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We present amodel for determining the dimensionless spin parameter andmass of the black hole remnant

of black hole-neutron star mergers with parallel orbital angular momentum and initial black hole spin. This

approach is based on the Buonanno, Kidder, and Lehnermethod for binary black holes, and it is successfully

tested against the results of numerical-relativity simulations: the dimensionless spin parameter is predicted

with absolute error& 0:02, whereas the relative error on the final mass is& 2%, its distribution in the tests

being pronouncedly peaked at 1%. Our approach and the fit to the torus remnant mass reported in [57] thus

constitute an easy-to-use analytical model that accurately describes the remnant of black hole-neutron star

mergers. The space of parameters consisting of the binary mass ratio, the initial black hole spin, and the

neutron star mass and equation of state is investigated.We provide indirect support to the cosmic censorship

conjecture for black hole remnants of black hole-neutron star mergers. We show that the presence of a

neutron star affects the quasinormal mode frequency of the black hole remnant, thus suggesting that the

ringdown epoch of the gravitational wave signal may virtually be used to (1) distinguish black hole-black

hole from black hole-neutron star mergers and to (2) constrain the neutron star equation of state.

DOI: 10.1103/PhysRevD.88.104025 PACS numbers: 04.30.Db, 04.25.dk, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Once a black hole-neutron star (BH-NS) binary is formed,
gravitational radiation reaction gradually reduces its orbital
separation until the two companionsmerge and leave behind
a remnant consisting of a black hole and, possibly, a hot,
massive accretion torus surrounding it [1]. BH-NS binaries
have not been observed yet; population synthesis studies,
however, suggest that the coalescence of BH-NS systems is
likely to occur frequently in theHubblevolume, thusmaking
theoretical studies on the evolution and final state of BH-NS
mergers relevant [2–6]. Interest in these systems arises from
the fact that they are among the most promising sources
for gravitational wave (GW) detectors—such as LIGO [7],
Virgo [8], KAGRA [9], and the Einstein Telescope [10]—
and that they are promising candidates as progenitors of
(a fraction of) short-hard gamma-ray bursts [11,12].
Further, as NSs in these systems undergo strong tidal
deformations, observing GW and/or electromagnetic sig-
nals emitted by BH-NS binaries could help shed light on
the equation of state (EOS) of matter at supranuclear
densities, which is currently unknown [13–16]. Finally,
comprehending the fate of the material possibly ejected
by BH-NS binaries after the NS tidal disruption is relevant
in interpreting the observed abundances of the heavy
elements that are formed by rapid neutron capture in
r-processes [17]. These outflows may additionally be ob-
servable due to the radioactive decays triggered by the
formation of heavy isotopes, i.e. ‘‘kilonovas,’’ or due to
the shock they would generate when hitting interstellar
medium of sufficiently high density [18].

To achieve a full understanding of BH-NS merger events
and their physics, numerical-relativity simulations are
required. These will ultimately have to include adequate
and accurate treatments of general relativity, relativistic
(magneto)hydrodynamics, the microphysical EOS, NS
crust physics, thermal effects, and nuclear physics reac-
tions. Numerical quasiequilibrium studies [19–25] and dy-
namical simulations [16,26–55] of mixed binary mergers
made considerable progress in the last few years. Despite
the fact that simulating BH-NS mergers is now possible,
these simulations remain nevertheless both challenging and
computationally intensive. This has motivated the parallel
development of pseudo-Newtonian BH-NS calculations,
e.g. [56], and analytical approaches focusing on specific
physical aspects of the problem, e.g. [13–15,57–64].
Studies of these kinds benefit from their low computational
costs, which allow them to shed light on questions that
cannot be currently addressed with numerical simulations
and to provide insight onwhat happenswhen the large space
of parameters of BH-NS binaries is spanned. They may, in
turn, aid numerical relativity by suggesting cases that are
particularly interesting to simulate and by providing infor-
mation to exploit within the simulations themselves.
In this paper we focus on predicting the spin parameter

and mass of the BH remnant of BH-NS coalescing binaries
by using a semianalytical approach.While this problemhas a
fairly long history in the case of coalescing binary black
holes [65–85], no attempt beyond numerical-relativity simu-
lations has yet been made to tackle it in the case of BH-NS
mergers. The approachwepresent and discuss is based on the
work of Buonanno, Kidder, and Lehner (BKL) on estimating
the final BH spin of a coalescing binary BH with arbitrary
initial masses and spins [74]. We choose this simple,*francesco.pannarale@aei.mpg.de
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phenomenological model as a starting point because it pro-
vides good physical insight and because it is straightforward
to modify and extend. Our method may indeed be seen as a
generalization of the BKL model to the case in which the
lower mass BH is replaced with a NS. For the time being,
however, it is restricted to systems in which the BH spin
direction is parallel to the orbital angular momentum direc-
tion. The closed expression we determine for the final spin
parameter automatically yields an estimate of themass of the
BH remnant by means of a method similar to the starting
point of Barausse,Morozova, and Rezzolla’s calculations on
themass radiated by binary BHs [85], but withmodifications
inspired, once again, by [74]. The key equations of our
approach are Eqs. (9), (11), and (12) and, despite the mathe-
matical complexity of the mixed binary coalescence prob-
lem, our method enables us to reproduce the results of
numerical-relativity simulations with reasonable accuracy.

The paper is organized as follows. In Sec. II we review
the BKL approach for binary BHs. In Sec. III we propose
an extension of this method in order to predict the spin
parameter and mass of BH remnants of BH-NS mergers—
Eqs. (9), (11), and (12)—and successfully test it against
available numerical-relativity data. In Sec. IV we gather
the results obtained by systematically varying the binary
mass ratio, the initial BH spin parameter, and the NS mass
and EOS. First, we provide indirect support to the cosmic
censorship conjecture and suggest particularly interesting
cases to explore with numerical simulations in this context
(Sec. IVA). Then, we show that the NS EOS may leave an
imprint on the BH remnant in terms of its final spin and
mass (Sec. IVB). This suggests the idea of inferring the
presence of the NS and of constraining its EOS from the
ringdown of the BH remnant. Finally, in Sec. V, we draw
our conclusions and collect our remarks.

II. THE BKL FORMULA

The BKL approach to estimate the final spin of BH-BH
mergers [74] starts by considering an initial reference state
with two widely separated black holes approximated as
two Kerr black holes having masses fM1;M2g and dimen-
sionless spin parameters1 fa1; a2g. The case of the BKL
approach that we will extend in order to describe BH-NS
binaries is that of BH binary systems, the orbits of which
stay within a unique plane, referred to as the equatorial
plane; in such cases, the orbital angular momentum and the
individual spins of the BHs are orthogonal to the equatorial
plane. The spin parameter of the BH remnant af is obtained
in terms of the initial configuration of the system by a
phenomenological approach that relies on the following
two observations based on intuitive arguments, on post-
Newtonian and perturbative calculations for the inspiral
and ringdown, and on numerical simulations of the merger:

(1) The system evolves quasiadiabatically during the
inspiral phase.

(2) The total mass and angular momentum of the sys-
tem change only by a small amount during the
merger and ringdown phases.

Further, the BKL expression for af is derived from first
principles once the following assumptions are made:
(1) The mass of the system is conserved to first order, so

that the final BH has a total mass M ¼ M1 þM2.
(2) The magnitude of the individual BH spins remains

constant, and their contribution to the final total
angular momentum is determined by the their initial
values.

(3) The system radiates much of its angular momentum
in the long inspiral stage until it reaches the inner-
most stable circular orbit (ISCO), when the dynam-
ics quickly leads to the merger of the two BHs.
Given that the radiation of energy and angular mo-
mentum during the merger is small with respect to
the mass and angular momentum of the system, the
contribution of the orbital angular momentum to the
angular momentum of the BH remnant is estimated
by considering the orbital angular momentum of a
test particle orbiting a Kerr BH, with spin parameter
equal to that of the final BH, at the ISCO.

