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Polarization operator for plane-wave background fields
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We derive an alternative representation of the leading-order contribution to the polarization op-
erator in strong-field QED with a plane-wave electromagnetic background field, which is manifestly
symmetric with respect to the external photon momenta. Our derivation is based on a direct evalua-
tion of the corresponding Feynman diagram, using the Volkov-representation of the dressed fermion
propagator. Furthermore, the validity of the Ward-Takahashi identity is shown for general loop
diagrams in an external plane-wave background field.
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I. INTRODUCTION

The most precise calculations known so far in physics
are provided by QED. The reason for this is the smallness
of the fine-structure constant α = e2/(4πǫ0~c) ≈ 1/137,
which allows to use perturbative techniques at sufficiently
low energies (e is the electron charge). The most promi-
nent example is probably the electron g-factor, for which
experimental and theoretical results have been matched
on the record accuracy level of parts per billion [1].
To achieve this outstanding precision, the corresponding
theoretical calculation included Feynman diagrams with
up to four loops.
A quite different situation is encountered for QED

with electromagnetic background fields. A source for
strong electromagnetic fields are modern laser systems. If
spatial focusing effects are sufficiently small, laser fields
can be well approximated by plane-wave fields. For a
plane-wave field we obtain, besides the fine-structure con-
stant, a second gauge and Lorentz invariant parameter
ξ0 = |e|E0/(mcω0), where E0 and ω0 are the peak electric
field strength and central frequency of the plane wave,
respectively (m is the electron mass). If ξ0 & 1 the in-
teraction between electron and positrons with the laser
field must be taken into account exactly. For optical
lasers (photon energy ~ω0 ≈ 1 eV) this happens already
at intensities of the order of 1018 W/cm2. More precisely,
we can generally still treat the interaction of the elec-
trons and the positrons with the quantized radiation field
perturbatively as in vacuum QED (QED without back-
ground fields), but must include the dependence on ξ0 to
all orders if this intensity is exceeded.
Another important scale is the so-called critical field

Ecr = m2c3/(~|e|) = 1.3 × 1016 V/cm, which corre-
sponds to a peak laser intensity of Icr = ǫ0cE

2
cr =

4.6× 1029 W/cm2. A constant and uniform electric field of
this strength can, in principle, produce electron-positron
pairs from the vacuum [2–4].
The current laser intensity record (in the optical

regime) is given by 2×1022 W/cm2 [5] and future facilities
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envisage even intensities of the order of 1024−1025 W/cm2

[6–8]. Thus, the non-perturbative regime (in ξ0) can be
entered with presently available laser systems, and even
the critical field can be reached in the rest frame of an
ultra-relativistic particle (e.g. a ∼ 1GeV electron [9]).
So far only one experiment has been carried out to

probe strong-field QED effects using laser fields [10, 11].
However, this is expected to change in the near fu-
ture and, correspondingly, the experimental progress has
stimulated many theoretical investigations during the
last years [12–46]. For a more detailed overview the
reader is referred to the review [47].
In contrary to vacuum QED, calculations with a plane-

wave background field have not been carried out beyond
the one-loop order (for constant-crossed fields higher-
order calculations have been performed, see e.g. [48–50]).
This can be attributed to the fact that already diagrams
with just a few propagators correspond to quite compli-
cated expressions. It is therefore of general interest to
investigate new techniques, which have the potential to
make also the calculation of complicated diagrams trace-
able.

q1 q2µ ν

FIG. 1. The Feynman diagram corresponding to the leading-
order contribution to the polarization operator Pµν(q1, q2) in
a plane-wave background field. The double lines represent the
Volkov propagators for the fermions, which take the external
field into account exactly [see Eq. (19)]. The vertical dashed
line links the polarization operator to the pair-production di-
agram due to the unitarity of the S-matrix.

Here we present a new derivation of the first-order
contribution to the polarization operator given in Fig. 1
[51, 52]. In [51] an operator approach similar to the one
introduced by Schwinger [4] has been used. We show
here how the diagram in Fig. 1 can be evaluated directly
using the Volkov-representation of the dressed propaga-
tors. This approach has the appealing feature that it is
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very similar to the calculation techniques used in vac-
uum QED. Our final result (which is equivalent to the
one in [51]) has the interesting property that it is man-
ifestly symmetric with respect to the external photon
four-momenta q1 and q2. Furthermore, we prove the va-
lidity of the Ward-Takahashi identity [53, 54] for general
loop diagrams in a plane-wave background field. The
calculation techniques employed here are expected to be
useful also for other higher-order calculations with strong
plane-wave background fields.

The polarization operator itself is of central impor-
tance, since it determines the properties of a photon in-
side the background field via the Schwinger-Dyson equa-
tion for the exact photon propagator [51, 55]. As a con-
sequence, a plane-wave field acts as an active medium,
e.g. the photon obtains a mass and has a non-trivial dis-
persion relation. Furthermore, due to the unitarity of the
S-matrix, the imaginary part of the polarization operator
is related to the total photo-production probability for an
electron-positron pair [56, 57]. The polarization operator
is also required for the calculation of radiative corrections
to elementary processes like non-linear Compton scatter-
ing or pair production. The significance of the photon
polarization tensor can also be inferred from the ongo-
ing effort to calculate it for different field configurations
[58, 59].

The paper is divided into three parts. In section II the
general framework of strong-field QED with plane-wave
background fields is described. The actual calculation is
then presented in section III. Finally, we show how our
results are related to those obtained in [51] and discuss
the special cases of a constant-crossed field, a linearly
polarized field in the quasi-classical approximation and a
circularly polarized, monochromatic field in section IV.

II. STRONG-FIELD QED

QED is described by the following Lagrangian density
[55, 60]

LQED = ψ̄
(

i/∂ −m
)

ψ − 1
4FµνFµν − eψ̄γµψAµ, (1)

where ψ andAµ are the Dirac spinor field and the electro-
magnetic four-vector potential, respectively, and Fµν =
∂µAν − ∂νAµ is the electromagnetic field tensor [from
now on we will use natural units ~ = c = 1 and Heaviside-
Lorentz units for charge, α = e2/(4π), see appendix A
for more details]. The equation of motion for the spinor
field ψ, which follows from Eq. (1), is the Dirac equation

(i/∂ − e /A−m)ψ = 0. (2)

Correspondingly, we obtain for the photon field Aµ in
Lorentz gauge (∂µAµ = 0) the wave equation

∂ρ∂ρAµ = eJµ, Jµ = ψ̄γµψ. (3)

A. Vacuum QED

To obtain a quantum theory of electrons, positrons
and photons, both the spinor ψ and the photon field Aµ

are promoted to operators with canonical (anti-) com-
mutation relations (alternatively, the functional integral
formalism can be employed). Once derived in either
way, the S-matrix element for a given process can be
calculated perturbatively using Feynman rules. In vac-
uum QED the starting point for the perturbative expan-
sion are the solutions of the free Dirac and wave equa-
tions [Eq. (2) with Aµ = 0 and Eq. (3) with Jµ = 0].
An electron with a given four-momentum pµ = (ǫ,p)
(ǫ > 0, p2 = m2) can then be described by the plane-
wave solutions [55]

ψp =
1√
2ǫ
e−ipxup, (/p−m)up = 0 (4)

and the corresponding propagator is given by

iG(x, y) = i

∫

d4p

(2π)4
e−ip(x−y) /p+m

p2 −m2 + i0
. (5)

For a photon with polarization four-vector ǫµ and four-
momentum kµ = (ω,k) (ω ≥ 0, k2 = 0) we obtain the
following wave-function

Aµ
k =

1√
2ω
e−ikxǫµ (6)

and in the Feynman gauge the photon propagator is given
by

−iDµν(x− y) = −i
∫

d4k

(2π)4
e−ik(x−y) gµν

k2 + i0
. (7)

Finally, the interaction between electrons, positrons and
photons is represented by the interaction vertex

−ie
∫

d4x · · · γµ · · · , (8)

where the dots indicate that the vertex is always con-
tracted with two fermion and one photon line. Thus,
one can move the exponential functions from the ex-
ternal lines and propagators to the vertex. After the
space-time integrals associated with the vertex are taken,
momentum-conserving delta functions are obtained. For
a more detailed discussion see e.g. [55, 60].

B. QED with background fields

Vacuum QED has been tested to a very high precision,
because, due to the smallness of the fine-structure con-
stant, a perturbative treatment is adequate in most situa-
tions. However, for very strong external electromagnetic
fields the (conventional) perturbation series breaks down.
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Modern laser facilities provide a source of such strong ex-
ternal electromagnetic fields. A laser field is described by
a coherent state of the photon field that effectively leads
to the splitting Aµ = Aµ

rad+A
µ in the Lagrangian. While

Aµ
rad represents the quantized radiation field, the classi-

cal field Aµ describes the laser field [61–63]. Working in
the so-called Furry picture [64] the classical background
field Aµ is taken into account exactly and only the radi-
ation field is treated perturbatively. The starting point
for the perturbative expansion of the S-matrix is then
the solution of the interacting Dirac equation (2) with
the replacement Aµ → Aµ. Since photons have no self-
interactions at tree level, the photon wave functions and
propagators are left unchanged by the background field.
A more detailed discussion of strong-field QED can be
found in [47, 50, 61, 65] and in the references therein.

