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ABSTRACT

An increasing number of biologists’ computational demands
have outgrown the capacity of desktop workstations and
they are turning to supercomputers to run their simulations
and calculations. Many of today’s computational problems,
however, require larger resource commitments than even in-
dividual universities can provide. XSEDE is one of the first
places researchers turn to when they outgrow their campus
resources. XSEDE machines are far larger (by at least an
order of magnitude) than what most universities offer. Tran-
sitioning from a campus resource to an XSEDE resource is
seldom a trivial task. XSEDE has taken many steps to make
this easier, including the Campus Bridging initiative, the
Campus Champions program, the Extended Collaborative
Support Service (ECSS) [1] program, and through educa-
tion and outreach.

In this paper, our team of biologists and application sup-
port analysts (including a Campus Champion) dissect a com-
putationally intensive biology project and share the insights
we gain to help strengthen the programs mentioned above.
We worked on a project to calculate population mutation
and recombination rates of tens of genome profiles using ml-
Rho [2], a serial, open-source, genome analysis code. For
the initial investigation, we estimated that we would need
6.3 million service units (SUs) on the Ranger system. Three
of the most important places where the biologists needed
help in transitioning to XSEDE were (i) preparing the pro-
posal for 6.3 million SUs on XSEDE, (ii) scaling up the ex-
isting workflow to hundreds of cores and (iii) performance
optimization. The Campus Bridging initiative makes all of
these tasks easier by providing tools and a consistent soft-
ware stack across centers.

Ideally, Campus Champions are able to provide support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

XSEDE ’13, July 22 - 25 2013, San Diego, CA, USA

Copyright 2013 ACM 978-1-4503-2170-9/13/07 ...$15.00.

on (i), (ii) and (iii), while ECSS staff can assist with (ii) and
(iii). But (i), (ii) and (iii) are often not part of a Campus
Champion’s regular job description. To someone writing an
XSEDE proposal for the first time, a link to the guidelines
and a few pointers may not always be enough for a success-
ful application. In this paper we describe a new role for a
campus bridging expert to play in closing the gaps between
existing programs and present mlRho as a case study.

Categories and Subject Descriptors

B.8.2 [Hardware]: Performance and Reliability—Miscella-
neous; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, performance measures; J.3 [Computer Ap-
plications]: Life and Medical Sciences— Biology and genet-
ics

General Terms

Performance, Experimentation, Design, Reliability, Human
Factors

Keywords

high-throughput, XSEDE, BigJob, pilot-job, genetics, ml-
Rho, performance tuning, optimization

1. INTRODUCTION

As first defined by the National Science Foundation Ad-
visory Committee for Cyberinfrastructure’s Task Force on
Campus Bridging [3], and later expanded upon by Stewart
et al., campus bridging is:

“...the seamlessly integrated use of cyberin-
frastructure operated by a scientist or engineer
with other cyberinfrastructure on the scientist’s
campus, at other campuses, and at the regional,
national, and international levels as if they were
proximate to the scientist, and when working
within the context of a Virtual Organization (VO)
make the 'virtual’ aspect of the organization ir-
relevant (or helpful) to the work of the VO. [4]”

In applying this definition of campus bridging to XSEDE,
one of the biggest challenges for researchers moving from



campus resources to XSEDE resources is being able to scale
up their workflows so that they are efficient and can achieve
high throughput on the larger XSEDE machines. While
Stewart et al. identify key use cases where campus bridging
tools can improve a researcher’s experience using XSEDE
resources, one aspect that is not included in their analysis is
the dramatic increase in complexity that is inherent in the
computational and data storage systems when a researcher
moves from his workstation to an XSEDE resource. This
scale up in complexity is in many cases a daunting prospect
for a researcher new to XSEDE, who may have relatively
little computational experience. Even savvy users who have
experience with campus clusters can encounter issues when
scaling up to XSEDE resources.