All these assumptions are combined in the following for-
mula expressing the dimensionless spin parameter of the
final BH:

af ¼ a1M
2
1 þ a2M

2
2 þ lzð�rISCO;f ; afÞM1M2

M2
; (1)

where lzð�rISCO;f ; afÞ is the orbital angular momentum per

unit mass of a test particle orbiting the BH remnant at the
ISCO, and where we introduced the notation �r ¼ r=M for
the (dimensionless) Boyer-Lindquist radial coordinate.
We recall that for equatorial orbits around a Kerr BH of

spin parameter a,

lzð �r; aÞ ¼ � �r2 � 2a
ffiffiffi
�r

p þ a2ffiffiffi
�r

p ð�r2 � 3�r� 2a
ffiffiffi
�r

p Þ1=2 ; (2)

and that the orbital separation at the ISCO is given by

�rISCO ¼
h
3þ Z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q i
Z1 ¼ 1þ ð1� a2Þ1=3½ð1þ aÞ1=3 þ ð1� aÞ1=3�
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
;

(3)

where upper/lower signs hold for co/counter-rotating or-
bits. Throughout the paper we will use the symbols �rISCO;i
and �rISCO;f to denote �rISCO calculated for the initial and

final BH spin parameter, respectively. In the following,
we will also be using the energy per unit mass e of a test
particle orbiting a BH. It may be expressed as

1In [74] a’s have the dimensions of a mass, while they are
dimensionless throughout this paper.
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eð �r; aÞ ¼ �r2 � 2�r� a
ffiffiffi
�r

p
�rð �r2 � 3�r� 2a

ffiffiffi
�r

p Þ1=2 (4)

for Kerr equatorial orbits.

III. A MODEL FOR BH-NS MERGERS

When modifying Eq. (1) in order to describe BH-NS
systems, the first step is to set the initial spin angular
momentum of the NS to zero since (1) this is believed to
be a reliable approximation of astrophysically realistic
systems [86,87] and (2) this was done in all BH-NS merger
numerical simulations so far and we use these as test cases
to assess the validity of our model. Adapting the notation in
Eq. (1) to BH-NS binaries, we now have

af ¼ aiM
2
BH þ lzð �rISCO;f ; afÞMBHMNS

M2
: (5)

In the case of disruptive BH-NS mergers, an accre-
tion torus surrounding the BH remnant may be formed,
and one must thus drop assumption 1 of the BKL
approach and adequately modify Eq. (5) to take this
possibility into account. This is done by (1) replacing
the term lzð �rISCO;f ; afÞMBHMNS in the numerator with

lzð �rISCO;f ; afÞMBHðMNS �Mb;torusÞ and by (2) replacing

M with M� eð�rISCO;f ; afÞMb;torus in the denominator,

where Mb;torus is the baryonic mass of the torus remnant.

The former/latter replacement expresses the lack of an-
gular momentum/mass accretion onto the BH due to the
formation of the torus.2 In the case of no torus formation,
Mb;torus ¼ 0 and full accretion of both mass and angular

momentum onto the BH is achieved. Our formula now
reads

af ¼ aiM
2
BH þ lzð�rISCO;f ; afÞMBHðMNS �Mb;torusÞ

½M� eð �rISCO;f ; afÞMb;torus�2
; (6)

where we once more emphasize that e and lz are calcu-
lated for the ISCO and spin of the final BH.

A last element to take into account is that GW emission
during the inspiral will further reduce the energy M that
the system has at infinite orbital separation. This was not
considered in the BKL model (see assumption 1 in the
previous section), but we wish to include it in our extension
of their formulation. It affects the denominator of Eq. (6)
and may be taken into account at first order in the sym-
metric mass ratio � ¼ MBHMNS=ðMBH þMNSÞ2 by sub-
tracting to M the additional term, e.g. [85],

Erad ¼ M½1� eð �rISCO;i; aiÞ��; (7)

so that

af ¼ aiM
2
BHþ lzð �rISCO;f ;afÞMBHðMNS�Mb;torusÞ

½Mf1�½1�eð�rISCO;i;aiÞ��g�eð �rISCO;f ;afÞMb;torus�2
:

(8)

This final, closed expression for the final spin parameter af
may be solved numerically with root-finding techniques to
determine the spin parameter of the BH remnant of BH-NS
mergers, and its denominator automatically provides a
prediction for the final mass of the remnant itself. In other
words, once af is calculated, the mass of the BH remnant
Mf automatically follows as

Mf ¼ Mf1� ½1� eð �rISCO;i; aiÞ��g � eð �rISCO;f ; afÞMb;torus:

(9)

Notice that, in principle, Eq. (8) may be generalized to
account for additional energy losses and for nonideal angu-
lar momentum accretion. In the former case, it is sufficient
to subtract extra terms on the right-hand side of Eq. (9) and,
hence, in the denominator of Eq. (8). Nonideal angular
momentum accretion, which is particularly relevant for
disruptive BH-NS mergers, could instead be modeled
by inserting an angular momentum accretion efficiency
factor in front of the lz appearing in Eq. (8). For the time
being, we keep Eq. (8) as it is, knowing that it may be
improved as the nuances in the physics of BH-NS mergers
become clearer.
In Tables I and II we compare the predictions of Eq. (8)

and Eq. (1) to the results obtained within full general rela-
tivity in [38,43–46,48], which, along with [16,47,49–55],
represent the state of the art of numerical-relativity simu-
lations of BH-NS mergers. Each row of the tables refers to
a specific BH-NS binary coalescence. The columns pro-
vide a dummy index which numbers the test cases, the
reference in which the numerical-relativity results for
that binary were presented, information about the NS
EOS, the NS compactness C ¼ MNS=RNS, the binary
mass ratio Q ¼ MBH=MNS, the initial BH spin parameter
ai, the numerical-relativity result for the final BH spin
parameter aNRf , the final BH spin parameter aBKLf predicted

by the BKL formula in Eq. (1), the final BH spin parameter
af;1 yielded by Eq. (8), and the final BH spin parameter af
predicted by Eq. (11), which contains improvements over
Eq. (8) and will be discussed later. As far as the NS EOS is
concerned, the first 19 comparisons reported in Table I
refer to binaries in which the nonthermal behavior of the
NS matter3 is governed, at microphysical level, by a poly-
tropic EOS with polytropic exponent � ¼ 2. In the last 18
simulations reported in Table I and in all the ones reported
in Table II, on the other hand, a two-piecewise polytropic
EOS was used, and the notation in the tables follows the

2We are introducing the approximation Lz;torus � MBH�R
torus dðlzmbÞ � MBHlzð�rISCO;f ; afÞ

R
torus dðmbÞ ¼ MBHlz�

ð�rISCO;f ; afÞMb;torus, and the approximation Etorus �R
torus dðembÞ � eð�rISCO;f ; afÞ

R
torus dðmbÞ ¼ eð�rISCO;f ; afÞMb;torus.

3Here and in [57,64] thermal contributions are neglected.
These are more relevant, in the merger and postmerger dynam-
ics, when the NS is tidally disrupted.
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one of [41,44]: the first half of the label indicates the
stiffness of the EOS, with 2H being the stiffest, whereas
the second half refers to the NS Arnowitt-Deser-Misner
mass at isolation (e.g. 135 stands for 1:35M�). In this first
round of tests, we used the values ofMb;torus found with the

numerical-relativity simulations and reported in the papers.

To make the whole model numerical relativity independent
and quick to use, we shall later adopt the method recently
reported in [57] for determining Mb;torus, and we will show

that this does not spoil the agreement between the predic-
tions of our model and the numerical-relativity data. It is
evident that the difference between af;1 and aNRf increases

as the mass ratio Q of the system decreases, or, equiva-
lently, as the symmetric mass ratio � increases. Given that
the final spin parameter results obtained with numerical-
relativity simulations have an absolute error �aNRf of 0.01

[39] and that the error of the BKL approach was evaluated
to be &0:02 in [83], we conclude that the method estab-
lished by Eq. (8) works well for BH-NS systems with
symmetric mass ratios up to � ¼ 0:16, i.e. for Q 	 4,

TABLE II. Same as Table I.