C. Plane-wave fields

In this paper we will consider only plane-wave external
fields Aµ. This means that the field tensor Fµν depends
only on the plane-wave phase φ = kx, where kµ is a mo-
mentum four-vector which characterizes the plane wave.
Such a field can be described (in the Lorentz gauge) by
the following four-vector potential [4, 51, 66]

Aµ(kx) = aµ1ψ1(kx) + aµ2ψ2(kx), (9)

where k2 = kai = a1a2 = 0 and where ψi(kx) are
arbitrary functions, restricted only by the physical re-
quirement that the external field is of finite extend (e.g.
ψi(±∞) = ψ′

i(±∞) = 0 and we also assume that the
field vanishes fast enough at infinity). Furthermore, we
adopt (without restriction) the normalization condition
|ψi(kx)| , |ψ′

i(kx)| . 1 which means that the strength of
the field can be characterized by the Lorentz invariant
parameters

ξi =
1

m

√

−a2i e2, (10)

which we will call the classical intensity parameters. It
turns out that the plane-wave field must be taken into
account exactly if ξi & 1 [47]. Modern laser facilities
can easily reach this non-perturbative domain, e.g. in [5]
ξi ∼ 100 was obtained.
The field tensor corresponding to the four-potential in

Eq. (9) is given by

Fµν(kx) = fµν
1 ψ′

1(kx) + fµν
2 ψ′

2(kx), (11)

where

fµν
i = kµaνi − kνaµi , (12)

fµ
i ρf

ρν
j = −δija2i kµkν , kµf

µν
i = 0. (13)

It is also convenient to introduce the integrated field-
strength tensor

Fµν(kx) =

∫ kx

−∞
dφ′ Fµν(φ′), (14)

which can be written as

Fµν(kx) = kµAν(kx)− kνAµ(kx)

= fµν
1 ψ1(kx) + fµν

2 ψ2(kx)
(15)

in the Lorentz gauge [we will use Fµν
x = Fµν(kx) inter-

changeably to denote the argument]. Both Fµν and Fµν

have the important algebraic property that successive
contractions of more than two tensors vanish and their
square is proportional to kµkν , e.g.

Fµρ
x Fyρν = −kµkν

∑

i=1,2

a2iψi(kx)ψi(ky). (16)

If the background field is a plane-wave field, the Dirac
equation [Eq. (2) with Aµ → Aµ] can be solved analyt-
ically [67]. The corresponding so-called Volkov-solution
with the boundary condition Ψp → ψp if kx → −∞ [see
Eq. (4)] can be written as [48, 55, 68]

Ψp =
1√
2ǫ
Ep,xup, Ep,x =

[

1+
e/k /A(kx)

2 kp

]

eiSp(x),

(17)

where the phase is given by the classical action

Sp(x) = −px−
∫ kx

−∞

[

e pA(φ′)

kp
− e2A2(φ′)

2 kp

]

dφ′. (18)

Despite being essentially semi-classical, the Volkov solu-
tions are exact solutions of the interacting Dirac equa-
tion. Correspondingly, the dressed propagator (which is
the Green’s function of the interacting Dirac-equation) is
given by

iG(x, y) = i

∫

d4p

(2π)4
Ep,x

/p+m

p2 −m2 + i0
Ēp,y, (19)

where

Ēp,x =

[

1+
e /A(kx)/k

2 pk

]

e−iSp(x). (20)

Thus, in comparison with the vacuum case, the plane
waves are replaced by the Ritus Ep-functions, which de-
pend non-trivially on the plane-wave phase kx. However,
they also form an orthogonal and complete set [48]

∫

d4p

(2π)4
Ep,xĒp,x′ = δ4(x− x′),

∫

d4x Ēp′,xEp,x = (2π)4 δ4(p′ − p).

(21)

The Ep-functions convert the dressed momentum into the
free momentum [48]

[i/∂x − e /A(kx)]Ep,x = Ep,x/p,

−i∂µx Ēp,xγµ − eĒp,x /A(kx) = /pĒp,x

(22)

(these identities hold only if the derivative acts solely on
Ep,x and Ēp,x, respectively).
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D. Dressed vertex

To obtain Feynman rules in momentum space, we can
proceed analogously as in the vacuum case and move the
Ep-functions to the vertex [68]. Correspondingly, we de-
fine the dressed vertex by

Γρ(p′, q, p) = −ie
∫

d4x e−iqx Ēp′,xγ
ρEp,x. (23)

Working in momentum-space, the only difference be-
tween vacuum QED and strong-field QED is the vertex
we have to use [i.e. the free vertex in Eq. (8) is replaced
by the dressed vertex in Eq. (23)]. Using the relations
given in appendix C, we can write the dressed vertex as

Γρ(p′, q, p) = −ie
∫

d4x
[

γµG
µρ(kp′, kp; kx)

+ iγµγ
5Gµρ

5 (kp′, kp; kx)
]

eiSΓ(p
′,q,p;x), (24)

where the phase and the coupling tensors are given by

SΓ(p
′, q, p;x) = −Sp′(x)− qx+ Sp(x)

= (p′ − q − p)x+

∫ kx

−∞
dφ′

[epµp
′
νF

µν(φ′)

(kp)(kp′)

+
e2(kp− kp′)

2(kp)2(kp′)2
pµp

′
νF

2µν(φ′)
]

, (25)

Gµρ(kp′, kp; kx) = gµρ +G1F
µρ
x +G2F

2µρ
x ,

Gµρ
5 (kp′, kp; kx) = G3F

∗µρ
x ,

(26)

G1 = −e kp+ kp′

2kp kp′
, G2 =

e2

2kp kp′
,

G3 = −e kp− kp′

2kp kp′

(27)

(note that G1 and G2 are even in the permutation kp↔
kp′ while G3 is odd). We point out that the expression
given in Eq. (24) is manifestly gauge-invariant, since it
depends on the external field only through the tensor Fµν

[68]. Furthermore, if we subtract the vacuum vertex and
consider the quantity

Γρ(p′, q, p) + ieγρ
∫

d4x ei(p
′−q−p), (28)

all integrals are properly convergent.
In position space the dressed propagator in Eq. (19)

can be interpreted such that the electron (or positron)
continuously interacts with the external field during its
propagation. Examined in momentum space, we can also
visualize the influence of the external field as a modifica-
tion of the coupling between the photons of the radiation
field and the charged particles. From Eq. (24) we see that
beside the modification of the photon vector current in-
teraction we also obtain a coupling to the axial-vector

current inside the plane-wave background. This is pos-
sible, since the external field provides the pseudo-tensor
F∗µν .
Since the external field depends only on the plane-wave

phase φ = kx, it is useful to use light-cone coordinates,
which are discussed in appendix B. We can then always
take the integrals in dx+ and dx⊥ in Eq. (24) and obtain
momentum conserving delta functions in three of four
light-cone components

δ(−,⊥)(p′ − p− q), (29)

where we used the notation

δ(−,⊥)(a) = δ(a−)δ(aI)δ(aII) (30)

for a general four-vector aµ. Thus, the four-momentum
is only conserved up to a multiple of the plane-wave four-
momentum kµ at each vertex.

E. Ward-Takahashi identity

The Ward-Takahashi identity [53, 54] is a direct conse-
quence of the gauge-invariance of QED, which becomes
particular transparent in the functional integral approach
[60, 69]. Diagrammatically, it is a functional relation
for Feynman diagrams (in momentum space), where the
polarization four-vector of an external photon leg is
replaced by the corresponding momentum four-vector.
In [70] a perturbative proof of the Ward-Takahashi iden-
tity in vacuum QED is given. We will show now how this
proof can be extended to electron-positron loops inside a
plane-wave background field.

pn

p1 p2

p3

qn
→

q
1→

q2

↓

←
q3

←
q
4

FIG. 2. Closed electron loop with n dressed vertices and
propagators.

The starting point is the following algebraic identity
for the dressed vertex [68]

qρΓ
ρ(p′, q, p)

= (/p
′ −m)I(p′, q, p)− I(p′, q, p)(/p−m), (31)

where

I(p′, q, p) = −ie
∫

d4x e−iqx Ēp′,xEp,x. (32)
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To verify Eq. (31), we use Eq. (22) and note that the
identity

∫

d4x i∂µ
[

Ēp′,xγ
µe−iqxEp,x − ei(p

′−q−p)xγµ
]

= 0 (33)

holds (since the external field is supposed to vanish at
infinity).
Typically, (/p′ − m) and (/p − m) in Eq. (31) cancel

an adjacent propagator and the associated momentum-
integral can be taken using the relations

∫

d4p′′

(2π)4
I(p, q′, p′′)Γµ(p′′, q, p′) = −ieΓµ(p, q + q′, p′),

∫

d4p′′

(2π)4
Γµ(p, q, p′′)I(p′′, q′, p′) = −ieΓµ(p, q + q′, p′),

(34)

which follow from Eq. (21). Using Eqs. (31) and (34)
we can simplify diagrams which contain dressed vertices
contracted with the corresponding photon four-momenta.
As an example, we consider now a closed electron loop

which contains n dressed vertices and electron propaga-
tors (see Fig. 2). The ith propagator of such a loop to-
gether with its adjacent vertices is given by

· · ·Γµi(pi−1, qi, pi)
1

/pi −m
Γµi+1(pi, qi+1, pi+1) · · · (35)

(the electron four-momenta pi are integrated out). If
we insert now a vertex (contracted with its photon four-
momentum) at this propagator, we obtain

· · ·Γµi(pi−1, qi, pi)
1

/pi −m
qµΓ

µ(pi, q, p
′)×

× 1

/p′ −m
Γµi+1(p′, qi+1, pi+1) · · · (36)

and, by using Eqs. (31) and (34), we find that this is
equivalent to

· · ·Γµi(pi−1, qi + q, pi)
1

/pi −m
Γµi+1(pi, qi+1, pi+1) · · ·

− · · ·Γµi(pi−1, qi, pi)
1

/pi −m
Γµi+1(pi, qi+1 + q, pi+1) · · ·

(37)

(in the first line we have changed the name of the inte-
gration variable from p′ to pi). Thus, the insertion splits
the diagram into the sum of twice the original diagram
with the additional four-momentum q added once at the
adjacent vertex before and after the insertion. If we sum
now over all possible insertion points of the loop, we ob-
tain zero, since all contributions cancel (as in the vacuum
case [70]).
We point out that the above discussion is shortened,

since possible issues arising due to the renormalization of
the theory were not addressed (in general, the validity of

the Ward-Takahashi identity may be spoiled by anoma-
lies [71]). In this paper, however, we are mainly inter-
ested in modifications induced by the background-field,
which turn out to be finite. Thus, subtleties arising from
manipulations of divergent integrals can be addressed as
in vacuum QED.