This challenge is distinct from the challenge of providing a
canonical software stack, but can be compounded by widely
divergent software environments between campus and XSEDE
resources. Even when the operating environment is not
very different on XSEDE resources, compared to campus re-
sources, researchers can face challenges with the sheer scale
and complexity of XSEDE resources. In the situation de-
scribed in this paper, campus bridging included helping the
researchers redesign their experiments and scale up their
workflows to move effectively from their local workstations
to IU’s modest sized cluster environment, and then on to
using the much larger XSEDE machines at Texas Advanced
Computing Center (TACC). It should be noted that, in gen-
eral, the differences in software environment between the IU
campus resources and the TACC supercomputers were su-
perficial; the real challenges lie in scaling up the applications
and navigating the complexity of a much larger system.

In this paper we propose a new role for a campus bridging
expert to help address the challenges faced by researchers
when moving from their workstation to XSEDE resources.
A campus bridging expert helps to bridge the gap between
domain science and computer science and helps researchers
move their applications from small-scale campus resources
to much larger XSEDE resources. A campus bridging expert
is mostly a technologist, who is able to apply many different
approaches to scaling up applications, but should also be fa-
miliar with the common challenges of the scientific domain.
The campus bridging expert must be able to communicate
effectively about XSEDE resources with researchers who
may have little or no supercomputing experience. The cam-
pus bridging expert role is distinct from the current Campus
Champion and the role filled by the Extended Collaborative
Support Service (ECSS) team. As the name implies, the
campus bridging expert closes the gap between the Campus
Champion role — which is designed to provide information,
guidance, and facilitate access to XSEDE resources, and the
ECSS role, which is designed to provide in-depth analysis,
insight and development for a particular scientific or engi-
neering challenge. The role of campus bridging expert may,
in fact, be filled by the same people who are currently Cam-
pus Champions or ECSS team members; in many ways the
functions of the campus bridging expert are an extension of
ECSS and Campus Champion functions. In this paper we
discuss how, by filling the role of campus bridging expert,
we were able to bridge the gap between many different sized
resources and help researchers in the field of population ge-
nomics use some of the largest XSEDE resources to conduct
a research program at an unprecedented magnitude.

Researchers in the Indiana University (IU) Department

of Biology have been conducting studies into population ge-
nomics and evolution for some time. A newly developed
computer program called mlRho [2] is being used to study
ecological and genetic parameters in different populations.
While mlRho is a serial code, the investigation we have con-
ducted with our XSEDE allocation was embarrassingly par-
allel in nature. The work for each species was divided among
many computational processes. To manage hundreds of pro-
cesses for each of the 40+ species of interest, we used the
SAGA BigJob pilot-job tool [5], which is currently available
on many XSEDE resources. BigJob allowed us to distribute
the analyses for each species across thousands of processor
cores, depending on the genome sizes. Thus far we have
investigated a total of 46 individual genomes. In addition
to the use of the BigJob tool, we have done an extensive
performance analysis of the mIRho code and have been able
to improve the runtime of the code by a factor of more than
50.

The remainder of the paper is organized as follows: section
2 gives some insight into the computational methodologies
and principles of biology being explored by the mIRho code.
Section 3 outlines our initial estimates for the computational
resources necessary to accomplish the research agenda and
the steps that were taken to secure an XSEDE allocation.
In section 4, we describe how, through tracing and profiling
of the code, we were able to successfully optimize it and
dramatically increase its performance. Section 5 details the
current status of the research program and initial scientific
results and in section 6 we present conclusions.

2. SCIENTIFIC BACKGROUND

The amazing biodiversity on our planet has fascinated hu-
mans for thousands of years. To understand how this di-
versity arises and is maintained, it is critical to determine
fundamental ecological and genetic parameters (e.g., pop-
ulation sizes, recombination rates) for a range of species.
These parameters play important roles in creating oppor-
tunities for increasing genetic diversity, population diver-
gence, and speciation. mlRho is a software package which
uses next-generation genomic sequencing to generate a novel
measure of linkage disequilibrium. Deploying mlRho on
XSEDE resources has allowed us to study these important
population-genetic parameters in a broad assembly of eu-
karyotic genomes.

