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We present a model for determining the dimensionless spin parameter and mass of the black hole remnant
of black hole-neutron star mergers with parallel orbital angular momentum and initial black hole spin. This
approach is based on the Buonanno, Kidder, and Lehner method for binary black holes and it is successfully
tested against the results of numerical-relativity simulations: the dimensionless spin parameter is predicted with
absolute error . 0.02, whereas the relative error on the final mass is . 2%, its distribution being pronouncedly
peaked at 1%. Our approach and the fit to the torus remnant mass reported in [1] thus constitute an easy-
to-use analytical model that accurately describes the remnant of BH-NS mergers. We investigate the space of
parameters consisting of the binary mass ratio, the initial black hole spin, and the neutron star mass and equation
of state. We provide indirect support to the cosmic censorship conjecture for black hole remnants of black hole-
neutron star mergers. We show that the presence of a neutron star affects the quasi-normal mode frequency of
the black hole remnant, thus suggesting that the ringdown epoch of the gravitational wave signal may virtually
be used to (1) distinguish binary black hole from black hole-neutron star mergers and to (2) constrain the neutron
star equation of state.

PACS numbers: 04.25.dk, 04.30.Db, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Once a black hole-neutron star (BH-NS) binary is formed,
gravitational radiation reaction gradually reduces its orbital
separation until the two objects merge and leave behind a
remnant consisting of a black hole and, possibly, a hot, mas-
sive accretion torus surrounding it [2]. BH-NS binaries have
not been observed yet; population synthesis studies, however,
suggest that the coalescence of BH-NS systems is likely to
occur frequently in the Hubble volume, thus making theoreti-
cal studies on the evolution and final state of BH-NS mergers
relevant [3–7]. Interest in these systems arises from the fact
that they are among the most promising sources for gravita-
tional wave (GW) detectors — such as LIGO [8], Virgo [9],
KAGRA [10], and the Einstein Telescope [11] — and that
they are promising candidates as progenitors of (a fraction
of) short-hard gamma-ray bursts [12, 13]. Further, as NSs
in these systems undergo strong tidal deformations, observ-
ing GW and/or electromagnetic signals emitted by BH-NS bi-
naries could help shed light on the equation of state (EOS)
of matter at supra-nuclear densities, which is currently un-
known [14–17]. Finally, comprehending the fate of the ma-
terial possibly ejected by BH-NS binaries after the NS tidal
disruption is relevant in interpreting the observed abundances
of the heavy elements that are formed by rapid neutron capture
in r-processes [18].

To achieve a full understanding of BH-NS merger events
and their physics, numerical-relativity simulations are re-
quired. These will ultimately have to include adequate
and accurate treatments of General Relativity, relativistic
(magneto)hydrodynamics, the microphysical EOS, NS crust
physics, thermal effects, nuclear physics reactions. Numeri-
cal quasi-equilibrium studies [19–25] and dynamical simula-
tions [17, 26–48] of mixed binary mergers made considerable
progress in the last few years. Despite the fact that simulat-
ing BH-NS mergers is now possible, these simulations remain
nevertheless both challenging and computationally intensive.
These problems have motivated the parallel development of

pseudo-Newtonian BH-NS calculations, e.g. [49], and of ana-
lytical approaches focusing on specific physical aspects of the
problem, e.g. [1, 14–16, 50–56]. Studies of these kinds bene-
fit of their low computational costs which allow them to shed
light on questions that cannot be currently addressed with nu-
merical simulations and to provide insight on what happens
when one spans the large space of parameters of BH-NS bina-
ries. They may, in turn, aid in orienting numerical-relativity
efforts by suggesting particularly interesting cases to simulate
and in providing information to exploit within the simulations
themselves.

In this paper we focus on predicting the final spin param-
eter and mass of the BH remnant of BH-NS coalescing bi-
naries by using a semi-analytical approach. While this prob-
lem has a fairly long history in the case of coalescing binary
black holes [57–77], no attempt beyond numerical-relativity
simulations has yet been made to tackle it in the case BH-NS
mergers. The approach we present and discuss is based on the
work of Buonanno, Kidder, and Lehner (BKL) on estimating
the final BH spin of a coalescing binary BH with arbitrary
initial masses and spins [66]. We choose this simple, phe-
nomenological model as a starting point because it provides
good physical insight and it is straightforward to modify and
extend. Our method may indeed be seen as a generalization
of the BKL model to the case in which the lower mass BH
is replaced with a NS. It is, however, restricted to systems
in which the BH spin direction is parallel to the orbital an-
gular momentum direction. This is due to the small number
of numerical-relativity simulations available for non-aligned
BH spin and orbital angular momentum configurations [43].
The closed expression we determine for the final spin param-
eter automatically yields an estimate of the mass of the BH
remnant by means of a method similar to the starting point of
Barausse, Morozova, and Rezzolla’s calculations on the mass
radiated by binary BHs [77], but with modifications inspired,
once again, by [66]. The key equations of our approach are
Eqs. (9), (11)-(12) and, despite the mathematical complexity
of the mixed binary coalescence problem, our method enables
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us to reproduce the results of numerical-relativity simulations
with reasonable accuracy.

The paper is organized as follows. In Section II we review
the BKL approach for binary BHs. In Section III we propose
an extension of this method in order to predict the final spin
parameter and mass of BH remnants of BH-NS mergers —
Eqs. (9), (11)-(12) — and successfully test it against available
numerical-relativity data. In Section IV we gather the results
obtained by systematically varying the binary mass ratio, the
initial BH spin parameter, and the NS mass and EOS. First,
we provide indirect support to cosmic censorship conjecture
and suggest particularly interesting cases to explore with nu-
merical simulations in this context (Section IV A ). Then, we
show that the NS EOS may leave an imprint on the BH rem-
nant in terms of its final spin and mass (Section IV B). This
suggests the idea of inferring the presence of the NS and of
constraining its EOS from the ringdown of the BH remnant.
Finally, in Section V, we draw our conclusions and collect our
remarks.

II. THE BKL FORMULA

The Buonanno, Kidder, and Lehner (BKL) approach to esti-
mate the final spin of BH-BH mergers [66] starts by consider-
ing an initial reference state with two widely separated black
holes approximated as two Kerr black holes having masses
{M1,M2} and dimensionless spin parameters1 {a1, a2}. The
case of the BKL approach that we will extend in order to de-
scribe BH-NS binaries is that of BH binary systems the orbits
of which stay within a unique plane, referred to as the equa-
torial plane; in such case, the orbital angular momentum and
the individual spins of the BHs are orthogonal to the equato-
rial plane. The spin parameter of the BH remnant af is ob-
tained in terms of the initial configuration of the system by a
phenomenological approach relying on the following two ob-
servations based on intuitive arguments, on post-Newtonian
and perturbative calculations for the inspiral and ringdown,
and on numerical simulations of the merger.

1. The system evolves quasi-adiabatically during the in-
spiral phase.

2. The total mass and angular momentum of the system
change only by a small amount during the merger and
ringdown phases.

Further, the BKL expression for af is derived from first prin-
ciples once the following assumptions are made:

3. The mass of the system is conserved to first order, so
that the final BH has a total mass M = M1 +M2.

4. The magnitude of the individual BH spins remains con-
stant and their contribution to the final total angular mo-
mentum is determined by the their initial values.

1 BKL use a’s with the dimensions of a mass, while we use dimensionless
a’s throughout this paper.

5. The system radiates much of its angular momentum in
the long inspiral stage until it reaches the innermost sta-
ble circular orbit (ISCO), when the dynamics quickly
leads to the merger of the two BHs. Given that the
radiation of energy and angular momentum during the
merger is small with respect to the mass and angular
momentum of the system, the contribution of the orbital
angular momentum to the angular momentum of the
BH remnant is estimated by considering the orbital an-
gular momentum of a test-particle orbiting a Kerr BH,
with spin parameter equal to that of the final BH, at the
ISCO.