III. POLARIZATION OPERATOR

A. General expression

The leading-order contribution to the polarization op-
erator Pµν(q1, q2) for plane-wave background fields (see
[55], §104) is determined by the diagram in Fig. 1. This
diagram corresponds to the following expression

T µν(q1, q2) =

∫

d4p d4p′

(2π)8
tr Γµ(p′, q1, p)×

×
(/p+m)

p2 −m2 + i0
Γν(p,−q2, p′)

(/p
′ +m)

p′2 −m2 + i0
(38)

and T µν = iPµν (see [55], §115; [72]). We note that
T µν(q1, q2) is divergent, but if we write

T µν(q1, q2) =
[

T µν(q1, q2)− T µν
F=0(q1, q2)

]

+ T µν
F=0(q1, q2) (39)

the first part is finite [51] and the regularization of the
vacuum contribution is well known [55, 60]. In the fol-
lowing, we will focus on the first part which contains only
the corrections induced by the external background field.

To determine the expression in Eq. (38) we have to
insert the dressed vertex given in Eq. (24) [we will de-
note the vertex integrals associated with Γµ(p′, q1, p)
and Γν(p,−q2, p′) by d4x and d4y, respectively]. We then
obtain for T µν(q1, q2)

T µν(q1, q2) = 4 (−ie)2
∫

d4p d4p′

(2π)8

∫

d4xd4y×

×
1
4 tr

[

· · ·
]µν

(p2 −m2 + i0)(p′2 −m2 + i0)
eiST (40)

(the prefactor 1/4 is included explicitly for later conve-
nience), where the phase reads [see Eq. (24)]

iST = i(p′ − p− q1)x+ i(p− p′ + q2)y

+ i

∫ kx

ky

dφ′
[

epµp
′
νF

µν

(kp)(kp′)
+
e2(kp− kp′)

2(kp)2(kp′)2
pµp

′
νF

2µν

]

(41)

and 1
4 tr

[

· · ·
]µν

in Eq. (40) can be calculated using the



6

relations given in appendix C

1
4 tr

[

γαa
αµ + iγαγ

5bαµ
]

(/p+m)×
×

[

γβc
βν + iγβγ

5dβν
]

(/p
′ +m)

= m2[(aαµc ν
α ) + (bαµd ν

α )]

+ (pp′)(bαµd ν
α )− (pp′)(aαµc ν

α )

+ (pαa
αµ)(p′βc

βν) + (p′αa
αµ)(pβc

βν)

− (pαb
αµ)(p′βd

βν)− (p′αb
αµ)(pβd

βν)

− ǫρσαβp
ρp′σ(aαµdβν + bαµcβν), (42)

where

aαµ = Gαµ(kp′, kp; kx), cβν = Gβν(kp, kp′; ky),

bαµ = Gαµ
5 (kp′, kp; kx), dβν = Gβν

5 (kp, kp′; ky).
(43)

B. Evaluation of the integrals

Working in light-cone coordinates (see appendix B) we
can take all space-time integrals except of those in dx−

and dy−, and obtain the momentum-conserving delta
functions

(2π)6δ(−,⊥)(p′ − p− q) δ(−,⊥)(q1 − q2). (44)

Here and in the following we write qµ if qµ1 and qµ2 can
be used interchangeably due to the above delta function.
Successively, we can take the integrals in dp′− and dp′⊥

(for simplicity we will continue writing p′ and identify
p′ = p+ q for the components −,⊥).
It is now convenient to introduce the two four-vectors

Λµ
1 =

fµν
1 qν

kq
√

−a21
, Λµ

2 =
fµν
2 qν

kq
√

−a22
, (45)

which obey ΛiΛj = −δij , kΛi = qiΛj = 0 and

fµν
1 Λ1ν = −m

e k
µξ1, fµν

2 Λ2ν = −m
e k

µξ2. (46)

They allow us to write the remaining phase as

iST = i(p′ − p− q1)
+x−

+ i(p− p′ + q2)
+y− + ipλ+ iΛ, (47)

where we defined

λ
µ = − m(kq)

(kp)(kp′)

∑

i=1,2

ξiΛ
µ
i

∫ kx

ky

dφ′ ψi(φ
′),

Λ = − m2(kq)

2(kp)(kp′)

∑

i=1,2

ξ2i

∫ kx

ky

dφ′ ψ2
i (φ

′).

(48)

Due to the appearance of Λµ
i in λ

µ, it is more convenient
to use modified light-cone coordinates from now on [see
Eq. (B11), the calculation so far is independent of this

choice]. In modified light-cone coordinates we obtain the
convenient relations

pλ = −p⊥λ⊥, q⊥ = 0, p′⊥ = p⊥, (49)

which simplify the algebra considerably.
If the preexponent would not depend on p+ and p′+,

both integrals could now be taken. We therefore intro-
duce the proper-time representation of the scalar propa-
gators [4, 65]

1

p2 −m2 + i0

1

p′2 −m2 + i0
= (−i)2

∫ ∞

0

ds dt×

× exp
[

i(p2 −m2 + i0)s+ i(p′2 −m2 + i0)t
]

. (50)

In the following, we will drop the pole-prescriptions i0
and keep the replacement m2 → m2 − i0 in mind. Fur-
thermore, we add the source terms ipµj

µ + ip′µj
′µ to the

phase, which allows us to make the replacement

/p −→ (−i)/∂j , /p
′ −→ (−i)/∂j′ (51)

in the trace. Now, the preexponent depends only on p−

(through kp and kp′). Taking the derivatives with re-
spect to the sources out of the integrals, we can take the
integrals in dp+, dp′+ which results in the delta functions

(2π)δ[y− − x− − 1
s+t (2stq

− − tj− + sj′−)]×
× (2π)δ[2p−(s+ t) + 2q−t+ j− + j′−]. (52)

Successively, these delta functions can be used to take
also the integrals in dy− and dp−. To this end we rewrite
(since s+ t ≥ 0)

δ[2p−(s+ t) + 2q−t+ j− + j′−]

= 1
2(s+t) δ[p

− + 1
2(s+t) (2q

−t+ j− + j′−)] (53)

(for simplicity we keep writing y− and p−). In particular,
we obtain the identities

kp = − 1
s+t

[

tkq + 1
2 (kj + kj′)

]

,

kp′ = + 1
s+t

[

skq − 1
2 (kj + kj′)

]

,

ky = kx+ 1
s+t (2stkq − tkj + skj′),

(54)

which imply for j = j′ = 0 that

G1 =
e

2kq

(s− t)(s+ t)

st
=

e

2kq

vτ

µ
,

G2 = − e2

2(kq)2
(s+ t)2

st
= − e2

2(kq)2
τ

µ
,

G3 = − e

2kq

(s+ t)2

st
= − e

2kq

τ

µ
,

(55)

where we defined [51]

τ = s+ t, v =
s− t

s+ t
, µ =

st

s+ t
= 1

4τ(1 − v2) (56)
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[the motivation for these definitions becomes clear in
Eq. (73)].
The remaining part of the phase structure (including

the part coming from the propagators and the sources)
is now given by

iS′
T = i

[

(q+2 − q+1 )x
− + st

s+tq
2
2 − 1

s+t (t q2j − s q2j
′)

− 1
2(s+t) (j

+ + j′+)(j− + j′−)

− (p⊥p⊥ +m2)(s+ t)

− (j⊥ + j′⊥ + λ
⊥)p⊥ +Λ

]

. (57)

Taking the Gaussian integrals in pI and pII we obtain the
prefactor π

i(s+t) and the final phase is given by

iS′
T = i

[

(q+2 − q+1 )x
− −m2(s+ t) + st

s+tq
2
2

− 1
s+t (t q2j − s q2j

′)− 1
4(s+t) (j + j′)2

− 1
2(s+t) (j + j′)λ− 1

4(s+t)λ
2 +Λ

]

, (58)

which reads for zero sources (j = j′ = 0)

iS′
T = i

[

(q+2 − q+1 )x
− + µq22

− τm2 + τm2
∑

i=1,2

ξ2i (I
2
i − Ji)

]

, (59)

where we defined

Ii = − 1

2kqµ

∫ kx

ky

dφ′ ψi(φ
′),

Ji = − 1

2kqµ

∫ kx

ky

dφ′ ψ2
i (φ

′)

(60)

(the prefactor is chosen such that for j = j′ = 0 and
ψi = 1 we obtain Ii = Ji = 1).
Finally, we can write the tensor T µν as

T µν(q1, q2) = −2iπe2 δ(−,⊥)(q1 − q2)

∫ ∞

0

ds dt×

×
∫ +∞

−∞
dx− 1

(s+t)2
1
4 tr [. . .]