Although there are several methods for determining re-
combination rates, they can be both time and resource in-
tensive. The mlRho software employs a novel analytic ap-
proach that uses a new metric called the zygosity correlation
coefficient, which is estimated using maximum likelihood
(ML) methods. It only requires single individual genome
sequences, but is extremely data intensive. Using mlRho
and XSEDE computational resources, we have been able to
examine the recombination rates of a plethora of species with
accuracy that was previously unachievable.

2.1 Program Description

The mlIRho software is a serial program that estimates
mutation, recombination, and sequencing error rates from
genome sequences [2]. The underlying data consists of as-
sembled sequencing reads obtained from a single diploid in-
dividual. Such data are collected, for example, for the 1000
human genome project. mlRho reads a profile consisting
of the number of each nucleotide (4, C, G, and T) from a



file at each sequenced position. Given a mutation and er-
ror rate, mlRho computes two probabilities for each profile:
The probabilities of observing the profile given that the posi-
tion is either mutated (heterozygous), or not (homozygous).
These probabilities depend on the mutation and error rates.
By varying them, mlRho finds the values that maximize the
overall likelihood of the data.

While mutation and sequencing error affect individual genome

positions, recombination uncouples the evolutionary history
of pairs of positions. This is observable as a decorrelation of
the zygosity states between pairs of positions. To estimate
recombination, mlRho computes the probability of observ-
ing profile pairs separated by, say, 1000 nucleotides. This is
a function of the recombination rate and the single position
likelihoods.

2.2 Linkage Disequilibrium and Recombina-
tion Rate

Linkage disequilibrium (LD), i.e., the non-random associ-
ation of alleles at two or more loci, is an important param-
eter for many areas of population genetics. In recent years,
there has been growing interest in measuring LD across a
broad range of species, because a proper understanding of
LD would greatly facilitate identifying the genetic loci which
underlie important phenotypic variation in natural popula-
tions, as well as human diseases. More importantly, LD is a
population-genetic property that can help ascertain recom-
bination rate, because recombination is the primary evo-
lutionary force that breaks down LD among genetic loci.
Although a substantial body of research has been devoted
to elucidating the evolutionary consequences of recombina-
tion [6], the forces that determine recombination rates re-
main poorly understood. For example, we have little idea
what determines the occurrence of recombination on a chro-
mosome, what impact local DNA polymorphism has on re-
combination processes, and how recombination rates change
over evolutionary time [7].

Conventional approaches to measuring LD and recombi-
nation rates use population-genetic surveys. These surveys
require hundreds of individuals and dozens of genetic loci.
Using this method, the sampling variance associated with
conventional measures of LD, such as D (a measure of LD)
and r? (the square of the correlation coeflicient), is huge.
Recombination rates can also be investigated by pedigree
analyses and crossing experiments, but these methods can-
not provide information on fine-scale recombination rates
and are often difficult to perform in model organisms, let
alone non-model species. Thus, while we know these values
for a few species, there is very little comparative data to
understand how these processes vary across many species.

2.3 A Novel Approach to Estimating LD and
Recombination Rate
Whole genome sequences of diploid organisms include both
alleles at every site of the genome (two copies of each chro-
mosome), which can be used to determine a number of very

useful population-genetic parameters in the evolution a species

[8]. With the rapid accumulation of whole genome sequences
from a large number of species, a maximum likelihood (ML)
approach that capitalizes on these data has recently been
developed to estimate LD and examine genomic recombina-
tion patterns [9, 2].

The general idea behind this approach is that two allelic

chromosomes had a common ancestor some time in the past.
Since that time, they have become increasingly different, due
to mutations changing their sequence. In addition, recombi-
nation shuffled the mutations between chromosomes. If we
catalog the differences between the two alleles, we can learn
about this history of mutation and recombination.