All these assumptions are combined in the following formula
expressing the dimensionless spin parameter of the final BH:

af =
a1M

2
1 + a2M

2
2 + lz(r̄ISCO,f, af)M1M2

M2
, (1)

where lz(r̄ISCO,f, af) is the orbital angular momentum per unit
mass of a test-particle orbiting the BH remnant at the ISCO,
and where we introduced the notation r̄ = r/M for the (di-
mensionless) Boyer-Lindquist radial coordinate.

We recall that for equatorial orbits around a Kerr BH of spin
parameter a

lz(r̄, a) = ± r̄2 ∓ 2a
√
r̄ + a2

(r̄2 − 3r̄ ± 2a
√
r̄)
√
r̄

(2)

and that the orbital separation at the ISCO is given by

r̄ISCO = [3Z2 ∓
√

(3− Z1)(3 + Z1 + 2Z2)]

Z1 = 1 + (1− a2)1/3
[
(1 + a)1/3 + (1− a)1/3

]
Z2 =

√
3a2 + Z2

1 , (3)

where the upper/lower signs hold for co/counter-rotating or-
bits. Throughout the paper we will use the symbols r̄ISCO,i
and r̄ISCO,f to denote r̄ISCO calculated for the initial and the
final BH spin parameter, respectively. In the following, we
will also be using the energy per unit mass e of a test-particle
orbiting a BH. It may be expressed as

e(r̄, a) =
r̄2 − 2r̄ ± a

√
r̄

(r̄2 − 3r̄ ± 2a
√
r̄)
√
r̄

(4)

for Kerr equatorial orbits.

III. A MODEL FOR BH-NS MERGERS

When modifying Eq. (1) in order to describe BH-NS sys-
tems, the first step is to set the initial spin angular momentum
of the NS to zero since (1) this is believed to be a reliable ap-
proximation of astrophysically realistic systems [78, 79] and
(2) this was done in all BH-NS merger numerical simulations
so far and we use these as test cases to assess the validity of
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our model. Adapting the notation in Eq. (1) to BH-NS bina-
ries, we now have

af =
aiM

2
BH + lz(r̄ISCO,f, af)MBHMNS

M2
. (5)

In the case of disruptive BH-NS mergers, an accretion torus
surrounding the BH remnant may be formed and one must
thus drop assumption 3 of the BKL approach and adequately
modify Eq. (5) to take this possibility into account. This is
done by:

1. replacing the term lz(r̄ISCO,f, af)MBHMNS in the numer-
ator with lz(r̄ISCO,f, af)MBH(MNS −Mb,torus) and by

2. replacing M with M − e(r̄ISCO,f, af)Mb,torus in the de-
nominator,

where Mb,torus is the baryonic mass of the torus remnant. The
former/latter replacement expresses the lack of angular mo-
mentum/mass accretion onto the BH, due the formation of the
torus. In the case of no torus formation, Mb,torus = 0 and full
accretion of both mass and angular momentum onto the BH is
achieved. Our formula now reads

af =
aiM

2
BH + lz(r̄ISCO,f, af)MBH(MNS −Mb,torus)

[M − e(r̄ISCO,f, af)Mb,torus]2
, (6)

where we once more emphasize that e and lz are calculated
for the ISCO and spin of the final BH.

A final element to take into account is that GW emission
during the inspiral will further reduce the energy M that the
system has at infinite orbital separation. This was not con-
sidered in the BKL model (see assumption 3 in the previous
section), but we wish to include it in our extension of their
formulation. It affects the denominator of Eq. (6) and may be
taken into account at first order in the symmetric mass ratio
ν = MBHMNS/(MBH +MNS)2 by subtracting to M the addi-
tional term, e.g. [77],

Erad = M [1− e(r̄ISCO,i, ai)]ν , (7)

so that

af =
aiM

2
BH + lz(r̄ISCO,f, af)MBH(MNS −Mb,torus)

[M {1− [1− e(r̄ISCO,i, ai)]ν} − e(r̄ISCO,f, af)Mb,torus]2
.

(8)

This final, closed expression for the final spin parameter af
may be solved with root-finding techniques to numerically
determine the spin parameter of the BH remnant of BH-NS
mergers and its denominator naturally provides a prediction
for the final mass of the remnant itself. In other words, once
af is calculated, the mass of the BH remnantMf automatically
follows as

Mf = M {1− [1− e(r̄ISCO,i, ai)]ν} − e(r̄ISCO,f, af)Mb,torus .
(9)

Notice that, in principle, Eq. (8) may be generalized to ac-
count for additional energy losses and for non ideal angu-
lar momentum accretion. In the former case, it is sufficient

to subtract extra terms on the right hand side of Eq. (9) and,
hence, in the denominator of Eq. (8). Non ideal angular mo-
mentum accretion, which is particularly relevant for disruptive
BH-NS mergers, could instead be modelled by inserting an
angular momentum accretion efficiency factor in front of the
lz appearing in Eq. (8). For the time being, we keep Eq. (8) as
it is, knowing that it may be improved as the nuances in the
physics of BH-NS mergers become clearer.

In Tables I and II we compare the predictions of Eq. (8)
and Eq. (1) to the results obtained within full General Rela-
tivity in [38, 43–46, 48], which, along with [17, 47], repre-
sent the state of the art of numerical-relativity simulations of
BH-NS mergers. The BKL predictions are reported in col-
umn seven and denoted with aBKL

f , whereas the outcomes
of Eq. (8) are given in column eight and denoted with af,1
since we will shortly improve our model further. Each row
of the tables refers to a specific BH-NS binary coalescence
and its columns provide a dummy index which numbers the
test cases, the reference in which the numerical-relativity sim-
ulation for that binary was presented, information about the
NS EOS, the NS compactness C = MNS/RNS, the binary
mass ratio Q = MBH/MNS, the initial BH spin parameter ai,
the numerical-relativity result for the final BH spin parameter
aNR

f , the final BH spin parameter aBKL
f predicted by the BKL

formula in Eq. (1), the final BH spin parameter af,1 yielded
by Eq. (8), and the final BH spin parameter af predicted by
Eq. (11), which we discuss later. As far as the NS EOS is con-
cerned, the first 19 comparisons reported in Table I refer to
binaries in which the non-thermal behaviour of the NS mat-
ter2 is governed, at microphysical level, by a polytropic EOS
with polytropic exponent Γ = 2. In the last 18 simulations re-
ported in Table I and in all the ones reported in Table II, on the
other hand, a two-piecewise polytropic EOS was used and the
notation in the tables follows the one used in [41] and [44]: the
first half of the label indicates the stiffness of the EOS, 2H be-
ing the stiffest, whereas the second half refers to the NS ADM
mass at isolation (e.g. 135 stands for 1.35M�). In this first
round of tests, we used the values of Mb,torus found with the
numerical-relativity simulations and reported in the papers.
To make the whole model numerical-relativity-independent
and of quick use, we shall later adopt the method recently
reported in [1] for determining Mb,torus and we will show that
the use of such method for estimating Mb,torus does not spoil
the agreement between the predictions of our model and the
numerical-relativity data for the final BH spin parameter. It
is evident that the difference between af,1 and aNR

f increases
as the mass ratio Q of the system decreases, or, equivalently,
as the symmetric mass ratio ν increases. Given that the fi-
nal spin parameter results obtained with numerical-relativity
simulations have an absolute error ∆aNR

f of 0.01 [39] and that
the error of the BKL approach was evaluated to be . 0.02
in [75], we conclude that the method established by Eq. (8)
works well for BH-NS systems with symmetric mass ratios

2 Here and in [1, 56] thermal contributions are neglected. These are more
relevant, in the merger and post-merger dynamics, if the NS is tidally dis-
rupted.
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up to ν = 0.1875, i.e. for Q ≥ 3, whereas it almost system-
atically exceeds the 0.03 threshold of marginal agreement for
binaries in which Q = 2. We must, thus, improve Eq. (8) to

TABLE I. Tests against numerical-relativity results. Each row is a
test-case numbered by the index in the first column. The remain-
ing columns provide the reference in which the numerical-relativity
simulation for the binary was presented, information about the NS
EOS, the NS compactness C, the binary mass ratio Q, the initial
BH spin parameter ai, and the final BH spin parameter given by the
numerical-relativity simulation, aNR

f , by the BKL approach, aBKL
f ,

by Eq. (8), af,1, and by the final formulation of our model given in
Eqs. (11) and (12), af. The NSs in the initial data of all simulations
are spinless.

