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1 Introduction

Recently, Eguchi, Ooguri and Tachikawa made the intriguing observation [1] that the ex-

pansion coefficients of the elliptic genus of K3 can be naturally interpreted in terms of

representations of the finite sporadic Mathieu group M24. This conjecture has now been

established. In particular, the twining genera, i.e. the elliptic genera with the insertion

of a group element g ∈ M24, have been determined combining different viewpoints [2–5].

The knowledge of all twining genera fixes the decomposition of every expansion coefficient

in terms of M24 representations, and it was shown in [6] (see also [7]) that the resulting

multiplicities are indeed (non-negative) integers. Thus a consistent decomposition of all

expansion coefficients in terms of M24 representations is possible. More recently, evidence

was also obtained that the same is true for the twisted twining genera [8, 9], i.e. the ana-

logues of Norton’s generalised moonshine functions [10]. The ideas underlying Mathieu

moonshine have also now been extended in other directions, see in particular [11–18].

Since the elliptic genus counts the net contribution of BPS states of string theory on

K3, these results suggest that M24 has a natural action on the BPS spectrum of these

sigma models. Obviously, the simplest way to realise such an action would be if it came

from a genuine symmetry of the full sigma model. The ‘geometrical’ symmetries of K3

surfaces were classified some time ago by Mukai [19] (with additional insights by Kondo

[20]), who established that the holomorphic symplectic automorphism groups of K3 surfaces

are all proper subgroups of the sporadic group M23 (which stabilises one element in the

standard representation of M24 as permutation group on 24 symbols). Since the elliptic

genus is constant along each connected component of the moduli space of N = (4, 4)

superconformal field theories at central charge (c, c) = (6, 6), one may then hope that

the symmetries at different points in moduli space may be put together. This led two

of us to suggest that an ‘overarching symmetry group’ based on the classical geometric

symmetries of K3 non-linear sigma models could be defined in this manner [21]; indeed

already under restriction to symmetries of Kummer K3s one obtains the group Z4
2 : A8,

which is a maximal subgroup of M24 not contained in M23 [22, 23].

In order to enhance the symmetry group to M24, stringy symmetries of K3 sigma mod-

els may need to be included. Mukai’s Theorem was generalised to the case of supersymme-

try-preserving automorphism groups of non-linear sigma models on K3 [24]. Somewhat sur-

prisingly it was found that the possible supersymmetry-preserving automorphism groups

– 1 –



of K3 sigma models are not all subgroups of M24, but instead form groups that fit inside

the Conway group Co1, which contains M24. In fact, the result of [24] gave a rather con-

crete description of the possible symmetry groups of all K3 sigma models. For example, it

predicted the existence of a K3 sigma model with symmetry group G = 51+2 : Z4 that was

subsequently identified with a certain asymmetric Z5-orbifold of a torus theory that realises

a K3 theory [25]. It also predicted the existence of a K3 sigma model with symmetry group

Z8
2 : M20, one of the largest maximal symmetry groups of K3 sigma models.

It is the purpose of the present article to identify the microscopic realisation of this

sigma model. As it turns out the relevant K3 sigma model can be described as the usual

Z2-orbifold of a torus theory at the special D4-point, such that the bosonic theory before

orbifolding has an ŝo(8)1 current symmetry, both for left- and right-movers. From this

geometric viewpoint, the model is a nonlinear sigma model on the so-called tetrahedral

Kummer K3 studied in detail in [21].

We should stress that the presence of the Z8
2 : M20 symmetry group is not entirely

obvious in this description. In fact, Z8
2 : M20 contains A5, the alternating group of five

symbols, and it is a priori not clear how this 5-fold permutation symmetry should arise

from the Z2-orbifold of the D4-torus theory. The key idea behind our paper is that the

bosonic theory has, after orbifolding, the chiral symmetry

ŝo(4)1 ⊕ ŝo(4)1 ∼= ŝu(2)⊕ 4
1 . (1.1)

Furthermore, the four free fermions of the supersymmetric torus theory give rise to the

chiral symmetry

ŝo(4)1 ∼= ŝu(2)⊕ 2
1 (1.2)

that survives the orbifold projection. Taken together, the Z2-orbifold of the D4-torus

theory therefore has the chiral symmetry [26]

ŝo(4)1 ⊕ ŝo(4)1 ⊕ ŝo(4)1 ∼= ŝu(2)⊕ 6
1 . (1.3)

One of these ŝu(2)1 algebras can be identified with the R-symmetry of the N = 4 super-

conformal algebra that must remain invariant under the supersymmetry-preserving auto-

morphisms. However, the other five factors may be permuted, and this is the origin of

the A5 symmetry of our torus orbifold.1 Remarkably, in the description of the model as

a torus orbifold, some generators of this A5 symmetry mix states in the twisted and un-

twisted sectors. Our analysis also shows that the Z2-orbifold of the D4-torus theory can

be alternatively realised as an asymmetric Z4-orbifold of the same D4-torus.

The paper is organised as follows. In Section 2 we discuss the Z2-orbifold of the D4-

torus theory in detail, and explain how it may also be described in terms of twelve free

Majorana fermions, both for the left- and the right-movers. In Section 3 we provide yet

another description of the same theory, now as a rational conformal field theory (RCFT)

based on the current algebra ŝu(2)⊕ 6
1 . This approach exhibits the aforementioned permu-

tation symmetry most clearly; however, the structure of the N = (4, 4) supercharges is

1Only A5 rather than S5 emerges since the states in the (1
4
, 1

2
; 1

4
, 1

2
) multiplet of the left- and right-

moving N = 4 algebras also have to be preserved, which requires the permutations to be even.
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rather involved from that viewpoint. We therefore construct the supersymmetry-preserving

symmetries of our orbifold model using the orbifold description, and then translate them

into the ŝu(2)⊕ 6
1 language, using the free fermion description as an intermediate step; this

is done in Section 4. Actually, as is explained in Section 4.3, there are at least fifteen

different ways in which one may write our K3 sigma model as a Z2-orbifold of a toroidal

model — obviously, all these descriptions are equivalent, but differ in their distribution

of states into the twisted and untwisted sector, respectively. Of these fifteen descriptions,

five have the same expression for the four supercharges, and hence their supersymmetry-

preserving symmetries can be directly combined. In Section 5 we analyse the structure

of the resulting group, and demonstrate that it contains at least Z8
2 : M20; together with

the results of [24] this then shows that the supersymmetry-preserving symmetry group of

this model must be precisely equal to Z8
2 : M20. Section 6 explains why our Z2-orbifold

model has another realisation as an asymmetric Z4-orbifold of the same D4-torus theory.

In fact, the Z4 action can be described in terms of two consecutive Z2 actions, namely the

Z2-orbifold by T-duality (which is a consistent symmetry and leads again to the D4-torus

theory), followed by the usual Z2 inversion action. Finally, we close with some conclusions

in Section 7. There are six appendices, where some of the more technical material has been

collected.

2 K3 sigma model as Z2-orbifold of the D4-torus model

In this section we describe the K3 sigma model based on the Z2-orbifold of the D4-torus

model. In particular, we recall that it possesses an

ŝu(2)6L,1 ⊕ ŝu(2)6R,1 (2.1)

affine symmetry algebra2 [26, proof of Thm. 3.7]. We also explain how it may be described

in terms of twelve left- and twelve right-moving Majorana fermions.

2.1 Geometric description of the D4-torus model and its Z2-orbifold

A generic d = 4 bosonic torus model contains an affine û(1)4 algebra of left-moving currents

jk(z) = i∂φk(z), k = 1, . . . , d = 4 and its right-moving counterpart (see Appendix A for our

conventions and notations). At particular points in the moduli space (i.e. at special values

for the metric and the B-field), the û(1)4 current algebra is enhanced to a non-abelian

affine algebra of rank 4. In the case where the lattice L underlying the torus T = R4/L is

the D4-lattice LD4
⊂ R4, the B-field can be chosen such that the extended bosonic current

algebra is ŝo(8)1. To see this, consider the following basis of LD4
,

l1,2 :=
1√
2




1

1

0

0


 , l1,−2 :=

1√
2




1

−1

0

0


 , l3,4 :=

1√
2




0

0

1

1


 , l1,3 :=

1√
2




1

0

1

0


 ,

(2.2)

2We use the notation ŝu(2)n1 := ŝu(2)⊕n
1

throughout. The indices L/R stand for left- and right-moving,

respectively.
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as well as the B-field

B :=




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 , (2.3)

and set, for every pair of indices j, k ∈ {1, . . . , 4} with j 6= k,

l±j,±k :=
1√
2
(±ej ± ek) ∈ LD4

, m±j,±k := Bl±j,±k + l±j,±k ∈ L∗
D4

, (2.4)

where e1, . . . , e4 is the canonical orthonormal basis of R4. Then, the model contains states

with momentum-winding (m±j,±k, l±j,±k) ∈ L∗
D4

⊕ LD4
, which have left and right û(1)4L

charges (see Appendix A)

Q±j,±k := Q(m±j,±k, l±j,±k) =
√
2l±j,±k = ±ej ± ek , Q(m±j,±k, l±j,±k) = 0 . (2.5)

Thus the momentum-winding fields V(Q±j,±k;0)(z) define twenty-four (1, 0)-fields which, to-

gether with j1(z), . . . , j4(z), form the standard ŝo(8)1-current algebra. The right-moving

ŝo(8)1-current algebra is analogously obtained using the twenty-four (0, 1)-fields

V(0;Q±j,±k)
(z) , where Q±j,±k := ∓ej ∓ ek , j, k ∈ {1, . . . , 4} with j 6= k. (2.6)

The full spectrum of the bosonic D4-torus model can be decomposed into representations

of the left- and right-moving ŝo(8)1 algebras as

HD4−torus = (HL,0 ⊗HR,0)⊕ (HL,v ⊗HR,v)⊕ (HL,s ⊗HR,s)⊕ (HL,c ⊗HR,c) , (2.7)

where HL,0 is the left-moving ŝo(8)1 vacuum representation, while HL,v,HL,s and HL,c

are the vector and the two spinor representations, respectively. The HR,∗ denote the

corresponding right-moving representations. The vector representation HL,v ⊗ HR,v is

generated by OPEs of the holomorphic and antiholomorphic currents with the winding-

momentum fields

Q(m, l) = ±ei , Q(m, l) = ±ej (64 fields) , (2.8)

while the spinor representations are generated by

Q(m, l) =
1

2

4∑

j=1

εjej , Q(m, l) =
1

2

4∑

k=1

δkek , (128 fields) (2.9)

where εj, δk ∈ {±1} and
4∑

k=1

(Qk +Qk) ≡ 0 mod 2 .

In particular,
∑4

k=1Qk and
∑4

k=1Qk are even for HL,s ⊗ HR,s and odd for HL,c ⊗ HR,c.

Thus, the lattice of û(1)4L ⊕ û(1)4R charges (see (A.4)) of the D4-torus model equals

Γd,d :=

{
(Q;Q) ∈ Z

d ⊕ Z
d ∪
(
1
2
+ Z

)d ⊕
(
1
2
+ Z

)d
∣∣∣∣∣

d∑

k=1

(
Qk +Qk

)
≡ 0 mod 2

}
(2.10)
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with d = 4.

The supersymmetric torus model is obtained by adjoining d = 4 free Majorana fermions

ψk(z), k = 1, . . . , 4, related to the U(1)-currents jk(z) by world-sheet supersymmetry, and

their right-moving counterparts ψk(z̄), k = 1, . . . , 4. These holomorphic fermions give rise

to the affine symmetry

ŝo(4)1 ∼= ŝu(2)21 . (2.11)

More specifically, we can construct affine generators of ŝu(2)21 by

J3,1(z) :=
1

2

(
:χ∗

1(z)χ1(z): + :χ∗
2(z)χ2(z):

)
(2.12)

J+,1(z) := i :χ∗
1(z)χ

∗
2(z): , J−,1(z) := i :χ1(z)χ2(z): , (2.13)

J3,2(z) :=
1

2

(
:χ∗

1(z)χ1(z):− :χ∗
2(z)χ2(z):

)
(2.14)

J+,2(z) := i :χ∗
1(z)χ2(z): , J−,2(z) := i :χ1(z)χ

∗
2(z): , (2.15)

where χj and χ
∗
j , j = 1, 2, are Dirac fermions defined as

χj(z) :=
1√
2
(ψ2j−1(z) + iψ2j(z)) , χ∗

j(z) :=
1√
2
(ψ2j−1(z)− iψ2j(z)) , j = 1, 2 .

(2.16)

These currents (for k = 1, 2) satisfy the OPEs

J3,k(z)J3,k(w) ∼ 1

2(z − w)2
, J3,k(z)J±,k(w) ∼ ±J

±,k(w)

(z − w)
,

J±,k(z)J±,k(w) ∼ 0 , J±,k(z)J∓,k(w) ∼ 1

(z − w)2
± 2J3,k(w)

(z − w)
.

(2.17)

Altogether, the affine symmetry (both for left- and right-movers) of the supersymmetric

D4-torus model is

ŝu(2)21 ⊕ ŝo(8)1 . (2.18)

In order to obtain a K3 sigma model we now consider a Z2-orbifold of this torus

model. The group Z2 acts in the usual manner on the bosonic degrees of freedom, i.e. it

maps jk(z) 7→ −jk(z), k(z) 7→ −k(z), k = 1, . . . , 4, and Vλ 7→ V−λ for all λ ∈ Γ4,4. In

order for this to be a well-defined symmetry we need to choose our operators cλ of equation

(A.8) such that cλ = c−λ for all λ ∈ Γ4,4.

On the fermions, the group Z2 acts as ψk 7→ −ψk and likewise for the right-movers,

ψk 7→ −ψk, k = 1, . . . , 4. In particular, the orbifold leaves the ŝu(2)L,1⊕ ŝu(2)R,1 algebra in

(2.11) invariant, since it is generated by the bilinear fermion combinations (2.12) – (2.15).

In the left-moving sector3, the orbifold procedure projects out the four Cartan gener-

ators j1(z), . . . , j4(z) of the bosonic ŝo(8)L,1 algebra, and maps positive and negative roots

3The treatment of the right-moving sector is analogous.
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into one another; the invariant subalgebra is therefore that of the Cartan involution of

so(8)L,1, i.e. so(4)L,1⊕ so(4)L,1. Altogether, the orbifold thus has an affine current algebra

of type

ŝo(4)L,1 ⊕ ŝo(4)L,1 ⊕ ŝo(4)L,1 ∼= ŝu(2)6L,1 . (2.19)

Since the central charge of the (left) current algebra (2.19) equals c = 6, the full K3 sigma

model must be a rational theory with respect to this symmetry algebra. Hence we will be

able to describe the whole theory quite succinctly in terms of an ŝu(2)6L,1⊕ ŝu(2)6R,1 RCFT;

this will be further developed in Section 3. In order to understand the equivalence between

that description and the D4-torus orbifold better, it is convenient to reformulate the torus

orbifold in terms of free fermions.

2.2 Free fermion description of the D4-torus and its orbifold

The bosonic D4-torus model may be described in terms of eight free left- and right-moving

Majorana fermions ψj(z) and ψj(z), j = 5, . . . 12, all of whose boundary conditions are

coupled. In Appendix B, we state the correspondence in detail in terms of the four left-

and four right-moving Dirac fermions

xk := 1√
2
(ψk+4 + iψk+8) , x∗k := 1√

2
(ψk+4 − iψk+8) ,

xk := 1√
2
(ψk+4 + iψk+8) , x∗k := 1√

2
(ψk+4 − iψk+8) , k ∈ {1, . . . , 4} ,

(2.20)

which satisfy the OPEs

xk(z) x
∗
k(w) ∼

1

(z − w)
∼ x∗k(z) xk(w) . (2.21)

By our choice of fermionisation (B.8), we identify the holomorphic U(1)-currents of the

bosonic D4-torus model as

jk(z) = i∂φk(z) = :xk(z)x
∗
k(z): = −i :ψk+4(z)ψk+8(z): . (2.22)

All other generating fields of the theory as determined in Subsection 2.1 are expressed in

terms of the Dirac fermions xk(z), x
∗
k(z), xk(z), x

∗
k(z), k = 1, . . . , 4, and the ‘meromorphic

building blocks’ ξ±k (z) = :exp
(
± i

2
φk(z)

)
: that are defined in Appendix B.