Ref. EOS C Q ai aNRf aBKLf af;1 af

38 [44] 2H-135 0.131 2 0.75 0.87 0.84 0.86 0.89

39 [44] 1.5H-135 0.146 2 0.75 0.89 0.84 0.86 0.89

40 [44] H-135 0.162 2 0.75 0.91 0.84 0.86 0.90

41 [44] HB-135 0.172 2 0.75 0.91 0.84 0.86 0.90

42 [44] B-135 0.182 2 0.75 0.91 0.84 0.86 0.90

43 [44] 2H-135 0.131 2 0.5 0.81 0.77 0.77 0.80

44 [44] 1.5H-135 0.146 2 0.5 0.82 0.77 0.77 0.81

45 [44] H-135 0.162 2 0.5 0.82 0.77 0.78 0.82

46 [44] HB-135 0.172 2 0.5 0.83 0.77 0.78 0.82

47 [44] B-135 0.182 2 0.5 0.83 0.77 0.78 0.82

48 [44] 2H-135 0.131 2 �0:5 0.48 0.44 0.42 0.46

49 [44] H-135 0.162 2 �0:5 0.51 0.44 0.45 0.50

50 [44] HB-135 0.172 2 �0:5 0.50 0.44 0.45 0.50

51 [44] B-135 0.182 2 �0:5 0.49 0.44 0.45 0.51

52 [44] 2H-135 0.131 3 0.75 0.86 0.85 0.86 0.87

53 [44] 1.5H-135 0.146 3 0.75 0.86 0.85 0.86 0.87

54 [44] H-135 0.162 3 0.75 0.85 0.85 0.86 0.87

55 [44] HB-135 0.172 3 0.75 0.87 0.85 0.86 0.88

56 [44] B-135 0.182 3 0.75 0.86 0.85 0.87 0.88

57 [44] 2H-135 0.131 3 0.5 0.74 0.75 0.74 0.75

58 [44] 1.5H-135 0.146 3 0.5 0.75 0.75 0.75 0.76

59 [44] H-135 0.162 3 0.5 0.76 0.75 0.75 0.77

60 [44] HB-135 0.172 3 0.5 0.77 0.75 0.76 0.77

61 [44] B-135 0.182 3 0.5 0.77 0.75 0.76 0.78

62 [44] HB-135 0.172 3 �0:5 0.32 0.31 0.31 0.34

63 [44] 2H-135 0.131 4 0.75 0.84 0.84 0.85 0.85

64 [44] H-135 0.162 4 0.75 0.84 0.84 0.86 0.86

65 [44] HB-135 0.172 4 0.75 0.85 0.84 0.86 0.86

66 [44] B-135 0.182 4 0.75 0.85 0.84 0.86 0.86

67 [44] 2H-135 0.131 4 0.5 0.70 0.73 0.71 0.71

68 [44] H-135 0.162 4 0.5 0.73 0.73 0.73 0.73

69 [44] HB-135 0.172 4 0.5 0.74 0.73 0.74 0.74

70 [44] B-135 0.182 4 0.5 0.74 0.73 0.74 0.74

71 [44] 2H-135 0.131 5 0.75 0.82 0.84 0.84 0.84

72 [44] H-135 0.162 5 0.75 0.84 0.84 0.85 0.85

73 [44] HB-135 0.172 5 0.75 0.84 0.84 0.85 0.85

74 [44] B-135 0.182 5 0.75 0.85 0.84 0.86 0.86

TABLE I. Tests against numerical-relativity results. Each row is
a test case numbered by the index in the first column. The remain-
ing columns provide the reference in which the numerical-
relativity simulation for the binary was presented, information
about the NS EOS, the NS compactness C, the binary mass ratio
Q, the initial BH spin parameterai, and thefinalBHspin parameter
given by the numerical-relativity simulation, aNRf , by the BKL

approach, aBKLf , by Eq. (8), af;1, and by the final formulation of our

model given in Eqs. (11) and (12), af . The NSs in the initial data of
all simulations are spinless.

Ref. EOS C Q ai aNRf aBKLf af;1 af

1 [38] � ¼ 2 0.145 3 �0:5 0.33 0.31 0.31 0.33

2 [38] � ¼ 2 0.145 3 0.75 0.88 0.85 0.86 0.87

3 [38] � ¼ 2 0.145 3 0 0.56 0.54 0.53 0.55

4 [38] � ¼ 2 0.145 5 0 0.42 0.42 0.42 0.42

5 [48] � ¼ 2 0.145 2 0 0.68 0.61 0.61 0.64

6 [48] � ¼ 2 0.145 3 0 0.56 0.54 0.53 0.55

7 [48] � ¼ 2 0.145 4 0 0.48 0.47 0.47 0.47

8 [48] � ¼ 2 0.145 5 0 0.42 0.42 0.42 0.42

9 [48] � ¼ 2 0.160 2 0 0.68 0.61 0.62 0.65

10 [48] � ¼ 2 0.160 3 0 0.55 0.54 0.54 0.55

11 [48] � ¼ 2 0.178 2 0 0.67 0.61 0.62 0.66

12 [48] � ¼ 2 0.178 3 0 0.55 0.54 0.54 0.56

13 [43] � ¼ 2 0.144 3 0 0.56 0.54 0.53 0.54

14 [43] � ¼ 2 0.144 3 0.5 0.77 0.75 0.75 0.76

15 [43] � ¼ 2 0.144 3 0.9 0.93 0.90 0.93 0.93

16 [46] � ¼ 2 0.144 7 0.5 0.67 0.67 0.68 0.68

17 [46] � ¼ 2 0.144 7 0.7 0.80 0.80 0.81 0.81

18 [46] � ¼ 2 0.144 7 0.9 0.92 0.91 0.93 0.93

19 [46] � ¼ 2 0.144 5 0.5 0.71 0.71 0.71 0.71

20 [45] 2H-135 0.131 2 0 0.64 0.61 0.59 0.63

21 [45] H-135 0.162 2 0 0.67 0.61 0.61 0.66

22 [45] HB-135 0.172 2 0 0.67 0.61 0.62 0.66

23 [45] HBs-135 0.172 2 0 0.67 0.61 0.62 0.66

24 [45] HBss-135 0.174 2 0 0.67 0.61 0.62 0.66

25 [45] B-135 0.182 2 0 0.67 0.61 0.62 0.67

26 [45] Bs-135 0.185 2 0 0.66 0.61 0.62 0.67

27 [45] Bss-135 0.194 2 0 0.65 0.61 0.62 0.67

28 [45] 2H-135 0.131 3 0 0.52 0.54 0.51 0.52

29 [45] H-135 0.162 3 0 0.56 0.54 0.54 0.56

30 [45] HB-135 0.172 3 0 0.56 0.54 0.54 0.56

31 [45] B-135 0.182 3 0 0.55 0.54 0.54 0.56

32 [45] 2H-12 0.118 2 0 0.62 0.61 0.58 0.62

33 [45] H-12 0.145 2 0 0.66 0.61 0.60 0.64

34 [45] HB-12 0.153 2 0 0.66 0.61 0.61 0.65

35 [45] B-12 0.161 2 0 0.67 0.61 0.61 0.66

36 [45] HB-12 0.153 3 0 0.55 0.54 0.54 0.55

37 [45] B-12 0.161 3 0 0.56 0.54 0.54 0.56
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whereas it almost systematically reaches or exceeds
the 0.03 threshold of marginal agreement when Q 
 3.
We must, thus, improve Eq. (8) to handle BH-NS systems
with � > 0:16.

As � increases, the method fails for two reasons. First,
the fifth assumption in Sec. II breaks down as � ! 0:25 (or
Q ! 1). This is intrinsic to the BKL method which in-
spired Eq. (8). Second, and generally speaking, in systems
with such low mass BHs the tidal fields tend to tear apart
the NS completely, as opposed to binaries with higher mass
BHs, in which the outer layers of the NS are mainly
stripped off. In the former scenario, the binding energy
of the star is liberated and the NS matter accretes onto the
BH as a collection of particles with total rest massMb;NS �
Mb;torus, where Mb;NS is the total rest mass of the NS,

whereas in the latter scenario the NS core plunges into
the BH without undergoing complete tidal disruption.

We will make the simplifying assumption that in systems
with � ¼ 2=9 (Q ¼ 2), the NS undergoes complete tidal
disruption, while it does not in systems with � 
 0:16
(Q 	 4). When complete tidal disruption is achieved, the
NS should not be treated as a body with massMNS, but as a
set of particles with total rest massMb;NS, a subset of which

accretes onto the BH and has total mass Mb;NS �Mb;torus.