Ref. EOS C Q ai aNR
f aBKL

f af,1 af

1 [38] Γ = 2 0.145 3 −0.5 0.33 0.31 0.31 0.31

2 [38] Γ = 2 0.145 3 0.75 0.88 0.85 0.86 0.86

3 [38] Γ = 2 0.145 3 0 0.56 0.54 0.53 0.53

4 [38] Γ = 2 0.145 5 0 0.42 0.42 0.42 0.42

5 [48] Γ = 2 0.145 2 0 0.68 0.61 0.61 0.64

6 [48] Γ = 2 0.145 3 0 0.56 0.54 0.53 0.53

7 [48] Γ = 2 0.145 4 0 0.48 0.47 0.47 0.47

8 [48] Γ = 2 0.145 5 0 0.42 0.42 0.42 0.42

9 [48] Γ = 2 0.160 2 0 0.68 0.61 0.62 0.65

10 [48] Γ = 2 0.160 3 0 0.55 0.54 0.54 0.54

11 [48] Γ = 2 0.178 2 0 0.67 0.61 0.62 0.66

12 [48] Γ = 2 0.178 3 0 0.55 0.54 0.54 0.54

13 [43] Γ = 2 0.144 3 0 0.56 0.54 0.53 0.53

14 [43] Γ = 2 0.144 3 0.5 0.77 0.75 0.75 0.75

15 [43] Γ = 2 0.144 3 0.9 0.93 0.90 0.93 0.93

16 [46] Γ = 2 0.144 7 0.5 0.67 0.67 0.68 0.68

17 [46] Γ = 2 0.144 7 0.7 0.80 0.80 0.81 0.81

18 [46] Γ = 2 0.144 7 0.9 0.92 0.91 0.93 0.93

19 [46] Γ = 2 0.144 5 0.5 0.71 0.71 0.71 0.71

20 [45] 2H-135 0.131 2 0 0.64 0.61 0.59 0.63

21 [45] H-135 0.162 2 0 0.67 0.61 0.61 0.66

22 [45] HB-135 0.172 2 0 0.67 0.61 0.62 0.66

23 [45] HBs-135 0.172 2 0 0.67 0.61 0.62 0.66

24 [45] HBss-135 0.174 2 0 0.67 0.61 0.62 0.66

25 [45] B-135 0.182 2 0 0.67 0.61 0.62 0.67

26 [45] Bs-135 0.185 2 0 0.66 0.61 0.62 0.67

27 [45] Bss-135 0.194 2 0 0.65 0.61 0.62 0.67

28 [45] 2H-135 0.131 3 0 0.52 0.54 0.51 0.51

29 [45] H-135 0.162 3 0 0.56 0.54 0.54 0.54

30 [45] HB-135 0.172 3 0 0.56 0.54 0.54 0.54

31 [45] B-135 0.182 3 0 0.55 0.54 0.54 0.54

32 [45] 2H-12 0.118 2 0 0.62 0.61 0.58 0.62

33 [45] H-12 0.145 2 0 0.66 0.61 0.60 0.64

34 [45] HB-12 0.153 2 0 0.66 0.61 0.61 0.65

35 [45] B-12 0.161 2 0 0.67 0.61 0.61 0.66

36 [45] HB-12 0.153 3 0 0.55 0.54 0.54 0.54

37 [45] B-12 0.161 3 0 0.56 0.54 0.54 0.54

handle BH-NS systems with ν > 0.1875.
As ν increases, the method fails for two reasons. Firstly, the

fifth assumption in Section II breaks down as ν → 0.25 (or
Q → 1): this is intrinsic to the BKL method which inspired
Eq. (8). Secondly, and generally speaking, in systems with
such low mass BHs the tidal fields tend to tear apart the NS
completely, as opposed to in binaries with higher mass BHs,
in which the outer layers of the NS are mainly stripped off. In
the former scenario, the binding energy of the star is liberated
and the NS matter accretes onto the BH as a collection of par-
ticles with total rest mass Mb,NS−Mb,torus, where Mb,NS is the
total rest mass of the NS, whereas in the latter scenario the NS

TABLE II. Same as Table I.

Ref. EOS C Q ai aNR
f aBKL

f af,1 af

38 [44] 2H-135 0.131 2 0.75 0.87 0.84 0.86 0.89

39 [44] 1.5H-135 0.146 2 0.75 0.89 0.84 0.86 0.89

40 [44] H-135 0.162 2 0.75 0.91 0.84 0.86 0.90

41 [44] HB-135 0.172 2 0.75 0.91 0.84 0.86 0.90

42 [44] B-135 0.182 2 0.75 0.91 0.84 0.86 0.90

43 [44] 2H-135 0.131 2 0.5 0.81 0.77 0.77 0.80

44 [44] 1.5H-135 0.146 2 0.5 0.82 0.77 0.77 0.81

45 [44] H-135 0.162 2 0.5 0.82 0.77 0.78 0.82

46 [44] HB-135 0.172 2 0.5 0.83 0.77 0.78 0.82

47 [44] B-135 0.182 2 0.5 0.83 0.77 0.78 0.82

48 [44] 2H-135 0.131 2 −0.5 0.48 0.44 0.42 0.46

49 [44] H-135 0.162 2 −0.5 0.51 0.44 0.45 0.50

50 [44] HB-135 0.172 2 −0.5 0.50 0.44 0.45 0.50

51 [44] B-135 0.182 2 −0.5 0.49 0.44 0.45 0.51

52 [44] 2H-135 0.131 3 0.75 0.86 0.85 0.86 0.86

53 [44] 1.5H-135 0.146 3 0.75 0.86 0.85 0.86 0.86

54 [44] H-135 0.162 3 0.75 0.85 0.85 0.86 0.86

55 [44] HB-135 0.172 3 0.75 0.87 0.85 0.86 0.86

56 [44] B-135 0.182 3 0.75 0.86 0.85 0.87 0.87

57 [44] 2H-135 0.131 3 0.5 0.74 0.75 0.74 0.74

58 [44] 1.5H-135 0.146 3 0.5 0.75 0.75 0.75 0.75

59 [44] H-135 0.162 3 0.5 0.76 0.75 0.75 0.75

60 [44] HB-135 0.172 3 0.5 0.77 0.75 0.76 0.76

61 [44] B-135 0.182 3 0.5 0.77 0.75 0.76 0.76

62 [44] HB-135 0.172 3 −0.5 0.32 0.31 0.31 0.31

63 [44] 2H-135 0.131 4 0.75 0.84 0.84 0.85 0.85

64 [44] H-135 0.162 4 0.75 0.84 0.84 0.86 0.86

65 [44] HB-135 0.172 4 0.75 0.85 0.84 0.86 0.86

66 [44] B-135 0.182 4 0.75 0.85 0.84 0.86 0.86

67 [44] 2H-135 0.131 4 0.5 0.70 0.73 0.71 0.71

68 [44] H-135 0.162 4 0.5 0.73 0.73 0.73 0.73

69 [44] HB-135 0.172 4 0.5 0.74 0.73 0.74 0.74

70 [44] B-135 0.182 4 0.5 0.74 0.73 0.74 0.74

71 [44] 2H-135 0.131 5 0.75 0.82 0.84 0.84 0.84

72 [44] H-135 0.162 5 0.75 0.84 0.84 0.85 0.85

73 [44] HB-135 0.172 5 0.75 0.84 0.84 0.85 0.85

74 [44] B-135 0.182 5 0.75 0.85 0.84 0.86 0.86
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core plunges into the BH without undergoing complete tidal
disruption. We will make the simplifying assumption that in
systems with ν = 2/9 (Q = 2) the NS undergoes complete
tidal disruption, while it does not in systems with ν ≤ 0.1875
(Q ≥ 3). As mentioned, when complete tidal disruption is
achieved, the NS should not be treated as a body with mass
MNS, but as a set of particles with total rest mass Mb,NS, a
fraction of which accretes onto the BH, this fraction having

a total mass Mb,NS − Mb,torus. We thus propose to describe
Q = 2 systems, in which tidal disruption is pivotal, with

af =
aM2

BH + lz(r̄ISCO,f, af)MBH(Mb,NS −Mb,torus)