Next we observe that the Z2-action on the D4-torus model is induced by the trans-

formation that leaves ψ5(z), . . . , ψ8(z) invariant, while mapping ψk(z) 7→ −ψk(z) where

k ∈ {9, . . . , 12}. In other words, we have xk(z) ↔ x∗k(z), and analogously for the right-

moving fermions. Using the notations (2.5), the untwisted sector of the Z2-orbifold is hence

generated by the Z2-invariant (1, 0)-fields with C-basis

for j < k, :xj(z)xk(z): + :x∗j(z)x
∗
k(z): = V(Qj,k ;0)(z) + V(Q−j,−k ;0)(z) ,

:xj(z)x
∗
k(z): + :x∗j(z)xk(z): = V(Qj,−k ;0)(z) + V(Q−j,k ;0)(z) ,

(2.23)
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along with the Z2-invariant (1
2
, 1
2
)-fields of the form V(Q;Q)(z, z) + V(−Q;−Q)(z, z) with C-

basis
if Q = ej, Q = ek : i :xj(z)x

∗
k(z): +i :x

∗
j (z)xk(z): ,

Q = −ek : i :xj(z)xk(z): +i :x
∗
j (z)x

∗
k(z): ,

if Q = 1
2

4∑
j=1

εjej, Q = 1
2

4∑
k=1

δkek :

:
4∏

j=1

ξ
εj
j (z)

4∏
k=1

ξ
δk
k (z): + :

4∏
j=1

ξ
−εj
j (z)

4∏
k=1

ξ
−δk
k (z): ,

(2.24)

where εj, δk ∈ {±}. To describe the twisted sector, recall that the Z2-orbifolding of

our eight Majorana fermions with coupled boundary conditions decouples effectively the

boundary conditions of the fermions ψ5(z), . . . , ψ8(z) from those of ψ9(z), . . . , ψ12(z). For

εk ∈ {±}, k ∈ {1, . . . , 4}, we define

Ξ+
ε1,...,ε4(z) := :

4∏

k=1

ηεkk (z): and Ξ−
ε1,...,ε4(z) := :

4∏

k=1

ηεkk+4(z): , (2.25)

where the η±k fields are introduced in Appendix B. Then the twisted ground states of our

Z2-orbifold are described by those Ξ±
ε1,...,ε4(z) for which an even number of the εk are equal

to +1.

Recall that the decoupling of the eight Majorana fermions into two sets of four implies

that our Z2-action breaks the ŝo(8)1-symmetry of the underlying toroidal theory to ŝu(2)41.

Indeed, by (2.24) a basis for the Z2-invariant (1, 0)-fields is given by

:ψj+4(z)ψk+4(z): , :ψj+8(z)ψk+8(z): , 1 ≤ j < k ≤ 4 , (2.26)

where the :ψj+4(z)ψk+4(z): with j, k ∈ {1, . . . , 4} generate an ŝo(4)1 = ŝu(2)1 ⊕ ŝu(2)1
current algebra, and so do the :ψj+8(z)ψk+8(z): with j, k ∈ {1, . . . , 4}.

Note that our expressions and normalisations of the U(1)-currents J3,k(z) and jk(z),

respectively, are different (compare (2.12) and (2.17) to (2.22) and (A.1)). In what follows,

we shall use both choices of fermionisation conventions, since both of them are sometimes

convenient. We will carefully distinguish the two choices in terms of our notations, not just

for the U(1)-currents J3,k(z) and jk(z), but also for the relevant Dirac fermions, which are

denoted by χk(z) or xk(z), respectively. This free fermion description is also convenient

in order to determine the partition function of the theory and – by means of the elliptic

genus – to confirm that it is a K3 model, see Appendix C. In fact, by the results of [27], the

usual Z2-orbifold of every supersymmetric d = 4-dimensional torus model has the elliptic

genus of K3 and thus is indeed a K3 model.

2.3 The N = (4, 4) supercurrents

The K3 sigma model possesses an N = (4, 4) superconformal symmetry on the world-sheet;

the relevant supercharges can be most conveniently defined for the underlying supersym-
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metric D4-torus model. With notations as above, we define the complex fields

∂Z(1)(z) :=
1√
2
(∂φ1(z) + i∂φ2(z)) , ∂Z(1) ∗(z) :=

1√
2
(∂φ1(z)− i∂φ2(z)) ,

∂Z(2)(z) :=
1√
2
(∂φ3(z) + i∂φ4(z)) , ∂Z(2) ∗(z) :=

1√
2
(∂φ3(z)− i∂φ4(z) . (2.27)

Using the definition of the Dirac fermions χk(z), k = 1, 2, see eq. (2.16), the holomorphic

N = 4 supercurrents are then given by

G+(z) =
√
2i (:χ∗

1(z)∂Z
(1)(z): + :χ∗

2(z)∂Z
(2)(z):) , (2.28)

G−(z) =
√
2i (:χ1(z)∂Z

(1) ∗(z): + :χ2(z)∂Z
(2) ∗(z):) , (2.29)

G′+(z) =
√
2 (− :χ∗

1(z)∂Z
(2) ∗(z): + :χ∗

2(z)∂Z
(1) ∗(z):) , (2.30)

G′−(z) =
√
2 (:χ1(z)∂Z

(2)(z):− :χ2(z)∂Z
(1)(z):) . (2.31)

Indeed, it is straightforward to check that these fields satisfy the OPEs

1√
2

(
G+(z) +G−(z)

)
ψk(w) ∼

jk(w)

(z − w)
, k = 1, . . . , 4 (2.32)

exhibiting ψk(z) as superpartner of jk(z), k = 1, . . . , 4. Moreover, (2.28) – (2.31) obey the

standard OPEs for the N = 4 supercurrents

G±(z)G∓(w) ∼ G′±(z)G′∓(w) ∼ 4

(z − w)3
± 4

(z − w)2
J3,1(w)

+
2

z − w
(T (w)± ∂J3,1(w)) ,

G′+(z)G+(w) =
4

(z − w)2
J+,1(w) +

2

(z − w)
∂J+,1(w) ,

G′−(z)G−(w) =
−4

(z − w)2
J−,1(w)− 2

(z − w)
∂J−,1(w) ,

G±(z)G±(w) ∼ G′±(z)G′±(w) ∼ G±(z)G′∓(w) ∼ 0 ,

(2.33)

where T is the stress-energy tensor and Ja,1 with (a = 3,+,−) are the ŝu(2)1 currents of

(2.12) – (2.13). Therefore, the zero modes of these currents generate the SU(2) R-symmetry

group of the N = 4 algebra.

The free fermion description of our model of Subsection 2.2 allows us to express the

supercurrents (2.28) – (2.31) in terms of the Dirac fermions χk(z), χ
∗
k(z), k = 1, 2, and the

Majorana fermions ψ5(z), . . . , ψ12(z) by means of (2.22). However, for later use it is more

convenient to introduce Dirac fermions in a completely symmetric way, as opposed to the

construction in Subsection 2.2. Indeed, we extend (2.16) to the definitions

χj(z) :=
1√
2
(ψ2j−1(z) + iψ2j(z)) , χ∗

j (z) :=
1√
2
(ψ2j−1(z)− iψ2j(z)) , j = 1, . . . , 6 ,

(2.34)
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instead of using the fields xk and x∗k, k = 1, . . . , 4, of (2.20). Then one checks

G+(z) =
(−1− i

2

) 2∑

j=1

[
:χ∗

j (z)χj+2(z)χj+4(z): + :χ∗
j(z)χ

∗
j+2(z)χ

∗
j+4(z):

+i
(
:χ∗

j (z)χj+2(z)χ
∗
j+4(z): + :χ∗

j (z)χ
∗
j+2(z)χj+4(z):

)]
(2.35)

G−(z) =
(−1− i

2

) 2∑

j=1

[
i
(
:χj(z)χj+2(z)χj+4(z): + :χj(z)χ

∗
j+2(z)χ

∗
j+4(z):

)

+ :χj(z)χj+2(z)χ
∗
j+4(z): + :χj(z)χ

∗
j+2(z)χj+4(z):

]
, (2.36)

as well as

G′+(z) =
(−1− i

2

)[
:χ∗

2(z)χ3(z)χ5(z):− :χ∗
1(z)χ4(z)χ6(z):

+ :χ∗
2(z)χ

∗
3(z)χ

∗
5(z):− :χ∗

1(z)χ
∗
4(z)χ

∗
6(z):

+i
(
− :χ∗

2(z)χ3(z)χ
∗
5(z): + :χ∗

1(z)χ4(z)χ
∗
6(z):

− :χ∗
2(z)χ

∗
3(z)χ5(z): + :χ∗

1(z)χ
∗
4(z)χ6(z):

)]
, (2.37)

G′−(z) =
(−1− i

2

)[
i
(
:χ2(z)χ3(z)χ5(z):− :χ1(z)χ4(z)χ6(z):

+ :χ2(z)χ
∗
3(z)χ

∗
5(z):− :χ1(z)χ

∗
4(z)χ

∗
6(z):

)

− :χ2(z)χ3(z)χ
∗
5(z): + :χ1(z)χ4(z)χ

∗
6(z):

− :χ2(z)χ
∗
3(z)χ5(z): + :χ1(z)χ

∗
4(z)χ6(z):

]
. (2.38)

3 The K3 sigma model as an ŝu(2)61 RCFT

The K3 model which we described in Section 2 can be obtained as a Z2×Z2-orbifold of the

Gepner model (2)4 [26, Thm. 3.7]. As such it is a rational CFT. In this section, we give

a description of it as an ŝu(2)61 RCFT which turns out to be useful in order to determine

the full symmetry group of this model.

3.1 Representations of the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 current algebra

Let us begin by reviewing the representation theory of ŝu(2)1. This algebra possesses

only two irreducible highest weight representations, namely the vacuum representation

[0], whose ground state has conformal weight 0 and is a singlet under the group SU(2)

generated by the zero modes of the algebra, and the representation [1], whose ground

states have conformal weight 1
4
and form an SU(2)-doublet. The fusion rules have the

structure of a cyclic group of order 2,

[0]× [0] → [0], [0]× [1] → [1], [1]× [1] → [0] . (3.1)

Therefore, the representation content of a model with ŝu(2)6L,1 ⊕ ŝu(2)6R,1 (left- and right-

moving) affine algebra4 can be encoded in a subgroup

A ⊂ Z
6
2 × Z

6
2 , (3.2)

4See Appendix D.1 for an overview of a vertex operator construction for this affine algebra.
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whose elements we denote by

[a1, . . . , a6; b1, . . . , b6] , ai, bi ∈ {0, 1} . (3.3)

Occasionally, it will be useful to consider ŝu(2)61 as a direct sum of three ŝo(4)1 algebras.

The algebra ŝo(4)1 ∼= ŝu(2)21 has four irreducible highest weight representations that we

denote by a pair [ab], a, b ∈ {0, 1}, of ŝu(2)1 labels. Equivalently, four Majorana fermions

with coupled spin structures yield an ŝu(2)21
∼= ŝo(4)1 current algebra as in (2.12) – (2.15).

Thus the four representations [ab], a, b ∈ {0, 1}, can also be classified by their fermion

number (−1)F , and their tensor/spinor properties as ŝo(4)1 representations,

(−1)F = +1 (−1)F = −1

Tensor (T) [00] [11]

Spinor (S) [10] [01]

(3.4)

where the fermion number of the spinor representations is a matter of convention.

Next we relate this to the free fermion description of Subsection 2.2. In contrast to the

notations there, we now group the twelve holomorphic (and anti-holomorphic) Majorana

fermions ψk(z), ψk(z), k = 1, . . . , 12, into Dirac fermions according to (2.34). This allows

us to construct an ŝu(2)6L,1 subalgebra of the affine algebra ŝo(12)L,1 generated by these

free fermions, where all summands ŝu(2)L,1 enter completely symmetrically. The currents

generating the first ŝo(4)L,1 ∼= ŝu(2)2L,1 subalgebra in ŝo(4)31 are given in (2.12) – (2.15). In

particular, the four left-moving Majorana fermions ψ1, . . . , ψ4 form a vector representation

[11] under this first (left) ŝo(4)L,1, while they are in the singlet [00] representation under

the second and third (left) ŝo(4)L,1 algebras, as well as under the right ŝo(4)3R,1 algebra.

The four corresponding right-moving Majorana fermions ψk(z), k = 1, . . . , 4, behave in an

analogous manner under ŝo(4)3R,1
∼= ŝu(2)6R,1; symbolically we therefore write

ψ1, . . . , ψ4 → [11 00 00; 00 00 00] , ψ1, . . . , ψ4 → [00 00 00; 11 00 00] . (3.5)

The remaining fermions are in the singlet representation [00] of the first ŝo(4)L,1 ∼= ŝu(2)2L,1.

We can similarly express the currents Ja,k, (a = 3,±), k = 3, . . . , 6, generating the sec-

ond and third ŝo(4)L,1 subalgebras in ŝo(4)3L,1 analogously to (2.12) – (2.15) in terms of the

four Dirac fermions χ3(z), χ4(z), χ
∗
3(z), χ

∗
4(z) and χ5(z), χ6(z), χ

∗
5(z), χ

∗
6(z), respectively,

and likewise for the right-moving currents. Hence, the remaining free fermions transform

in the following representations of ŝu(2)6L,1 ⊕ ŝu(2)6R,1,

ψ5 . . . , ψ8 → [00 11 00; 00 00 00] , ψ5 . . . , ψ8 → [00 00 00; 00 11 00] ,

ψ9 . . . , ψ12 → [00 00 11; 00 00 00] , ψ9 . . . , ψ12 → [00 00 00; 00 00 11] .
(3.6)

The fields and representations discussed so far belong to the ‘internal’ NS sector of a free

fermion theory which is obtained by fermionisation of a toroidal theory on a D6-torus.

Indeed, in complete analogy to our discussion in Subsections 2.2 and Appendix C, the

spectrum HD6−torus of the bosonic D6-torus model (see Appendix A), which has charge

lattice Γ = Γ6,6 as in (2.10), is obtained from twelve free left-moving and twelve free

right-moving Majorana fermions, all with coupled spin structures.
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3.2 Spectrum of the K3 model in terms of representations of ŝu(2)61 ⊕ ŝu(2)61

In order to obtain the K3 sigma model we now have to perform an orbifold of this bosonic

D6-torus model. In particular, we need to decouple the spin structures of the internal and

external fermions (in order to describe the supersymmetric D4-torus model), and we have

to perform the usual Z2-orbifold to obtain from the latter a K3 theory. In terms of the

D4-torus model, the relevant orbifold group is therefore Z2 × Z2 with generators

g := (−1)

12∑
k=5

(FL,k+FR,k)
and h := (−1)

4∑
k=1

(FL,k+FR,k)+
12∑
i=9

(FL,k+FR,k)
, (3.7)

where FL,k, FR,k are the fermion number operators corresponding to ψk, ψk, k = 1, . . . , 12,

respectively. Here g is the symmetry whose orbifold decouples the spin structures, while h

induces the standard Z2-orbifold on the D4-torus model.

To implement the orbifold procedure, we now introduce the g-, h- and gh-twisted

sectors and then project onto the invariant states in the untwisted and in the three twisted

sectors. We focus on the NS-NS sector of our model first. In the g-twisted sector, the

fields ψk, ψk, k = 5, . . . , 12 have integer modes. Thus, the g-twisted ground states form a

representation of the Clifford algebra of the zero modes of these fields, i.e. they transform

in spinor representations of the corresponding ŝo(4)1 algebras. Analogous considerations

hold for the h- and gh-twisted sectors. Therefore, the tensorial properties of the various

sectors with respect to the left and right-moving ŝo(4)3L,1 ⊕ ŝo(4)3R,1 algebras are

untwisted [TTT;TTT] (3.8)

g-twisted [TSS; TSS] (3.9)

h-twisted [STS; STS] (3.10)

gh-twisted [SST; SST] (3.11)

where T and S denote a tensor or a spinor representation of ŝo(4)1 as in (3.4), respectively.

Finally, one has to project onto the representations that are invariant under both g

and h. The invariant states have the same fermion numbers with respect to the three sets

of fermions, which allows us to identify the corresponding parity operators with the total

fermionic parity (−1)FL+FR,

(−1)

4∑
k=1

(FL,k+FR,k)
= (−1)

8∑
k=5

(FL,k+FR,k)
= (−1)

12∑
k=9

(FL,k+FR,k)
= (−1)FL+FR . (3.12)

In particular, the space of (g, h)-invariant fields contains a bosonic subspace (i.e. with

positive total fermion parity) generated by the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 representations

untw. [00 00 00; 00 00 00] [11 00 00; 11 00 00] [00 11 00; 00 11 00] [00 00 11; 00 00 11]

g-tw. [00 10 10; 00 10 10] [00 10 01; 00 10 01] [00 01 10; 00 01 10] [00 01 01; 00 01 01]

h-tw. [10 00 10; 10 00 10] [10 00 01; 10 00 01] [01 00 10; 01 00 10] [01 00 01; 01 00 01]

gh-tw. [10 10 00; 10 10 00] [10 01 00; 10 01 00] [01 10 00; 01 10 00] [01 01 00; 01 01 00]

(3.13)
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The representation content of this bosonic subspace corresponds therefore to the subgroup

Abos of Z
6
2 × Z6

2,

Abos := {[a1, . . . , a6; b1, . . . , b6] ∈ Z
6
2 × Z

6
2 | ai = bi ,

6∑

i=1

ai ≡ 0 mod 2} . (3.14)

The entire NS-NS spectrum of the orbifold theory is generated by the fusion of these repre-

sentations with one fermionic representation (negative total fermion parity), for example

the representation

[11 11 11; 00 00 00] (3.15)

which contains the holomorphic fields of weight 3
2
. The resulting subgroup of Z6

2 × Z6
2

describing the entire NS-NS spectrum of the theory is Abos ∪ Aferm, where

Aferm := {[a1, . . . , a6; b1, . . . , b6] ∈ Z
6
2 × Z

6
2 | ai = bi + 1 ,

6∑

i=1

ai ≡ 0 mod 2} (3.16)

accounts for the states of negative total fermion parity.