We thus propose to describe Q ¼ 2 systems, in which tidal
disruption is pivotal, with

af ¼ aiM
2
BHþ lzð�rISCO;f ;afÞMBHðMb;NS�Mb;torusÞ

½Mf1�½1�eð�rISCO;i;aiÞ��g�eð �rISCO;f ;afÞMb;torus�2
;

(10)

instead of with Eq. (8), and to combine the two descrip-
tions by writing

af ¼ aiM
2
BH þ lzð�rISCO;f ; afÞMBHf½1� fð�Þ�MNS þ fð�ÞMb;NS �Mb;torusg

½Mf1� ½1� eð�rISCO;i; aiÞ��g � eð �rISCO;f ; afÞMb;torus�2
; (11)

where fð�Þ governs the transition between the two regimes
of Eqs. (8) and (10). This function is currently poorly
constrained, given that state-of-the-art BH-NS simulations
with 2<Q< 4 are available in the literature only for
Q ¼ 3. To fix fð�Þ, we must impose that fð�	2=9Þ¼1
and that fð� 
 0:16Þ ¼ 0. Additionally, it is physically
reasonable to require the function to be monotonic and
therefore that

df

d�
	 0 0 
 � 
 0:25:

We shall also require it to be C1 and to be as simple as
possible. These elements do not determine fð�Þ uniquely,
of course. All in all, we set

fð�Þ ¼

8>><
>>:
0 � 
 0:16
1
2

h
1� cos

�
�ð��0:16Þ
2=9�0:16

�i
0:16< �< 2=9

1 2=9 
 � 
 0:25

(12)

in a Hann window–inspired fashion. Notice that, in the
limit of large BHmasses, a BH-NS system behaves as a BH
binary system with the same physical parameters, so that in
Eq. (8) the NS gravitational mass MNS cannot be simply
dropped in favor of its baryonic mass Mb;NS. Moreover,
from a merely quantitative point of view, a model with this
oversimplification performs worse when tested against
numerical-relativity results.

We now compare the predictions of Eqs. (11) and (12) to
the results obtained within full general relativity. As an-
ticipated, this is done in the last column of Tables I and II.
It is evident that this strategy improves considerably the
outcome of Eq. (8) for systems withQ ¼ 2 and Q ¼ 3 and
that, overall, it improves the estimates obtained by simply
applying the BKL method to mixed binary mergers.

Figure 1 shows the absolute value of the difference
af � aNRf versus the dummy index running over the 74

rows of Tables I and II. The graph shows that max jaf �
aNRf j ¼ 0:04 and that this value is reached only in one

case out of 74 total ones. This corresponds to the
fC¼0:145;Q¼2;ai¼0g simulation of [39,48]. An absolute
error jaf � aNRf j ¼ 0:03 is instead obtained for the test case
fC ¼ 0:160; Q ¼ 2; ai ¼ 0g of [39,48]. We notice that both
problematic cases have Q ¼ 2 and this may be a sign that
our model breaks down for low BH masses.
In Fig. 2, we show the distribution of the difference af �

aNRf that follows from the results reported in Tables I and II.

As is evident, the errors are concentrated in the interval
�0:01
af�aNRf 
0:01, where 61 of the 74 tests fall.

Moreover, about a quarter of the final spin values are repro-
duced exactly. The sum of all the differences af � aNRf

FIG. 1 (color online). jaf � aNRf j is shown for all entries in
Tables I and II. The horizontal axis is the dummy that runs
through both tables.
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yields 0.02, so that
P

74
n¼1ðaf � aNRf Þn=74 ¼ 0:00.4 In Fig. 3,

we consider the distribution of the absolute difference
jaf � aNRf j and show that it rapidly drops after 0.02. Given

that the error on the aNRf ’s is �aNRf ¼ 0:01, 61 numerical-

relativity results out of 74, i.e. more than 80% of the cases,
are reproduced within the numerical-relativity error.

To determine the absolute error on our predictions, we
begin by observing that (1) our model is built against
numerical-relativity data with an absolute error �aNRf ¼
0:01; (2) it is based on the BKL approach, for which the
average error found in [83] is�0:02; and (3) the average error
yielded by our comparisons against numerical-relativity
data is hjaf�aNRf ji¼P

74
n¼1 jaf�aNRf jn=74¼0:01. Further,

the same average error is obtained if the average hjaf �
aNRf ji is marginalized to a given mass ratio Q or initial BH

spin parameter value ai, among the ones available in
Tables I and II. This is shown in the second column of
Table III. Additionally, the fourth column of the same table
shows that the marginalized averages haf � aNRf i are such
that their absolute value is 0.01 at the most. All in all, if we
take an error �af ¼ 0:01 on our predictions, these are

found to be compatible with the numerical-relativity
results in 72 test cases out of 74, i.e. about 97%.
So far, when comparing the predictions of Eqs. (11) and

(12) to the BH-NS merger results available in the literature,
we exploited the numerical-relativity prediction forMb;torus.

This allowed us to test and validate Eqs. (11) and (12) and to
determine the average error �aNRf ’ 0:01. If we wish to

apply such a method to a large number and variety of
BH-NS binaries, we must consider another way of obtain-
ingMb;torus. As mentioned previously, we choose to use the

simple two-parameter model, fitted to existing numerical
results, recently reported by Foucart in [57]. This provides
an estimate forMb;torus, given a binary mass ratio, an initial

BH spin parameter, and a NS compactness. In Fig. 4 we
show the absolute values of the difference af � aNRf ob-

tained when using the approach of [57] to calculateMb;torus;

this figure must be compared to Fig. 1. We find that the two
problematic test cases, i.e. ones with jaf � aNRf j> 0:02, are
the same ones encountered previously, that is, cases 5 and 9,

FIG. 2 (color online). af � aNRf distribution for all entries in
Tables I and II.

FIG. 3 (color online). jaf � aNRf j distribution for all entries in
Tables I and II.

FIG. 4 (color online). Same as Fig. 1, but using the predictions
of [57] for Mb;torus in Eq. (11).

TABLE III. Average jaf � aNRf j andaf � aNRf for a givenphysi-
cal parameter, indicated in the first column. The second and fourth
columns refer to predictions for af obtained by substituting for
Mb;torus in Eq. (11) the results found in the numerical-relativity

simulations reported in [38,41,43,45,46,48], whereas the third and
fifth columns refer to predictions for af obtained by using the
model described in [57] to calculate the Mb;torus’s.

Fix parameter hjaf � aNRf ji haf � aNRf i
Q ¼ 2 0.01 0.01 �0:01 �0:01
Q ¼ 3 0.01 0.01 0.00 0.01

Q ¼ 4 0.01 0.01 0.01 0.01

Q ¼ 5 0.01 0.01 0.01 0.01

Q ¼ 7 0.01 0.01 0.01 0.01

ai ¼ �0:5 0.01 0.01 0.00 0.00

ai ¼ 0 0.01 0.01 �0:01 �0:01
ai ¼ 0:5 0.01 0.01 0.00 0.00

ai ¼ 0:7 0.01 0.01 0.01 0.01

ai ¼ 0:75 0.01 0.01 0.01 0.01

ai ¼ 0:9 0.01 0.01 0.01 0.01

4This rounding up is justified by the fact that numerical-
relativity results for the final spin parameter have an error
�aNRf � 0:01.
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and that this time they yield jaf � aNRf j equal to 0.05 and

0.04, respectively.
As far as the distribution of the differences af � aNRf is

concerned, the sum over all differences af � aNRf yields

0.04 (as opposed to 0.02). The averages
P

74
n¼1ðaf �

aNRf Þn=74 and
P

74
n¼1 jaf � aNRf jn=74 are 0.00 and 0.01,

respectively. The averages hjaf � aNRf ji and haf � aNRf i
marginalized to a given binary mass ratio or an initial
BH spin parameter are reported in the third and fifth
columns of Table III, respectively. Their behavior does
not vary significantly from the analysis reported previ-
ously. The jaf � aNRf j distribution obtained combining

Eqs. (11) and (12) with the model of [57] is shown in
Fig. 5 and should be compared to the one in Fig. 3. The
distribution is once again peaked at 0.01, and it falls off
above 0.02. Recalling that �aNRf ¼ 0:01, an agreement

within the numerical-relativity error is found in 59 (as
opposed to 61) cases out of 74. If, moreover, we take an
error �af ¼ 0:01 on our predictions, we observe once
again that 72 of them out of 74 are compatible with the
numerical-relativity results.