[M {1− [1− e(r̄ISCO,i, ai)]ν} − e(r̄ISCO,f, af)Mb,torus]2

(10)

instead of with Eq. (8) and to combine the two description by
writing

af =
aM2

BH + lz(r̄ISCO,f, af)MBH{f(ν)Mb,NS + [1− f(ν)]MNS −Mb,torus}
[M {1− [1− e(r̄ISCO,i, ai)]ν} − e(r̄ISCO,f, af)Mb,torus]2

(11)

where f(ν) governs the transition between the two regimes.
This function is currently poorly constrained since state-of-
the-art BH-NS simulations with 2 < Q < 3 are not are avail-
able in the literature and we have a lot of freedom in choosing
it. To fix f(ν), we must impose that f(ν ≥ 2/9) = 1 and that
f(ν ≤ 0.1875) = 0. Additionally, it is physically reasonable
to require the function to be monotonic and therefore that

df

dν
≥ 0 0 ≤ ν ≤ 0.25 .

We shall also require it to be C∞ and to be as simple as pos-
sible. These elements do not determine f(ν) uniquely, of
course. All in all, we set

f(ν) =


0 ν ≤ 0.1875
1
2

[
1− cos

(
π(ν−0.1875)
2/9−0.1875

)]
0.1875 < ν < 2/9

1 ν ≥ 2/9

(12)

in a Hann window inspired fashion. Notice that, in the limit of
large BH masses, a BH-NS systems behaves as a BH binary
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FIG. 1. |af − aNR
f | is shown for all entries in Tables I and II. The

horizontal axis is the dummy that runs through both tables.

system with the same physical parameters, so that one can-
not simply drop the NS gravitational mass MNS in favour of
its baryonic mass Mb,NS in Eq. (8). Moreover, from a merely
quantitative point of view, a model with this oversimplifica-
tion performs worse when tested against numerical-relativity
results.

We now compare the predictions of Eqs. (11)-(12) to the re-
sults obtained within full General Relativity. As anticipated,
this is done in the last column of Tables I and II. By inspect-
ing the last columns in the tables, it is evident that this strategy
considerably improves the outcome of Eq. (8) for Q = 2 sys-
tems and that it overall improves the estimates obtained by
simply applying the BKL method to mixed binary mergers.

Figure 1 shows the absolute value of the difference af−aNR
f

versus the dummy index running over the 74 rows of Tables
I and II. The graph shows that max |af − aNR

f | = 0.04 and
that this value is reached only in one case out of 74 total ones.
This corresponds to the {C = 0.145, Q = 2, ai = 0} sim-
ulation of [39, 48]. An absolute error |af − aNR

f | = 0.03 is
obtained in four cases, namely the {C = 0.145, Q = 3, ai =
0} case of [38], the {C = 0.145, Q = 3, ai = 0} and
{C = 0.160, Q = 2, ai = 0} binaries of [39, 48], and the
{C = 0.144, Q = 4, ai = 0} test-case of [43] (i.e. test-cases

1
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FIG. 2. af − aNR
f distribution for all entries in Tables I and II.
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3, 6, 9, and 13). Notice that two of these binaries coincide. We
also notice that in four of these problematic cases C ∼ 0.145
and this may be a sign that our model breaks down for low NS
compactness.

In Figure 2, we show the distribution of the differences be-
tween our predictions and the numerical relativity results for
the spin parameter of the BH remnant of the BH-NS merg-
ers of Tables I and II. As is evident, af − aNR

f = −0.01
is the difference getting most hits, with 27 test-cases out of
74, and about a fifth of the final spins are predicted exactly.
We also notice that the distribution is slightly skewed towards
negative values of af − aNR

f and that the sum of all the dif-
ferences af − aNR

f yields −0.35, so that the average error∑74
n=1(af − aNR

f )n/74 = 0.00 is found when rounding up
to the second significant figure3. In Figure 3, we consider
the distribution of the absolute difference |af − aNR

f |, showing
that it rapidly drops after 0.02. Given that the error on the
aNR

f ’s is ∆aNR
f = 0.01, 55 numerical-relativity results out of

74, i.e. more than 2/3 of the cases, are reproduced within the
numerical-relativity error. If we take the error ∆af = 0.01 on
our results, which is reasonable since (1) our model is built
against the numerical-relativity data and (2) it is based on the
BKL approach, for which ∆aBKL

f . 0.02 [75], we see that
that our results are compatible with the numerical-relativity
ones in 69 test-cases out of 74, i.e. about 93%. A more con-
servative choice would be to consider ∆af = 0.02 (which is
still in agreement with ∆aBKL

f ) and all but one results would
be completely compatible.

We notice that the value ∆af = 0.01 for the error on our
predictions is also supported by the fact that

∑74
n=1 |af −

aNR
f |n/74 = 0.01. The same result is obtained if the aver-

age is restricted to a specific value of Q or ai, out of the ones
available in Tables I and II. These results are collected in the
second column of Table III, along with the average af − aNR

f
marginalized to a given mass ratio or initial BH spin parame-
ter value, which is instead reported in column four.
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FIG. 3. |af − aNR
f | distribution for all entries in Tables I and II.

3 This rounding up is justified by the fact that numerical-relativity results for
the final spin parameter have an error ∆aNR

f ∼ 0.01.

TABLE III. Average |af − aNR
f | and af − aNR

f for a given physi-
cal parameter, indicated in the first column. The second and fourth
columns refer to predictions for af obtained by substituting for
Mb,torus in Eq. (11) the results found in the numerical-relativity sim-
ulations reported in [38, 41, 43, 45, 46, 48], whereas the third and
fifth columns refer to predictions for af obtained by using the model
described in [1] to calculate the Mb,torus’s.

Fix parameter 〈|af − aNR
f |〉 〈af − aNR

f 〉
Q = 2 0.01 0.01 −0.01 0.00

Q = 3 0.01 0.01 −0.01 −0.01

Q = 4 0.01 0.01 0.01 0.00

Q = 5 0.01 0.01 0.01 0.00

Q = 7 0.01 0.01 0.01 0.01

ai = −0.5 0.01 0.01 −0.01 −0.01

ai = 0 0.01 0.02 −0.01 −0.01

ai = 0.5 0.01 0.01 0.00 0.00

ai = 0.7 0.01 0.01 0.01 0.01

ai = 0.75 0.01 0.01 0.00 0.00

ai = 0.9 0.01 0.01 0.01 0.01

Thus far, when comparing the predictions of Eqs. (11)-(12)
to the BH-NS merger results available in the literature, we
used, case per case, the numerical-relativity prediction for
Mb,torus. This allowed us to test and validate Eqs. (11)-(12).
If we wish to apply such method to a large number and va-
riety of BH-NS binaries, we must consider another way of
obtainingMb,torus. As mentioned previously, we choose to use
the simple two-parameter model, fitted to existing numerical
results, recently reported by Foucart in [1]. This allows one to
estimate Mb,torus for a given binary mass ratio, initial BH spin
parameter, and NS compactness. In Figure 4 we show the ab-
solute values of the difference af − aNR

f obtained when using
the approach of [1] to calculate Mb,torus; this figure must be
compared to Figure 1. We find that the problematic test-cases,
i.e. ones with |af − aNR

f | > 0.02, are the same ones encoun-
tered previously, that is, cases 3, 5, 6, 9, and 13, and that this
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FIG. 4. Same as Figure 1, but using the predictions of [1] forMb,torus

in Eq. (11).
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time max |af − aNR
f | = 0.05, which occurs once.