The R-R sector of our model is obtained by inverting the tensorial properties of the

so(4)3L,1 ⊕ so(4)3R,1 representations with respect to the NS-NS sector, i.e. they are given by

exchanging S ↔ T in (3.8) – (3.11). Since we still need to obey (3.12), the R-R spectrum

thus consists of the states

g-twisted [10 00 00; 10 00 00] [01 00 00; 01 00 00] (3.17)

h-twisted [00 10 00; 00 10 00] [00 01 00; 00 01 00] (3.18)

gh-twisted [00 00 10; 00 00 10] [00 00 01; 00 00 01] (3.19)

together with all representations that can be obtained by fusion with the NS-NS represen-

tations (3.13) and (3.15).

With this description of the entire R-R spectrum of our orbifold, it is then straight-

forward to calculate the elliptic genus in terms of ŝu(2)61 characters. This is done in

Appendix D.3, where we show that the elliptic genus reproduces indeed that of K3.

The structure of (3.14) and (3.16) reveals that the spectrum of the orbifold theory is

invariant under simultaneous permutations of the six holomorphic and six anti-holomorphic

ŝu(2)1 algebras. This is actually also a symmetry of the OPE, as is shown in Appendix D.2.

Hence the group of symmetries of the model is (at least) (SU(2)6L× SU(2)6R) : S6. No-

tice that neither the free fermion theory on the bosonic D6-torus, nor its orbifold by g,

corresponding to the supersymmetric sigma model on the D4-torus, contain such an S6

symmetry. Therefore, one cannot generate the whole group of symmetries of the K3 sigma

model just by considering the transformations induced by the symmetries of the parent

theories.

Our model contains 64 holomorphic fields of weight 3
2
, that generate several copies of

theN = 4 superconformal algebra and, in particular, the four supercurrents (2.28) – (2.31).

The corresponding ŝu(2)L,1 algebra (whose zero modes generate the SU(2) R-symmetry
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group) is identified with the first factor of the full ŝu(2)6L,1 affine algebra. Therefore, the

group of symmetries preserving the four left and four right-moving supercurrents must be

a subgroup of the stabiliser (SU(2)5 × SU(2)5) : S5 of the first ŝu(2)L,1 ⊕ ŝu(2)R,1 factor.

4 Finite symmetries of the K3 sigma model

In [24], it was argued that the group G of symmetries of a non-linear sigma model on

K3, preserving the N = (4, 4) superconformal algebra and the four R-R ground states

that are charged under the R-symmetry, is always a subgroup of the Conway group Co0.

Generically, G is a subgroup of Z12
2 : M24 ⊂ Co0, and the only exceptions are given by

orbifolds of torus models by cyclic groups of order 3 or 5 [25].

In this paper we are interested in determining the group G of symmetries of the specific

K3 sigma model described so far in three different ways: as the Z2-orbifold of the D4-torus

model in Subsection 2.1; as a free fermion model in Subsection 2.2; and as an RCFT based

on the vertex operator construction of the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 affine algebra in Section 3.

Each of these three descriptions exhibits some of the relevant finite symmetries in a natural

way. Our first aim in this section is to represent all of these symmetries as elements of a

subgroup of (SU(2)6L × SU(2)6R) : S6, see the discussion at the end of the previous section.

We first consider the discrete ‘geometric’ symmetries of the Z2-orbifold of the D4-torus

model as a guide, and we use the free fermion description to express these symmetries

(and new ones discovered in the process) in terms of a subgroup of (SU(2)6L×SU(2)6R) : S6.

We then turn to the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 RCFT description of the K3 model to express

generators of our symmetry group in a form that paves the way to the identification of a

less obvious A5 ⊂ S6 symmetry group. This group is a factor of the group G of symmetries

we are seeking. The full structure of G will then be studied in Section 5.

4.1 Symmetries from the Z2-orbifold of the D4-torus model

By construction, the Z2-orbifold of the bosonic D4-torus model has a geometric interpre-

tation on the tetrahedral Kummer surface that is obtained by minimally resolving all the

singularities of TD4
/Z2, where TD4

= R4/LD4
. The symmetry group of that Kummer

surface was studied in detail in [21]; in particular, the group of holomorphic symplectic

automorphisms is the group T192
∼= (Z2)

4 : A4 of order 192. The subgroup of type A4 of

T192 is induced by those symmetries of the underlying torus that have a fixed point. The

remaining symmetries in T192 are generated by including the translational subgroup (Z2)
4

(half-period shifts) which acts as a permutation group on the twisted ground states and

leaves the untwisted sector invariant.

In this subsection we identify this group of symmetries, as well as some additional

non-geometric generators, with a subgroup of (SU(2)6L×SU(2)6R) : S6. In fact, we focus on

the action of this group on the holomorphic and antiholomorphic currents generating the

ŝu(2)6L,1 ⊕ ŝu(2)6R,1 algebra that survives the Z2-orbifold projection. Actually, we will only

identify the group modulo the subgroup Z6
2 × Z6

2 of elements of (SU(2)6L × SU(2)6R) : S6

that act trivially on the currents.
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4.1.1 Rotations

The group A4 of rotations may be generated by the three following symmetries5

γ1 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


 , γ2 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 , γ3 =

1
2




−1 1 1 −1

−1 −1 1 1

−1 −1 −1 −1

1 −1 1 −1


 , (4.1)

which act on R
4 and induce symmetries of the D4-torus TD4

that descend to the Kummer

surface. Since the D4-torus model has a non-trivial B-field B given in (2.3), we need to

ensure that these rotations induce symmetries on the conformal field theory. This is the

case if and only if γTk Bγk = B for k ∈ {1, 2, 3}, and one immediately confirms that this

latter condition is indeed obeyed.

We now give a description of the action of γ1 and γ2 in terms of the holomorphic

fields in the free fermion model; this is sufficient in order to specify the symmetries in the

form that is needed in Section 5. With the notations of Section 2 and Appendix B, see

in particular (2.4), we observe that the lattice vectors l1,2, l1,−2, l3,4, l3,−4 form a basis of

R4. The symmetries γ1 and γ2 permute the eight lattice vectors l±1,±2, l±3,±4, inducing the

following maps under the identification (B.9)

γ1 :





:x1(z)x2(z): 7−→ :x1(z)x
∗
2(z):

:x∗1(z)x
∗
2(z): 7−→ :x∗1(z)x2(z):

:x1(z)x
∗
2(z): 7−→ :x∗1(z)x

∗
2(z):

:x∗1(z)x2(z): 7−→ :x1(z)x2(z):

:x3(z)x4(z): 7−→ :x∗3(z)x4(z):

:x∗3(z)x
∗
4(z): 7−→ :x3(z)x

∗
4(z):

:x3(z)x
∗
4(z): 7−→ :x3(z)x4(z):

:x∗3(z)x4(z): 7−→ :x∗3(z)x
∗
4(z):





, γ2 :





:x1(z)x2(z): 7−→ :x3(z)x4(z):

:x∗1(z)x
∗
2(z): 7−→ :x∗3(z)x

∗
4(z):

:x1(z)x
∗
2(z): 7−→ :x3(z)x

∗
4(z):

:x∗1(z)x2(z): 7−→ :x∗3(z)x4(z):

:x3(z)x4(z): 7−→ :x∗1(z)x
∗
2(z):

:x∗3(z)x
∗
4(z): 7−→ :x1(z)x2(z):

:x3(z)x
∗
4(z): 7−→ :x∗1(z)x2(z):

:x∗3(z)x4(z): 7−→ :x1(z)x
∗
2(z):





. (4.2)

These maps are induced by

γ1 : x1 7→ x∗2 7→ −x∗1 7→ −x2 7→ x1, x3 7→ x4 7→ −x∗3 7→ −x∗4 7→ x3
γ2 : x1 7→ x3 7→ x∗1 7→ x∗3 7→ x1, x2 7→ x4 7→ x∗2 7→ x∗4 7→ x2 ,

(4.3)

from which one obtains the actions on all (1, 0)-fields in the orbifold. Equivalently, for

ψ5, . . . , ψ12 we have

γ1 : ψ5 7→ ψ6 7→ −ψ5, ψ7 7→ ψ8 7→ −ψ7, ψ9 ↔ −ψ10, ψ11 ↔ ψ12

γ2 : ψ5 ↔ ψ7, ψ6 ↔ ψ8, ψ9 7→ ψ11 7→ −ψ9, ψ10 7→ ψ12 7→ −ψ10 .
(4.4)

The action on the superpartners of the four bosonic U(1) currents jk, k = 1, . . . , 4, is

γ1 : ψ1 7→ −ψ2 7→ −ψ1 , ψ3 7→ ψ4 7→ −ψ3 ,

γ2 : ψ1 7→ ψ3 7→ −ψ1 , ψ2 7→ ψ4 7→ −ψ2 .
(4.5)

5Note that in [21], a different choice of coordinates was used on the underlying torus. Also note that

the minimal number of generators for A4 is two. Indeed, γ2 = γ2

1
γ3γ1γ

2

3
.
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Finally, in terms of the Dirac fermions (2.16) and (2.34), the γ1- and γ2-actions read,

χ1 7→ iχ1 , χ2 7→ −iχ2 , χ∗
1 7→ −iχ∗

1 , χ∗
2 7→ iχ∗

2 , (4.6)

γ1 : χ3 7→ −iχ3 , χ4 7→ −iχ4 , χ∗
3 7→ iχ∗

3 , χ∗
4 7→ iχ∗

4 , (4.7)

χ5 7→ −iχ∗
5 , χ6 7→ iχ∗

6 , χ∗
5 7→ iχ5 , χ∗

6 7→ −iχ6 . (4.8)

χ1 7→ χ2 , χ2 7→ −χ1 , χ∗
1 7→ χ∗

2 , χ∗
2 7→ −χ∗

1 , (4.9)

γ2 : χ3 7→ χ4 , χ4 7→ χ3 , χ∗
3 7→ χ∗

4 , χ∗
4 7→ χ∗

3 , (4.10)

χ5 7→ χ6 , χ6 7→ −χ5 , χ∗
5 7→ χ∗

6 , χ∗
6 7→ −χ∗

5 . (4.11)

The transformation induced on the ŝu(2)61 currents by (2.12) – (2.15) and the analogous

formulas for k = 3, . . . , 6 are

J3,1 , J±,1 fixed, J3,2 fixed, J±,2 ↔ −J±,2 , (4.12)

γ1 : J3,3 fixed, J±,3 ↔ −J±,3 , J3,4 , J±,4 fixed, (4.13)

J3,5 ↔ −J3,5 , J±,5 ↔ J∓,5 , J3,6 ↔ −J3,6 , J±,6 ↔ −J∓,6 . (4.14)

J3,1 , J±,1 fixed, J3,2 ↔ −J3,2 , J±,2 ↔ J∓,2 , (4.15)

γ2 : J3,3 fixed, J±,3 ↔ −J±,3 , J3,4 ↔ −J3,4 , J±,4 ↔ −J∓,4 , (4.16)

J3,5 , J±,5 fixed, J3,6 ↔ −J3,6 , J±,6 ↔ J∓,6 . (4.17)

The transformations γ1, γ2 form a subgroup Z2
2 of SU(2)6L × SU(2)6R. The symmetry γ3

has a non-trivial image in S6 and will not be needed to generate the group of discrete

symmetries we are seeking.

4.1.2 Half-period shifts and more

The spectrum of the torus model can be naturally decomposed into eigenstates of the zero

modes of the currents jk(z) = i∂φk(z), k(z) = i∂̄ φk(z), k = 1, . . . , 4. For the D4-torus

model, the possible eigenvalues are given by the charge lattice Γ = Γ4,4 of (2.10).

In order to construct operators that commute with the orbifold action jk 7→ −jk we

consider an element (a; a) ∈ (1
2
Γ4,4)/Γ4,4

∼= Z8
2 and define its action on the states with

charge (Q;Q) ∈ Γ4,4 as

e2πi(a;a)•(Q;Q) = (−1)2(a;a)•(Q;Q) . (4.18)

In particular, a shift by half a period 1
2
l, with l ∈ LD4

, corresponds to a symmetry s(a;a)
with (a; a) =

[
1
2
(Q(0, l);Q(0, l))

]
∈ (1

2
Γ4,4)/Γ4,4, where we have used (A.3). The half-

period shifts form a subgroup Z4
2 of (1

2
Γ4,4)/Γ4,4 and act by multiplication by (−1)m·l on

all states of momentum m ∈ L∗
D4
, independently of their winding numbers. The entire

group Z8
2 of symmetries (4.18) is generated by the half-period shifts of the D4-torus model

together with the half-period shifts in the T-dual torus model. In the following, we will
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refer to all these symmetries generically as half-period shifts. For concreteness we choose

a set of generators for (1
2
Γ4,4)/Γ4,4 to be of the form

u :=
1

2
(1
2
, 1
2
, 1
2
, 1
2
; −1

2
,−1

2
,−1

2
,−1

2
) ,

v1 :=
1

2
(1, 0, 0, 0; −1, 0, 0, 0) , v2 :=

1

2
(0, 1, 0, 0; 0,−1, 0, 0) ,

v3 :=
1

2
(0, 0, 1, 0; 0, 0,−1, 0) , v4 :=

1

2
(0, 0, 0, 1; 0, 0, 0,−1) ,

w12 :=
1

2
(1,−1, 0, 0; 0, 0, 0, 0) , w23 :=

1

2
(0, 1,−1, 0; 0, 0, 0, 0) ,

w24 :=
1

2
(0, 1, 0,−1; 0, 0, 0, 0) , w14 :=

1

2
(1, 0, 0, 1; 0, 0, 0, 0) ,

where we have the relation v1 + v2 + v3 + v4 = 0 ∈ (1
2
Γ4,4)/Γ4,4.

Let us now describe the action of the elements s(a;a) on the ŝu(2)6L,1⊕ ŝu(2)6R,1 currents,

using the free fermion description of the model. In this description, the zero mode of

the U(1) current jk(z) = −i :ψk+4ψk+8:(z), k = 1, . . . , 4, (see (2.22)) is the generator of

rotations in the plane spanned by ψk+4 and ψk+8.

• The generators svk , k = 1, . . . , 4 act by

svk : ψk+4 7→ −ψk+4 , ψk+8 7→ −ψk+8 , ψk+4 7→ −ψk+4 , ψk+8 7→ −ψk+8 ,

(4.19)

while all the other fermions ψl, ψl with l 6∈ {k + 4, k + 8} are fixed by svk . For instance,

using (2.34), one sees that sv4 acts on the holomorphic fields by

sv4 : χ4 ↔ χ∗
4 , χ6 ↔ χ∗

6 , χk , χ
∗
k fixed for k ∈ {1, 2, 3, 5} . (4.20)

Thus, the induced action on the ŝu(2)6L,1 holomorphic currents is6

sv4 : Ja,3 ↔ Ja,4 , Ja,5 ↔ Ja,6 , Ja,1 , Ja,2 fixed, a ∈ {3,+,−} . (4.21)

Therefore, sv4 corresponds to a (34)(56) permutation acting simultaneously on the six left

and the six right SU(2) factors in SU(2)6L × SU(2)6R.

• The symmetry su acts by a simultaneous 90-degree rotation in all planes (i+4, i+8),

i = 1, . . . , 4, that is

su : ψi+4 7→ ψi+8 , ψi+8 7→ −ψi+4 , ψi+4 7→ ψi+8 , ψi+8 7→ −ψi+4 , (4.22)

for all i = 1, . . . , 4. The induced action on the holomorphic currents is

su : Ja,3 ↔ Ja,5 , Ja,4 ↔ Ja,6 , Ja,1 , Ja,2 fixed, a ∈ {3,+,−} . (4.23)

Therefore, su corresponds to a (35)(46) permutation acting simultaneously on the six left

and the six right SU(2) factors in SU(2)6L × SU(2)6R.

6Recall (2.12) - (2.15) and analogous expressions for J3,k and J±,k for k = 3, . . . , 6.
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• The elements svi+vj , 1 ≤ i < j ≤ 4, correspond to elements in SU(2)6L × SU(2)6R. In

particular, sv1+v2 acts on the holomorphic fields by

sv1+v2 : χ3 ↔ −χ3 , χ∗
3 ↔ −χ∗

3 , χ5 ↔ −χ5 , χ∗
5 ↔ −χ∗

5 ,

χk , χ
∗
k fixed for k ∈ {1, 2, 4, 6} .

(4.24)

Therefore, the induced transformation on the holomorphic currents is

sv1+v2 : J±,i ↔ −J±,i , J3,i fixed, i = 3, 4, 5, 6 , J±,1 , J3,1 , J±,2 , J3,2 fixed.

(4.25)

Furthermore, sv2+v4 acts on the holomorphic fields by

sv2+v4 : χ3 ↔ χ∗
3 , χ4 ↔ χ∗

4 , χ5 ↔ χ∗
5 , χ6 ↔ χ∗

6 , (4.26)

so that the induced action on the holomorphic currents is

sv2+v4 : J3,i ↔ −J3,i , J±,i ↔ J∓,i , i = 3, 4, 5, 6 , J±,1 , J3,1 , J±,2 , J3,2 fixed.