The ML approach uses this information to determine the
zygosity correlation (A) between all the pairs of sites that
are separated by various distances (i.e., the probability of
two sites being both homozygous or both heterozygous, or
mixed) in a single diploid genome, using the entire set of
assembled individual reads. Population genetic theory then
links the expected value of A to conventional measures of
LD, such as the population recombination rate p, suggest-
ing that A can be used as a valid measure of LD on the
population level.

Our simulation results have shown that this ML proce-
dure generates unbiased estimates for theta and zygosity-
correlation at a range of sequencing coverage (10-20x) [9].
mlRho is able to handle genomes of all sizes, and linkage
analyses over hundreds of thousands of base pairs. It com-
putes the maximum-likelihood estimators of the population
mutation rate, 8, the sequencing error rate, €, and the pop-
ulation recombination rate, p using the Nelder and Mead
algorithm, as implemented by the GNU scientific library.
Nonetheless, this analysis is computationally intensive: mil-
lions to tens of billions of pairs of sites at a given distance
have to be extracted from the input files of up to giga-byte
sizes fnd A calculated for every distance ranging from 102
to 10°.

3. TRANSITIONING TO XSEDE

We began with an initial research plan that called for 15
million core hours to completely analyze all target genomes.
At this point, we were using Quarry, a local TU resource,
but it was clear that we needed a bigger machine to com-
plete the calculations in a reasonable period of time. Quarry
is a 2960 core machine, whereas XSEDE machines such as
Ranger, Stampede, and Kraken have 10° cores (Figure 1).
The software and scheduling environment on Quarry is simi-
lar to that of XSEDE machines referred to here. The central
difference is in the size of the machines and we explain how
we made the transition.

3.1 Research Plan

As a first step, we applied for a startup allocation on
Ranger and Kraken to benchmark the mlRho application.
We also planned to use the startup allocation to conduct a
scaling study. A service unit in XSEDE is defined as one
core hour on a machine. It became apparent that conduct-
ing the study for all 70+ genomes would require at least 15
million SUs. However, given that the researchers are new to
the XSEDE ecology and this is the first time they are ap-
plying for a large scale allocation, we wanted to stay under
the 5 million SU mark. To do this, we pared down the list
to 46 diploid eukaryotic genomes. We initially determined
to measure 100 kilo basepair (kbp) distances to limit the
number of SUs required. Given that in eukaryotes, recom-
bination rates range between 0.001—1 event per Mbp [10], a
100 kbp window across a genome provides a good basis for
capturing the signature of crossover events that occur 1 or
2 times per chromosome arm per meiotic event.
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Figure 1: Mason and Quarry are IU resources, while Ranger,
Stampede and Kraken are XSEDE resources. The graph
shows the large change in the size of the machines that the

users experience when they move to XSEDE.

3.2 Scaling Up to XSEDE

For some time the researchers had been running the ml-
Rho code on local IU resources serially, by requesting one
compute-node at a time. Given that the IU resource, Quarry,
had a serial queue that placed multiple serial jobs from a sin-
gle user on the same node, this was a feasible course. Unfor-
tunately, most of the major XSEDE resources do not provide
such a high throughput queue. The users are charged for the
whole node, irrespective of the number of cores their job ac-
tually utilizes. Moreover, the larger machines are configured
for highly parallel jobs and the schedulers are configured to
prioritize larger jobs. Many XSEDE centers have established
workarounds for this problem by providing users with wrap-
pers and other software which bundle many serial jobs into
larger jobs. We decided to use Ranger for our project, as
BigJob was still in an experimental state on Kraken at this
point.

3.2.1 SAGA BigJob framework

We used the SAGA BigJob to bundle our serial mlRho
simulations. We have integrated mlRho with BigJob and
conducted several experiments on Ranger and Stampede
which have shown good performance and scalability. BigJob
is a pilot-job tool available on many XSEDE resources such
as Kraken, Ranger, and Lonestar. Many researchers have
successfully used BigJob [11] to bundle hundreds of smaller
jobs into larger, more manageable groups of jobs [12, 13].