µν
eiS

′

T

∣

∣

∣

j=j′=0
, (61)

where the expression for 1
4 tr [. . .]

µν
is given in Eq. (42)

with the replacement in Eq. (51) and where the sources
are set to zero after the derivatives are taken.
We point out that the two four-momenta q1 and q2 ap-

pear asymmetrically in the final expression [see Eq. (59)].
To remove this asymmetry we shift the x− integration by
defining

z− = x− + µq−. (62)

After this shift the phase contains q1q2 since

(q+2 − q+1 )x
− + µq22 = (q+2 − q+1 )z

− + µq1q2. (63)

Furthermore, we obtain (for j = j′ = 0) symmetric rep-
resentations for the functions in Eq. (60)

Ii =
1
2

∫ +1

−1

dλψi(kz − λµkq),

Ji =
1
2

∫ +1

−1

dλψ2
i (kz − λµkq),

(64)

since

kx = kz − µkq,

ky = kz + µkq + 1
s+t (skj

′ − tkj).
(65)

C. Tensor structure

In principle, the only remaining task is to evaluate
the two derivatives with respect to j and j′ and then
set j = j′ = 0. Despite being elementary, this is the
most tedious part of the calculation, since the sources
appear in many places in the final expression. The work
is considerably reduced if we expand the polarization op-
erator in a convenient basis [51]. To this end we note
that

q1µT
µν(q1, q2) = 0, T µν(q1, q2)q2ν = 0 (66)

due to the Ward-Takahashi identity (see section II E).
Since the four-vectors Λi appear in the phase [see

Eq. (47)] and qiΛj = 0, it is natural to introduce the
two complete sets q1, Q1, Λ1, Λ2 and q2, Q2, Λ1, Λ2,
where

Qµ
1 =

kµq21 − qµ1 kq

kq
, Qµ

2 =
kµq22 − qµ2 kq

kq
(67)

(Q2
1 = −q21 , Q2

2 = −q22 , QiΛj = 0, qiQi = 0). Using
the set including q1 for the index µ and the set includ-
ing q2 for the index ν, seven of 16 coefficients vanish
due to the Ward-Takahashi identity and we can decom-
pose T µν(q1, q2) as [51]

T µν = c1Λ
µ
1Λ

ν
2 + c2Λ

µ
2Λ

ν
1 + c3Λ

µ
1Λ

ν
1

+ c4Λ
µ
2Λ

ν
2 + c5Qµ

1Qν
2 + c6Qµ

1Λ
ν
1

+ c7Qµ
1Λ

ν
2 + c8Λ

µ
1Qν

2 + c9Λ
µ
2Qν

2 . (68)

It turns out that also the coefficients c6−c9 vanish. If an-
alyzed perturbatively (with respect to the external field
coupling) this can be understood from Furry’s theorem
[51, 52]. Since a closed fermion loop with an odd number
of vertices vanishes, only diagrams with an even number
of external field couplings (eAµ) contribute to T µν . Due
to gauge-invariance and the fact that T µν is a tensor, the
external field can enter only as Fµν (which is linear in
Aµ). Since it is not possible to construct a scalar linear
in Fµν using only the four-vectors qµ1 , q

µ
2 and kµ, the ten-

sor structure cannot involve an odd number of the tensor
Fµν . As a consequence the coefficients c6− c9 (which are
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linear in Λµ
i and thus in the external field) should vanish.

We will later see that this is indeed the case.
The coefficients ci in Eq. (68) can be determined

by contracting T µν(q1, q2) with appropriate four-vectors.
Especially, using again the Ward-Takahashi identity, we
obtain

Q1µT
µν =

q21
kq
kµT

µν , T µνQ2ν =
q22
kq
T µνkν . (69)

Thus, effectively, we need to determine the contrac-
tions of T µν(q1, q2) with the four-vectors kµ and Λµ

i to
determine the coefficients ci, i.e. we need to calculate the
(−,⊥)-components of T µν(q1, q2) in modified light-cone
coordinates. Since kµ has only a +-component, the eval-
uation of the derivatives is now considerably simplified.
Leaving the term proportional to pp′ aside, we see that all
derivatives which act on kj or kj′ can be ignored. They
would result in the replacement of pµ or p′µ by kµ. Since
kµF

µν = kµF
2µν = kµF

∗µν = 0 and k2 = kΛi = 0, we do
not need to consider those terms. The derivatives acting
on kj or kj′ are therefore only important to determine
the term proportional to pp′. However, this is achieved
more easily if the calculation presented in section III B is
repeated with a scalar source term J pp′ in the exponent
(see section III E).
To calculate the preexponent of the polarization oper-

ator, we must now insert the explicit expressions given
in Eq. (26) into the trace in Eq. (42). Since contracted
with kµ or Λµ

i from each side, many terms of the trace
vanish, e.g. the terms proportional to Fµν , F2µν , F2µρpρ.
Using the relations in appendix D, we can show that
Eq. (42) can be substituted by the following expression

m2gµν + pµp′ν + p′µpν

+ gµν
[

G3pFyp
′ +G3pFxp

′ − 2G2
3(pF

2
xyp

′)− (pp′)
]

−G3

[

(Fyp
′)µpν − (Fyp)

µp′ν + pµ(Fxp
′)ν − p′µ(Fxp)

ν
]

−G1

[

pµ(Fyp
′)ν + p′µ(Fyp)

ν + (Fxp)
µp′ν + (Fxp

′)µpν
]

+G2
1

[

(Fxp)
µ(Fyp

′)ν + (Fxp
′)µ(Fyp)

ν
]

−G2
3

[

(Fyp)
µ(Fxp

′)ν + (Fyp
′)µ(Fxp)

ν
]

, (70)

where F2µν
xy = Fµρ(kx)F ν

ρ (ky) = Fµρ(ky)F ν
ρ (kx) [here

the replacement pµ −→ (−i)∂µj and p′µ −→ (−i)∂µj′ is un-
derstood if the trace is inserted in Eq. (61), see Eq. (51)].
Since the term proportional to pp′ enters as gµν , it mod-
ifies only the diagonal coefficients c3 and c4.

D. Evaluation of the derivatives

Leaving the term proportional to pp′ aside, we can ig-
nore derivatives acting on kj and kj′ as discussed above
[this implies that the derivatives do not act on kp, kp′

and ky, see Eq. (54)]. The remaining non-trivial source-
dependent part of the phase is given by [see Eq. (58)]

− i
s+t

[

t q2j − s q2j
′ + 1

4 (j + j′)2 + 1
2 (j + j′)λ

]

. (71)

The squared term contributes only if both derivatives act
on it, which results in the replacement

pαp′β −→ (−i)2∂αj ∂βj′ −→ i
2(s+t)g

αβ (72a)

and the only non-zero contribution comes from the first
line in Eq. (70). If the derivatives act on the other source
terms, we obtain the replacement

pαp′β −→ (−i)2∂αj ∂βj′
−→ − 1

(s+t)2 (tq
α
2 + 1

2λ
α)(sqβ2 − 1

2λ
β). (72b)

After these replacements are applied to Eq. (70) and the
sources are set to zero, we obtain (effectively) the follow-
ing expression for Eq. (70)

gµν
[

m2 + i
τ − e

4kq µ (qFyλ+ qFxλ)

+ e2

2(kq)2
τ
µqF

2
xyq − pp′

]

− 2µ
τ q

µ
2 q

ν
2 − v

2τ (q
µ
2 λ

ν + λ
µqν2 ) +

1
2τ2 λ

µ
λ
ν

+ e
kq v

[

qµ2 (Fyq)
ν + (Fxq)

µqν2
]

− e
4kq

1
µ

[

(Fyq)
µ
λ
ν + λ

µ(Fxq)
ν
]

+ e
4kq

v2

µ

[

λ
µ(Fyq)

ν + (Fxq)
µ
λ
ν
]

+ e2

2(kq)2
τ
µ

[

(Fyq)
µ(Fxq)

ν − v2(Fxq)
µ(Fyq)

ν
]

(73)

[note that terms proportional to (Fλ)µ, (Fλ)ν can be
omitted]. By changing the proper-time integrations from
s, t to τ , v [51]

∫ ∞

0

ds dt f(s, t) = 1
2

∫ +1

−1

dv

∫ ∞

0

dτ τf̃(τ, v) (74)

we see that the terms linear in v vanish. Those terms
determine the coefficients c6 − c9, which are therefore
zero (as already anticipated from Furry’s theorem).

E. Scalar term

To determine the term proportional to pp′, we add
the scalar source term iJ pp′ to the phase (instead
of ipµj

µ + ip′µj
′µ) and repeat the calculation presented

in section III B. The propagators are represented in the
same way [see Eq. (50)], and we replace pp′ by −i ∂

∂J .