(4.27)

• The symmetries swij
act on the left-moving currents in the same way as svi+vj ,

1 ≤ i < j ≤ 4, while they leave the right-moving currents fixed. In particular, on the left-

moving currents, sw12
acts as sv1+v2 as given in (4.25), while sw24

acts as sv2+v4 according

to (4.27). Furthermore, sw23+w14
and sw12+w24+w14

act trivially on all currents, so they must

correspond to elements in the center of SU(2)6L × SU(2)6R; however, w23 +w14, w12 +w24 +

w14 6≡ 0 ∈ (1
2
Γ4,4)/Γ4,4.

4.1.3 Quantum symmetry

Apart from the geometric symmetries, our K3 model has a quantum symmetry Q of order

2 that acts by −1 on the twisted sector and fixes the untwisted sector. In the free fermion

description, Q acts by −1 on the h- and gh-twisted sectors and trivially on the g-twisted

and untwisted sectors. By (3.13), (3.15) and (3.17) – (3.19) this implies that Q acts by

Q([a1, . . . , a6; b1, . . . , b6]) = (−1)a3+a4+a5+a6 [a1, . . . , a6; b1, . . . , b6] . (4.28)

4.2 Symmetries in the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 RCFT

As is manifest from the description of the model as an ŝu(2)6L,1⊕ŝu(2)6R,1 RCFT in Section 3,

the group of symmetries of our K3 model is (SU(2)6L × SU(2)6R) : S6, see Appendix D.2

for a detailed proof. We are ultimately interested in identifying the finite subgroup of

(SU(2)6L × SU(2)6R) : S6 that preserves the N = (4, 4) superconformal algebra (2.28) –

(2.31), and that fixes the four R-R ground states which transform as doublets under the

left- and right-moving SU(2) R-symmetries. In this section, we describe a number of

symmetries in terms of the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 RCFT. In Section 5 we then prove that

these symmetries generate the symmetry group G = Z8
2 : M20.

Some elements in the group (SU(2)6L × SU(2)6R) : S6 of symmetries of the ŝu(2)6L,1 ⊕
ŝu(2)6R,1 RCFT obviously leave the four supercharges invariant. In particular, this is true for
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the central elements ti, ti, i = 1, . . . , 6, of SU(2)6L×SU(2)6R which fix the ŝu(2)6L,1⊕ ŝu(2)6R,1

currents and act on their representations by

ti([a1, . . . , a6; b1, . . . , b6]) = (−1)ai [a1, . . . , a6; b1, . . . , b6] ,

ti([a1, . . . , a6; b1, . . . , b6]) = (−1)bi [a1, . . . , a6; b1, . . . , b6] . (4.29)

Since (2.35) – (2.38) implies that the holomorphic supercurrents of the N = (4, 4) super-

conformal algebra transform in the representation [11 11 11; 00 00 00], it follows that the

subgroup which fixes the N = (4, 4) superconformal algebra is generated by

titj = titj , 1 ≤ i < j ≤ 6 , (4.30)

where we recall from (3.14) and (3.16) that the spectrum of the K3 model contains only

representations with ai = bi or with ai = bi+1, so that titj and titj corresponds to the same

symmetry of the K3 model. Therefore, we obtain a group Z5
2 of symmetries preserving the

N = (4, 4) algebra.

In the R-R sector, the elements t1ti, 1 < i ≤ 6, act by multiplication with (−1) on

the four charged R-R ground states in the representation [10 00 00; 10 00 00] in (3.17), cor-

responding to the N = (4, 4) supermultiplet (1
4
, 1
2
; 1
4
, 1
2
). In order to preserve these states,

we should compose t1ti with the symmetry (−1)R that acts by multiplication with (−1)

on the R-R sector and trivially on the NS-NS sector. Note, however, that the symmetry

(−1)Rt1t2t3t4t5t6 (4.31)

acts trivially on all the states in the spectrum. Therefore, the subgroup of Z6
2×Z

6
2 preserving

the N = (4, 4) superconformal algebra and the ‘charged’ R-R ground states is Z4
2, and it

is generated by

t2tj , j = 3, 4, 5, 6 . (4.32)

This group contains the quantum symmetry Q of the Z2-orbifold of the D4-torus model,

which by (4.28) is given by

Q3456 := Q = t3t4t5t6 . (4.33)

Let us next consider the symmetries that are induced from the D4-torus model in the

affine algebra description. We focus our attention on those symmetries which in Section

5 are shown to generate the symmetry group G = Z8
2 : M20. As we have seen above, the

half-period shifts sv4 in (4.21) and su in (4.23) correspond to the permutations

sv4=̂(34)(56) , su=̂(35)(46) (4.34)

of the currents and of the corresponding representations.

The half-period shifts sv2+v4 and sv1+v2 and the rotations γ1, γ2 act as left-right sym-

metric SU(2)6L × SU(2)6R transformations. They are determined by their action on the
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currents (see eqs. (4.25), (4.27), (4.12) – (4.14), (4.15) – (4.17)), up to elements in the

centre Z6
2 × Z6

2 of SU(2)6L × SU(2)6R. It is convenient to define the SU(2) matrices

0 :=

(
1 0

0 1

)
, 1 :=

(
0 1

−1 0

)
, ω :=

(
0 i

i 0

)
, ω̄ :=

(−i 0
0 i

)
, (4.35)

which act by conjugation on su(2)1,L and su(2)1,R. The unusual notations are motivated

by the particular representations of these matrices which we discover in Section 5. Here

we only note that with these four matrices,

SU(2) =
{
a0 · 0 + a1 · 1 + a2 · ω + a3 · ω

∣∣ a0, . . . , a3 ∈ R, a20 + · · ·+ a23 = 1
}

(4.36)

is realised as the group of unit quaternions. We also observe a natural symmetry of order

3 on SU(2), induced by the cyclic permutation of (1, ω, ω). It is the inner automorphism

µ(ω) of the quaternion algebra which is given by conjugation with 1
2
(0 + 1 + ω + ω)

∀A ∈ SU(2) : µ(ω)(A) := Ω−1AΩ , Ω := 1
2
(0 + 1 + ω + ω) ,

=⇒ µ(ω)(0, 1, ω, ω) = (0, ω, ω, 1) .
(4.37)

We denote by

ρL,R : SU(2)6 → SU(2)6L × SU(2)6R (4.38)

the diagonal (i.e. left-right symmetric) embedding. Then,

sv2+v4 = ρL,R(00ωωωω) , sv1+v2 = ρL,R(00 ω̄ω̄ ω̄ω̄) ,

γ1 = ρL,R(0ω̄ ω̄0ω1) , γ2 = ρL,R(0ω ω̄1 0ω) .
(4.39)

We observe that the commutator of any two such elements is in the centre Z6
2 × Z6

2 of

SU(2)6L × SU(2)6R. More precisely, it is always a product of an even number of symmetries

titi, which, by the discussion above, acts trivially on all the states in the theory. Thus,

the four symmetries in (4.39) effectively generate an abelian subgroup Z4
2 of the group of

symmetries preserving the N = (4, 4) superconformal algebra.

The geometric symmetries above are left-right symmetric elements of SU(2)6L×SU(2)6R.

However, it is clear that the action of the purely left-moving or purely right-moving SU(2)6

will also preserve the N = (4, 4) superconformal algebra and the four R-R ground states

that are charged under the R-symmetry. Two examples of such purely left-moving trans-

formations are sw12
and sw24

. Thus, if we define the embedding

ρL : SU(2)6 → SU(2)6L × SU(2)6R (4.40)

into the left SU(2)6L factor, we obtain four additional symmetries

sw24
= ρL(00ωω ωω) , sw12

= ρL(00 ω̄ω̄ ω̄ω̄) ,

γL1 = ρL(0ω̄ ω̄0ω1) , γL2 = ρL(0ω ω̄1 0ω) ,
(4.41)

that form a subgroup of the left-moving SU(2)6L, and that have no geometric interpretation.

The commutators of these elements are again in the centre Z6
2 of the left SU(2)6L, but, in

general, they act non-trivially on the states of the theory. Therefore, the resulting group

is non-abelian.
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4.3 Further symmetries from other fermionisation choices

Apart form the quantum symmetries t2tj , j = 3, 4, 5, 6, all symmetries which we have

constructed so far have some geometric origin, for example by restricting a geometrically

induced symmetry to its left-moving part as in (4.41). In this subsection we obtain ad-

ditional symmetries by making different fermionisation choices, thus giving rise to other

symmetries. More precisely, we regroup the summands of our ŝu(2)6L,1 ⊕ ŝu(2)6R,1 current

algebra into ŝo(4)1 pieces in a different fashion. To do so, we remark that taking the

orbifold of our K3 model by the order two quantum symmetry Q = Q3456 of (4.33) re-

covers the original D4-torus model. On the other hand, by conjugating Q by elements in

(SU(2)6L × SU(2)6R) : S6, we obtain 15 different symmetries

Qijkl = titjtktl , 1 ≤ i < j < k < l ≤ 6 . (4.42)

The orbifold by any of these symmetries is a D4-torus model equivalent to the one we

considered previously.

Furthermore, the five symmetries Qijkl with 1 < i < j < k < l preserve the four

supercharges as well as the four R-R ground states in the (1
4
, 1
2
; 1
4
, 1
2
) supermultiplet. Thus,

we have five different descriptions of our K3 model (considered as an N = (4, 4) supercon-

formal model) as a Z2-orbifold of a D4-torus model. Notice that all these torus models are

actually equivalent to one another, in the sense that we can identify the fields of any two

of them so that both the OPEs and the N = (4, 4) superconformal algebra are preserved.

Nevertheless, these descriptions are different in the sense that the fields of the torus orb-

ifold are associated to different fields of the K3 model — in particular, we have a different

splitting between the twisted and untwisted sector of the model. As a consequence, the

symmetries of the K3 model, induced by the geometric symmetries of one underlying D4-

torus description, might correspond to symmetries mixing twisted and untwisted states in

a different description. In this subsection, we show that this is indeed the case.

Let us consider the orbifold of our K3 model by Q′ = Q2345 instead of Q = Q3456. This

symmetry commutes with the ŝu(2)6L,1⊕ ŝu(2)6R,1 affine algebra, that is therefore preserved

in the orbifold model. The orbifold model will also contain four left-moving Majorana

fermions ψ̂1, . . . , ψ̂4 of weight (1
2
, 0) and four right-moving fermions ψ̂1, . . . , ψ̂4 of weight

(0, 1
2
), transforming in the representations

[10 00 01; 00 00 00] , [00 00 00; 10 00 01] (4.43)

of ŝu(2)6L,1 ⊕ ŝu(2)6R,1, respectively. Furthermore, there are 24 = 16 left-moving and 16

right-moving currents, transforming in the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 representations

[01 11 10; 00 00 00] , [00 00 00; 01 11 10] , (4.44)

respectively. These currents enhance the affine algebra to ŝo(8)L,1⊕ ŝo(8)R,1. Via fermioni-

sation, we can describe these currents as bilinears in the eight Majorana fermions ψ̂5, . . . , ψ̂12.
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Analogously to (2.34), we arrange the twelve Majorana fermions into six Dirac fermions

χ̂j as

χ̂j(z) :=
1√
2
(ψ̂2j−1(z) + iψ̂2j(z)) , χ̂∗

j (z) :=
1√
2
(ψ̂2j−1(z)− iψ̂2j(z)) , j = 1, . . . , 6.

(4.45)

Formally, this description is completely analogous to that of the original D4-torus model.

However, the six Dirac fermions transform in different representations of the ŝu(2)61 current

algebra. Correspondingly, the expression of the ŝu(2)6L,1-currents in terms of the Dirac

fermions is different, namely (for the Cartan torus)

J3,1(z) =
1

2
(: χ̂∗

1(z)χ̂1(z): + : χ̂∗
2(z)χ̂2(z):) , (4.46)

J3,6(z) =
1

2
(: χ̂∗

1(z)χ̂1(z):− : χ̂∗
2(z)χ̂2(z):) , (4.47)

J3,3(z) =
1

2
(: χ̂∗

3(z)χ̂3(z): + : χ̂∗
4(z)χ̂4(z):) , (4.48)

J3,4(z) =
1

2
(: χ̂∗

3(z)χ̂3(z):− : χ̂∗
4(z)χ̂4(z):) , (4.49)

J3,2(z) =
1

2
(: χ̂∗

5(z)χ̂5(z): + : χ̂∗
6(z)χ̂6(z):) , (4.50)

J3,5(z) =
1

2
(: χ̂∗

5(z)χ̂5(z):− : χ̂∗
6(z)χ̂6(z):) . (4.51)

The four supercharges G±, G′± are invariant under Q′ = Q2345, so they are preserved

by the orbifold projection and form an N = (4, 4) superconformal algebra in the torus

model. The explicit expression of the supercharge G+ in the free fermion description of

the new torus model is found to be (see Appendix E.2 for the detailed calculation)

G+(z) =
( i− 1

2

)
χ̂∗
1(z)

[
iχ̂∗

3χ̂
∗
5(z)− iχ̂4χ̂5(z)− χ̂3χ̂

∗
5(z) + χ̂∗

4χ̂5(z)
]

+
(i− 1

2

)
χ̂∗
2(z)

[
−iχ̂3χ̂

∗
6(z) + iχ̂∗

4χ̂6(z) + χ̂∗
3χ̂

∗
6(z)− χ̂4χ̂6(z)

]
. (4.52)

We want to identify four left-moving currents ̂k(z) = i∂φ̂k(z), k = 1, . . . , 4, as the su-

perpartners of the Majorana fermions ψ̂k, k = 1, . . . , 4, with respect to the supercharge
1√
2
(G+ +G−). With notations analogous to (2.27), we obtain

∂Ẑ1(z) =
(1 + i

2
√
2

)[
iχ̂∗

3χ̂
∗
5(z)− iχ̂4χ̂5(z)− χ̂3χ̂

∗
5(z) + χ̂∗

4χ̂5(z)
]
, (4.53)

∂Ẑ2(z) =
(1 + i

2
√
2

)[
−iχ̂3χ̂

∗
6(z) + iχ̂∗

4χ̂6(z) + χ̂∗
3χ̂

∗
6(z)− χ̂4χ̂6(z)

]
, (4.54)
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so that

̂1(z) = i∂φ̂1(z) =
i

2
:
(
−ψ̂5(z) + ψ̂6(z) + ψ̂7(z) + ψ̂8(z)

)
ψ̂9(z) : , (4.55)

̂2(z) = i∂φ̂2(z) =
i

2
:
(
ψ̂5(z)− ψ̂6(z) + ψ̂7(z) + ψ̂8(z)

)
ψ̂10(z) : , (4.56)

̂3(z) = i∂φ̂3(z) =
i

2
:
(
ψ̂5(z) + ψ̂6(z)− ψ̂7(z) + ψ̂8(z)

)
ψ̂11(z) : , (4.57)

̂4(z) = i∂φ̂4(z) =
i

2
:
(
−ψ̂5(z)− ψ̂6(z)− ψ̂7(z) + ψ̂8(z)

)
ψ̂12(z) : . (4.58)

In particular, ̂1(z) generates the rotations in the plane spanned by ψ̂9 and 1
2
(−ψ̂5(z) +

ψ̂6(z)+ ψ̂7(z)+ ψ̂8(z)). The half-shift symmetry α, corresponding to a 180-degree rotation

in this plane, acts on the Dirac fermions by

χ̂5 ↔ −χ̂∗
5 , χ̂1 , χ̂

∗
1 , χ̂2 , χ̂

∗
2 , χ̂6 , χ̂

∗
6 fixed, (4.59)

and 


χ̂3

χ̂∗
3

χ̂4

χ̂∗
4


 7→ 1

2




1 i −i 1

−i 1 1 i

i 1 1 −i
1 −i i 1







χ̂3

χ̂∗
3

χ̂4

χ̂∗
4


 . (4.60)

In terms of currents, this corresponds to

α :





J3,1 , J±,1 fixed; J3,6 , J±,6 fixed; J3,2 ↔ −J3,5 , J±,2 ↔ −J∓,5 ;

J+,4 ↔ −J3,3 − i
2
(J+,3 + J−,3) , J−,4 ↔ −J3,3 + i

2
(J+,3 + J−,3) ;

J3,4 ↔ − i
2
(J+,3 − J−,3) .

(4.61)

In terms of (SU(2)6L × SU(2)6R) : S6, the half-period shift α that we just found corresponds

therefore to the permutation

αp,T = (25)(34) (4.62)

of the currents and their representations, followed by a left-right symmetric SU(2)6L ×
SU(2)6R transformation

α̃ := ρL,R

((
1 0

0 1

)
,

(
0 1

−1 0

)
,

(
1−i
2

i−1
2

1+i
2

1+i
2

)
,

(−1−i
2

i−1
2

1+i
2

i−1
2

)
,

(
0 1

−1 0

)
,

(
1 0

0 1

))
. (4.63)

Modulo SU(2)6L×SU(2)6R transformations, the symmetry α = α̃◦αp,T with αp,T = (25)(34)

together with sv4=̂(34)(56) and su=̂(35)(46) from the half-period shifts in the ‘original’ K3

model, generate the subgroup A5 ⊂ S6. This is immediate from the fact that the permuta-

tions (25)(34), (34)(56) and (35)(46) are even permutations of the five digits 2, 3, 4, 5, 6,

where (34)(56) and (35)(46) generate a group of type Z2
2, while (34)(56) ◦ (25)(34) has

order 3 and (35)(46)◦ (25)(34) has order 5. Hence these permutations generate a subgroup

of order at least 4 · 3 · 5 = |A5| of A5, which must therefore agree with A5.
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5 Z8
2 : M20 as symmetry group of a K3 model

In [24] the N = (4, 4) preserving symmetries of K3 sigma models (fixing the states in the

(1
4
, 1
2
; 1
4
, 1
2
) supermultiplet) were classified. It follows from the proof of the main theorem

in [24] (see case 1 in Appendix B.3 of [24]) that one of the maximal groups of symmetries

is Z8
2 : M20, i.e. there is no bigger symmetry group that contains Z8

2 : M20. In the following

we show that the group of N = (4, 4) preserving symmetries of our orbifold model contains

Z8
2 : M20; together with the above result, this establishes that the group of these symmetries

is precisely equal to Z
8
2 : M20.