In conclusion, the tests and analyses performed show
that the model formulated in Eqs. (11) and (12) is robust.
Using our tests against numerical-relativity results, we
argued that �af ¼ 0:01. A more conservative statement
is that the error on our prediction for the final spin parame-
ter af is �af & 0:02. This allows us to include in �af the
error �aNRf ¼ 0:01 on numerical-relativity results against

which our model is built. We note that �af & 0:02 is
compatible with �1% variations of the term aiM

2
BH ap-

pearing in Eq. (11). If we interpret this�1% variation as a
representation of possible ‘‘glitches’’ in the transition from
the quasiequilibrium initial data to the dynamical evolution
of the Einstein equations in a numerical simulation, we see
that we are indeed ‘‘inheriting’’ a �0:01 contribution to
�af in building our model against numerical-relativity
results and that this contribution is at least comparable to
the ones introduced by all other approximations behind
Eqs. (11) and (12). Further, we stress once more that

�af & 0:02 is compatible with the average error, found
in [83], for the BKL model, which inspired this work.
All these conclusions remain valid even when combining
Eqs. (11) and (12) with the method of [57] to calculate
Mb;torus.

It is striking that our simple model to determine af
paired with [57] obtains such an excellent agreement
with the fully general-relativistic numerical simulations
of BH-NS mergers. One must always bear in mind, how-
ever, that there still are large, unexplored portions of the
parameter space and that this prevents us from thoroughly
testing our approach to determine af .

A. Testing the final mass predictions

So far, we tested only one of the two predictions that our
model enables us to make. In this section we separately test
the predictions for the mass Mf of the BH remnant, stem-
ming from Eq. (9). According to the ‘‘no-hair’’ theorem
of general relativity, the final spin parameter and mass of
an electrically neutral BH are the only two quantities
characterizing the BH itself. A model capable of accurately
predicting both af and Mf would therefore fully describe
the BH remnant.
The numerical simulations of BH-NS mergers

performed by the Kyoto-Tokyo group reported in
[44,45,48] allow us to test the outcome of Eq. (9) and
to establish the error associated with it. In Tables IV and
V, we collect the numerical-relativity data for the mass of
the BH remnant and compare it to our predictions. The first
six columns of the tables follow Tables I and II, including
the numbering of the simulations appearing in column
one. The seventh and eighth columns provide the relative
error on the remnant masses obtained when comparing
the predictions of Eq. (9) to the numerical-relativity
results. Following [44,45,48], two forms of the remnant
mass are considered: the gravitational mass Mf , and the
irreducible mass

Mirr;f ¼ Mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2f

q
2

s
: (13)

Both Mf and Mirr;f are divided by the sum M of the initial

gravitational masses MBH and MNS. In the remaining col-
umns of the table, we give the relative error on the l ¼ 2,

m ¼ 2, n ¼ 0 quasinormal mode (QNM) frequency fQNM220 ,

and damping time �QNM220 of the BH remnant [88]. Both af
and Mf must be used to calculate fQNM220 and �QNM220 , so that

�ðfQNM220 Þ and �ð�QNM220 Þ give us a sense of how our errors on

the final BH spin parameter and mass propagate. The terms
of comparison for the QNM frequencies and damping
times are obtained by using the final mass and spin
parameter values given in [44,45,48] and plugging them
in the formulas of [88].
A maximum relative error of 1% and 2% is found for

�Mf ¼ Mf=M and �Mirr;f ¼ Mirr;f=M, respectively, with the
FIG. 5 (color online). jaf � aNRf j distribution obtained when
using the predictions of [57] for Mb;torus in Eq. (11).
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2% occurring only once. The errors on fQNM220 and �QNM220 , on

the other hand, are at the most 4% and 5%, respectively. It
is noteworthy that the second contribution in Eq. (9),
i.e. the energy loss due to GW emission, is crucial in
obtaining such accurate results: if we do not include it,

the maximum error on fQNM220 , for example, is 9%.

If we use input from the model of [57] and repeat

these tests on �Mf , �Mirr;f , f
QNM
220 , and �QNM220 , the maximum

errors we obtain are 2%, 3%, 5%, and 4%, respectively.
The panels of Fig. 6 show the distributions of the relative

errors �ð �MfÞ, �ð �Mirr;fÞ, �ðfQNM220 Þ, and �ð�QNM220 Þ obtained

when using Eqs. (9), (11), and (12) in combination with
[57]. As for the tests performed with the numerical-
relativity values of Mb;torus, these distributions are

peaked around �0:00–0:01, and errors higher than 2%
are rare. We stress once more that large portions of the
parameter space of BH-NS binaries are currently unex-
plored, thus preventing us from testing our approach
thoroughly.

IV. RESULTS

We now review the main results obtained by systemati-
cally exploring the space of parameters of BH-NS systems
using the model described so far. More specifically, we vary
(i) the initial spin parameter of the BH, ai, reaching a

maximum value of 0.99;
(ii) the binary mass ratio, Q, between 2 and 10;
(iii) the NS mass, between 1:2M� and 2:0M�, compat-

ibly with the measurement reported in [89];
(iv) the NS compactness. In particular, we use theWFF1

EOS [90] and the PS EOS [91] as representatives of
the softest and stiffest possible EOS, yielding the
most and least compact NSs, respectively. Thus, for
a given NS mass we consider the compactness of a
NS governed by theWFF1 EOS and the one of a NS
described by the PS EOS. We also quote results for
the APR2 EOS [92] since this is the most complete
nuclear many-body study to date.

TABLE V. Same as Table IV.

Ref. EOS C Q ai �ð �MfÞ �ð �Mirr;f Þ �ðfQNM220 Þ �ð�QNM220 Þ
38 [44] 2H-135 0.131 2 0.75 0.01 0.02 0.04 0.04

39 [44] 1.5H-135 0.146 2 0.75 0.00 0.01 0.00 0.00

40 [44] H-135 0.162 2 0.75 0.00 0.00 0.02 0.03

41 [44] HB-135 0.172 2 0.75 0.00 0.01 0.02 0.03

42 [44] B-135 0.182 2 0.75 0.00 0.01 0.02 0.03

43 [44] 2H-135 0.131 2 0.5 0.00 0.00 0.01 0.01

44 [44] 1.5H-135 0.146 2 0.5 0.00 0.00 0.01 0.01

45 [44] H-135 0.162 2 0.5 0.00 0.00 0.00 0.00

46 [44] HB-135 0.172 2 0.5 0.00 0.00 0.01 0.01

47 [44] B-135 0.182 2 0.5 0.00 0.01 0.01 0.01

48 [44] 2H-135 0.131 2 �0:5 0.00 0.00 0.01 0.01

49 [44] H-135 0.162 2 �0:5 0.00 0.00 0.01 0.00

50 [44] HB-135 0.172 2 �0:5 0.00 0.00 0.00 0.00

51 [44] B-135 0.182 2 �0:5 0.00 0.00 0.01 0.01

52 [44] 2H-135 0.131 3 0.75 0.00 0.01 0.02 0.01

53 [44] 1.5H-135 0.146 3 0.75 0.00 0.01 0.01 0.02

54 [44] H-135 0.162 3 0.75 0.00 0.01 0.02 0.04

55 [44] HB-135 0.172 3 0.75 0.00 0.00 0.01 0.02

56 [44] B-135 0.182 3 0.75 0.01 0.00 0.02 0.05

57 [44] 2H-135 0.131 3 0.5 0.00 0.00 0.01 0.01

58 [44] 1.5H-135 0.146 3 0.5 0.00 0.00 0.01 0.01

59 [44] H-135 0.162 3 0.5 0.00 0.00 0.01 0.01

60 [44] HB-135 0.172 3 0.5 0.01 0.00 0.01 0.01

61 [44] B-135 0.182 3 0.5 0.01 0.00 0.00 0.02

62 [44] HB-135 0.172 3 �0:5 0.00 0.00 0.01 0.00

63 [44] 2H-135 0.131 4 0.75 0.00 0.01 0.01 0.01

64 [44] H-135 0.162 4 0.75 0.01 0.00 0.02 0.04

65 [44] HB-135 0.172 4 0.75 0.01 0.00 0.01 0.02

66 [44] B-135 0.182 4 0.75 0.01 0.01 0.00 0.02

67 [44] 2H-135 0.131 4 0.5 0.00 0.00 0.01 0.01

68 [44] H-135 0.162 4 0.5 0.01 0.01 0.01 0.01

69 [44] HB-135 0.172 4 0.5 0.01 0.01 0.01 0.01

70 [44] B-135 0.182 4 0.5 0.01 0.01 0.01 0.01

71 [44] 2H-135 0.131 5 0.75 0.00 0.01 0.02 0.03

72 [44] H-135 0.162 5 0.75 0.01 0.00 0.01 0.02

73 [44] HB-135 0.172 5 0.75 0.01 0.00 0.00 0.02

74 [44] B-135 0.182 5 0.75 0.01 0.00 0.00 0.03

TABLE IV. Tests against numerical-relativity results. The first
six columns are organized as in Tables I and II. The last four
columns show the relative error on the BH remnant gravitational
mass in units of the system initial mass, �Mf , on its irreducible
mass in units of the system initial mass, �Mirr;f , and on its l ¼ 2,
m ¼ 2, n ¼ 0 quasinormal mode frequency, fQNM220 , and damping

time, �QNM220 .