BigJob maintains the list of processors allocated after the
job request becomes active. The user can design the BigJob
to assign these processors to start and manage smaller jobs.
The main benefit of doing this is that instead of submitting
thousands of single core job requests to the queue, we can
submit hundreds of large job requests (= 500 to 5000 cores)
to the queue. This reduces the overall number of job submis-
sions to the queue and thereby, to some extent, time spent
waiting in the queue. This job size is also more appropriate

for many of the XSEDE machines.

3.2.2 mlRho Scalability tests

We used the BigJob installation already in place on Ranger.
The major focus of our tests was to discover how mlRho
scaled when we increased the number of concurrent mlRho
processes. We took three different organisms based on the
size of their genome: a small genome, F. cylindrus (diatom),
a medium genome, P. ornithorhynchus (platypus), and a
large genome, C. familiaris (dog). Data sizes are provided
in Table 1. We ran the mlRho program with each of these
genomes starting with 16 concurrent mlRho instances read-
ing from the same data file. We let the processes run for
24 hours and measured how many distances were computed
in aggregate. It was clear that the distance travelled per
second directly depended on the size of the genome.

Organism Type Size of profile Distance/sec
(GB) V110 | V2l

F. cylindrus (diatom) 0.72 0.0034 0.323

P. ornithorhynchus 11 2.3x10—4 | 0.020

(platypus)

C. familiaris (dog) 31 8.1x107° | 0.005

Table 1: The table lists three organisms which were chosen
to represent profiles of different size. The second column
shows the size of the profile in gigabytes. The third column
shows the distance travelled per second by V1.10 and V2.1
on one core on Ranger and Stampede, respectively. The rate
of distance is a function of the size of the genome.

We repeated this for each of the genomes with 32, 64 and
128 concurrent instances. The results are shown in Figure 2.
Figure 2 shows that the distance traveled, irrespective of the
genome, size, and the number of concurrent instances, in-
creases nearly linearly with number of concurrent instances
being run. We have verified this behavior on Stampede with
an optimized version of mlRho (V2.1) and obtained simi-
lar results. We are unable to repeat this scaling study on
Ranger with the improved version of mlRho as Ranger has
since been decommissioned.

3.3 XSEDE Allocation

In general, obtaining an XSEDE allocation with sufficient
SUs is an important step in the process of executing a com-
putationally intensive research plan. Even to someone who
has a computer science background, writing a successful
XSEDE proposal is not a trivial task. The computational
justification for the allocation needs to be concrete and this
is especially true if the request is for more than a few million
SUs. XSEDE allocation committees are routinely faced with
the fact that the machines are oversubscribed by a factor of
2:1.

We believe that allocation proposal preparation is one key
area where users new to XSEDE need significant help. In
the case of the mIRho project, research staff from the Indi-
ana University Pervasive Technology Institute (PTT) helped
biologists to prepare an allocation proposal. We started by
requesting startup allocations on Ranger and Kraken. We
benchmarked mlRho on a single core on Ranger and Kraken.



Figure 2: After running 16, 32, 64 and 128 instances of mlRho concurrently using BigJob on Ranger and Stampede with
versions 1.10 and 2.1, respectively, we see that amount of work done increases nearly linearly with the number of instances of
mlRho. The y-axis shows the total distance travelled by all the instances put together and normalized to 16 instances. The

x-axis shows the number of concurrent mlRho processes running.

We then did a scalability study as described in section 3.2.2.
It is important to accurately estimate and justify the to-
tal number of SUs that we request from XSEDE. We usu-
ally also need to justify the science, but if the research is
supported by a current grant award from a federal science
agency, further justification is not needed. Given that we are
requesting shared resources, it is important that we make an
effort to analyze and optimize our code. This reduces our
own usage time and also turnaround time. We began to look
into code optimization shortly after submitting the proposal.
Our efforts on the analysis and optimization of the code is
discussed in section 4 in more detail.