Recall that the group Z12
2 : M24 is a maximal subgroup of the Conway group Co0, which

is the group of automorphisms of the Leech lattice, the unique 24-dimensional even self-

dual lattice with no vectors of squared length 2 [29, Chapter 10]. Furthermore, Z12
2 : M24

has a standard 24-dimensional real representation, where Z
12
2 acts by certain changes of

signs of the basis vectors x1, . . . , x24, and M24 ⊂ S24 acts by permutations of these vectors.

More precisely, consider Z24 ⊂ R24 with x1, . . . , x24 ∈ Z24 the standard basis of R24. Let

G24 ⊂ F24
2 = (Z/2Z)24 denote the extended binary Golay code7 G24, a 12-dimensional

subspace of F24
2 whose elements have 0, 8, 12, 16 or 24 non-zero coordinate entries. Then

g ∈ G24
∼= Z12

2 acts by flipping the signs of those xk for which gk 6= 0. The Mathieu group

M24, by definition, is the subgroup of S24 that preserves G24 ⊂ F24
2 .

In this section, we show that the group of symmetries of the K3 model described in

Sections 2 and 3 is the subgroup of Z12
2 : M24 that fixes four basis vectors (say, x1, x2, x3, x4)

in the standard representation of that group. The choice of four arbitrary distinct vectors

(a tetrad) determines a decomposition of the basis into the disjoint union of six tetrads

{x1, . . . , x24} = T1 ⊔ T2 ⊔ T3 ⊔ T4 ⊔ T5 ⊔ T6 , (5.1)

where T1 = {x1, x2, x3, x4}, such that the union of any two distinct tetrads Ti ⊔ Tj , 1 ≤
i < j ≤ 6, corresponds to an element of length 8 (octad) in the Golay code. The subgroup

of Z12
2 : M24 that preserves the tetrad T1 := {x1, x2, x3, x4} pointwise is Z8

2 : M20. Here

Z8
2 is the subgroup of Z12

2
∼= G24 whose elements have empty intersection with T1, and

M20
∼= Z

4
2 : A5 is the semidirect product of a group Z

4
2 ⊂ M24 that fixes T1 pointwise and

all six tetrads setwise, and the group A5 of even permutations of the tetrads T2, . . . , T6.

Let G be the group of symmetries of our K3 model which is generated by (i) the

rotations γ1, γ2 of Subsection 4.1.1; (ii) the half-period shifts sv1+v2 , sv2+v4 , sv4 and su of

Subsection 4.1.2; (iii) the central symmetries titj , 1 < i < j ≤ 6, and the asymmetric

symmetries sw24
, sw12

, γL1 and γL2 of Subsection 4.2; and finally (iv) the new symmetry α

of Subsection 4.3. We will show that the representation of G on the 24-dimensional space

of R-R ground states is exactly the standard representation of Z8
2 : M20. In particular, this

establishes that Z8
2 : M20 ⊆ G, and hence by the argument above, that G is actually the

full N = (4, 4) preserving symmetry group of our orbifold model.

The space of R-R ground states is naturally split into six four-dimensional subspaces,

where the i-th subspace transforms as a (2, 2)-representation under the i-th left-right

7Hereafter, we use the less precise term ‘Golay code’ to designate G24 as there is no ambiguity.
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SU(2)L × SU(2)R factor, and trivially under the other factors of SU(2)6L × SU(2)6R. In

each subspace we choose a basis of states as

|1〉 := 1√
2
(|+−〉 − | −+〉) , |2〉 := 1√

2
(|++〉+ | − −〉) ,

|3〉 := i√
2
(|++〉 − | − −〉) , |4〉 := i√

2
(|+−〉+ | −+〉) ,

(5.2)

where |±±〉 = |±〉⊗|±〉 with |±〉, |±〉 the eigenstates of eigenvalues ±1
2
under the i-th Car-

tan generators J3,i
0 , J

3,i

0 . Thus the matrices in (4.35) yield the action of ρL(x), ρR(x), x ∈
{0, 1, ω, ω} with respect to the bases (|+〉, |−〉), (|+〉, |−〉). The six sets of four vectors

(5.2) will be identified with the six tetrads in the standard representation of Z8
2 : M20.

In particular, the tetrad T1 fixed by Z8
2 : M20 consists of the states in the (1

4
, 1
2
; 1
4
, 1
2
)

supermultiplet of the N = (4, 4) superconformal algebra.

It is useful to arrange this basis of ground states into an array of six columns and four

rows, where each column represents a tetrad and the states in each tetrad are ordered as

|1〉, |2〉, |3〉, |4〉 from top downwards:

|1〉 |1〉 |1〉 |1〉 |1〉 |1〉
|2〉 |2〉 |2〉 |2〉 |2〉 |2〉
|3〉 |3〉 |3〉 |3〉 |3〉 |3〉
|4〉 |4〉 |4〉 |4〉 |4〉 |4〉

.

T1 T2 T3 T4 T5 T6

This array corresponds to the Miracle Octad Generator (MOG) arrangement of the Golay

code (see [29, Chapter 11]).

Our proof that G ∼= Z
8
2 : M20 consists of three steps. First we show, using the

information gathered in Subsection 4.2, that the group G′ generated by the symmetries

titj in the centre of SU(2)6L × SU(2)6R, by the half-period shifts sv1+v2 , sv2+v4 , and by the

rotations γ1 and γ2, is isomorphic to the subgroup Z8
2 of the Golay code acting by sign

changes in the standard representation of Z8
2 : M20. Then we adjoin to G′ the purely

left-moving symmetries sw12
, sw24

, γL1 and γL2 ; we obtain a group G′′ that is identified with

the subgroup Z8
2 : Z

4
2 of Z8

2 : M20 that fixes each tetrad setwise. Finally, we show that, by

adjoining to G′′ the half-period shifts sv4 , su and the symmetry α, we obtain the group

G ∼= Z8
2 : M20.

5.1 The subgroup G′ ∼= Z8
2 of Z8

2 : M20

Let us consider the subgroup Z4
2 of the centre Z6

2 × Z6
2 of SU(2)6L × SU(2)6R generated by

the ten elements

titj , 1 < i < j ≤ 6 , (5.3)

where ti acts as in (4.29). These symmetries change the sign of all the states in the tetrads

Ti and Tj, while leaving the other states fixed. We represent the elements of this group

pictorially as
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t2t5 =

+
+
+
+

−
−
−
−

+
+
+
+

+
+
+
+

−
−
−
−

+
+
+
+

, Q = t3t4t5t6 =

+
+
+
+

+
+
+
+

−
−
−
−

−
−
−
−

−
−
−
−

−
−
−
−

.

Next we consider the group Z
4
2 of symmetries that is generated by the geometric sym-

metries sv2+v4 , sv1+v2 , γ1 and γ2 as given in (4.39); this is a subgroup of left-right symmetric

elements of SU(2)6L × SU(2)6R. Note that the matrices 0, 1, ω, ω̄ that were introduced in

(4.35) act on each tetrad by8 ρL,R(0), ρL,R(1), ρL,R(ω), ρL,R(ω̄) ∈ SU(2)L × SU(2)R. We

write F4 := {0, 1, ω, ω̄}, and for x, y ∈ F4 we define x+ y ∈ F4 by

ρL,R(x+ y) = ρL,R(x) ◦ ρL,R(y) . (5.4)

One checks that the resulting rules of addition

1+ω = ω+1 = ω̄, 1+ω̄ = ω̄+1 = ω, ω+ω̄ = ω̄+ω = 1, 0+x = x+0 = x, x+x = 0 (5.5)

agree with those of the finite field F4 with four elements.9 Observe that the inner automor-

phism µ(ω) in (4.37) of the underlying quaternion algebra corresponds to multiplication by

ω on F4, and thus it equips F4 with the multiplication law of the field with four elements.

Then the elements of the group Z
4
2 that is generated by sv2+v4 , sv1+v2 , γ1 and γ2 are

given in terms of vectors in F6
4, where the group law for the abelian group is given by

component-wise sum of the six digits. For example,

sv2+v4 ◦ γ1 = ρL,R(00ωωωω + 0ω̄ ω̄0ω1) = ρL,R(0ω̄ 1ω 0ω̄) . (5.6)

Using (4.39) one checks that the 15 non-trivial elements of this group Z4
2 correspond to all

words of the form

00 xxxx 0x 0x yz 0xx0 zy 0x yz 0x 0x zy x0 , (5.7)

where (x, y, z) is any cyclic permutation of (1, ω, ω̄), i.e. (x, y, z) = (x, xω, xω). Note that

all these words have the form

ab cd ef where a, b, c, d, e, f ∈ F4 , Φa,b,c(x) := ax2 + bx+ c ,

d = Φa,b,c(1) , e = Φa,b,c(ω) , f = Φa,b,c(ω)
(5.8)

with a = 0.

8By slight abuse of notation, we use ρL,R to denote both diagonal embeddings SU(2) → SU(2)L×SU(2)R
and SU(2)6 → SU(2)6L × SU(2)6R, and similarly for ρL.

9The field F4 can be constructed as the quotient F2[ω]/(ω
2 + ω + 1) of the ring F2[ω] of polynomials

in the variable ω with coefficients in F2
∼= Z/2Z, modulo the irreducible polynomial ω2 + ω + 1. In this

description, ω̄ represents the polynomial ω + 1.
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The basis (5.2) consists of simultaneous eigenvectors for the (left-right symmetric) ma-

trices ρL,R(0), ρL,R(1), ρL,R(ω), ρL,R(ω̄) ∈ SU(2)L × SU(2)R, with the following eigenvalues

ρL,R(0) =

+
+
+
+

, ρL,R(1) =

+
+
−
−

, ρL,R(ω) =

+
−
+
−

, ρL,R(ω̄) =

+
−
−
+

.

(5.9)

Therefore, each element in the group Z4
2 acts by sign flips, and it is easy to construct the

precise eigenvalues using the rules (5.9). For example, by (4.39)

sv2+v4 =

+
+
+
+

0

+
+
+
+

0

+
−
+
−

ω

+
−
+
−

ω

+
−
+
−

ω

+
−
+
−

ω

, γ2 =

+
+
+
+

0

+
−
+
−

ω

+
−
−
+

ω̄

+
+
−
−

1

+
+
+
+

0

+
−
+
−

ω

.

(5.10)

We are now ready to make the connection with the Golay code. A standard construc-

tion of the Golay code makes use of the hexacode, which is a particular 3-dimensional

subspace of F6
4 given by all words ab cd ef ∈ F

6
4 which obey (5.8) [29, Chapter 11]. Hence

the 15 elements of F6
4 of the form (5.7), together with 00 00 00, are exactly all elements

(words) in the hexacode having 0 as first digit. From each word in the hexacode, one can

construct various elements of the Golay code, first by using the replacement rules (5.9),

and then flipping the signs of any even number of columns.10 We conclude that the group

G′ ∼= Z8
2 generated by titj , 1 < i < j ≤ 6, together with sv2+v4 , sv1+v2 , γ1 and γ2, is exactly

the subgroup of the Golay code with empty intersection with the first tetrad. In other

words, G′ can be identified with the normal subgroup Z
8
2 in Z

8
2 : M20,

G′ ∼= Z
8
2 := 〈titj, 1 < i < j ≤ 6, sv2+v4 , sv1+v2 , γ1, γ2 〉 ⊂ Z

8
2 : M20 . (5.11)

5.2 The group Z8
2 : Z

4
2 fixing the tetrads setwise

In this subsection, we enlarge the group G′ ∼= Z
8
2 described in the previous subsection by

adjoining the symmetries sw24
, sw12

, γL1 and γL2 , defined in (4.41). We will show that the

resulting group G′′ can be identified with the subgroup Z8
2 : Z

4
2 of Z8

2 : M20 that preserves

each tetrad setwise and the first tetrad pointwise.

The action of the left-moving matrices ρL(0), ρL(1), ρL(ω), ρL(ω̄) ∈ SU(2) ⊂ SU(2)L×
SU(2)R on the states (5.2) is given by generalised permutations. More precisely, each such

matrix ρL(M) is the composition ρsL(M) ◦ ρpL(M) of a permutation

ρpL(0) = , ρpL(1) = , ρpL(ω) = , ρpL(ω̄) = ,

(5.12)

10To be precise, this way one obtains only half of the Golay code, namely those words of ‘even parity’

in MOG terminology, but this half contains all the elements with empty intersection with the first tetrad.

– 26 –



followed by some sign flip

ρsL(0) =

+
+
+
+

, ρsL(1) =

+
−
+
−

, ρsL(ω) =

+
−
−
+

, ρsL(ω̄) =

+
+
−
−

.

(5.13)

Notice that ρsL is different from ρL,R defined in (5.9): the two substitutions are related

by a cyclic permutation of the symbols (1, ω, ω̄). According to (4.41) and these rules, the

generators sw24
, sw12

, γL1 and γL2 can be represented as

sw24
=

0 0 ω ω ω ω

+
+
+
+

0

+
+
+
+

0

+
−
−
+

ω

+
−
−
+

ω

+
−
−
+

ω

+
−
−
+

ω

◦ ,

sw12
=

0 0 ω̄ ω̄ ω̄ ω̄

+
+
+
+

0

+
+
+
+

0

+
+
−
−

ω̄

+
+
−
−

ω̄

+
+
−
−

ω̄

+
+
−
−

ω̄

◦ ,

γL1 =

0 ω̄ ω̄ 0 ω 1

+
+
+
+

0

+
+
−
−

ω̄

+
+
−
−

ω̄

+
+
+
+

0

+
−
−
+

ω

+
−
+
−

1

◦ ,

γL2 =

0 ω ω̄ 1 0 ω

+
+
+
+

0

+
−
−
+

ω

+
+
−
−

ω̄

+
−
+
−

1

+
+
+
+

0

+
−
−
+

ω

◦ .

Notice that by our analysis of Subsection 5.1 the sign flips

ρsL(00ωωωω) = ρL,R(00 ω̄ω̄ ω̄ω̄) , ρsL(00 ω̄ω̄ ω̄ω̄) = ρL,R(00 11 11) ,

ρsL(0ω̄ ω̄0ω1) = ρL,R(01 10 ω̄ω) , ρsL(0ω ω̄1 0ω) = ρL,R(0ω̄ 1ω 0ω̄)
(5.14)
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are elements of G′ ∼= Z8
2. Therefore, the group generated by G′ and by the symmetries sw24

,

sw12
, γL1 and γL2 can be equivalently obtained by adjoining to G′ the pure permutations

spw24
= ,

0 0 ω ω ω ω

spw12
=

0 0 ω̄ ω̄ ω̄ ω̄

,

γL,p1 = ,

0 ω̄ ω̄ 0 ω 1

γL,p2 =

0 ω ω̄ 1 0 ω

.

These symmetries have order 2 and commute with each other, so that they form an abelian

group Z4
2 of permutations of the 24 R-R ground states that preserve each tetrad setwise.

Each non-trivial element of this group is associated with codewords from the hexacode of

the form (5.7) through the rules (5.12). By the results of Subsection 5.1, eq. (5.7) lists

all non-zero codewords of the hexacode whose first entry is zero. Hence by [29, Ch. 11,

Sect. 9], the group generated by spw24
, spw12

, γL,p1 and γL,p2 is exactly the subgroup of M24

that preserves the tetrads setwise and fixes the first tetrad pointwise. Therefore, the group

generated by G′ together with sw24
, sw12

, γL1 and γL2 can be identified with the group Z8
2 : Z

4
2

in Z8
2 : M20,

G′′ := 〈G′, sw24
, sw12

, γL1 , γ
L
2 〉 ∼= Z

8
2 : Z

4
2 ⊂ Z

8
2 : M20 . (5.15)

5.3 Permutations of the tetrads

Finally, in this subsection, we consider the entire group G, i.e. we enlarge G′′ by the

symmetries sv4 , su and α = α̃◦αp,T that act as in (4.34) and (4.62), (4.63). The symmetries

sv4 and su act by permutations on the 24 basis vectors (5.2)

sv4 = , su = ,

while α acts by a permutation followed by a sign flip,

α = ◦
+
+
+
+

+
+
−
−

+
−
−
+

+
−
+
−

+
+
−
−

+
+
+
+

.
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By composing α with the element ρL,R(01 ω̄ω 10) ∈ G′ ∼= Z8
2, one obtains a pure permuta-

tion

αp = .

Using the explicit description of the involutions of M24 that fix the first tetrad T1 (see [29,

Ch. 11, Sect. 9]), it is clear that the permutations su, sv4 and α
p are elements of M20 ⊂ M24.