Then we take the integrals in dx+, dx⊥, dy+, dy⊥, dp′−,
dp′⊥, dp′+ and dp+. Instead of Eq. (52) we obtain now

(2π)δ[y− − x− − 4st−J 2

2(s+t+J )q
−]×

× (2π)δ[2(s+ t+ J )p− + (2t+ J )q−]. (75)

The remaining part of the phase (including the part from
the propagator) can be written as

iS′
T = i

[

q+2 y
− − q+1 x

− − p⊥p⊥J
+ (−p⊥p⊥ −m2)(s+ t)− p⊥λ⊥ +Λ

]

. (76)
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It is now convenient to shift the proper-time integrations

s −→ s− 1
2J , t −→ t− 1

2J . (77)

Due to this shift also the integral boundaries of the
proper-time integrations depend on the source. However,
if the derivative acts on the integral boundaries, either s
or t is set to zero or to infinity. The resulting terms do
not dependent on the external field since s = 0 or t = 0
implies µ = 0, ky = kx and thus λ

µ = 0 and Λ = 0.
On the other hand the terms at s → ∞ or t → ∞ do
not contribute because the field-dependent part of the
integral is convergent. Since we want to calculate only
the field-dependent part of the polarization operator [see
Eq. (89)] we will ignore the source-dependence of the in-
tegral boundaries.
After the shift in Eq. (77), the delta functions read

(2π)δ[y− − x− − (2µ− J )q−]×
× (2π)δ[2p−(s+ t) + 2q−t] (78)

and the phase is given by

iS′
T = i

[

(q+2 − q+1 )x
− + (µ− 1

2J )q22 −m2(s+ t− J )

− p⊥p⊥(s+ t)− p⊥λ⊥ +Λ
]

. (79)

We can now use the delta functions to take the integrals
in dy− and dp− (we keep writing y− and p− for conve-
nience). We then obtain the identities

kp = − t
s+tkq, kp′ = s

s+tkq,

ky = kx+ (2µ− J )kq
(80)

[for J = 0 this agrees with Eq. (54)]. The shift in the
proper-time integrals has the advantage that kp and kp′

are now independent of J . We could have proceeded
similarly also in the calculation of the other terms. How-
ever, since we ignored sources contracted with k anyway,
this was not necessary.
Taking now the Gaussian integrals in dpI, dpII, we ob-

tain the prefactor π
i(s+t) and the final phase is given by

iS′
T = i

[

(q+2 − q+1 )x
− + (µ− 1

2J )q22 −m2(τ − J )

+ τm2
∑

i=1,2

ξ2i (I
2
i − Ji)

]

, (81)

where Ii and Ji are defined in Eq. (60) [for zero sources
Eq. (81) agrees with Eq. (59)]. Since pp′ in the preex-
ponent is only multiplied by gµν [see Eq. (73)], the eval-
uation of the derivative is not very cumbersome and we
obtain the replacement

pp′ −→ (−i) ∂
∂J −→ − 1

2q
2
2 +m2

+m2 τ
2µ

∑

i=1,2

ξ2i
[

ψ2
i (ky)− 2Iiψi(ky)

]

(82)

after J is set to zero (as explained above, we have ig-
nored the source-dependence of the proper-time integral
boundaries).
To symmetrize the final expression, we change the x−-

integration by defining [see Eq. (62)]

z̃− = x− + (µ− 1
2J ) q− (83)

(z̃− = z− for J = 0), which implies

kx = kz̃ − (µ− 1
2J )kq,

ky = kz̃ + (µ− 1
2J )kq

(84)

and

(q+2 − q+1 )x
− + (µ− 1

2J )q22

= (q+2 − q+1 )z̃
− + (µ− 1

2J )q1q2. (85)

Finally, we obtain the symmetric replacement

pp′ −→ (−i) ∂
∂J −→ − 1

2q1q2 +m2 +m2 τ
2µ

∑

i=1,2

ξ2i ×

×
[

1
2ψ

2
i (kx) +

1
2ψ

2
i (ky)− Iiψi(kx)− Iiψi(ky)

]

(86)

(we assume that at x− = ±∞ the external field vanishes
and therefore the derivative does not act on the integral
boundaries, which now also depend on the source).

F. Final result

To determine the non-vanishing coefficients c1 − c5 of
the polarization operator [see Eq. (68)] we combine now
Eqs. (61), (62), (73) and (86). Furthermore, we define
the following functions

Xij = [Ii − ψi(ky)] [Ij − ψj(kx)],

Zi =
1
2 [ψi(kx) − ψi(ky)]

2
(87)

and note that for j = j′ = 0

Fµν
x Λiν = −m

e k
µξiψi(kx),

λ
µ = −2mτ

∑

i=1,2

Λµ
i ξiIi,

eΛiµF
µν
x qν = mkq ξi ψi(kx),

Λiλ = 2mτξiIi,

eqFxλ = 2kq τm2
∑

i=1,2

ξ2i ψi(kx)Ii,

e2qF2
x,yq = m2(kq)2

∑

i=1,2

ξ2i ψi(kx)ψi(ky). (88)

Using these relations, we obtain for the field-dependent
part of the tensor T µν the following expression

T µν(q1, q2)− T µν
F=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞

0

dτ

τ

∫ +∞

−∞
dz−

[

b1Λ
µ
1Λ

ν
2 + b2Λ

µ
2Λ

ν
1

+ b3Λ
µ
1Λ

ν
1 + b4Λ

µ
2Λ

ν
2 + b5Qµ

1Qν
2

]

eiΦ, (89)
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where the field-independent phase reads [see Eqs. (59)
and (63)]

eiΦ = exp
{

i
[

(q+2 − q+1 )z
− + µq1q2 − τm2

]}

(90)

[µ = 1
4τ(1 − v2), see Eq. (56)] and

b1 = 2m2ξ1ξ2

(

τ
4µX12 − τv2

4µ X21

)

eiτβ,

b2 = 2m2ξ1ξ2

(

τ
4µX21 − τv2

4µ X12

)

eiτβ,

b3 = −
(

i
τ + q1q2

2

) (

eiτβ − 1
)

+ 2m2
[

τ
4µ

(

ξ21Z1 + ξ22Z2

)

+ ξ21X11

]

eiτβ,

b4 = −
(

i
τ + q1q2

2

) (

eiτβ − 1
)

+ 2m2
[

τ
4µ

(

ξ21Z1 + ξ22Z2

)

+ ξ22X22

]

eiτβ,

b5 = − 2µ
τ

(

eiτβ − 1
)

. (91)

The field-dependent phase is given by [see Eq. (59)]

eiτβ = exp
[

iτm2
∑

i=1,2

ξ2i (I
2
i − Ji)

]

, (92)

where [see Eq. (64)]

Ii =
1
2

∫ +1

−1

dλψi(kz − λµkq),

Ji =
1
2

∫ +1

−1

dλψ2
i (kz − λµkq)

(93)

and [see Eq. (87)]

Xij = [Ii − ψi(kz + µkq)] [Ij − ψj(kz − µkq)],

Zi =
1
2 [ψi(kz − µkq)− ψi(kz + µkq)]2.

(94)

We note that, using the metric tensor gµν , we can con-
struct the following projection tensor [52]

Gµν = qµ2 q
ν
1 − q1q2 g

µν , (95)

which obeys

q1µG
µν = Gµνq2ν = 0 (96)

and can be decomposed as

Gµν = q1q2 (Λ
µ
1Λ

ν
1 + Λµ

2Λ
ν
2) +Qµ

1Qν
2 . (97)

This shows that the decomposition given in Eq. (89) has
the structure claimed in [52].

IV. DISCUSSION OF THE RESULTS

A. Comparison with the literature

The expression we obtained for the field-dependent
part of T µν in Eq. (89) is manifestly symmetric in q1

and q2. We will now show how the alternative represen-
tation found in [51] can be derived from our calculation.
To this end we do not apply the shift in Eqs. (62) and
(83) which means that we have to use the replacement
given in Eq. (82) [rather then Eq. (86)] for the pp′-term
in Eq. (73), which modifies the coefficients b3 and b4.
Furthermore, we introduce the variable

z′− = x− + 2µq− = z− + µq−, (98)

which allows us to write [see Eq. (63)]

(q+2 − q+1 )x
− + µq22 = (q+2 − q+1 )z

− + µq1q2

= (q+2 − q+1 )z
′− + µq21 (99)

and [see Eq. (54)]

kx = kz′ − 2µkq, ky = kz′ (100)

(here and in the remaining subsection we assume that all
sources are set to zero). Thus, we obtain the following
representation [see Eq. (60)]

Ii =

∫ 1

0

dλψi(kz
′ − 2kqµλ),

Ji =

∫ 1

0

dλψ2
i (kz

′ − 2kqµλ),

(101)

I2i − Ji =
[

∫ 1

0

dλ∆i(µλ)
]2

−
∫ 1

0

dλ∆2
i (µλ), (102)

where we introduced [51]

∆i(r) = ψi(kz
′ − 2kqr)− ψi(kz

′). (103)

Furthermore, it is useful to define [compare with Eq. (87)]

Xij = [Ii − ψi(ky)] [Ij − ψj(kx)],

Yi = [Ii − ψi(ky)] [ψi(kx) − ψi(ky)]
(104)

which can be written as

Xij =

[∫ 1

0

dλ∆i(µλ)

] [∫ 1

0

dλ∆j(µλ) −∆j(µ)

]

,

Yi =

[∫ 1

0

dλ∆i(µλ)

]

∆i(µ).