As far as the distribution of the differences af− aNR
f is con-

cerned, it is again slightly skewed towards negative values:
the sum over all differences af − aNR

f yields −0.38 (as op-
posed to −0.35). The averages

∑74
n=1(af − aNR

f )n/74 and∑74
n=1 |af − aNR

f |n/74 rounded up to the second significant
figure are −0.01 and 0.01, respectively. The average differ-
ences af − aNR

f and |af − aNR
f | for a given binary mass ratio

or initial BH spin parameter are reported in the third and fifth
column of Table III, respectively. Their values are well be-
haved, in that they fall in the interval [−0.01, 0.01], with the
exception of the average |af − aNR

f | restricted to the test-cases
with ai = 0, which yields 0.02 when using the fit of [1]. The
|af−aNR

f | distribution obtained combining Eqs. (11)-(12) with
the model of [1] is shown in Figure 5 and should be compared
to the one in Figure 3. The distribution is again peaked around
0.01. Recalling that ∆aNR

f = 0.01, an agreement within the
numerical-relativity error is found in 52 (as opposed to 55)
cases out of 74, whereas considering ∆af = 0.01, one may
once again state that 69 predictions out of 74 are compatible
with the numerical-relativity results.

In conclusion, the tests and analysis performed for the final
spin parameter af show that the model formulated in Eqs. (11)-
(12) is robust. The error ∆af on af that we obtain from
our tests is ∆af . 0.02. This is compatible with the error
∆aNR

f = 0.01 on numerical-relativity results, against which
our model is built, and with the error of the BKL model, which
inspired this work. We further note that it is compatible with
∼ 1% variations of the term aiM

2
BH appearing in Eq. (11).

If we interpret this artificial ∼ 1% variation as a represen-
tation of possible “glitches” in the transition from the quasi-
equilibrium initial data to the dynamical evolution of the Ein-
stein equations in a numerical simulation, we see that we are
indeed “inheriting” a ∼ 0.01 contribution to ∆af in build-
ing our model against numerical-relativity results and that
this contribution is at least comparable to the ones introduced
by all other approximations behind Eqs. (11)-(12). All these
conclusions remain valid even when combining Eqs. (11)-(12)
with the method of [1] to calculate Mb,torus.
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FIG. 5. |af − aNR
f | distribution obtained when using the predictions

of [1] for Mb,torus in Eq. (11).

It is striking that our simple model to determine af paired
with [1] obtains such an excellent agreement with the fully
general-relativistic numerical simulations of BH-NS mergers.
One must always bear in mind, however, that there still are
large, unexplored portions of the parameter space and that this
prevents us from thoroughly testing our approach to determine
af.

A. Testing the Final Mass Predictions

So far, we tested only one of the two predictions that our
model enables us to make. In this section we separately test
the predictions for the mass Mf of the BH remnant, stemming
from Eq. (9). According to the “no-hair” theorem of General
Relativity, the final spin parameter and mass of an electrically
neutral BH are the only two quantities characterizing the BH
itself. A model capable of accurately predicting both af and
Mf would therefore fully describe the BH remnant.

The numerical simulations of BH-NS mergers performed
by the Kyoto-Tokyo group reported in [44, 45, 48] allow us to
test the outcome of Eq. (9) and to establish the error associated
with it. In Tables IV and V, we collect the numerical relativ-
ity data for the mass of the BH remnant and compare it to our
predictions. The first six columns of the tables follow Tables
I and II, including the numbering of the simulations appear-
ing in column one. The seventh and eighth columns provide
the relative error on the remnant masses obtained when com-
paring the predictions of Eq. (9) to the numerical-relativity re-
sults. Following [44, 45, 48], two forms of the remnant mass
are considered: the gravitational mass,Mf, and the irreducible
mass

Mirr,f = Mf

√
1 +

√
1− a2f
2

. (13)

Both Mf and Mirr,f are divided by the sum M of the initial
gravitational massesMBH andMNS. In the remaining columns
of the table, we give the relative error on the l = 2, m =

2, n = 0 quasi-normal mode (QNM) frequency, fQNM
220 , and

damping time, τQNM
220 , of the BH remnant [80]. Both af and

Mf must be used to calculate fQNM
220 and τQNM

220 , so that ε(fQNM
220 )

and ε(τQNM
220 ) give us a sense of how our errors on the final BH

spin parameter and mass propagate. The terms of comparison
for the QNM frequencies and damping times are obtained by
using the final mass and spin parameter values given in [44,
45, 48] and plugging them in the formulas of [80].

A maximum relative error of 1% and 2% is found for
M f = Mf/M and M irr,f = Mirr,f/M , respectively, with the
2% occurring only once. The errors on fQNM

220 and τQNM
220 , on

the other hand, are 4% at the most. It is noteworthy that the
second contribution in Eq. (9), i.e. the energy loss due to GW
emission, is crucial in obtaining such accurate results: if we
do not include it, the maximum error on τQNM

220 , for example,
is 11%.

If we use input from the model of [1] and repeat these
tests on M f, M irr,f, f

QNM
220 , and τQNM

220 , the maximum errors
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we obtain are 2%, 3%, 5%, and 4%, respectively. The pan-
els of Figure 6 show the distributions of the relative errors
ε(M f), ε(M irr,f), ε(fQNM

220 ), and ε(τQNM
220 ) obtained when using

Eqs. (9), (11)-(12) in combination with [1]. As for the tests
performed with the numerical-relativity values of Mb,torus,
these distributions are peaked around∼ 0.00−0.01 and errors
higher than 2% are rare. We stress once more that large por-
tions of the parameter space of BH-NS binaries are currently
unexplored, thus preventing us from testing our approach thor-
oughly.

IV. RESULTS

We now review the main results obtained by systematically
exploring the space of parameters of BH-NS systems using
the model described so far. More specifically, we vary:

• the initial spin parameter of the BH, ai, reaching a max-
imum value of 0.99;

TABLE IV. Tests against numerical-relativity results. The first six
columns are organized as in Tables I and II. The last four columns
show the relative error on the BH remnant gravitational mass in units
of the system initial mass, M f, on its irreducible mass in units of
the system initial mass, M irr,f, and on its l = 2, m = 2, n = 0
quasi-normal mode frequency, fQNM

220 , and damping time, τQNM
220 .

Ref. EOS C Q ai ε(M f) ε(M irr,f) ε(f
QNM
220 ) ε(τQNM

220 )

5 [48] Γ = 2 0.145 2 0 0.00 0.01 0.03 0.02

6 [48] Γ = 2 0.145 3 0 0.00 0.00 0.02 0.01

7 [48] Γ = 2 0.145 4 0 0.00 0.00 0.00 0.00

8 [48] Γ = 2 0.145 5 0 0.00 0.00 0.01 0.00

9 [48] Γ = 2 0.160 2 0 0.00 0.01 0.02 0.01

10 [48] Γ = 2 0.160 3 0 0.00 0.01 0.02 0.00

11 [48] Γ = 2 0.178 2 0 0.00 0.01 0.01 0.00

12 [48] Γ = 2 0.178 3 0 0.01 0.01 0.01 0.01

20 [45] 2H-135 0.131 2 0 0.00 0.00 0.01 0.00

21 [45] H-135 0.162 2 0 0.00 0.00 0.01 0.00

22 [45] HB-135 0.172 2 0 0.00 0.01 0.01 0.00

23 [45] HBs-135 0.172 2 0 0.00 0.01 0.01 0.00

24 [45] HBss-135 0.174 2 0 0.00 0.01 0.01 0.00

25 [45] B-135 0.182 2 0 0.01 0.00 0.01 0.01

26 [45] Bs-135 0.185 2 0 0.01 0.00 0.00 0.01

27 [45] Bss-135 0.194 2 0 0.01 0.00 0.00 0.02

28 [45] 2H-135 0.131 3 0 0.00 0.00 0.00 0.00

29 [45] H-135 0.162 3 0 0.01 0.01 0.02 0.00

30 [45] HB-135 0.172 3 0 0.01 0.01 0.02 0.00

31 [45] B-135 0.182 3 0 0.01 0.01 0.01 0.01

32 [45] 2H-12 0.118 2 0 0.00 0.00 0.00 0.00

33 [45] H-12 0.145 2 0 0.00 0.00 0.01 0.01

34 [45] HB-12 0.153 2 0 0.00 0.00 0.01 0.00

35 [45] B-12 0.161 2 0 0.00 0.00 0.01 0.00

36 [45] HB-12 0.153 3 0 0.00 0.01 0.01 0.00

37 [45] B-12 0.161 3 0 0.01 0.01 0.02 0.00

• the binary mass ratio, Q, between 2 and 10;

• the NS mass, between 1.2M� and 2.0M�, compatibly
with the measurement reported in [81];

• the NS compactness. In particular, we use the WFF1
EOS [82] and the PS EOS [83] as representatives of
the softest and stiffest possible EOS, yielding the most
and least compact NSs, respectively. Thus, for a given
NS mass we consider the compactness of a NS gov-
erned by the WFF1 EOS and the one of a NS described
by the PS EOS. We also quote results for the APR2

TABLE V. Same as Table IV.