Hence

G := 〈G′′, su, sv4 , α
p〉 ⊆ Z

8
2 : M20 , (5.16)

and every word in the generators su, sv4 and αp which does not permute the six factors of

SU(2) is an element of G′. One also verifies that for every g ∈ G′′ ∼= Z8
2 : Z

4
2, the conjugates

sv4gs
−1
v4
, sugs

−1
u and αpg(αp)−1 belong to G′′. Therefore, G′′ is a normal subgroup of G and

G′′ = G ∩ (SU(2)6L × SU(2)6R). But since G′′ ∼= Z8
2 : Z4

2 and G/G′′ ∼= A5
∼= M20/Z

4
2, we

conclude that G = Z8
2 : M20.

6 A special symmetry g of order four in G = Z8
2 : M20

In [25] it was observed that for those K3 sigma models that are abelian torus orbifolds,

the corresponding quantum symmetry (whose orbifold leads back to the torus model) is

never an element of M24. This result was obtained by studying the 42 Co0 conjugacy

classes that define possible symmetries of K3 sigma models. Of these 42 conjugacy classes,

31 certainly have a trivial multiplier as the trace over the 24-dimensional representation

is non-zero; then it is consistent to orbifold by the cyclic group that is generated by the

relevant symmetry, and one can analyse (by calculating the elliptic genus) whether the

resulting orbifold is a K3 or a toroidal sigma model. It was found that the symmetries

which lead to a toroidal model do not have a representative in M24, see section 4 of [25].

For the remaining 11 Co0 conjugacy classes it was on the other hand not obvious

whether the corresponding symmetry obeys the level-matching condition, i.e. whether it is

consistent to orbifold by it. (The level-matching condition is equivalent to the statement

that a certain multiplier phase of the twining genus is trivial.) In all but one case, the

elliptic genus of the putative orbifold did not make sense (i.e. did not agree with either

that of K3 or the four-torus), thus suggesting that the orbifold was in fact inconsistent.

However, there was one class, the 4D conjugacy class of Co0, for which the putative orbifold

gave rise to the elliptic genus of the four-torus, thus indicating that the orbifold may in fact

be consistent. As we shall see below, this suspicion is indeed correct, as the 4D generator

of Co0 can be identified with an order 4 symmetry of our K3 sigma model.

In addition, this orbifold turns out to induce an equivalence between different descrip-

tions of the D4-torus model underlying our K3 sigma model, which could be relevant in

our quest for a field theoretic explanation of Mathieu moonshine. Indeed, we have already

remarked in Section 4.3 that there are at least fifteen different ways in which one may
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write our model as a Z2-orbifold of the D4-torus model. As will be substantiated further

down, it turns out that orbifolding by the symmetry of order four that we identify with

the generator of the 4D conjugacy class of Co0 yields a ‘new’ Dnew
4 -torus model. The latter

is equivalent to the original D4-torus model as an N = (4, 4) superconformal field theory.

6.1 The 〈g〉-orbifold of the K3 model

Let us consider the symmetry g of our K3 sigma model defined by

g := t2t3sw12
= ρL

((
1 0

0 1

)(−1 0

0 −1

)(
i 0

0 −i

)(−i 0
0 i

)(−i 0
0 i

)(−i 0
0 i

))
(6.1)

= ◦
+
+
+
+

−
−
−
−

−
−
+
+

+
+
−
−

+
+
−
−

+
+
−
−

.

This symmetry has order 4, its trace over the 24-dimensional representation of R-R ground

states is 0, and its square is the quantum symmetry Q = t3t4t5t6, whose trace over the

24-dimensional representation is −8. These properties identify g as an element in the

conjugacy class 4D in the Conway group Co0, as discussed in Section 4 of [25]. In the

following we want to show that the orbifold by this group element is indeed consistent and

leads to a toroidal superconformal field theory.

As is explained in Appendix D.3, the elliptic genus of our model can be written in

terms of ŝu(2)1 characters as in (D.31). Thus we can calculate the twining genus, i.e.

the elliptic genus with the insertion of the group element (6.1), by inserting the various

operators into the ŝu(2)1 traces (D.9) and (D.10). With the help of the identities

Tr [0](
(−1 0

0 −1

)
qL0− 1

24 yJ0) =
ϑ3(2τ, 2z)

η(τ)
,

Tr [1](
(−1 0

0 −1

)
qL0− 1

24 yJ0) = −ϑ2(2τ, 2z)
η(τ)

,

Tr [0]((
i 0
0 −i ) q

L0− 1

24 yJ0) = Tr [0]((
−i 0
0 i ) q

L0− 1

24 yJ0) =
ϑ4(2τ, 2z)

η(τ)
, (6.2)

Tr [1]((
i 0
0 −i ) q

L0− 1

24 yJ0) = −Tr [1]((
−i 0
0 i ) q

L0− 1

24 yJ0) = −ϑ1(2τ, 2z)
η(τ)

,

we obtain the twining genera

φe,g(τ, z) = φe,g3(τ, z)

=
2

η(τ)6

(
ϑ2(2τ, 2z)ϑ3(2τ)ϑ4(2τ)

4 − ϑ3(2τ, 2z)ϑ2(2τ)ϑ4(2τ)
4
)
.

By the Riemann bilinear identities

ϑ2(2τ, 2z)ϑ3(2τ) =
1

2

(
ϑ2(τ, z)

2 − ϑ1(τ, z)
2
)

(6.3)

ϑ3(2τ, 2z)ϑ2(2τ) =
1

2

(
ϑ2(τ, z)

2 + ϑ1(τ, z)
2
)

(6.4)

– 30 –



this can be rewritten as

φe,g(τ, z) = −2
ϑ1(τ, z)

2

η(τ)6
ϑ4(2τ)

4 = −2ϑ4(2τ)
4φ−2,1(τ, z) , (6.5)

where

φ−2,1(τ, z) :=
ϑ1(τ, z)

2

η(τ)6
(6.6)

is the standard weak Jacobi form of weight −2 and index 1. Using the modular properties

of the theta functions, it is easy to see that φe,g is a Jacobi form for Γ0(4) with trivial

multiplier. Therefore, the orbifold of the K3 model by 〈g〉 is expected to be consistent,

since the level matching condition for the twisted sector is satisfied. In fact, φe,g = φe,g3

equals the M24-twining genus φ2B of class 2B, so that

φg,e = φg3,e = −φg,g2 = −φg3,g2 , (6.7)

φe,g = φe,g3 = −φg2,g = −φg2,g3 , (6.8)

φg,g = φg3,g3 = −φg,g3 = −φg3,g . (6.9)

Furthermore, since g2 is the quantum symmetry Q and the orbifold by 〈Q〉 is a torus model,

one has

φe,e + φe,g2 + φg2,e + φg2,g2 = 0 . (6.10)

It follows that the orbifold of the K3 model by 〈g〉 has vanishing elliptic genus

φorb(τ, z) =
1

4

3∑

i,j=0

φgi,gj (τ, z) = 0 , (6.11)

so that it defines a torus model, as predicted in [25].

6.2 The Dnew
4 -torus model and the interpretation of the orbifold action

The preceding arguments show that the 〈g〉-orbifold of our K3 model, denoted K3/〈g〉, is
a torus model. Since we have the full K3 model under control, we can work out not just

the elliptic genus of the orbifold by 〈g〉, but the full partition function. This then allows us

to determine the actual torus model. As we shall see it is again a D4-torus model, which

we call the Dnew
4 -torus model, although it is equivalent to the original one as an N = (4, 4)

superconformal field theory.

The calculation of the partition function is somewhat technical, and we only sketch

some of the relevant steps in Appendix F.2. The final answer, eq. (F.14), is however rather

simple, and it agrees precisely with the partition function of the D4-torus model. Since

this is the only torus model with this partition function, as one confirms by observing that

the underlying bosonic torus model is the only torus model at central charge (c, c) = (4, 4)

which possesses a current algebra of dimension 28, it follows that the model agrees with

the D4-torus model.

We can therefore write schematically

K3/〈g〉 = Dnew
4 , K3/〈Q〉 = D4 , Dnew

4 ∼ D4 , (6.12)

– 31 –



and note that, since g2 = Q, it is possible to construct the 〈g〉-orbifold of the K3 model in

two steps. The first one yields

K3/〈g2〉 = D4 , (6.13)

while the second step involves taking the orbifold of the D4-torus model by the order two

symmetry ḡ induced by g on that model; thus we have

D4/〈ḡ〉 = Dnew
4 . (6.14)

These steps can be clearly identified at the level of the partition function, as shown in

Appendix F.2.

Since the group 〈g〉 is abelian, we can reverse the orbifold K3/〈g〉 = Dnew
4 , and hence

write our K3 sigma model as a Z4-orbifold of the Dnew
4 -torus model. Denoting by g̃ the

generator of that orbifold, we thus have

Dnew
4 /〈g̃〉 = K3 . (6.15)

It is natural to seek an interpretation of g̃, i.e. of the generator of the ‘quantum symmetry’

associated to g as a symmetry of the Dnew
4 -torus model.

As before, we may perform also the 〈g̃〉-orbifold in two steps. The 〈g̃2〉-orbifold of the

Dnew
4 -torus model yields our original D4-torus model, i.e.

Dnew
4 /〈g̃2〉 = D4 , (6.16)

and g̃ induces on it the usual Z2-orbifold action, i.e. the one described in Section 2. In

fact, g̃2 turns out to agree with the T-duality generator of the Dnew
4 -torus model, i.e. with

the operator that inverts the signs of all left-moving oscillators, with a trivial action on

the right-movers. This is known to be a symmetry of a D4-torus model with extended

so(8)1-symmetry, as follows from the analysis of [30].

Thus we have shown that our K3 sigma model can also be written as an asymmetric

Z4 torus orbifold, and that the corresponding quantum symmetry is the one associated to

the 4D conjugacy class of Co0.

7 Conclusions

In this paper we have considered a superconformal field theory that describes a K3 sigma

model with one of the largest maximal symmetry groups, namely Z8
2 : M20. In particular,

we have found different descriptions for this model: as a Z2-orbifold of the D4-torus model,

as a theory of 12 left- and right-moving Majorana fermions, and as a rational conformal

field theory based on the chiral algebra ŝu(2)⊕6
1 . By combining these different viewpoints

various properties of this model have become manifest. This may prove useful in order to

understand the origin of the M24 symmetry in the elliptic genus of K3.

A result of our work is a very explicit description of all symmetries of the sigma model

on the tetrahedral Kummer surface. In [23] two of us have highlighted a 45-dimensional

vector space of states V CFT
45 that are generic to all standard Z2-orbifold CFTs on K3

– 32 –



and which govern the massive leading order of the elliptic genus of K3. On V CFT
45 , the

combined geometric symmetries of all such theories generate an action of the maximal

subgroup Z4
2 : A8 of M24, as is shown in [23]. Using the description of symmetries for the

special model studied in the present paper, it will be possible to investigate the action

on V CFT
45 for symmetries that are ‘non-geometric’ from the viewpoint of the tetrahedral

Kummer surface.

Recall from [26] that our K3 sigma model also possesses a Gepner-type description

as Z2 × Z2-orbifold of the well-known model (2)4, and that this implies invariance under

Greene-Plesser mirror symmetry of our model [31]. This symmetry is not contained in the

group Z8
2 : M20 investigated in the present paper, as mirror symmetry is an automorphism

of the N = (4, 4) superconformal algebra, but it does not preserve it pointwise. It might

be interesting to determine the action of mirror symmetry in this model.

There are also other special points in the moduli space of K3 sigma models that would

be interesting to construct. For example, there should be a K3 sigma model with M21

symmetry group, and it would be very interesting to find an explicit description for it.

However, it is clear that it cannot be a standard torus orbifold.

The Z8
2 : M20 theory we have considered should possess an interesting exactly marginal

deformation that breaks the symmetry group to M20. One should expect that, at least

generically, this deformation will break the large chiral symmetry of our K3 sigma model to

the N = (4, 4) superconformal algebra. Thus the resulting deformed models should possess

an M20 symmetry while at the same time exhibiting only the ‘minimal’ number of BPS

states.11 These deformed models may therefore play an important role in understanding

the algebraic reasons underlying Mathieu Moonshine.

11Note that the appearance of fermionic BPS states — that contribute with the ‘wrong’ sign to the

elliptic genus — is always associated to an extension of the chiral algebra, because under spectral flow any

‘fermionic’ BPS state transforming in the (h = 1

4
, l = 1

2
) representation of the right-movers is mapped to

the right-moving NS vacuum, see [32, 33] for details.
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A Conventions and notations for torus models

In this appendix we fix our conventions and notations for supersymmetric torus models.

A real d-dimensional torus may be described as T = R
d/L, where L ⊂ R

d is a lattice

of maximal rank. We denote by L∗ ⊂ Rd its dual lattice, using the standard Euclidean

metric to define inner products and to identify Rd with (Rd)∗. We shall usually use standard

Cartesian coordinates, with e1, . . . , ed ∈ Rd the standard basis of Rd. In order to describe

a torus theory one must also fix a Kalb-Ramond B-field in terms of a skew-symmetric

d × d-matrix B with real entries. The field content of the bosonic torus model is then

generated by

• d real left-moving U(1)-currents jk(z) = i∂φk(z), k = 1, . . . , d, which obey the OPEs

jk(z)jl(w) ∼
δkl

(z − w)2
. (A.1)

The notation for the right-moving currents is analogous, with12 k(z) = i∂ φk(z). The

mode expansions of the left-moving currents are

jk(z) =
∑

n∈Z
a(k)n z−n−1 , with [a(k)m , a(l)n ] = mδklδm,−n . (A.2)

• Winding-momentum fields associated with vectors (m, l) ∈ L∗⊕L. In order to define

them, we set

Q(m, l) :=
1√
2
(m− Bl+ l) , Q(m, l) :=

1√
2
(m−Bl − l) for (m, l) ∈ L∗ ⊕ L.

(A.3)

The charges (Q(m, l);Q(m, l)) form an even, selfdual lattice

Γ :=
{
(Q(m, l);Q(m, l)) | (m, l) ∈ L∗ ⊕ L

}
⊂ R

d,d (A.4)

of signature (d, d) with quadratic form given by

(Q;Q) • (Q′;Q
′
) := Q ·Q′ −Q ·Q′ ∀ (Q;Q), (Q′;Q

′
) ∈ Γ. (A.5)

We also introduce operators cλ for each λ ∈ Γ which obey

cλcµ = ǫ(λ, µ)cλ+µ for all λ, µ ∈ Γ (A.6)

with a suitable 2-cocycle ǫ(λ, µ) ∈ {±1}. In other words,13

∀λ, µ, ν ∈ Γ:

{
ǫ(λ, µ) = (−1)λ

2µ2

(−1)λ·µ ǫ(µ, λ) ,

ǫ(λ, µ)ǫ(λ+ µ, ν) = ǫ(λ, µ+ ν)ǫ(µ, ν) .
(A.7)

12The choice of relative sign for the bosons φk, φk is of course a matter of convention.
13If the charge lattice Γ is even, then the factor (−1)λ

2µ2

in (A.7) is trivial. However, in Appendix D.1

we need more general charge lattices Γ that are only required to be integral and selfdual.
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Then for (Q;Q) ∈ Γ, the fields

V(Q;Q)(z, z) := :exp

[
i

d∑

k=1

Qkφk(z) + i
d∑

k=1

Qkφk(z)

]
: c(Q;Q) (A.8)

obey the OPEs

jk(z)V(Q;Q)(w,w) ∼ Qk

z − w
V(Q;Q)(w,w) , k = 1, . . . , d, λ := (Q;Q) ∈ Γ,

k(z)V(Q;Q)(w,w) ∼ Qk

z − w
V(Q;Q)(w,w) , k = 1, . . . , d, λ′ := (Q′;Q

′
) ∈ Γ,

Vλ(z, z)Vλ′(w,w) ∼ ε(λ, λ′)(z − w)Q·Q′
(z − w)Q·Q′

Vλ+λ′(w,w) ,
(A.9)

where ∼ only indicates the most singular terms, and V(Q;Q)(z, z) has conformal di-

mension (h; h) = (Q
2

2
; Q

2

2
). Here V(0;0)(z, z) is the vacuum field.

The toroidal model is uniquely determined by its charge lattice Γ ⊂ Rd,d by means of (A.1),

(A.4) – (A.8), independently of its geometric interpretation on the torus T = R
d/L with

B–field B. Different choices for the cocycle ǫ satisfying (A.7) are related by a redefinition

of the fields Vλ, see, for example, [34] for details.

In the corresponding supersymmetric torus model, in addition to the fields listed above,

we adjoin

• d ‘external’ free Majorana fermions ψk(z), k = 1, . . . , d, which are related to the

U(1)-currents by world-sheet supersymmetry and which obey the OPEs

ψk(z)ψl(w) ∼
δkl

(z − w)
. (A.10)

The right-moving Majorana fermions are denoted by ψk(z). The mode expansions of

the left-moving fermions are

ψk(z) =
∑

n∈Z+ν

ψ(k)
n z−n− 1

2 , where {ψ(k)
m , ψ(l)

n } = δklδm,−n , (A.11)

with ν = 0 and ν = 1
2
in the Ramond and Neveu-Schwarz sector, respectively.