(105)

Finally, we obtain the following alternative represen-
tation for the field-dependent part of T µν

T µν(q1, q2)− T µν
F=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞

0

dτ

τ

∫ +∞

−∞
dz′−

[

b1Λ
µ
1Λ

ν
2 + b2Λ

µ
2Λ

ν
1

+ b′3Λ
µ
1Λ

ν
1 + b′4Λ

µ
2Λ

ν
2 + b5Qµ

1Qν
2

]

eiΦ (106)
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with the coefficients

b1 = 2m2ξ1ξ2

(

τ
4µX12 − τv2

4µ X21

)

eiτβ,

b2 = 2m2ξ1ξ2

(

τ
4µX21 − τv2

4µ X12

)

eiτβ,

b′3 = −
(

i
τ +

q22
2

)

(

eiτβ − 1
)

+ 2m2
[

τ
4µ

(

ξ21Y1 + ξ22Y2
)

+ ξ21X11

]

eiτβ ,

b′4 = −
(

i
τ +

q22
2

)

(

eiτβ − 1
)

+ 2m2
[

τ
4µ

(

ξ21Y1 + ξ22Y2
)

+ ξ22X22

]

eiτβ ,

b5 = − 2µ
τ

(

eiτβ − 1
)

(107)

and phases

eiΦ = exp
{

i
[

(q+2 − q+1 )z
′− + µq21 − τm2

]}

,

eiτβ = exp
[

iτm2
∑

i=1,2

ξ2i (I
2
i − Ji)

]

. (108)

This representation coincides with Eq. 2.27 in [51].

B. Constant-crossed field

The polarization operator for a constant-crossed field
was first obtained in [73, 74] (see also [48, 50, 75]). We
show now how this result can be obtained from the ex-
pression in Eq. (89).
A constant-crossed field is characterized by

ψ1(φ) = φ, ψ2(φ) = 0, (109)

(the latter condition corresponds to ξ2 = 0 and we will
write ξ = ξ1 in the following). The field tensor and its
square are then given by [see Eq. (11)]

Fµν = fµν
1 , F 2µν =

m2ξ2

e2
kµkν . (110)

For a constant-crossed field we obtain

I1 = kz, J1 = (kz)2 + 1
3 (µkq)

2, I2 = J2 = 0,

X11 = −(µkq)2, Z1 = 2(µkq)2,

Z2 = X12 = X21 = X22 = 0.

(111)

After inserting these expressions into Eq. (89), we can
take the integral in dz− and obtain the remaining delta
function 2π δ(+)(q1 − q2), which implies that the polar-
ization tensor for a constant-crossed field is diagonal in
the external photon four-momenta. We define therefore
the four-vectors [see Eq. (67)]

qµ = qµ1 = qµ2 , Qµ = Qµ
1 = Qµ

2 =
kµq2 − qµkq

kq
. (112)

They obey

kQ = −kq, qQ = 0, Q2 = −q2. (113)

The four-vectors qµ, Qµ, Λµ
1 and Λµ

2 form a complete set
and we obtain the following representation of the metric
tensor

gµν =
1

q2
(qµqν −QµQν)− Λµ

1Λ
ν
1 − Λµ

2Λ
ν
2 . (114)

From Eq. (89) we obtain now the following representation
of the field-dependent part of T µν in a constant-crossed
field [see Eq. (109)]

T µν(q1, q2)− T µν
F=0(q1, q2) = −2iπ2e2 δ4(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞

0

dτ

τ

[

b3Λ
µ
1Λ

ν
1 + b4Λ

µ
2Λ

ν
2 + b5QµQν

]

eiΦ ,

(115)

where

b3 = −
(

i
τ + q2

2

) (

eiτβ − 1
)

+m6χ2τ2 1
4 (1 − v2)

[

1− 1
2 (1− v2)

]

eiτβ ,

b4 = −
(

i
τ + q2

2

) (

eiτβ − 1
)

+m6χ2τ2 1
4 (1− v2)eiτβ ,

b5 = − 1
2 (1 − v2)

(

eiτβ − 1
)

(116)

and the phases are given by

iΦ = −iτa, a = m2
[

1− 1
4 (1− v2) q2

m2

]

,

iτβ = − i
3τ

3b, b = m6χ2
[

1
4 (1 − v2)

]2
(117)

(in the following, we will make the change of variables
τ → t, where τ3b = t3 and ρ = a

3
√
b
). Here we have

introduced the quantum non-linearity parameter

χ = −e
√

qF 2q

m3
= ξ

√

(kq)2

m2
(118)

(κ in [48, 73]).
We can rewrite now

Λµ
1Λ

ν
1 = − (Fq)µ(Fq)ν

(Fq)2
,

Λµ
2Λ

ν
2 = − (F ∗q)µ(F ∗q)ν

(F ∗q)2
,

(119)

where

(F ∗q)2 = (Fq)2 = −m2ξ2

e2 (kq)2 (120)

and obtain [see Eq. (95)]

Gµν = qµqν − q2 gµν

= q2 (Λµ
1Λ

ν
1 + Λµ

2Λ
ν
2) +QµQν . (121)

We note the following relations

qρG
ρν = Gµρqρ = 0,

kρG
ρµ = Gµρkρ = −kqQµ,

(122)
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GµρF 2
ρσG

σν = m2

e2 ξ
2(kq)2QµQν . (123)

To obtain the representation given in [48, 50], we pass
over to different basis tensors

b3Λ
µ
1Λ

ν
1 + b4Λ

µ
2Λ

ν
2 + b5QµQν = (q2b5− b3)

(Fq)µ(Fq)ν

(Fq)2

+ (q2b5 − b4)
(F ∗q)µ(F ∗q)ν

(F ∗q)2
+ b5G

µν (124)

and define the following functions [48, 50]

f(x) = i

∫ ∞

0

dt exp
[

−i(tx+ 1
3 t

3)
]

= πGi(x) + iπAi(x), (125)

f ′(x) =

∫ ∞

0

tdt exp
[

−i(tx+ 1
3 t

3)
]

, (126)

f1(x) =

∫ ∞

0

dt

t
exp (−itx)

[

exp
(

− i
3 t

3
)

− 1
]

=

∫ ∞

x

dt

[

f(t)− 1

t

]

(127)

and

f2(x) =

∫ ∞

0

dt

t2
exp (−itx)

[

exp
(

− i
3 t

3
)

− 1
]

= −i [xf1(x) + f ′(x)] , (128)

where Ai and Gi denote the Airy and Scorer function,
respectively [76]. These functions obey the following dif-
ferential equations

f ′′(x) = xf(x) − 1,

f ′
1(x) =

1
x − f(x) = − 1

xf
′′(x).

(129)

Using the latter and assuming convergence and vanishing
of boundary terms, we can replace the function f1(x) by
f ′(x) in the following way

∫ +1

−1

dv g(v)f1[ρ(v)] = −
∫ +1

−1

dv

[

G(v)

ρ(v)

]′
f ′[ρ(v)],

(130)

where G′(v) = g(v).

Using the above notation, we can represent the field-
dependent part of the tensor T µν for a constant-crossed
field given in Eq. (115) by

T µν(q1, q2)− T µν
F=0(q1, q2) = i(2π)4δ4(q1 − q2)×

×
[

π1
(Fq)µ(Fq)ν

(Fq)2
+ π2

(F ∗q)µ(F ∗q)ν

(F ∗q)2
− π3
q2
Gµν

]

,

(131)

where

π1 =
e2

4π

m2

3π

∫ +1

−1

dv (w − 1)
(χ

w

)2/3

f ′(ρ),

π2 =
e2

4π

m2

3π

∫ +1

−1

dv (w + 2)
(χ

w

)2/3

f ′(ρ),

π3 = − e2

4π

q2

π

∫ +1

−1

dv
f1(ρ)

w

(132)

[ 1w = 1
4 (1 − v2), ρ =

(

w
χ

)2/3
(1 − q2

m2
1
w )]. Since all non-

vanishing functions are even in v, we can now apply the
following change of variables

∫ +1

−1

dv = 2

∫ 1

0

dv =

∫ ∞

4

dw
4

w
√

w(w − 4)
, (133)

which shows that the result in Eq. (131) is equivalent to
the one given in [48, 50].

C. Quasi-classical limit

We consider now a linearly polarized plane-wave field

ψ1(φ) = ψ(φ), ψ2(φ) = 0 (134)

(ξ = ξ1, f
µν = fµν

1 ) in the quasi-classical limit defined
by ξ → ∞ while [see Eq. (118)]

χ = −e
√

qf2q

m3
= ξ

√

(kq)2

m2
(135)

is kept constant. In the optical regime (photon energy
ω0 ∼ 1 eV) χ & 1 requires ξ ≫ 1 which means that
the quasi-classical limit is in general sufficient to analyze
strong-field experiments with optical lasers.
By employing the identity |kq| = m2χ/ξ, we can ex-

pand all functions depending on µkq

I21 − J1 = −(1/3)(µkq)2
[

ψ′(kz)
]2

+O(µkq)3,

Z1 = 2(µkq)2
[

ψ′(kz)
]2

+O(µkq)3,

X11 = −(µkq)2
[

ψ′(kz)
]2

+O(µkq)3

(136)

(X12 = X21 = X22 = Z2 = I2 = J2 = 0 for lin-
ear polarization). Thus, if multiplied by ξ2 only the
leading-order terms are independent of ξ and all others
are suppressed. In the limit ξ → ∞ the expressions in
Eq. (136) correspond to those in Eq. (111) with the re-
placement χ → χ(kz) = χψ′(kz). The remaining cal-
culation is therefore similar to the constant-crossed field
case and the final result in Eq. (138) corresponds essen-
tially to Eq. (131) with the above replacement. Using
[see Eq. (119)]

Λµ
1Λ

ν
1 = − (fq)µ(fq)ν

(fq)2
,

Λµ
2Λ

ν
2 = − (f∗q)µ(f∗q)ν

(f∗q)2

(137)
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and Eq. (97), we obtain for a linearly polarized plane-
wave field in the quasi-classical approximation the fol-
lowing representation for the field-dependent part of the
tensor T µν [see Eq. (89)]

T µν(q1, q2)− T µν
F=0(q1, q2) = i(2π)4δ(−,⊥)(q1 − q2)×

× 1

2π

∫ +∞

−∞
dz− ei(q

+
2 −q+1 )z−

[

π′
1

(fq)µ(fq)ν

(fq)2

+ π′
2

(f∗q)µ(f∗q)ν

(f∗q)2
− π′

3

q1q2
Gµν

]

, (138)

where [see Eq. (132)]

π′
1 =

e2

4π

m2

3π

∫ +1

−1

dv (w − 1)

[ |χ(kz)|
w

]2/3

f ′(ρ),

π′
2 =

e2

4π

m2

3π

∫ +1

−1

dv (w + 2)

[ |χ(kz)|
w

]2/3

f ′(ρ),

π′
3 = − e2

4π

q1q2
π

∫ +1

−1

dv
f1(ρ)

w

(139)

with 1
w = 1

4 (1 − v2), ρ =
[

w
|χ(kz)|

]2/3
(1 − q1q2

m2
1
w ) and

Gµν = qµ2 q
ν
1 − q1q2 g

µν [see Eq. (95)].

