 
‘in between’ pROI which focuses on the 
right location, but gives small (but non-
zero) chance of finding signal outside of 
this spot, manages to strike a balance 
delineating both sources of signal.

Experiment with emotion task based 
fMRI. Statistical map was thresholded 
using full brain non-informative binary 
prior (transparent blue) and prior based 
on the “emotion” term in the NeuroSynth 
database (light 
green). The NeuroSynth based prior 
presented cleaner maps. Some voxel 
were significant only when using one of 
the priors due to combination of prior 
probability at given point and value of the 
statistic (see arrows).

We propose to formally incorporate prior knowledge 
into the inference process by using a Bayesian 
framework. The prior informs the search area, 
which in turn is subdividedinto noise and signal. Our 
hierarchical model consists of two levels. On the 
first level we model two classes corresponding 
to voxels-/connexels-of-interest or -of-non-interest:

Where p(m1|i) are the priors on the search areas (or 
mixing components of the first level). They are 
different for each location (i), fixed, and set to 
values based on particular inference assumptions 
(previous studies, characteristics of different 
modalities, etc...). On the second level, the voxels-/
connexels-of-interest distribution (p(x|m1,i)) is 
described as a mixture of negative gamma 
(deactivation), Gaussian (noise), and positive 
gamma (activation) distributions. The location of 
the two gamma distribution is tied to the estimated 
mean of the noise component. This level is identical 
to the model presented in [2].
Parameters of those three distributions (and mixing 
coefficients) are fitted using a weighted variant of 
the Expectations-Maximization algorithm [3]: the 
entire dataset is used but influence of each voxel/
connexel on the final mixture is modulated by the  
p(m1|i) weight in the E-step:

The actual inference procedure takes two steps (see 
Fig. 2). First for each voxel/connexel we decide if is 
ofinterest or non-interest, by comparing the two 
posterior distributions. For voxels/connexels coming 
from the of-interest distribution, a similar procedure 
is used to choose between signal and noise.

To evaluate the method we have 
performed a series of simulations 
using different prior maps. On a 
two dimensional 100x100 array 
two 10x10 sources of signal were 
placed (see Fig. 3): one weak 
(effect size 3) and one strong 
(effect size 9). The “classical ROI” 
prior fails to find the second signal 
source, but even the most specific 
of the non-binary priors (with value 
0.005 over the strong signal) does 
a reasonable job in finding both 
signals.

We apply the pROI method to thresholding an 
fMRI dataset acquired during performance of an 
emotional task. Subjects were exposed to 
negative and neutral visual imagery with varying 
uncertainty of the nature of the next stimulus. 
The prior was generated using the NeuroSynth 
database (based on the term “emotion” [4]). In 
comparison to whole-brain analysis, the 
thresholded map obtained using the pROI 
delineated activation in the amygdala in voxels 
that were significant, taking into account their 
high probability of involvment (Fig 4)

We propose a Bayesian framework for performing ROI analysis with non binary priors

pROI enable researchers to explicitly encode the uncertainty about search space

Different sources of priors can be used ans should be investigated in the future: tissue probability 
maps, results from different modalities, literature reviews

Due to its modular design, the proposed framework is flexible: second level model can be replaced 
with Markov Random Field or Kernel Density estimation

Proof of concept code is available at: 
https://github.com/chrisfilo/Adaptive-Thresholding/
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