Ref. EOS C Q ai ε(M f) ε(M irr,f) ε(f
QNM
220 ) ε(τQNM

220 )

38 [44] 2H-135 0.131 2 0.75 0.01 0.02 0.04 0.04

39 [44] 1.5H-135 0.146 2 0.75 0.00 0.01 0.00 0.00

40 [44] H-135 0.162 2 0.75 0.00 0.00 0.02 0.03

41 [44] HB-135 0.172 2 0.75 0.00 0.01 0.02 0.03

42 [44] B-135 0.182 2 0.75 0.00 0.01 0.02 0.03

43 [44] 2H-135 0.131 2 0.5 0.00 0.00 0.01 0.01

44 [44] 1.5H-135 0.146 2 0.5 0.00 0.00 0.01 0.01

45 [44] H-135 0.162 2 0.5 0.00 0.00 0.00 0.00

46 [44] HB-135 0.172 2 0.5 0.00 0.00 0.01 0.01

47 [44] B-135 0.182 2 0.5 0.00 0.01 0.01 0.01

48 [44] 2H-135 0.131 2 −0.5 0.00 0.00 0.01 0.01

49 [44] H-135 0.162 2 −0.5 0.00 0.00 0.01 0.00

50 [44] HB-135 0.172 2 −0.5 0.00 0.00 0.00 0.00

51 [44] B-135 0.182 2 −0.5 0.00 0.00 0.01 0.01

52 [44] 2H-135 0.131 3 0.75 0.00 0.01 0.00 0.00

53 [44] 1.5H-135 0.146 3 0.75 0.00 0.00 0.00 0.00

54 [44] H-135 0.162 3 0.75 0.00 0.00 0.01 0.02

55 [44] HB-135 0.172 3 0.75 0.00 0.01 0.02 0.01

56 [44] B-135 0.182 3 0.75 0.01 0.00 0.01 0.02

57 [44] 2H-135 0.131 3 0.5 0.00 0.00 0.00 0.00

58 [44] 1.5H-135 0.146 3 0.5 0.00 0.00 0.00 0.00

59 [44] H-135 0.162 3 0.5 0.00 0.01 0.01 0.00

60 [44] HB-135 0.172 3 0.5 0.01 0.01 0.01 0.00

61 [44] B-135 0.182 3 0.5 0.01 0.01 0.02 0.00

62 [44] HB-135 0.172 3 −0.5 0.00 0.00 0.01 0.00

63 [44] 2H-135 0.131 4 0.75 0.00 0.01 0.01 0.01

64 [44] H-135 0.162 4 0.75 0.01 0.00 0.02 0.04

65 [44] HB-135 0.172 4 0.75 0.01 0.00 0.01 0.02

66 [44] B-135 0.182 4 0.75 0.01 0.01 0.00 0.02

67 [44] 2H-135 0.131 4 0.5 0.00 0.00 0.01 0.01

68 [44] H-135 0.162 4 0.5 0.01 0.01 0.01 0.01

69 [44] HB-135 0.172 4 0.5 0.01 0.01 0.01 0.01

70 [44] B-135 0.182 4 0.5 0.01 0.01 0.01 0.01

71 [44] 2H-135 0.131 5 0.75 0.00 0.01 0.02 0.03

72 [44] H-135 0.162 5 0.75 0.01 0.00 0.01 0.02

73 [44] HB-135 0.172 5 0.75 0.01 0.00 0.00 0.02

74 [44] B-135 0.182 5 0.75 0.01 0.00 0.00 0.03
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FIG. 6. Distribution of the relative errors ε(Mf/M0), ε(Mirr,f/M0), ε(fQNM
220 ), and ε(τQNM

220 ) obtained from Eqs. (9), (11)-(12) in combination
with [1] for test-cases in Tables IV and V with C ≥ 0.14.

EOS [84] since this is the most complete nuclear many-
body study to date.

The choices regarding the EOS are discussed in detail in the
Appendix.

We analyze the behaviour of af in the relevant space of pa-
rameters, examining its maximum possible value; we further
compare the outcome of BH-NS mergers and BH-BH merg-
ers in terms of the l = m = 2, n = 0 quasi-normal mode
frequency and show that the comparison is EOS-dependent.
When comparing to binary black holes, we apply the fitting
formula of [75] to determine the final spin parameter of the
their remnants and we neglect the last term in Eq. (9) to esti-
mate the mass of their remnants. More accurate predictions
for Mf are possible for BH-BH binaries, e.g. [77]; if we were
to rely on them, however, we would be comparing predictions
with a different degree of accuracy, thus mixing the physical
consequences of replacing the lower mass BH of a binary BH
with a NS to effects due to the different precision underlying
the compared predictions.

A. Maximum Final Spin Parameter

An important aspect to investigate when studying the final
spin of the BH remnant of compact binary mergers is its max-
imum value. According to the cosmic censorship conjecture,
the spin parameter of a BH cannot exceed unity [85]. In-
direct support to the conjecture was provided by the recent
numerical-relativity simulations of BH-NS mergers [44]. The
extrapolation of the results of the numerical simulations to the
case of an extremely spinning BH with ai = 1 (merging with
an irrotational NS) yielded af ∼ 0.98. It was suggested that
simulations with mass ratio higher than Q = 4 and (nearly)
extremal initial BH spin should be performed in order to as-
sess whether af . 0.98(< 1) is a universal bound for BH-NS
binary mergers or not.

Our model does not predict the formation of overspinning
(af > 1) BHs for BH-NS binaries with an extremal initial BH
spin and any symmetric mass ratio. We notice that, all else
being fix, the softest the EOS, the higher the final spin param-
eter af. We thus suggest performing fully general-relativistic
numerical simulations of systems with (nearly) extremal ini-
tial BH spin parameter and a soft NS EOS to assess the bound
on af < 1 for BH-NS binary mergers.
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FIG. 7. (Colour online). The final spin parameter of BH-NS systems is shown as a function of the NS mass and the symmetric mass ratio; the
initial spin parameter of the BH is set to 0.75. Results in the left/right panel refer to the PS/WFF1 EOS.

To determine the maximum final spin parameter, we con-
sider our data and extrapolate it to ai = 1. We perform the
extrapolations on two different sets of data: in one case we
use all our data, i.e. with ai up to 0.99, whereas in the other
we consider only ai ≤ 0.9. This allows us to cross-check our
predictions obtained within the untested region of the param-
eter space 0.9 < ai ≤ 1, thus making our conclusions more
robust. The highest final spin parameters we obtain are for
Q = 10, or ν ' 0.083. The WFF1, PS, and APR2 EOS
all yield a maximum final spin parameter af = 1.00, com-
patible with the af ∼ 0.98 bound pinpointed in [44]. For the
mass ratio Q = 2, on the other hand we find the maximum
spin af = 0.99. Even though we previously determined that
our predictions have an error ∆af . 0.02 (see discussion in
Section III), we believe it is worth mentioning that we find
max af = 0.997, an “empirical” result that is compatible with
Thorne’s limit of 0.998 [86].