Ref. EOS C Q ai �ð �MfÞ �ð �Mirr;fÞ �ðfQNM220 Þ �ð�QNM220 Þ
5 [48] � ¼ 2 0.145 2 0 0.00 0.01 0.03 0.02

6 [48] � ¼ 2 0.145 3 0 0.00 0.00 0.01 0.00

7 [48] � ¼ 2 0.145 4 0 0.00 0.00 0.00 0.00

8 [48] � ¼ 2 0.145 5 0 0.00 0.00 0.01 0.00

9 [48] � ¼ 2 0.160 2 0 0.00 0.01 0.02 0.01

10 [48] � ¼ 2 0.160 3 0 0.00 0.00 0.01 0.00

11 [48] � ¼ 2 0.178 2 0 0.00 0.01 0.01 0.00

12 [48] � ¼ 2 0.178 3 0 0.01 0.00 0.00 0.01

20 [45] 2H-135 0.131 2 0 0.00 0.00 0.01 0.00

21 [45] H-135 0.162 2 0 0.00 0.00 0.01 0.00

22 [45] HB-135 0.172 2 0 0.00 0.01 0.01 0.00

23 [45] HBs-135 0.172 2 0 0.00 0.01 0.01 0.00

24 [45] HBss-135 0.174 2 0 0.00 0.01 0.01 0.00

25 [45] B-135 0.182 2 0 0.01 0.00 0.01 0.01

26 [45] Bs-135 0.185 2 0 0.01 0.00 0.00 0.01

27 [45] Bss-135 0.194 2 0 0.01 0.00 0.00 0.02

28 [45] 2H-135 0.131 3 0 0.00 0.00 0.00 0.00

29 [45] H-135 0.162 3 0 0.01 0.00 0.01 0.01

30 [45] HB-135 0.172 3 0 0.01 0.00 0.01 0.01

31 [45] B-135 0.182 3 0 0.01 0.01 0.00 0.01

32 [45] 2H-12 0.118 2 0 0.00 0.00 0.00 0.00

33 [45] H-12 0.145 2 0 0.00 0.00 0.01 0.01

34 [45] HB-12 0.153 2 0 0.00 0.00 0.01 0.00

35 [45] B-12 0.161 2 0 0.00 0.00 0.01 0.00

36 [45] HB-12 0.153 3 0 0.00 0.00 0.00 0.00

37 [45] B-12 0.161 3 0 0.01 0.01 0.01 0.01
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The choices regarding the EOS are discussed in detail in
the Appendix.

We analyze the behavior of af in the relevant space of
parameters, examining its maximum possible value; we
further compare the outcome of BH-NS mergers and BH-
BH mergers in terms of the l ¼ m ¼ 2, n ¼ 0 quasinormal
mode frequency and show that the comparison is EOS
dependent. When comparing to binary black holes, we
apply the fitting formula of [83] to determine the final
spin parameter of the their remnants, and we neglect the
last term in Eq. (9) to estimate the mass of their remnants.5

More accurate predictions for Mf are possible for BH-BH
binaries, e.g. [85]; if we were to rely on them, however, we
would be comparing predictions with a different degree of
accuracy, thus mixing the physical consequences of replac-
ing the lower mass BH of a binary BH with a NS to effects
due to the different precision underlying the predictions
under comparison.

A. Maximum final spin parameter

An important aspect to investigate when studying the
final spin of the BH remnant of compact binary mergers is
its maximum value. According to the cosmic censorship
conjecture, the spin parameter of a BH cannot exceed unity
[94]. Indirect support to the conjecture was provided by the

recent numerical-relativity simulations of BH-NS mergers
[44]. The extrapolation of the results of the numerical
simulations to the case of an extremely spinning BH with
ai ¼ 1 (mergingwith an irrotational NS) yielded af � 0:98.
It was suggested that simulations with mass ratio higher
thanQ ¼ 4 and (nearly) extremal initial BH spin should be
performed in order to assess whether af & 0:98ð<1Þ is a
universal bound for BH-NS binary mergers or not.
Our model does not predict the formation of overspinning

(af > 1) BHs for BH-NS binaries with an extremal initial
BH spin and any symmetric mass ratio. We notice that, all
else being fixed, the softer the EOS, the higher the final spin
parameter af . We thus suggest performing fully general-
relativistic numerical simulations of systems with (nearly)
extremal initial BH spin parameter and a soft NS EOS to
assess the bound on af < 1 for BH-NS binary mergers.
To determine the maximum final spin parameter, we

consider our data and extrapolate it to ai ¼ 1. We perform
the extrapolations on two different sets of data: in one case
we use all our data, i.e. with ai up to 0.99, whereas in the
other we consider only ai 
 0:9. This allows us to cross-
check our predictions obtained within the untested region
of the parameter space 0:9< ai 
 1, thus making our
conclusions more robust. The highest final spin parameters
we obtain are for Q ¼ 10, or � ’ 0:083. The WFF1, PS,
and APR2 EOS all yield a maximum final spin parameter
af ¼ 1:00, compatible with the af � 0:98 bound pin-
pointed in [44]. Even though we previously determined

FIG. 6 (color online). Distribution of the relative errors �ðMf=MÞ, �ðMirr;f=MÞ, �ðfQNM220 Þ, and �ð�QNM220 Þ obtained from Eqs. (9), (11),
and (12) in combination with [57] for test cases in Tables IV and V for which information on the BH remnant mass is provided in the
references.

5This is how the BH remnant properties are determined in [93].
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that our predictions have an error �af & 0:02 (see discus-
sion in Sec. III), we believe it is worth mentioning that we
find max af ¼ 0:997, an ‘‘empirical’’ result that is very
close to Thorne’s limit of 0.998 [95].

B. Dependence of the BH remnant on the NS EOS

The main feature that appears when comparing results
for different EOSs is that final spin parameter of the BH
remnant, af , can depend on the EOS of the NS in the mixed
binary progenitor (all else being fixed). This happens be-
cause different EOSs yield different torus masses. An ex-
ample of this EOS dependence is provided in Fig. 7, where
binaries with ai ¼ 0:75 and two possible EOSs, the WFF1
and the PS, are considered. The EOS dependence of af may
be better understood by carefully examining the case of
BH-BH binaries. Figure 8 shows that, given a binary with a
nonspinning secondary BH and a primary BH with initial
spin parameter ai, there is a specific symmetric mass ratio
that yields the maximum af : its value varies monotonically
from 0.25 to 0 as the ai runs from 0 to 1. More specifically,
the first panel shows that for nonspinning binary BHs,
higher values of af are favored by high symmetric mass

ratios (i.e. it is ‘‘easier’’ to spin up a Schwarzschild BHwith
a mass comparable to the one of the BH itself), while this is
not true in the other two panels, in which the primary BH is
rotating. In the case of BH-NS systems, as one varies � and
MNS, the BH mass changes along with the mass accreting
onto the BH: in the case of disruptive mergers, the latter
depends on the EOS and this explains why the spin of the
BH remnant depends on the EOS of theNS in the progenitor
for BH-NS disruptive mergers.
Having shown that af may depend on the NS EOS and

bearing in mind that Mf may too,6 this means that infor-
mation about the NS EOS is ‘‘coded’’ in the properties
of the BH remnant. This in turn implies that the QNM
spectrum of the BH remnant may (1) be affected by the
EOS and (2) deviate from the BH-BH behavior. In Fig. 9
we compare the BH remnant of BH-NS mergers to the
BH remnant of BH-BH mergers. We show the difference

between the QNM frequency fQNM220 of the BH remnant of

FIG. 7 (color online). The final spin parameter of BH-NS systems is shown as a function of the NS mass and the symmetric mass
ratio; the initial spin parameter of the BH is set to 0.75. Results in the left/right panel refer to the PS/WFF1 EOS.