If d is even, then the external fermions comprise the U(1)-currents J(z), J(z) of a left-

and a right-moving N = 2 superconformal algebra at central charge c = 3d
2
= c, where we

choose

J(z) := i
d∑

k=1

:ψ2k−1(z)ψ2k(z): , J(z) := i
d∑

k=1

:ψ2k−1(z)ψ2k(z): . (A.12)

Then the partition function of the supersymmetric torus model is

Z(τ, z) = Tr
(

1
2

(
1 + (−1)FL+FR

)
yJ0yJ0 qL0− c

24 q̄L0− c
24

)

=
1

2

4∑

k=1

∣∣∣∣
ϑk(τ, z)

η(τ)

∣∣∣∣
d

·
∑

(Q;Q)∈Γ

qQ
2/2 qQ

2
/2

|η(τ)|2d
, y = e2πiz , q = e2πiτ . (A.13)
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Here, the trace is taken over the full Hilbert space of the theory, FL+FR is the total fermion

number operator accounting for the external fermions, J0, J0 denote the zero modes of

the U(1)-currents of the left- and the right-moving N = 2 superconformal algebras as in

(A.12), and the central charges are c = c = 3d
2
. Moreover, η(τ) is the Dedekind eta function

and ϑk(τ, z), k = 1, . . . , 4, are the Jacobi theta functions described in Appendix F. The

first factor in the partition function (A.13) accounts for the external fermions, while the

second factor accounts for the contributions from the bosonic torus model. If Γ = Γd,d as

in (2.10), its partition function can be written in terms of theta functions as

∑

(Q;Q)∈Γd,d

qQ
2/2 qQ

2
/2

|η(τ)|2d
=

1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
2d

, (A.14)

thus suggesting a free fermionic description of this bosonic torus model.

B Fermionisation of the bosonic D4-torus model

In this appendix we provide some details on the fermionisation procedure needed in Subsec-

tion 2.2. Consider eight left-moving Majorana fermions ψk(z) with right-moving partners

ψk(z), where k = 5, . . . , 12. For each of them, we have two twist-fields η±k (z, z) with

conformal dimension ( 1
16
; 1
16
)

ψk(z) η
±
k (w,w) ∼

ζ±1

√
2

η∓k (w,w)

(z − w)1/2
, ψk(z) η

±
k (w,w) ∼

ζ∓1

√
2

η∓k (w,w)

(z − w)1/2
,

η+k (z, z) η
−
k (w,w) ∼

1√
2|z − w|1/4

(
ζ(z − w)1/2ψk(w) + ζ−1(z − w)1/2ψk(w)

)
,

(B.1)

where ζ ∈ C is a primitive eighth root of unity with ζ2 = i, (see e.g. [28, (12.67), (12.68)]).

In addition,

η±k (z, z) η
±
k (w,w) ∼ |z − w|−1/4 ± i

2
:ψj(w)ψj(w): |z − w|3/4. (B.2)

In (2.20), we introduce the four Dirac fermions

xk := 1√
2
(ψk+4 + iψk+8) , x∗k := 1√

2
(ψk+4 − iψk+8) ,

xk := 1√
2
(ψk+4 + iψk+8) , x∗k := 1√

2
(ψk+4 − iψk+8) , k ∈ {1, . . . , 4},

(B.3)

where according to (2.21),

xk(z)x
∗
k(w) ∼

1

z − w
∼ x∗k(z)xk(w) . (B.4)

Bosonisation amounts to the observation that the fields

jk(z) := :xk(z)x
∗
k(z): = −i :ψk+4(z)ψk+8(z): (B.5)
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obey (A.1), such that jk(z) = i∂φk(z) (and analogously on the right hand side) allows us

to identify, up to appropriate cocycle factors,

i :xk(z)x
∗
k(z): = :exp

(
iφk(z)− iφk(z)

)
: ,

i :x∗k(z)xk(z): = :exp
(
−iφk(z) + iφk(z)

)
: ,

:η+k η
+
k+4:(z, z) =

1√
2

[
: exp

(
i

2
φk(z)−

i

2
φk(z)

)
: + :exp

(
− i

2
φk(z)+

i

2
φk(z)

)
:

]

= 1√
2

[
:ξ+k ξ

+

k :(z, z) + :ξ−k ξ
−
k :(z, z)

]
, (B.6)

:η−k η
−
k+4:(z, z) =

1√
2i

[
: exp

(
i

2
φk(z)−

i

2
φk(z)

)
:− : exp

(
− i

2
φk(z)+

i

2
φk(z)

)
:

]

= 1√
2i

[
:ξ+k ξ

+

k :(z, z)− :ξ−k ξ
−
k :(z, z)

]
.

Here, we have formally introduced the ‘meromorphic factors’ ξ±1 (z), . . . , ξ
±
4 (z) with ξ

±
k (z) :=

:exp
(
± i

2
φk(z)

)
:. By democratically distributing phases between the holomorphic and an-

tiholomorphic part,

ξ±k (z)ξ
∓
k (w) ∼ (z − w)−1/4

(
1± 1

2
(z − w) :xk(w)x

∗
k(w):

)
,

ξ+k (z)ξ
+
k (w) ∼ xk(w)(z − w)1/4ζ ,

ξ−k (z)ξ
−
k (w) ∼ x∗k(w)(z − w)1/4ζ , (B.7)

:xk(z)x
∗
k(z): ξ

±
k (w) ∼ ±

1
2
ξ±k (w)

z − w
,

such that for the c = c = 1 theory of the free Dirac fermion xk(z), the two R-R-ground

states are created by ξ±k (z)ξ
±
k (z).

In Subsection 2.1 we describe the bosonic d = 4-dimensional D4-torus model with

charge lattice (2.10). Its left-moving ŝo(8)1 current algebra is generated by the U(1)-

currents j1(z), . . . , j4(z) together with the twenty-four (1, 0)-fields V(Q±j,±k ;0)(z) specified

by (2.5). All winding-momentum fields can be generated from the (1
2
, 1
2
)-fields V(Q;Q)(z, z)

listed in (2.9) by taking OPEs with holomorphic currents. Using (B.6) we can thus give a

complete list of generating fields in terms of the free fermion data. One checks that indeed

the following identifications are compatible with the respective OPEs:

• four (1, 0)-fields generating the Cartan subalgebra of ŝo(8)1:

jk(z) = −i :ψk+4(z)ψk+8(z): = :xk(z)x
∗
k(z): , k ∈ {1, . . . , 4} ; (B.8)

• twenty-four (1, 0)-fields corresponding to the roots of D4 for 1 ≤ j < k ≤ 4,

Vmj,k,lj,k(z) = :xj(z)xk(z): , Vm−j,−k,l−j,−k
(z) = :x∗j (z)x

∗
k(z): ,

Vmj,−k,lj,−k
(z) = :xj(z)x

∗
k(z): , Vm−j,k,l−j,k

(z) = :x∗j (z)xk(z): ;
(B.9)
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• for the (1
2
, 1
2
)-fields V(Q;Q)(z, z),

if Q = ej, Q = ek : V(Q;Q)(z, z) = i :xj(z)x
∗
k(z): (16 fields)

Q = −ek : V(Q;Q)(z, z) = i :xj(z)xk(z): (16 fields)

if Q = −ej , Q = ek : V(Q;Q)(z, z) = i :x∗j (z)x
∗
k(z): (16 fields)

Q = −ek : V(Q;Q)(z, z) = i :x∗j (z)xk(z): (16 fields)

if εj, δk ∈ {±},
Q = 1

2

4∑
j=1

εjej , Q = 1
2

4∑
k=1

δkek : V(Q;Q)(z, z) = :
4∏

j=1

ξ
εj
j (z)

4∏
k=1

ξ
δk
k (z):

(128 fields).
(B.10)

C Partition function from the free fermion description

The free fermion description of Subsection 2.2 allows us to construct the content of the

bosonic torus model in terms of eight free left-moving and eight free right-moving Majorana

fermions, all with coupled spin structures. From that point of view, the first two terms

in (2.7) (the vacuum and vector representations of ŝ0(8)1) come from the free fermion

states with Neveu-Schwarz boundary conditions, while the last two terms (the spinor rep-

resentations of ŝ0(8)1) are accounted for in terms with Ramond boundary conditions. In

both cases only those states are included where the total (left- and right-moving) fermion

number is even. In terms of partition functions, this then just amounts to the statement

that

Tr (HL,0⊗HR,0)⊕(HL,v⊗HR,v)

(
qL0− d

24 q̄L0− d
24

)
=

1

2

(∣∣∣∣
ϑ3(τ)

η(τ)

∣∣∣∣
2d

+

∣∣∣∣
ϑ4(τ)

η(τ)

∣∣∣∣
2d
)
, (C.1)

Tr (HL,s⊗HR,s)⊕(HL,c⊗HR,c)

(
qL0− d

24 q̄L0− d
24

)
=

1

2
·
∣∣∣∣
ϑ2(τ)

η(τ)

∣∣∣∣
2d

, (C.2)

with d = 4, as one confirms by means of the product formulas for the Jacobi theta functions

given in (F.2).

The superpartners ψk(z), k = 1, . . . , 4, of the four left-moving bosonic currents jk(z)

(together with their analogs in the right-moving sector) are uncorrelated with HD4−torus,

i.e. they contribute a tensor factor Hferm to the space of states Hferm ⊗ HD4−torus of our

supersymmetric torus theory. As is explained in Appendix A, the U(1)-currents (A.12) of

the left- and the right-moving N = 2 superconformal algebras in this model are obtained

from Hferm, such that the decomposition of Hferm ⊗HD4−torus into NS-NS and R-R sectors

in the usual sense is governed by Hferm. So, for example, the R-R ground states of the

full D4-torus model come from the sector where the ψk, k = 1, . . . , 4, (and their right-

moving counterparts) have Ramond boundary conditions, while ψk, k = 5, . . . , 12, (and the

corresponding right-movers) have Neveu-Schwarz boundary conditions. Since there are four

fermionic zero modes ψk,0, k = 1, . . . , 4, there are four left- and four right-moving ground
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states in this sector, which account for the sixteen R-R ground states of the supersymmetric

torus theory. These states have conformal weight h = h = 1
4
.

The Z2-orbifolding described in Subsection 2.1 acts as ψk 7→ −ψk for k = 1, . . . , 4,

while its action on the fermions ψk, k = 5, . . . , 12, as established in Subsection 2.2, leaves

ψk, k = 5, . . . , 8, invariant and flips the sign of ψk, k = 9, . . . , 12. The action on the right-

moving fermions is identical. Thus in the orbifold model, the twelve free (left-moving)14

fermions organise themselves naturally into three groups of four fermions with coupled

boundary conditions each, ( [ψ1, . . . , ψ4], [ψ5, . . . , ψ8], [ψ9, . . . , ψ12] ), where in the untwisted

sector of the orbifold theory, also the boundary conditions of the last two groups are

coupled. The boundary conditions in this sector are therefore

(NS,NS,NS) (R,NS,NS) (NS,R,R) (R,R,R) . (C.3)

We note that only eight of the sixteen R-R ground states of the D4-torus model survive

orbifolding, and as explained above they appear in the sector (R,NS,NS).

In the twisted sector the roles of NS and R are reversed for the eight fermions that are

affected by the orbifold, so that the boundary conditions in the twisted sector are

(R,NS,R) (NS,NS,R) (R,R,NS) (NS,R,NS) . (C.4)

The sixteen twisted R-R ground states appear in the sectors (NS,NS,R) and (NS,R,NS).

The full partition function therefore equals

ZTD4
/Z2

(τ, z) =
1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η(τ)2

∣∣∣∣
4

(C.5)

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η(τ)2

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η(τ)2

∣∣∣∣
4
)

· 1
2

4∑

k=1

∣∣∣∣
ϑk(τ, z)

η(τ)

∣∣∣∣
4

.

The R-R-sector with the inclusion of the total fermion number operator that only acts on

the fermions from Hferm contributes to this by

ZR̃
TD4

/Z2
(τ, z) =

1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4
)

. (C.6)

By definition, the elliptic genus of any N = (2, 2) SCFT is

φ(τ, z) = Tr RR

(
(−1)FL+FRyJ0 qL0− c

24 q̄L0− c
24

)
. (C.7)

It can thus be obtained from ZR̃(τ, z) by inserting y = 1 and leaving y untouched. Hence

for our Z2-orbifold model,

φ(τ, z) =
2ϑ2(τ, z)

2ϑ3(τ)
2ϑ4(τ)

2

η(τ)6
+
2ϑ4(τ, z)

2ϑ2(τ)
2ϑ3(τ)

2

η(τ)6
+
2ϑ3(τ, z)

2ϑ2(τ)
2ϑ4(τ)

2

η(τ)6
, (C.8)

which agrees with the elliptic genus of K3, thus confirming that our orbifold model is

indeed a K3 theory.

14The right-moving fermions are always in the same sectors as the left-moving ones.
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D Properties of ŝu(2)nL,1 ⊕ ŝu(2)nR,1 RCFTs

In this appendix, we collect some properties of the special toroidal models at central charge

c = c = n with n ∈ N which enjoy an extended ŝu(2)nL,1 ⊕ ŝu(2)nR,1 symmetry.

D.1 Vertex operator construction for ŝu(2)nL,1 ⊕ ŝu(2)nR,1

For n ∈ N, the ŝu(2)nL,1⊕ ŝu(2)nR,1 affine algebra can be realised as a model of n free bosons

Y k(z, z̄) := Y k(z) + Y
k
(z), k = 1, . . . , n, compactified on an n-dimensional real torus. The

Cartan generators are chosen as

J3,k(z) :=
i√
2
∂Y k(z) , J

3,k
(z) :=

i√
2
∂̄Y k(z) , k = 1, . . . , n , (D.1)

in accord with (2.17). Now consider any CFT with central charges c = c = n that possesses

an ŝu(2)nL,1 ⊕ ŝu(2)nR,1 current algebra. As explained in Appendix A, the remaining field

content of the model is generated by winding-momentum fields V(Q;Q)(z, z) as in (A.8) with

charge vectors (Q;Q) in the charge lattice Γ ⊂ Rn,n with quadratic form (A.5), where

n = d. The simple structure of the representations of ŝu(2)1 as discussed in Subsection

3.1 allows us to elucidate further the form of the charge lattice Γ for the models with

ŝu(2)nL,1 ⊕ ŝu(2)nR,1 current algebra.

For the vacuum representation [0 · · · 0; 0 · · ·0] of ŝu(2)nL,1⊕ ŝu(2)nR,1, the charge vectors

take values in the lattice

Γ0 :=
√
2(Zn ⊕ Z

n) ⊂ R
n,n . (D.2)

More generally, the primary field for a representation [a1 · · · an; b1 · · · bn] of ŝu(2)nL,1 ⊕
ŝu(2)nR,1 corresponds to Vλ(z, z̄) with

λ =
1√
2
(a1, . . . , an; b1, . . . , bn) ∈ Γ∗

0=
1√
2
(Zn ⊕ Z

n) , (D.3)

and all the states in this representation have momenta in the translated lattice λ+ Γ0.

Consistency of our model requires that the charge lattice Γ is an even integral selfdual

lattice with

Γ0 ⊂ Γ ⊂ Γ∗
0 . (D.4)

In order to include fermionic states in this description, one drops the condition that the

lattice Γ is even and includes vectors λ with odd λ2. In this case, the Z2-graded locality

condition for the vertex operators is satisfied by requiring (A.7), where the factor (−1)λ
2µ2

is trivial if Γ is even, i.e. if the model is purely bosonic.

Summarising, the spectrum of the theory is completely determined by specifying the

charge lattice Γ or, equivalently, the abelian group

A :=Γ/Γ0 ⊂ Γ∗
0/Γ0

∼= Z
n
2 × Z

n
2 , (D.5)

which, in the notation of Subsection 3.1, simply yields the subgroup A ⊂ Zn
2×Zn

2 describing

the representation content of the model with respect to the ŝu(2)nL,1 ⊕ ŝu(2)nR,1 algebra.
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To understand the representation content of the theory more explicitly, recall that the

ŝu(2)k-character

chk, a
2
(τ, z) := Tr [a]k(q

L0− c
24 y2J0) , a ∈ {0, . . . , k} , (D.6)

of the highest weight representation [a], a = 0, . . . , k, is given by

chk,s(τ, z) =
Θ2(k+2),2s+1(τ, z)−Θ2(k+2),−2s−1(τ, z)

Θ4,1(τ, z)−Θ4,−1(τ, z)
, (D.7)

where

Θn,l(τ, z) =
∑

m∈Z
q

n
2
(m+ l

n
)2ynm+l . (D.8)

In particular, in terms of the Jacobi theta functions discussed in Appendix F,

ch1,0(τ, z) = Tr [0](q
L0− 1

24 yJ0) =

∑
n∈Z q

n2

y2n

η(τ)
=
ϑ3(2τ, 2z)

η(τ)
, (D.9)

ch1, 1
2

(τ, z) = Tr [1](q
L0− 1

24 yJ0) =

∑
n∈Z q

(n+ 1

2
)2y2n+1

η(τ)
=
ϑ2(2τ, 2z)

η(τ)
(D.10)

are the building blocks of the characters that occur in an ŝu(2)nL,1 ⊕ ŝu(2)nR,1 theory. For

example, if n = 1, then

Γ
ŝu(2)2

1
:=

{
1√
2
(a; b)

∣∣∣∣ a, b ∈ Z, a + b ≡ 0 mod 2

}
(D.11)

is the charge lattice of the only consistent ŝu(2)1L,1 ⊕ ŝu(2)1R,1 model, and its partition

function is

Tr
(
yJ0yJ0 qL0− 1

24 q̄L0− 1

24

)
=

∣∣∣∣
ϑ3(2τ, 2z)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
ϑ2(2τ, 2z)

η(τ)

∣∣∣∣
2

, (D.12)

where J0, J0 denote the zero modes of the U(1)-currents 2J3,1(z), 2J
3,1
(z), respectively.