D. Circular polarization

The general result in Eq. (89) also simplifies con-
siderably if the plane wave is circularly polarized and
monochromatic

ψ1(φ) = ℜeiφ, ψ2(φ) = ℑeiφ, ξ1 = ξ2 = ξ. (140)

We then obtain

I1 = sinc(µkq)ℜeikz , I2 = sinc(µkq)ℑeikz ,
J1 + J2 = 1, Z1 + Z2 = 2 sin2(µkq),

(141)

I1 − ψ1(kz + µkq) = ℜA,
I2 − ψ2(kz + µkq) = ℑA,
I1 − ψ1(kz − µkq) = ℜB,
I2 − ψ2(kz − µkq) = ℑB,

(142)

where

A = eikz [sinc(µkq)− cos(µkq)− i sin(µkq)] ,

B = eikz [sinc(µkq)− cos(µkq) + i sin(µkq)] .
(143)

[we define sincx = (sinx)/x]. Thus,

X12 −X21 = ℑA∗B, X11 −X22 = ℜAB,
X12 +X21 = ℑAB, X11 +X22 = ℜA∗B,

(144)

where

A∗B = sinc2(µkq) + cos(2µkq)− 2 sinc(2µkq)

+ i [− sin(2µkq) + 2 sinc(µkq) sin(µkq)] ,

AB = e2ikz
[

sinc2(µkq)− 2 sinc(2µkq) + 1
]

.

(145)

Thus, we can write the field-dependent part of the
tensor T µν for a circularly polarized plane wave as [see
Eq. (89)]

T µν(q1, q2)− T µν
F=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞

0

dτ

τ

∫ +∞

−∞
dz−

[

b+Λ
µ
+Λ

ν
+

+ b−Λ
µ
−Λ

ν
− + 1

2 (b1 − b2)(Λ
µ
1Λ

ν
2 − Λµ

2Λ
ν
1)

+ 1
2 (b3 + b4)(Λ

µ
1Λ

ν
1 + Λµ

2Λ
ν
2) + b5Qµ

1Qν
2

]

eiΦ,

(146)

where we defined

Λµ
± = Λµ

1 ± iΛµ
2 (147)

and the coefficients are given by

b± = 1
4 [(b3 − b4)∓ i(b1 + b2)] =

1
2m

2ξ2 ×
×

[

sinc2(µkq)− 2 sinc(2µkq) + 1
]

e∓2ikz+iτβ , (148)

1
2 (b1 − b2) = m2ξ2 (1+v2)

(1−v2)

[

− sin(2µkq)

+ 2 sinc(µkq) sin(µkq)
]

eiτβ, (149)

1
2 (b3 + b4) = −

(

i
τ + q1q2

2

) (

eiτβ − 1
)

+m2ξ2
[

2 (1+v2)
(1−v2) sin2(µkq)

+ sinc2(µkq)− 2 sinc(2µkq) + 1
]

eiτβ,
(150)

b5 = − 2µ
τ

(

eiτβ − 1
)

(151)

and the phases read

iτβ = iτm2ξ2
[

sinc2(µkq)− 1
]

,

iΦ = i
[

(q+2 − q+1 )z
− + µq1q2 − τm2

] (152)

[µ = 1
4τ(1 − v2)]. Finally, the integral in dz− can be

taken and we obtain the following expression for the
field-dependent part of T µν(q1, q2) for a monochromatic,
circularly-polarized plane-wave laser field

T µν(q1, q2)− T µν
F=0(q1, q2) = − i(2π)

4 e2

8π2

∫ +1

−1

dv

∫ ∞

0

dτ

τ

[

T µν
0 δ4(q1 − q2) + T µν

+ δ4(q1 − q2 + 2k)

+ T µν
− δ4(q1 − q2 − 2k)

]

eiΦcp , (153)

where

iΦcp = −iτm2
{

1 + ξ2[1− sinc2(µkq)]
}

+ iµq1q2, (154)

T µν
0 = τ1(Λ

µ
1Λ

ν
2 − Λµ

2Λ
ν
1) + τ2(Λ

µ
1Λ

ν
1 + Λµ

2Λ
ν
2)

+ τ3Qµ
1Qν

2 , (155)
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T µν
± = 1

2m
2ξ2

[

sinc2(µkq)

− 2 sinc(2µkq) + 1
]

Λµ
±Λ

ν
± (156)

and

τ1 = m2ξ2 (1+v2)
(1−v2)

[

2 sin2(µkq)/(µkq)− sin(2µkq)
]

,

τ2 = 2m2ξ2 (1+v2)
(1−v2) sin2(µkq)

+
[

(µτ − 1
2 )q1q2 −m2

] (

1− e−iτβ
)

,

τ3 = − 2µ
τ

(

1− e−iτβ
)

.

(157)

This result agrees with Eq. 2.34 in [51]. The terms de-
scribed by T µν

± can be interpreted as describing processes
where two photons from the background field are ab-
sorbed or emitted, respectively (since the external field
is not quantized, this interpretation relies only on the
momentum conserving delta function).
In order to obtain Eq. (153) from Eq. (146) we have

used the identity

∫ ∞

0

dτ

τ
eiΦm2ξ2

[

sinc2(µkq)− 2 sinc(2µkq) + 1
]

eiτβ

=

∫ ∞

0

dτ

τ
eiΦ

[

i
τ + µ

τ q1q2 −m2
](

eiτβ − 1
)

, (158)

which follows from

i d
dτ

(

eiτβ − 1
)

= i d
dτ e

iτβ

= m2ξ2
[

sinc2(µkq)− 2 sinc(2µkq) + 1
]

eiτβ (159)

via integration by parts.

V. CONCLUSION

In the present paper we have proven for the first
time the Ward-Takahashi identity for general loop dia-
grams in a plane-wave background field (see section II E).
Moreover, we have presented a new derivation of the
leading-order contribution to the polarization operator
in a plane-wave background field for arbitrary polariza-
tion and dependence on the plane-wave phase (see sec-
tion III). Our calculation relies on a direct evaluation of
the space-time integrals without using Schwinger’s op-
erator method [4] that was employed in [51]. Finally,
we have also shown explicitly why many coefficients of
the polarization operator vanish [see Eq. (68)] [51, 52].
The interesting feature of our final representation is the
manifest symmetry with respect to the external photon
four-momenta q1 and q2 [see Eq. (89)].

Appendix A: Notation

In this paper we use natural units ~ = c = 1 (in some
formulas ~ and c are restored for clarity) and the charge

is measured in Heaviside-Lorentz units (ǫ0 = 1). The
electron mass and charge are denoted by m and e < 0,
respectively. Thus, the fine-structure constant is given
by α = e2/(4π) ≈ 1/137. In covariant expressions the
space-time metric gµν with signature (1,−1,−1,−1) is
used and ∂µ = (∂/∂t,∇) is the four-derivative. This
implies ∂µxν = gµν , where x

µ = (t,x) denotes the po-
sition four-vector. The unit tensor is denoted by δµν =
gµρgρν = diag(1, 1, 1, 1) (δµµ = 4) and space-time indices
(lowercase Greek letters) are raised and lowered using the
metric aµ = gµνa

ν (summation over all types of repeated
indices is understood if they do not appear on both sides
of an equation). Greek and Latin indices take the val-
ues (0,1,2,3) and (1,2,3), respectively. Contractions of
four-vectors are denoted by aµbµ = ab, scalar products of

three-vectors by aib
i = ab. We denote the dual of a sec-

ond rank tensor T µν by T ∗µν = 1
2ǫ

µνρσTρσ, where ǫ
µνρσ

is the totally anti-symmetric tensor in four dimensions
with ǫ0123 = −ǫ0123 = 1. For contractions of second-
rank tensors and vectors a matrix notation is sometimes
used, e.g. aT b = aµT

µνbν , (T1T2)
µν = T µ

1ρT
ρν
2 , T 2µν =

T µρT ν
ρ , (Ta)µ = T µνaν . All spinors are Dirac spinors

(with four components), spinor indices are usual sup-
pressed. The Dirac gamma matrices are denoted by γµ,
/a = aµγ

µ, γ5 = −iγ0γ1γ2γ3 and 2σµν = γµγν − γνγµ

(γµγν+γνγµ = 2gµν). For a spinor u we define ū = u†γ0

and for a matrix in spinor space M correspondingly
M̄ = γ0M †γ0. A quantization volume V = 1 is as-
sumed for the normalization of the single-particle elec-
tron, positron and photon states. The total derivative
of a function with respect to its argument is denotes by
a prime f ′(x) = d

dxf(x). Integrals without boundaries
range from −∞ to +∞. We use i0 as a short nota-
tion for iǫ together with the limit lim

ǫ→0+ . In general,
our notation therefore follows [55] with different units for
charge.