FIG. 8 (color online). Final spin parameter for binaries with a primary spinning BH and a secondary nonspinning BH. From
left to right, the initial spin parameter of the spinning BH is set to 0, 0.75, and 0.9. The curves were obtained with the fitting
formula of [83].

6This is more straightforward to comprehend: NSs differing only
for the EOS differ in compactness and may thus accrete different
amounts of matter in disruptive mergers with a BH, e.g. [44].
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a BH-NS merger and of a BH-BH merger with the same
secondary mass, symmetric mass ratio, and initial spin
parameters. The final spin parameter and mass of the
binary BHs are determined using the method of [83]
and Eq. (9) without the last term, respectively. All
QNM frequencies are calculated using the fitting formula
of [88].

Our results confirm that the mixed binaries we expect to
see the most of, i.e. those with �� 0:11 [3], do indeed
behave like binary BHs in terms of GW emission during
the ringdown epoch: this is positive for template design and
GW detection. In Fig. 9 we show our results in the region
above � ¼ 0:16 for binaries with ai ¼ 0:4 and ai ¼ 0:8,
and we contrast the PS EOS with the WFF1 EOS. We find
that for �� 0:16 (or Q� 4) the BH remnant QNM fre-

quency fQNM220 deviates from its BH-BH binary value by

& 100 Hz for both soft and stiff EOSs, unless the initial

BH spin parameter is particularly high and the NS EOS is
very stiff (bottom, left panel of Fig. 9). The NS thus leaves
a (small) ‘‘trace’’ in the QNM frequency: for binaries with
a BH with moderate to high spin and a symmetric mass
ratio � & 0:16, one could in principle determine whether
the source of a detected GW coalescence signal was a BH-
BH or a BH-NS binary by separately analyzing the inspiral
and the ringdown epochs. The former epoch would be
identical for a mixed binary and a BH binary with the
same physical parameters, because tidal deformations of
the NS in a mixed binary with � & 0:16 are not expected to
significantly alter the inspiral epoch of the GW signal [15].
Looking at the ringdown epoch would therefore comple-
ment the idea of pinning down the presence of the NS from
the inspiral. Constraining the NS EOS in the region of

the parameter space around �� 0:16 by measuring fQNM220

appears, instead, to be difficult.

FIG. 9 (color online). Difference, in Hz, between the l ¼ m ¼ 2, n ¼ 0 quasinormal mode frequency, fQNM220 , of the BH remnant of a
BH-NS merger and of a BH-BH merger with the same secondary mass M2, symmetric mass ratio �, and initial spin parameters. The
NS and secondary BH initial spin is always set to zero. The primary BH initial spin parameter is 0.4 and 0.8 in the top and bottom
panels, respectively.
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For systems with high symmetric mass ratios, on the

other hand, the difference in fQNM220 may be high, suggesting

the interesting prospect of constraining the NS EOS
through the measurement of the properties of the BH
remnant. If we now focus on the high � region of the

panels in Fig. 9, we see that the deviations in fQNM220 from

the BH-BH case are particularly evident for � * 0:2 and a
high initial BH spin parameter. This and all other features
of the bottom panels in Fig. 9 may be compared to those of
the panels in Fig. 7, showing that they are ‘‘inherited’’ from
the behavior of af . At high �’s and ai’s, the difference

between the fQNM220 of the BH remnant of a BH-NS merger

and the one of a BH-BH merger ranges from �600 Hz to
�1200 Hz. The NS EOS therefore leaves an imprint on the
QNM frequency of the BH remnant, although one should
bear in mind that we are comparing two (extreme) EOSs
that are on opposite ends in terms of stiffness, and this
makes the differences between the left and the right panels
of Fig. 9 particularly prominent. A comparison between
results for the WFF1 EOS and the APR2 EOS, which yield
NSs relatively similar in terms of compactness (see
Fig. 11), tells us that in order to be able to properly
discriminate between similar candidate nuclear EOSs,
one would need to be able to perform measurements of

fQNM220 with a precision the order of �10 Hz.

Being able to performmeasurements of fQNM220 for the BH

remnant of BH-NS mergers requires that the QNM itself

is excited during the coalescence. If this happens, fQNM220

influences the value of the cutoff frequency fcut of the GW
spectrum of the mixed binary coalescence.7 The extrapo-
lation of the results of the numerical-relativity simulations

reported in [44] shows, in particular, that fcut ’ fQNM220 for

C * 0:18 in mixed binaries with � ’ 0:139 (orQ ¼ 5) and
ai ¼ 0:75, or for C * 0:19 in binaries when ai ¼ 0 and
� ’ 0:22 (Q ¼ 2) or � ’ 0:1875 (Q ¼ 3) and ai ¼ 0:5. An
increase in ai corresponds to an increase in the lower bound

on C that allows for fcut ’ fQNM220 to happen at a given mass

ratio; on the other hand, the higher the mass of the BH at a

given ai and C, the closer fcut will be to fQNM220 . The �0:19
threshold on the NS compactness encountered above cor-
responds toMNS * 1:33M� for the WFF1 EOS, toMNS *
1:48M� for the APR2 EOS, and to MNS * 1:93M� for the
PS EOS. We thus see that there is the virtual possibility of
constraining the NS EOS with the measurement of the
gravitational radiation emitted by those binaries for which

fcut ’ fQNM220 . This scenario, as said, concerns NSs with

high compactness and would thus provide constraints for
soft EOSs. We note that the observation of tidal effects in
the phase of the gravitational radiation emitted during the

inspiral [15,96] and in the cutoff frequency when fcut <

fQNM220 [13,44] favors placing constraints on stiff EOSs, so

that measurements in fcut � fQNM220 scenarios would be

complementary.

V. CONCLUSIONS AND REMARKS

In this paper we presented a model for predicting the
final spin parameter, af , and mass, Mf , of the BH remnant
of BH-NS coalescing binaries in quasicircular orbits,
with initial BH spin of arbitrary magnitude and parallel
to the orbital angular momentum, with arbitrary mass
ratio, and with arbitrary NS mass and cold, barotropic
equation of state. The parameter space just outlined could
in principle be investigated entirely with numerical-
relativity simulations; in practice, however, the process
would be very time and resource consuming, because
simulations are still very expensive in terms of computa-
tional costs.
Our starting point was the phenomenological model of

Buonanno, Kidder, and Lehner for the final spin of binary
BH mergers [74], which we modified to account for (1) en-
ergy loss via gravitational wave emission during the in-
spiral and (2) the possible formation of an accretion torus
in the case of disruptive mergers. We tested our model by
comparing its predictions to the recent numerical-relativity
simulation results available in the literature. We were able
to achieve good agreement down to a mass ratio of
MBH=MNS ¼ 2, albeit introducing an additional ingredient
in the formulation of the model for 2<MBH=MNS < 4,
which is currently poorly constrained. We obtained an
absolute error on af of 0.02, which is compatible with the
one of the BKL approach [74,83]. For the final gravita-
tional and irreducible (normalized) masses of the BH
remnant, Mf and Mirr;f , we found a relative error of 1%.

These errors then propagate in the calculation of the l ¼
m ¼ 2, n ¼ 0 quasinormal mode frequency fQNM220 and

damping time �QNM220 of the remnant BH, and they yield

maximum relative errors of 4% and 5%, respectively.
These relative errors are, however, safely 
2% in the
vast majority of test cases. Combining this method with
input for the torus remnant mass from the two-parameter
model, fitted to existing numerical results, recently re-
ported by Foucart in [57], the error�af ’ 0:02 is preserved
and so is the behavior of the relative errors on Mf , Mirr;f ,

fQNM220 , and �QNM220 (see Figs. 4 and 6).

The tests we performed against the available
numerical-relativity results were successful, especially
considering the limitations of our simple approach. This
implies that the outcome of the complicated merger dy-
namics of BH-NS binaries may be understood in fairly
simple terms, at least when the BH initial spin and orbital
angular momentum directions are parallel and the inspiral
orbit is quasicircular. Equations (9), (11), and (12) pre-
sented here along with the fit of Foucart to the torus
remnant mass [57] constitute an easy-to-use analytical
model that describes the remnant of BH-NS mergers.