3.3.1 Design of Experiments

We have carefully constructed a detailed plan on how to
proceed with our experiments. In section 3.2, we showed
that the mlRho code can scale to 128 processes, with each
process reading from the same file with no performance
degradation. We estimated that we can feasibly scale up
to ~500 processes reading from the same data file, without
noticeable performance degradation. By making multiple
copies of the data file, we could scale up to ~5000 processes.
Job requests of 5000 processes on Ranger and Kraken are ap-
propriate and we have not experienced extremely long wait
times (more than 48 hours) with past BigJob experiments.
We proposed that with this design, we could complete our
analysis within four to five months from the time of the al-

location award.

In our initial testing of the three sample genomes, we
worked out a few issues that could have affected scalability.
One of those issues was data access and file striping. When
we had scaled up to 128 cores we noticed some intermittent
I/0O issues. Since all the concurrent instances read from a
single file, if that file is singly striped in a Lustre file system,
it will introduce a large load on the Lustre servers. We have
remedied this issue by moving the data files to the scratch
file system on Ranger and striping the data files 16 ways.
While this only occurred with the larger (11 and 31 GB)
data files, we are aware that this might limit our scalabil-
ity. In the future, if I/O becomes an issue for scalability, we
plan to use multiple copies of the same data file to prevent
an excessive number of concurrent processes from reading
from the same file at the same time.

4. OPTIMIZATION OF MLRHO

We can not stress enough how important it is for each
and every user of a shared supercomputer to analyze and
optimize their code. This is especially true in the case of
users who develop their own code. Most community codes
are analyzed and optimized by their developers. But still,
it is not unusual to see a 10% gain in performance just by
moving from one compiler to another. Given that XSEDE
distributes hundreds of millions of SUs every year, even a
10 or 20 percent improvement will save millions of SUs and



lower queue waiting times.

4.1 Performance Analysis

Following its initial release in 2010[2], mlRho is being de-
veloped through a collaboration of research labs at IU and
the Max Planck Institute for Evolutionary Biology (MPI)
in Germany. Following initial benchmarking and scalability
testing for an XSEDE allocation proposal, staff members
from the IU Pervasive Technology Institute worked together
with the mlRho application developer at MPI to improve the
serial performance of the code. As a result of the investiga-
tions by PTI and MPI, a new version which is vastly more
efficient and delivers much better performance when com-
pared to the original version has been released. While the
work described in the previous sections could be addressed
by the campus bridging expert role, the analysis and opti-
mization described in this section would most likely be asso-
ciated with the XSEDE ECSS team. In this particular case
both roles were fulfilled by a single team member at PTI.
However, it is certainly possible that these two roles could
be filled by different teams at different institutions.

4.2 Implementation of Performance Analysis
Findings

Research staff at PTI began code optimization with ml-
Rho version 1.10. As a first step, we compiled the code with
compilers other than the standard GNU compiler. Both the
Intel and PGI compilers produced a runtime improvement
of =10% over the GNU compiler on Ranger, this is a fairly
typical result that the optimization team at PTI has seen in
many instances. From this point we determined that further
improvements would most likely be gained by modifications
to the source code. To inform the core developer at MPI
as to where his efforts would be best spent, we conducted
a detailed analysis of mlRho version 1.10 using the Vam-
pir toolchain. The analysis led the core developer to focus
on two aspects of the code: data handling and repeated
computation. As to data handling, many profiles occur re-
peatedly in a data set. To address this, an additional pro-
gram, formatPro, was written to compress the raw profiles.
The formatPro program reads profiles either from a text file
or from a BAM file, the standard format for distributing
genome alignment files [14].

This new method of data storage increased performance
by more than a factor of two from version 1.16 to 1.21 (see
Figure 3). The formatPro program writes a binary table
of unique profiles. The binary file can then be inspected
using the program inspectPro. In addition to the profiles file,
formatPro writes a binary file listing the profile ID at every
genome position. Finally, formatPro writes a binary file of
the contig lengths. The mlRho program can then read the
profiles from the files produced by formatPro. The profiles
are read individually rather than in a single step, because we
found that this improved stability on the Lustre filesystem.
The improvement in data handling introduced with these
changes resulted in an overall speedup of the serial code by
a factor of 2-4X. The next focus was to look at the repeated
computation that occurred in the mlRho program.