Appendix B: Light-cone coordinates

Calculations involving plane-wave background fields
become particular transparent if light-cone coordinates
are used [68, 77, 78]. Since the non-trivial space-time
dependence of the momentum-space vertex in Eq. (24)
is due to the plane-wave phase φ = kx, it is natural to
work in a basis where kµ is one of the basis four-vectors.
However, since k2 = 0, this will be a light-cone basis. We
introduce now a general light-cone basis by adding three
four-vectors k̄µ, eµi (i ∈ 1, 2) to the set and require the
following orthogonality relations

k2 = k̄2 = kei = k̄ei = 0, kk̄ = 1, eiej = −δij (B1a)

and the orientation

ǫµνρσk
µk̄νeρ1e

σ
2 = 1. (B1b)

To be more specific, we can in a reference system where
the plane wave propagates along the direction n take the
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following four-vectors

kµ = ω(1,n), k̄µ =
1

2ω
(1,−n), eµi = (0, ei) ∼ aµi ,

n2 = 1, eiej = δij , n = e1 × e2
(B2)

(ei represent the two polarization directions of the plane-
wave field and ω has the dimension of a frequency).
Due to the relations given in Eq. (B1), we obtain the

following decomposition of the metric

gµν = kµk̄ν + k̄µkν − e1µe1ν − e2µe2ν . (B3)

This allows us to define the transformation to light-cone
coordinates (primed indices) by

aµ
′

= Λµ′

ν
aν , bµ′ = bνΛ

−1ν
µ′ , Λ−1ρ

µ′Λ
µ′

σ
= δρσ, (B4)

where the components denote the following scalar prod-
ucts

Λ+
µ = k̄µ, ΛI

µ = e1µ,

Λ−
µ = kµ, ΛII

µ = e2µ
(B5)

(we label light-cone components by +,−,I,II). On the
other hand the inverse transformation is given by

Λ−1µ
+ = kµ, Λ−1µ

I
= −eµ1 ,

Λ−1µ
− = k̄µ, Λ−1µ

II
= −eµ2 .

(B6)

We point out that kµ has dimension of momentum and
therefore k̄µ must have dimension of inverse momentum
(eµi are dimensionless). Hence, the dimensions of v+ and
v− differ from those of vµ (here vµ is an arbitrary Lorentz
four-vector). The different dimensions of the light-cone
components can be circumvented by defining kµ = ωnµ

and using the dimensionless quantity nµ in place of kµ.
Then, however, nv is not a Lorentz scalar (in contrary to
kv = v−) and ω has to appear explicitly in many places.
In light-cone coordinates the metric is given by

gµ′ν′ = gρσΛ
−1ρ

µ′Λ−1σ
ν′

= δ+µ′δ
−
ν′ + δ−µ′δ

+
ν′ − δIµ′δIν′ − δIIµ′δIIν′ , (B7)

which allows us to write the scalar product of two four-
vectors as

aµb
µ = a+b− + a−b+ − aIbI − aIIbII (B8)

(we also use the short notation a⊥b⊥ = aIbI+aIIbII). Due
to Eq. (B1) we obtain

∣

∣

∣detΛµ′

ν

∣

∣

∣ =
∣

∣Λ+
µΛ

−
νΛ

I

ρΛ
II

σǫ
µνρσ

∣

∣ = 1. (B9)

Thus, the four-dimensional integration measure becomes
∫

d4a =

∫

da+da−da⊥, da⊥ = daIdaII. (B10)

Since all properties of the light-cone coordinates follow
from the relations in Eq. (B1), we are not forced to use
the canonical basis in Eq. (B2). For the calculation of
the polarization operator it is more convenient to use the
two four-vectors [see Eq. (45)]

e′µ1 = Λµ
1 =

fµν
1 qν

kq
√

−a21
, e′µ2 = Λµ

2 =
fµν
2 qν

kq
√

−a22
(B11a)

together with kµ and

k̄′µ = k̄µ +
a1q

a21 kq
aµ1 +

a2q

a22 kq
aµ2

− 1

2(kq)2

[

(a1q)
2

a21
+

(a2q)
2

a22

]

kµ. (B11b)

The set of four-vectors kµ, k̄′µ, e′µ1 , e′µ2 also obeys the
relations in Eq. (B1) and we will call the coordinates,
following from this set, modified light-cone coordinates
[the same symbols (+, −, I, II) are used to denote the
corresponding components].

Appendix C: Gamma matrix algebra

In this appendix we summarize some general identi-
ties, which are useful in calculations involving gamma
matrices. The gamma matrices form a complete set in
the sense that any matrix in spinor space can be decom-
posed according to [79]

Γ = c11+ c5γ
5 + cµγ

µ + c5µiγ
µγ5 + cµν iσ

µν , (C1)

where we can assume that cµν = −cνµ and the coeffi-
cients can be calculated using

c1 = 1
4 tr 1Γ, c5 = 1

4 tr γ
5Γ, cµ = 1

4 tr γµΓ,

c5µ = 1
4 tr iγµγ

5Γ, cµν = 1
8 tr iσµνΓ.

(C2)

Due to the cyclic property of the trace one can recursively
calculate traces of arbitrary length without conceptual
difficulties by permuting the first gamma matrix to the
last position. For completeness we note the following
relations

1
4 tr γµγν = gµν ,
1
4 tr γµγνγργσ = gµσ gνρ − gµρ gνσ + gµν gρσ,
1
4 tr σµνγργσ = gµσ gνρ − gµρ gνσ,
1
4 tr γµγνγργσγ5 = iǫµνρσ.

(C3)

Thus, any identity involving gamma matrices can be
proven by calculating the fundamental terms given in
Eq. (C1) for both sides of the equation. It is in par-
ticular possible to map the gamma matrix algebra to a
corresponding tensor algebra once the decomposition of
the product of two (arbitrary) gamma matrix expressions
is known

Γc = ΓaΓb. (C4)
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Here Γx is written as in Eq. (C1) with the letter c replaced
by the letter x appearing in the index. The coefficients
of Γc are then given by

c1 = a1b1 + a5b5 + aµbµ + aµ5 b5µ + 2aµνb
µν ,

c5 = (a1b5 + a5b1) + (iaµb5µ − ia5µb
µ)

− iǫµνρσaµνbρσ,

cµ = (a1bµ + aµb1) + (ia5µb5 − ia5b5µ)

+ 2 (iaµνb
ν − iaνbµν)− iǫµνρσ (a

ν
5b

ρσ + aρσbν5) ,

c5µ = (a1b5µ + a5µb1) + (ia5bµ − iaµb5)

+ iǫµνρσ (a
νbρσ + aρσbν) + 2 (iaµνb

ν
5 − iaν5bµν) ,

cµν = (a1bµν + aµνb1)− i
2ǫµνρσ (a

ρσb5 + a5b
ρσ)

− i
2 (aµbν − aνbµ)− i

2ǫµνρσ (a
ρbσ5 + aσ5 b

ρ)

− i
2 (a5µb5ν − a5νb5µ) + 2i

(

aµρb
ρ
ν − aνρb

ρ
µ

)

.

(C5)

We point out that taking the trace of the gamma ma-
trix expression Γc projects out the coefficient c1 [see
Eq. (C2)]. Therefore, one can also use Eq. (C5) in the
calculation of traces.

Appendix D: Tensor relations

If Eq. (C5) is used to simplify large gamma matrix ex-
pressions, one typically encounters products or contrac-

tions of the totally anti-symmetric tensor ǫαβγδ. They
can be simplified using well-known identities stated here
for completeness [66]

ǫαβγδǫαβγδ = −24,

ǫαβγµǫαβγν = −6δµν ,

ǫαβµνǫαβρσ = −2
(

δµρ δ
ν
σ − δµσδ

ν
ρ

)

,

ǫµνρσǫαβγσ = −
(

δµαδ
ν
βδ

ρ
γ − δµαδ

ν
γδ

ρ
β + δµγ δ

ν
αδ

ρ
β

− δµγ δ
ν
βδ

ρ
α + δµβδ

ν
γδ

ρ
α − δµβδ

ν
αδ

ρ
γ

)

,

−ǫµνρσǫαβγδ = det









δµα δµβ δµγ δµδ
δνα δνβ δνγ δνδ
δρα δρβ δργ δρδ
δσα δσβ δσγ δσδ









.

(D1)

In particular, we note the following formulas for anti-

symmetric tensors T µν, T µν
1 and Tαβ

2

T ∗µν
1 T ∗αβ

2 = 1
2

(

gµβgνα − gµαgνβ
)

T1ρσT
ρσ
2 − Tαβ

1 T µν
2

+ gνα(T1T2)
βµ − gµα(T1T2)

βν

− gνβ(T1T2)
αµ + gµβ(T1T2)

αν ,

(D2)

(T ∗
1 T

∗
2 )

µν = 1
2g

µνT1αβT
αβ
2 + (T1T2)

νµ,

T ∗
1µνT

∗µν
2 = −T1µνT µν

2

(D3)

and

ǫµνρσT ∗
σα = δµαT

νρ − δναT
µρ + δραT

µν,
1
2ǫµνρσT

∗ρσ = −Tµν .
(D4)
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[36] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101

(2011).
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