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Introduction A model of bilingual cultural transmission

We extend a computational Bayesian model of iterated There are two possible languages. Learners can use them in different proportions.

learning with generations of agents learning multiple
languages (Burkett & Griffiths, 2010). We show that the
amount of linguistic diversity that emerges is affected by
both the prior expectations of the learners and the
social dynamics of the society in which they live.
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Prior Biases

Learners have two prior biases: One favouring the use of each language in a particular proportion (G,), and one which controls the amount of variation they expect (a).

Cultural evolution Biological evolution

Learners pass on their language culturally. ' Learners pass on their prior biases (a) genetically.

C ' .ti ﬁ t The probability of reproducing is based on social interaction. We test several metrics, including rewarding communicative
O m m U n I C a Ve n e S S success and rewarding bilingualism. The y parameter controls the fitness payoff for knowing a second language.
Dominant language
A speaker always understands its dominant language, and
understands its non-dominant language in proportion to the
balance of its hypothesis
1 if h>0.5andh’ >0.5
p,h,h")=41 if h<=0.5and h’<=0.5
|lh-h"|Y otherwise
When two speakers have different dominant languages, the payoff

is related to the difference between the hypotheses according to vy,

which controls how much competence in an L2 an individual needs
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In contrast with the ‘monolingual’
function, the alternative metrics
result in bilingualism: the culture
of these populations convergences
to the prior over languages (GO),
and is supported by learners who
have evolved biases that favour
linguistic diversity (high a). For
the bilingual and exogamy metrics, 0.1 04 0.7 1 01 04 0.7 1

As y increases, there is a qualitative
shift in the results of the simulations.
Withy > 0.7 (competence in L2 is well
rewarded), high a evolves (a ‘bilingual’
expectation) and the distribution of
languages converges to the prior.
However, with y < 0.7 (competence in
L2 is poorly rewarded), low a evolves

and the distribution of languages is
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