B. Dependence of the BH Remnant on the NS EOS

The main feature that appears when comparing results for
different EOSs is that final spin parameter of the BH remnant,
af, can depend on the EOS of the NS in the mixed binary
progenitor (all else being fixed). This happens because dif-
ferent EOSs yield different torus masses. An example of this
EOS-dependence is provided in Figure 7, where binaries with
ai = 0.75 and two possible EOSs, the WFF1 and the PS,
are considered. The EOS-dependence of af may be better un-
derstood by carefully examining the case of BH-BH binaries.
Figure 8 shows that, given a binary with a non-spinning sec-
ondary BH and a primary BH with initial spin parameter ai,
there is a specific symmetric mass ratio that yields the maxi-
mum af: its value varies monotonically from 0.25 to 0 as the ai
runs from 0 to 1. More specifically, the first panel shows that

for non-spinning binary BHs higher values of af are favoured
by high symmetric mass ratios (i.e. it is “easier” to spin up a
Schwarzschild BH with a mass comparable to the one of the
BH itself), while this is not true in the other two panels, in
which the primary BH is rotating. In the case of BH-NS sys-
tems, as one varies ν and MNS, the BH mass changes along
with the mass accreting onto the BH: in the case of disruptive
mergers, the latter depends on the EOS and this explains why
the spin of the BH remnant depends on the EOS of the NS in
the progenitor, for BH-NS disruptive mergers.

Having shown that af may depend on the EOS of the NS
and bearing in mind that Mf may too4, this means that in-
formation about the NS EOS is “coded” in the properties of
the BH remnant. This in turn implies that the QNM spectrum
of the BH remnant (1) may be affected by the EOS and (2)
may deviate from the BH-BH behaviour. In Figure 9 we com-
pare the BH remnant of BH-NS mergers to the BH remnant of
BH-BH mergers. We show the difference between the QNM
frequency fQNM

220 of the BH remnant of a BH-NS merger and
of a BH-BH merger with the same secondary mass, symmet-
ric mass ratio, and initial spin parameters. The final spin pa-
rameter and mass of the binary BHs are determined using the
method of [75] and Eq. (9) without the last term, respectively.
All fQNM

220 ’s are calculated using the fitting formula of [80].
Our results confirm that the mixed binaries we expect to see

the most of, i.e. those with ν ∼ 0.11 [4], do indeed behave
like binary BHs in terms of GW emission during the ringdown
epoch: this is positive for template design and GW detection.
In Figure 9 we show our results in the region above ν = 0.16

4 This is more straightforward to comprehend: NSs differing only for the
EOS, differ in compactness and may thus accrete different amounts of mat-
ter in disruptive mergers with a BH, e.g. [44].
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FIG. 8. (Colour online). Final spin parameter for binaries with a primary spinning BH and a secondary non-spinning BH. From left to right,
the initial spin parameter of the spinning BH is set to 0, 0.75, and 0.9. The curves were obtained with the the fitting formula of [75].

for binaries with ai = 0.4 and ai = 0.8 and we contrast the
PS EOS with the WFF1 EOS. We find that for ν ∼ 0.16 (or
Q ∼ 4) the BH remnant QNM frequency fQNM

220 deviates from
its BH-BH binary value by . 100Hz for both soft and stiff
EOSs, unless the initial BH spin parameter is particularly high
and the NS EOS is very stiff (bottom, left panel of Figure 9).
The NS thus leaves a (small) “trace” in the QNM frequency:
for binaries with a BH with moderate to high spin and a sym-
metric mass ratio ν . 0.16, one could in principle determine
whether the source of a detected GW coalescence signal was
a BH-BH or a BH-NS binary by separately analysing the in-
spiral and the ringdown epochs. The former epoch would be
identical for a mixed binary and a BH binary with the same
physical parameters, because tidal deformations of the NS in
a mixed binary with ν . 0.16 are not expected to significantly
alter the inspiral epoch of the GW signal [16]. Looking at
the ringdown epoch would therefore complement the idea of
pinning down the presence of the NS from the inspiral. Con-
straining the NS EOS in the region of the parameter space
around ν ∼ 0.16 by measuring fQNM

220 appears, instead, to be
difficult.

For systems with high symmetric mass ratios, on the other
hand, the difference in fQNM

220 may be high, suggesting the in-
teresting prospect of constraining the NS EOS through the
measurement of the properties of the BH remnant. If we now
focus on the high ν region of the panels in Figure 9, we see
that the deviations in fQNM

220 from the BH-BH case are par-
ticularly evident for ν & 0.2 and a high initial BH spin pa-
rameter. This and all other features of the bottom panels in
Figure 9 may be compared to those of the panels Figure 7,
showing that they are “inherited” from the behaviour of af. At
high ν’s and ai’s, the difference between the fQNM

220 of the BH
remnant of a BH-NS merger and the one of a BH-BH merger
ranges from ∼ 600Hz to ∼ 1200Hz. The NS EOS therefore
leaves an imprint on the QNM frequency of the BH remnant,
although one should bear in mind that we are comparing two
(extreme) EOSs that are on opposite ends in terms of stiffness,
and this makes the differences between the left and the right
panels of Figure 9 particularly prominent. A comparison be-
tween results for the WFF1 EOS and the APR2 EOS, which
yield NSs relatively similar in terms of compactness (see Fig-
ure 11), tells us that in order to be able to properly discrimi-
nate between similar candidate nuclear EOSs, one would need
to be able to perform measurements of fQNM

220 with a precision

the order of ∼ 10Hz.
Being able to perform measurements of fQNM

220 for the BH
remnant of BH-NS mergers requires that the QNM itself is ex-
cited during the coalescence. If this happens, fQNM

220 influences
the value of the cutoff frequency fcut of the the GW spectrum
of the mixed binary coalescence 5. The extrapolation of the
results of the numerical-relativity simulations reported in [44]
shows, in particular, that fcut ' fQNM

220 for C & 0.18 in mixed
binaries with ν ' 0.139 (or Q = 5) and ai = 0.75, or for
C & 0.19 in binaries when ai = 0 and ν ' 0.22 (Q = 2)
or ν ' 0.1875 (Q = 3) and ai = 0.5. The higher ai, the
higher the lower bound on C that allows for fcut ' fQNM

220 to
happen at a given mass ratio; on the other hand, the greater
the mass of the BH at a given ai and C, the closer fcut will
be to fQNM

220 . The ∼ 0.19 threshold on the NS compactness
encountered above corresponds to MNS & 1.33M� for the
WFF1 EOS, to MNS & 1.48M� for the APR2 EOS, and to
MNS & 1.93M� for the PS EOS. We thus see that there is
the virtual possibility of constraining the NS EOS with the
measurement of the gravitational radiation emitted by those
binaries for which fcut ' fQNM

220 . This scenario, as said, con-
cerns NSs with high compactnesses and would thus provide
constraints for soft EOSs. We note that the observation of
tidal effects in the phase of the gravitational radiation emit-
ted during the inspiral [16, 87] and in the cutoff frequency
when fcut < fQNM

220 [14, 44] favours placing constraints on
stiff EOSs, so that measurements in fcut ∼ fQNM

220 scenarios
would be complementary.

V. CONCLUSIONS AND REMARKS

In this paper we presented a model for predicting the final
spin parameter, af, and mass, Mf, of the BH remnant BH-
NS coalescing binaries in quasi-circular orbits and with initial
BH spin of arbitrary magnitude and parallel to the orbital an-
gular momentum, arbitrary mass ratio, and arbitrary NS mass
and cold, barotropic equation of state. The parameter space
just outlined could in principle be investigated entirely within

5 See [44] for explanations on what determines fcut and for examples of grav-
itational waveform spectra.
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FIG. 9. (Colour online). Difference, in Hz, between the l = m = 2, n = 0 quasi-normal mode frequency, fQNM
220 , of the BH remnant of a

BH-NS merger and of a BH-BH merger with the same secondary mass M2, symmetric mass ratio ν, and initial spin parameters. The NS and
secondary BH initial spin is always set to zero. The primary BH initial spin parameter is 0.4 and 0.8 in the top and bottom panels, respectively.

numerical-relativity; in practice, however, the process would
be very time and resource consuming, because simulations are
still very expensive in terms of computational costs.