In the version 1.10 of the mlRho program, the likelihood
computation iterated over all positions. By introducing sev-
eral improvements in how the likelihoods are calculated, the
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Figure 3: The graph shows the different versions of mlRho
benchmarked on a single core on Stampede. The y-axis
shows the change in time steps per hour with respect to
version 1.10 in logarithmic scale. Compared to version 1.10,
2.1 is more than 50 times faster.

program now iterates over a much smaller number of unique
profiles. This improvement can be noticed in Figure 3 be-
tween versions 1.21 and 1.23. In addition, the unique likeli-
hoods are now written to disk for future reference.

In the disequilibrium analysis of the 1.10 version, the
single-site likelihoods were recomputed for every step. To
improve efficiency, they are now either read from disk or
stored after the first pass across the data. In addition, we
noticed that by ignoring the order of two profiles, we could
halve the number of distinct profile pairs stored in a search
tree. The likelihood computation during traversal of this
tree is now based entirely on precomputed probabilities.

The combination of better data handling and careful avoid-
ance of repeated computation led to an overall 50-fold speedup
of mlRho without increasing the minimal memory require-
ment observed in version 1.10.

5. USER EXPERIENCE, PRELIMINARY SCI-
ENCE RESULTS, AND FUTURE WORK

5.1 User Experience

Overall the end user experience of migrating from the rel-
atively modest Quarry and Mason local clusters to the much
larger Ranger resource on XSEDE was a smooth transition.
This was mostly due to two factors, the first of which was the
similar computational environment on campus and XSEDE
resources. We were able to transfer all of the input data files
from campus resources to XSEDE resources via the XSEDE
network using standard transfer mechanisms like scp. Since
both the campus resources and Ranger and Stampede at
TACC use a variant of the modules software environment
management system, replicating the software environment
on XSEDE resources was a simple matter of finding and
loading the correct modules. Although the scheduling sys-
tems used on the campus resources and XSEDE resources



were different (TORQUE vs. SGE), there were enough simi-
larities and documentation on converting submission scripts
and made the transition relatively easy.

The other factor in simplifying the transition was the use
of the BigJob framework coupled with the consultation ad-
vice from the PTI staff. The initial transition to running
mlRho in a massively parallel way on Ranger was fairly
straightforward (mainly due to the embarrassingly parallel
nature of the problem), and produced excellent through-
put. Using BigJob to run thousands of mlRho processes
was not without issues, though. Without the aid of the PTI
staff, working effectively on Ranger and Stampede would
have been extremely challenging.

5.1.1 Technical Issues

The initial benchmarking and scaling tests that we did
for the allocation proposal progressed smoothly. But as
with any research project, we ran into many technical chal-
lenges when we started running experiments at scale on
Ranger. There were scaling issues, problems with BigJob
design/usage, and file system issues. Some of the major is-
sues:

e We had to remain vigilant for issues related to the Lus-
tre file system, given that hundreds of mlRho processes
read from a single input file. We tried to address this
problem by striping the directories containing the in-
put files. We gradually scaled up our job size to 4000
cores on Ranger but this put excessive stress on the
file system. Due to this issue, we decided to stay be-
low 2000 cores. Another solution could be to have a
different copy of the input file for every group of 500
mlRho processes. During the course of attempting to
resolve these issues, Ranger was decommissioned and
Stampede came online. We did not see a similar issue
on the Stampede file system, which is likely due to the
improved hardware of the Stampede file system.

e The BigJob tool is and has been under active devel-
opment. There were major design changes in process
during the time that we started using it on Ranger.
BigJob addresses a range of compute and data prob-
lems and multiple example scripts are available on its
website. The initial version we deployed was not suit-
able for our task, which is bundling and running hun-
dreds of serial jobs, and hampered performance.