7See [44] for explanations on what determines fcut and for
examples of gravitational waveform spectra.
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Notwithstanding the good performance of the model in
the tests, its predictions should be taken with ‘‘a grain of
salt,’’ as large portions of the parameter space of BH-NS
binaries are currently unexplored, hampering a thorough
test of our approach.

The approach presented and tested in the first part of this
work was then employed to span the space of parameters
consisting of the binary (symmetric) mass ratio, the BH
initial spin, the NS mass, and the NS equation of state. This
enabled us to gain a sense of the behavior of the properties
of the BH remnant in this fourfold space of parameters and
to pinpoint some interesting aspects which, we believe,
deserve being verified and studied in conclusive, quantita-
tive terms with the tools of numerical relativity. The fol-
lowing is a summary of our main results:

(i) We obtained a maximum final spin parameter
equal to 1.00 for the WFF1, APR2, and PS nuclear
equations of state, when using the mass ratio
MBH=MNS ¼ 10. MBH=MNS ¼ 2 yields instead a
maximum final spin parameter of 0.99. Given their
absolute error of 0.02, these predictions are compat-
ible with the 0.98 maximum found in [44] and pro-
vide indirect support to the cosmic censorship
conjecture [94].

(ii) We discussed the dependence of af and Mf on the
NS EOS, claiming that the EOS may leave an
imprint on the BH remnant. The quasinormal

mode frequency fQNM220 of the BH remnant, which

depends on af and Mf alone, could thus be used to
constrain the NS EOS (Fig. 9). Deviations from the

BH-BH values of fQNM220 for symmetric mass ratios

* 0:2, with maximum deviations between�600 Hz
and �1200 Hz. The excitation of the QNM oscil-
lations does not occur for all mixed binary mergers,
but it is likely to appear in the spectrum of the emitted
gravitational radiation in the form of a cutoff fre-

quency fcut ’ fQNM220 for systems with fairly compact

NSs, i.e. for soft EOSs [44]. The possibility of con-

straining the EOS by measuring fcut ’ fQNM220 seems

therefore complementary to other ideas for posing
EOS constraints by means of GW detection, in that
these favor constraints on stiff EOSs [13,15,44,96].
High-frequency gravitational waves from coalescing
binaries may thus turn out to be, once more, very
promising in terms of the NS EOS [97].

Future applications of the approach presented in this
paper may be to exploit the predicted values of af and
Mf to (1) provide the QNM frequencies to be used in the
construction of hybrid waveforms for BH-NS systems
[16,44], (2) develop phenomenological waveforms for
BH-NS systems, (3) study time-frequency characteristics
of the emitted radiation [61], and (4) build backgrounds for
perturbative approaches to the study of the postmerger
epoch. Two main extensions are, instead, foreseeable and
consist in allowing for a more general initial state for the

binary. One may investigate dropping the assumption that
(1) the neutron star is initially irrotational and that (2) the
initial spin angular momentum of the black hole and the
orbital angular momentum are parallel. In the former case,
one would have to add a spin angular momentum contri-
bution from the neutron star to the numerator of Eq. (11)
and allow for a fraction of this angular momentum to
possibly be dissipated prior to the disruption/plunge of
the star. A major obstacle, however, would be that, since
there are no numerical-relativity simulations with a non-
irrotational neutron star initial state, we lack a model to
predict Mb;torus when the neutron star is initially spinning.

As this quantity appears in Eq. (11), being able to predict it
would be a fundamental gap to fill in, prior to extending
the model discussed in this paper. Regarding cases with
nonparallel black hole spin angular momentum and orbital
angular momentum, the ISCO-related expressions appear-
ing in Eq. (11) would have to be generalized. Input in this
direction has recently started to emerge from the numerical-
relativity community via the first simulations of tilted
BH-NS mergers, e.g. [43], that would serve as test cases.
In general, and independently of extending the model, it is
important to keep testing the model as more numerical
simulations are published in the literature, possibly con-
straining the ansatz of Eq. (12) and improving the model of
[57], on which the entire approach relies.
In concluding this work, we would like to stimulate the

BH-NS numerical-relativity community to continue inves-
tigating different parameter configurations, as this would
allow us to better constrain the current version of our model
[see the discussion following Eq. (11)]. Investigations on
more generic initial spin configurations would also be help-
ful [43], as they would allow us to look into extending our
approach.
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APPENDIX: EQUATIONS OF STATE

NSs are the most compact objects known, lacking an
event horizon. The densities in the interior of these stars are
expected to exceed the equilibrium density of nuclear
matter (�s ’ 2:7� 1014 g=cm�3), so their macroscopic
properties, e.g. mass and radius, and the internal composi-
tion of their cores depend on the nature of strong inter-
actions in dense matter and reflect (different aspects of) the
dense matter EOS. Our knowledge about the behavior of
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matter at such exceptionally high densities, however, is still
currently limited. As far as the composition is concerned,
for example, several dense matter models predict that—in
addition to nucleons, electrons, and muons—exotica in the
form of hyperons, a Bose condensate of mesons, or decon-
fined quark matter eventually appear at supranuclear den-
sities [98].

An intense investigation to determine the EOS of dense
matter was performed throughout the years [98–100]. The
recent measurement of a NS with mass MNS ¼ ð2:01�
0:04ÞM� ruled out several equations of state proposed over
time [89]. NS equilibrium sequences for EOSs8 compatible
with such measurement are shown in the radius-mass plane
in Fig. 10. In order to assess the impact of the EOS on the
BH remnant of BH-NS mergers, we pick the two EOSs that
yield the smallest and the largest NS radii for any given NS
mass between �1 and �2:1M�. We dub these two EOSs
WFF1 and PS, respectively, because of their NS core
description [90,91]. The NS equilibrium sequences they
yield are shown in blue and red in Fig. 10. As is obvious
from the graph, the WFF1 and the PS EOS bracket all other
equations of state in the relevant NS mass range9 1:0 &
MNS=M� & 2:1. The sequences of Fig. 10 are displayed in
the compactness-mass plane in Fig. 11.

For both the WFF1 and the PS EOS, we use the same
description of matter in the outer layers of the NS:

(i) for densities in the interval starting at the neutron
drip density 4� 1011 g=cm3 and ending at
2� 1014 g=cm3, the Pethick-Ravenhall-Lorenz
(PRL) EOS [102] is used;

(ii) for the crust layer in the density interval ð107 � 4�
1011Þ g=cm3, the Baym-Pethick-Sutherland (BPS)
EOS [103] is adopted;

(iii) and, finally, for densities lower than 107 g=cm3 the
BPS EOS is extrapolated.

The two EOSs differ at densities above 2� 1014 g=cm3: for
the NS core we use what are strictly speaking the WFF1
EOS of [90] and the ‘‘liquid’’ version of the PS EOS of [91].
The WFF1 EOS for dense nuclear matter is based on a
many-body Hamiltonian built with the Argonne v14 two-
nucleon potential and the Urbana VII three-nucleon poten-
tial; calculations are performed with a variational method.
The PS EOS, instead, considers neutron-only matter with
�0 condensates; the �0 relativistic field is not treated ex-
plicitly but is instead replaced by an equivalent two-body
potential; calculations are performed using a constrained
variational method. Both WFF1 and PS are dated and have
been superseded by more modern models and calculation
techniques; however, they serve our purpose of considering
extremely compact and extremely large NSs, respectively,
to explore the space of parameters of BH-NS binaries.
In addition to the WFF1 and PS cases, we also discuss

results obtained for the APR2 EOS [92], which is used as it
represents the most complete nuclear many-body study to
date, and special-relativistic corrections were progres-
sively incorporated in it. APR2 is based on the Argonne
v18 two-nucleon potential, the Urbana IX three-nucleon
potential, and the �vb boost; it is supported by current
astrophysical [104] and nuclear physics constraints [105].

FIG. 10 (color online). NS equilibrium sequences in the
radius-mass plane for several equations of state. The sequences
shown are compatible with the recent measurement MNS ¼
ð2:01� 0:04ÞM� (horizontal, dashed line). Results for the
WFF1/PS EOS, which yields the most/least compact NSs, are
shown in blue/red. The APR2 sequence is shown in orange,
while sequences obtained with other equations of state are shown
with thinner, continuous gray lines.

FIG. 11 (color online). Same as Fig. 10, but in the
compactness-mass plane.

8We do not consider strange quark matter equations of state.
9The theoretical minimum mass for a proto-neutron star is

1:1–1:2M� [101].
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