Our starting point was the phenomenological model of
Buonanno, Kidder, and Lehner for the final spin of binary
BH mergers [66], which we modified to account for (1) en-
ergy loss via gravitational wave emission during the inspiral
and (2) for the possible formation of an accretion torus in the
case of disruptive mergers. We tested our model by comparing
its predictions to the recent numerical-relativity simulation re-
sults available in the literature. We were able to achieve good
agreement down to a mass ratio of MBH/MNS = 2, albeit in-

troducing an additional ingredient in the formulation of the
model for 2 < MBH/MNS < 3 which is currently poorly con-
strained. We obtained an absolute error on af of 0.02, which
is compatible with the one of the BKL approach [66, 75]. For
the final gravitational and irreducible (normalized) masses of
the BH remnant, Mf and Mirr,f, we found a relative error of
1%. These errors then propagate in the calculation of the
l = m = 2, n = 0 quasi-normal mode frequency fQNM

220

and damping time τQNM
220 of the remnant BH and yield maxi-

mum relative errors of 4%. These relative errors are, however,
safely≤ 2% in the vast majority of test-cases. Combining this
method with input for the torus remnant mass from the two-
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parameter model, fitted to existing numerical results, recently
reported by Foucart in [1], the error ∆af ' 0.02 is preserved
and so is the behaviour of the relative errors on Mf, Mirr,f,
fQNM
220 , and τQNM

220 (see Figures 4 and 6).
The tests we performed against the available numerical-

relativity results were successful, especially considering the
limitations of our simple approach. This implies that the out-
come of the complicated merger dynamics of BH-NS binaries
may be understood in fairly simple terms, at least when the
BH initial spin and orbital angular momentum directions are
parallel and the inspiral orbit is quasi-circular. Eqs. (9), (11)-
(12) presented here along with the fit of Foucart to the torus
remnant mass [1] constitute an easy-to-use analytical model
that describes the remnant of BH-NS mergers. Notwithstand-
ing the good performance of the model in the tests, its predic-
tions should be taken with “a grain of salt”, as large portions
of the parameter space of BH-NS binaries are currently unex-
plored, hampering a thorough test of our approach.

The approach presented and tested in the first part of this
work was then employed to span the space of parameters con-
sisting of the binary (symmetric) mass ratio, the BH initial
spin, the NS mass, and the NS equation of state. This enabled
us to gain a sense of the behaviour of the properties of the
BH remnant in this four-fold space of parameters and to pin-
point some interesting aspects which, we believe, deserve be-
ing verified and studied in conclusive, quantitative terms with
the tools of numerical-relativity. The following is a summary
of our main results.

• We obtained a maximum final spin parameter equal to
1.00 for the WFF1, APR2, and PS nuclear equations
of state, when using the mass ratio MBH/MNS = 10.
MBH/MNS = 2 yields instead a maximum final spin
parameter of 0.99. Given their absolute error of 0.02,
these predictions are compatible with the 0.98 maxi-
mum found in [44] and provide indirect support to the
cosmic censorship conjecture [85].

• We discussed the dependence of af and Mf on the NS
EOS, claiming that the EOS may leave an imprint on the
BH remnant. The quasi-normal mode frequency fQNM

220

of the BH remnant, which depends on af and Mf alone,
could thus be used to constrain the NS EOS (Figure 9).
Deviations from the BH-BH values of fQNM

220 for sym-
metric mass ratios & 0.2, with maximum deviations
between ∼ 600Hz and ∼ 1200Hz. The excitation of
the QNM oscillations does not occur for all mixed bi-
nary mergers, but it is likely to appear in the spectrum
of the emitted gravitational radiation in the form of a
cutoff frequency fcut ' fQNM

220 for systems with fairly
compact NSs, i.e. for soft EOSs [44]. The possibil-
ity of constraining the EOS by measuring fcut ' fQNM

220

seems therefore complementary to other ideas for pos-
ing EOS constraints by means of GW detection, in that
these favour constraints on stiff EOSs [14, 16, 44, 87].
High-frequency gravitational waves from coalescing bi-
naries may thus turn out to be, once more, very promis-
ing in terms of the NS EOS [88].

Future applications of the approach presented in this paper
may be to exploit the predicted values of af and Mf to (1)
provide the QNM frequencies to be used in the construction
of hybrid waveforms for BH-NS systems [17, 44], (2) to de-
velop phenomenological waveforms for BH-NS systems, (3)
to study time-frequency characteristics of the emitted radia-
tion [53], and (4) to build backgrounds for perturbative ap-
proaches to the study of the post-merger epoch.

In concluding this work, we would like to stimulate the BH-
NS numerical-relativity community to continue investigating
different parameter configurations, as this would allow us to
better constrain the current version of our model (see the dis-
cussion following Eq. (11)). Investigations on more generic
initial spin configurations would also be helpful [43], as they
would allow us to look into extending our approach.
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Appendix A: Equations of State

NSs are the most compact objects known, lacking an event
horizon. The densities in the interior of these stars are ex-
pected to exceed the equilibrium density of nuclear matter
(ρs ' 2.7 ·1014 g/cm−3), so their macroscopic properties, e.g.
mass and radius, and the internal composition of their cores
depend on the nature of strong interactions in dense matter
and reflect (different aspects of) the dense matter EOS. Our
knowledge about the behaviour of matter at such exception-
ally high densities, however, is still currently limited. As far
as the composition is concerned, for example, several dense
matter models predict that — in addition to nucleons, elec-
trons, and muons — exotica in the form of hyperons, a Bose
condensate of mesons, or deconfined quark matter eventually
appear at supra-nuclear densities [89].

An intense investigation to determine the EOS of dense
matter was performed throughout the years [89–91]. The
recent measurement of a NS with mass MNS = (1.97 ±
0.04)M� ruled out several equations of state proposed over
time [81]. NS equilibrium sequences for EOSs6 compatible
with such measurement are shown in the radius-mass plane
in Figure 10. In order to assess the impact of the EOS on
the BH remnant of BH-NS mergers, we pick the two EOSs
that yield the smallest and the largest NS radii for any given
NS mass between ∼ 1M� and ∼ 2.1M�. We dub these
two EOSs WFF1 and PS, respectively, because of their NS
core description [82, 83]. The NS equilibrium sequences they

6 We do not consider strange quark matter equations of state.
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yield are shown in blue and red in Figure 10. As is ob-
vious from the graph, the WFF1 and the PS EOS bracket
all other equations of state in the relevant NS mass range7

1.0 . MNS/M� . 2.1. The sequences of Figure 10 are dis-
played in the compactness-mass plane in Figure 11.

For both the WFF1 and the PS EOS, we use the same de-
scription of matter in the outer layers of the NS:

• for densities in the interval starting at the neutron drip
density 4 · 1011 g/cm3 and ending at 2 · 1014 g/cm3, the
Pethick-Ravenhall-Lorenz (PRL) EOS [93] is used;
• for the crust layer in the density interval (107 −

4 · 1011) g/cm3, the Baym-Pethick-Sutherland (BPS)
EOS [94] is adopted;

• and, finally, for densities lower than 107 g/cm3 the BPS
EOS is extrapolated.

The two EOSs differ at densities above 2 · 1014 g/cm3: for
the NS core we use what are strictly speaking the WFF1 EOS
of [82] and the “liquid” version of the PS EOS of [83]. The
WFF1 EOS for dense nuclear matter is based on a many-body
Hamiltonian built with the Argonne v14 two-nucleon potential
and the Urbana VII three-nucleon potential; calculations are
performed with a variational method. The PS EOS, instead,
considers neutron-only matter with π0 condensates; the π0

relativistic field is not treated explicitly but is instead replaced
by an equivalent two-body potential; calculations are per-
formed using a constrained variational method. Both WFF1
and PS are dated and have been superseded by more mod-
ern models and calculation techniques; however, they serve
our purpose of considering extremely compact and extremely
large NSs, respectively, to explore the space of parameters of
BH-NS binaries.

In addition to the WFF1 and PS cases, we also discuss re-
sults obtained for the APR2 EOS [84], which is used as it rep-
resents the most complete nuclear many-body study to date
and special-relativistic corrections were progressively incor-
porated in it. APR2 is based on the Argonne v18 two-nucleon
potential, the Urbana IX three-nucleon potential, and the δvb
boost; it is supported by current astrophysical [95] and nuclear
physics constraints [96].
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