e Another potential issue with BigJob is that the master
process needs to be active from the time the job is
submitted until the end of the job. This means that
BigJob needs to be active on the login node of the
system and cannot be disconnected. Another solution
to this issue is to run BigJob in a screen session or
use another tool like nohup on the login node. In the
end we were told not to run more than four interactive
sessions at a time, which was less than optimal for
our use case. This issue has now been resolved by the
BigJob developers by removing this requirement.

e We also had problems with some mlRho processes fail-
ing, which forced us to identify and re-run these jobs.
This was a major problem, but with both mlRho and
BigJob were rapidly evolving. This made it difficult to
diagnose the issue.

5.2 Preliminary Science Results

The analyses we were able to perform on Ranger and
Stampede provided an extensive amount of data that would
have been unimaginable with campus resources. We began
our study planning to analyze 100,000 basepair distances per
genome. However, with the optimized version of mlRho per-
forming at more than 50 times the efficiency of the version
we began with, we have now completed 10 times the work
we had initially planned. For many genomes we have been
able to compute up to 1 million basepair distances, and we
have been able to investigate many more genomes than orig-
inally proposed. Results from the new data indicate that the
zygosity correlation at large distances deviates significantly
from theoretical expectation. This finding has prompted us
to begin new simulation and theoretical work to explain the
observed discrepancy between the theoretical prediction and
our ML measurements on actual data. We believe that these
new data will provide insights into the evolution of a large
number of organisms.

5.3 Future Work

We have begun initial work on deploying the mIRho pro-
gram on the Intel Xeon Phi coprocessor boards available on
Stampede. Since the Phi runs an embedded Linux Oper-
ating System [15], it is relatively easy to launch multiple
copies of the mIRho binary on the Phi board, assuming that
the input data set can fit in the memory footprint of the
Phi board. In our case we copied input data sets to the
Phi RAM disk and computed against this copy. Figure 4
compares the performance of a single Phi board on the F.
cylindrus (diatom) genome with the scaling measurements
presented in Figure 3. Here we compare to the scaling num-
bers for the Stampede timings using version 2.1 of the mlRho
software. By using a relatively large number of processes, in
this case 488, on the Phi board we are to achieve through-
put that is roughly equal to the throughput of the CPUs on
two Stampede nodes. We are currently focusing our efforts
on integrating the Phi scripts into the BigJob framework
and adding the Phi workload to the CPU workload. While
writing a script for the BigJob framework is fairly straight-
forward, the challenge is in properly balancing the load be-
tween CPU and Phi, particularly when the input data access
patterns (i.e. the input I/0) is very different for the CPUs
and the Phi board.

6. CONCLUSIONS

In all, the project of transitioning and scaling up mlRho
workloads from campus computational resources to XSEDE
resources has been very successful, not only from the per-
spective of accelerating scientific discovery, but also from
the perspective of providing a real and useful example of the
value of a campus bridging expert. Through this project we
have shown that a relatively small investment of effort by
people with the right mix of skills can make a big difference
when transitioning from local resources to XSEDE resources.
We propose that XSEDE consider including the campus
bridging expert role in more of its supported projects, partic-
ularly those projects with PIs who are relatively new to high
performance computing concepts like batch scheduling, ap-
plication scalability, and high performance file systems. This
effort could be funded at the XSEDE level by providing ex-
perts at each of the XSEDE centers to assist with campus
bridging, or at the level of the individual university where
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Figure 4: The graph compares the performance scaling be-
havior of mlRho on CPUs and Phis. Each mlRho process
on a CPU was run on an individual core while multiple in-
stances of mlRho were run on a single Phi. Four hundred and
eighty-eight (488) mlRho instances on a single Phi gave us
the same throughput as running 32 instances on two nodes
of Stampede.

staff could be funded to assist local researchers in making
the transition from campus resources to XSEDE. As the ml-
Rho software continues to be improved and applied to more
data sets, we hope to continue the excellent synergistic rela-
tionship between domain scientists, computer scientists, and
cyberinfrastructure professionals.
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