D.2 S6 as a symmetry group of the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 RCFT

In Subsection 3.2, we consider the spectrum of our K3 model in terms of representations

of the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 affine algebra. According to (3.13) and (3.15), the spectrum is

symmetric under a group S6 that permutes simultaneously the various ŝu(2)1 factors in

the left and right sectors, and this symmetry preserves the fusion rules. In this appendix,

we prove that these transformations are compatible with the OPEs of the primary fields

of the current algebra, and therefore define genuine symmetries of the CFT.

In order to do so, we make use of the vertex operator construction of the ŝu(2)6L,1 ⊕
ŝu(2)6R,1 affine algebra given in Appendix D.1. In this description, (3.14) and (3.16) imply

that the charge lattice of both the bosonic and the fermionic NS-NS sector is

Γ
ŝu(2)6

1
⊕ŝu(2)6

1
=
( ⋃

v∈Abos

v√
2
+
√
2(Z6 ⊕ Z

6)
)
∪
( ⋃

v∈Aferm

v√
2
+
√
2(Z6 ⊕ Z

6)
)
. (D.13)
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A basis for this integral, selfdual lattice is given by

α1 =
1√
2
(1 0 0 0 0 1; 1 0 0 0 0 1) , β1 =

1√
2
(2 0 0 0 0 0; 0 0 0 0 0 0) , (D.14)

α2 =
1√
2
(0 1 0 0 0 1; 0 1 0 0 0 1) , β2 =

1√
2
(0 2 0 0 0 0; 0 0 0 0 0 0) , (D.15)

α3 =
1√
2
(0 0 1 0 0 1; 0 0 1 0 0 1) , β3 =

1√
2
(0 0 2 0 0 0; 0 0 0 0 0 0) , (D.16)

α4 =
1√
2
(0 0 0 1 0 1; 0 0 0 1 0 1) , β4 =

1√
2
(0 0 0 2 0 0; 0 0 0 0 0 0) , (D.17)

α5 =
1√
2
(0 0 0 0 1 1; 0 0 0 0 1 1) , β5 =

1√
2
(0 0 0 0 2 0; 0 0 0 0 0 0) , (D.18)

α6 =
1√
2
(0 0 0 0 0 2; 0 0 0 0 0 2) , ξ =

1√
2
(1 1 1 1 1 1; 0 0 0 0 0 0) . (D.19)

To construct the winding-momentum fields Vλ(z, z) with λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
, we need to

specify a cocycle ǫ satisfying (A.7). One checks that such a cocycle can be defined by

ǫ(αi, αj) = +1, ǫ(βk, βl) = +1, ǫ(αi, βk) = (−1)δik , (D.20)

ǫ(βk, αi) = +1, ǫ(αi, ξ) = +1, ǫ(βk, ξ) = +1, (D.21)

ǫ(ξ, αi) = −1, ǫ(ξ, βk) = −1, ǫ(ξ, ξ) = +1, (D.22)

together with the ‘linearity conditions’

∀λ, λ′, µ, µ′ ∈ Γ
ŝu(2)12

1
:





ǫ(λ, µ) = (−1)λ
2µ2

(−1)λ·µ ǫ(µ, λ),

ǫ(λ + λ′, µ) = ǫ(λ, µ)ǫ(λ′, µ) ,

ǫ(λ, µ+ µ′) = ǫ(λ, µ)ǫ(λ, µ′) .

(D.23)

Indeed, (D.20) – (D.23) imply

ǫ(0, µ) = 1 = ǫ(λ, 0), ǫ(λ, µ) = ǫ(−λ, µ) = ǫ(λ,−µ) for all λ, µ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
,

(D.24)

and thereby (A.7).

The group of automorphisms of the lattice Γ
ŝu(2)6

1
⊕ŝu(2)6

1
contains the permutation group

S6, with π ∈ S6 acting by

π(Q1, . . . , Q6;Q1, . . . , Q6) = (Qπ(1), . . . , Qπ(6);Qπ(1), . . . , Qπ(6)) ∀ (Q;Q) ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
.

(D.25)

Since this permutation leaves the cocycle invariant,

∀λ, µ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
: ǫ(π(λ), π(µ)) = ǫ(λ, µ) , (D.26)

the obvious action on the vertex operators

π(Ja,k(z)) := Ja,π(k)(z) , π(J
a,k
(z̄)) := J

a,π(k)
(z̄) , π(Vλ(z, z̄)) := Vπ(λ)(z, z̄)

(D.27)

for all a ∈ {3, ±}, k = 1, . . . , 6, λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
, defines also a symmetry of the OPE. The

model furthermore has an SU(2)6L×SU(2)6R symmetry, generated by the zero modes of the

currents, which includes all the other symmetries induced by automorphisms of the lattice.

Therefore, the OPE is preserved by an (SU(2)6L × SU(2)6R) : S6 group of transformations.
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D.3 Elliptic genus for the ŝu(2)6L,1 ⊕ ŝu(2)6R,1 RCFT

In this appendix, we derive the elliptic genus of our model, which we have already deter-

mined in (C.8), but this time using the ŝu(2)1 description.

To do so, we need to determine those R-R states that are BPS with respect to the

right N = 4 superconformal algebra. These states are all contained in the representations

(3.17) – (3.19) together with the representations

g-twisted [01 11 11; 10 00 00] [10 11 11; 01 00 00] (D.28)

h-twisted [11 01 11; 00 10 00] [11 10 11; 00 01 00] (D.29)

gh-twisted [11 11 01; 00 00 10] [11 11 10; 00 00 01] (D.30)

obtained by fusion of (3.17) – (3.19) with the representation (3.15).

With this preparation it is now straightforward to calculate the elliptic genus by ex-

ploiting the SU(2)6L × SU(2)6R symmetry of the model. We use the definition (C.7) of the

elliptic genus φ(τ, z), where J0 = 2J3,1
0 with J3,1

0 the zero mode of the current (2.12) in

the first factor of the left affine algebra ŝu(2)6L,1. The elliptic genus φ(τ, z) of our model is

therefore the sum of the characters of ŝu(2)6L,1 for the representations (3.17) – (3.19) and

(D.28) – (D.30), namely, using (D.9) and (D.10),

φ(τ, z) =2
(
ch1, 1

2

(τ, z) ch1,0(τ, 0)
5 + 5 ch1,0(τ, z) ch1, 1

2

(τ, 0) ch1,0(τ, 0)
4

− ch1,0(τ, z) ch1, 1
2

(τ, 0)5 − 5 ch1, 1
2

(τ, z) ch1,0(τ, 0) ch1, 1
2

(τ, 0)4
)
. (D.31)

This formula exactly reproduces the elliptic genus of K3, as expected. Here, the sign

(−1)FL+FR is positive for the representations (3.17) – (3.19), and negative for (D.28) –

(D.30). The overall factor 2 takes into account the fact that in the spectrum of the model,

each of these representations of ŝu(2)6L,1 is tensored with two distinct right-moving states of

conformal weight 1
4
that form a doublet under the diagonal right-moving SU(2)-symmetry.

Notice that only the twisted sectors of our Z2 × Z2-orbifold contribute to the elliptic

genus, since the untwisted R-R sector contains no BPS states (the right conformal weight

of these states is at least 3
4
). This is not in contradiction with the description of the theory

in terms of a non-linear sigma model on the resolution of TD4
/Z2, because the untwisted

sector in the Z2-orbifold of the D4-torus model corresponds to the untwisted sector together

with the g-twisted sector of the Z2 × Z2-orbifold of the free fermion theory describing the

bosonic D6-torus model.

E Fermionisation of the supercharges

E.1 The supercharges in terms of the bosonic D6-torus model

In Section 3 we construct our K3 model as a Z2×Z2-orbifold of a free fermion model with

ŝo(12)L,1 ⊕ ŝo(12)R,1 symmetry, i.e. as a Z2 × Z2-orbifold of a bosonic D6-torus model.

This model can be described in terms of the vertex operator construction for the ŝu(2)6L,1⊕
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ŝu(2)6R,1 RCFTs in Appendix D.1 by means of a charge lattice Γ̃ ⊂ Γ∗
0, see (D.4). A basis

for Γ̃ is given by

γ1 =
1√
2
(1 1 0 0 0 0; 0 0 0 0 0 0) , γ2 =

1√
2
(1−1 0 0 0 0; 0 0 0 0 0 0) , (E.1)

γ3 =
1√
2
(0 0 1 1 0 0; 0 0 0 0 0 0) , γ4 =

1√
2
(0 0 1−10 0; 0 0 0 0 0 0) , (E.2)

γ5 =
1√
2
(0 0 0 0 1 1; 0 0 0 0 0 0) , γ6 =

1√
2
(0 0 0 0 1−1; 0 0 0 0 0 0) , (E.3)

and similarly for the right-moving γ1, . . . , γ6. The associated vertex operators correspond

to the holomorphic free fermions

χ∗
i (z) = V̂γi(z) , χi(z) = V̂−γi(z) , (E.4)

for i = 1, . . . , 6, and analogously the right-moving fermions correspond to V̂±γ1
, . . . , V̂±γ6

.

The lattice Γ̃ is the orthogonal sum Γ̃L ⊕ Γ̃R of a purely ‘left-moving’ (that is, Q = 0) and

a purely ‘right-moving’ (Q = 0) lattice. From now on, we will focus on the left-moving

component Γ̃L.

For a generic vector
6∑

i=1

niγi ∈ Γ̃L, we define the holomorphic vertex operator

V̂n1γ1+···+n6γ6(z) := : V̂n1γ1(z) V̂n2γ2(z) · · · V̂n6γ6(z): , (E.5)

where we set

V̂niγi(z) :=





: ∂ni−1χ∗
i (z) · · ·∂χ∗

i (z)χ
∗
i (z) : ni > 0 ,

1 ni = 0 ,

: ∂−ni−1χi(z) · · ·∂χi(z)χi(z) : ni < 0 .

(E.6)

This definition amounts to a choice of phases whose compatibility with our previous choices

is ensured below in (E.8) – (E.19) by implementing appropriate phase factors c(λ). The

cocycle ǫ̃ determining the OPE of these fields is defined by

ǫ̃(γi, γj) :=

{
+1 for i ≤ j ,

−1 for i > j ,
(E.7)

together with linearity conditions analogous to (D.23).

Let us make the connection between the fields of the bosonic D6-torus model and the

fields of its Z2 × Z2-orbifold, i.e. the K3 model. The holomorphic fields surviving the

orbifold projection are the six currents J3,k(z), k = 1, . . . , 6, and the winding-momentum

fields V̂λ(z) for λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L with Γ

ŝu(2)6
1
⊕ŝu(2)6

1
as in (D.13). The latter fields are

related to the fields Vλ(z) in the K3 model by some field redefinition

Vλ(z) = c(λ)V̂λ(z) , λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L , (E.8)

where c(λ) ∈ C∗ satisfies

ǫ(λ, µ) =
c(λ)c(µ)

c(λ+ µ)
ǫ̃(λ, µ) , λ, µ ∈ Γ

ŝu(2)6
1
⊕ŝu(2)6

1
∩ Γ̃L , (E.9)
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with the cocycle ǫ given in (D.20) – (D.23). A basis for Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L is

β1 = γ1 + γ2 , β2 = γ1 − γ2 , β3 = γ3 + γ4 , (E.10)

β4 = γ3 − γ4 , β5 = γ5 + γ6 , ξ = γ1 + γ3 + γ5 , (E.11)

and a choice for c(λ) satisfying (E.9) is given by

c(0) = 1 , c(λ+ 2βi) = c(λ), i = 1, . . . , 5 , c(λ+ 2ξ) = c(λ) , (E.12)

c(λ+ β1 + β2) = c(λ) , c(λ+ β3 + β4) = c(λ) , (E.13)

for all λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃, as well as

c(β1) = c(β3) = c(β5) = c(ξ) = i , (E.14)

c(β1 + β3) = c(β3 + β5) = c(β1 + β5) = −1 , (E.15)

c(β1 + β3 + β5) = −i , (E.16)

c(ξ + β1) = c(ξ + β3) = c(ξ + β5) = 1 , (E.17)

c(ξ + β1 + β3) = c(ξ + β3 + β5) = c(ξ + β1 + β5) = −i , (E.18)

c(ξ + β1 + β3 + β5) = −1 . (E.19)

One checks that (E.12) – (E.19) determine c(λ) fully for all λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩Γ̃L. Moreover,

by means of the linearity conditions (D.23) which hold for both ǫ and ǫ̃, checking (E.9)

amounts to proving

c(λ+ µ)c(λ+ ν)c(µ+ ν) = c(λ)c(µ)c(ν)c(λ+ µ+ ν) for all λ, µ, ν ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L ,

(E.20)

an identity which is confirmed by direct calculation using (E.12) – (E.19). Finally, intro-

ducing the shorthand notation

V±±±±±±(z) := V 1√
2
(±1,±1,±1,±1,±1,±1;0,0,0,0,0,0)(z) (E.21)

for the fields of weight (3
2
, 0), we can express the four holomorphic N = 4 supercurrents in

terms of the lattice Γ̃. Using (2.35) – (2.38) along with (E.4) – (E.6) and (E.8), we obtain

G+(z) =
( i− 1

2

)[
V++++++(z) + V++−−−−(z)− iV+−+−+−(z)− iV+−−+−+(z) (E.22)

+ iV++++−−(z) + iV++−−++(z) + V+−+−−+(z) + V+−−++−(z)
]
,

G−(z) =
(−i− 1

2

)[
V−−−−−−(z) + V−−++++(z)− iV−+−+−+(z)− iV−++−+−(z) (E.23)

− iV−−−−++(z)− iV−−++−−(z)− V−+−++−(z)− V−++−−+(z)
]
,

as well as

G′+(z) =
(−i− 1

2

)[
V+−−−−−(z) + V+−++++(z)− iV++−+−+(z)− iV+++−+−(z) (E.24)

− iV+−−−++(z)− iV+−++−−(z)− V++−++−(z)− V+++−−+(z)
]
,

G′−(z) =
(−i− 1

2

)[
iV−+++++(z) + iV−+−−−−(z) + V−−+−+−(z) + V−−−+−+(z) (E.25)

− V−+++−−(z)− V−+−−++(z) + iV−−+−−+(z) + iV−−−++−(z)
]
.
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E.2 Free fermion model for the D′
4-torus model

In the D′
4-torus model of Subsection 4.3, obtained from orbifolding our K3 model by the

group 〈Q′〉, with Q′ = Q2345, the fermions χ̂1, . . . , χ̂6 are identified with different fields in

the K3 model. In terms of the lattice description of the ŝu(2)6L,1⊕ ŝu(2)6R,1 RCFTs, we can

identify

χ̂∗
i (z) = V̂γ̂i(z) , χ̂i(z) = V̂−γ̂i(z) , (E.26)

where

γ̂1 =
1√
2
(1 0 0 0 0 1; 0 0 0 0 0 0) , γ̂2 =

1√
2
(1 0 0 0 0−1; 0 0 0 0 0 0) , (E.27)

γ̂3 =
1√
2
(0 0 1 1 0 0; 0 0 0 0 0 0) , γ̂4 =

1√
2
(0 0 1−1 0 0; 0 0 0 0 0 0) , (E.28)

γ̂5 =
1√
2
(0 1 0 0 1 0; 0 0 0 0 0 0) , γ̂6 =

1√
2
(0 1 0 0−10; 0 0 0 0 0 0) , (E.29)

which is clearly different from (E.1) – (E.3). However, we can still proceed analogously to

Appendix E.1.

The holomorphic fields Vλ(z) of the K3 model are preserved by the orbifold projection,

and are identified with the fields V̂λ(z) in the new torus model by

Vλ(z) = ĉ(λ) V̂λ(z) , λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L , (E.30)

for a suitable phase ĉ(λ). The basis (E.10) – (E.11) for the lattice Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L is given

by

β1 = γ̂1 + γ̂2 , β2 = γ̂5 + γ̂6 , β3 = γ̂3 + γ̂4 , (E.31)

β4 = γ̂3 − γ̂4 , β5 = γ̂5 − γ̂6 , ξ = γ̂1 + γ̂3 + γ̂5 , (E.32)

in terms of the vectors γ̂i, and ĉ(λ) can be chosen such that

ĉ(0) = 1, ĉ(λ+ 2βi) = ĉ(λ), i = 1, . . . , 5 , ĉ(λ+ 2ξ) = ĉ(λ) , (E.33)

ĉ(λ+ β2 + β5) = ĉ(λ) , ĉ(λ+ β3 + β4) = ĉ(λ) , (E.34)

for all λ ∈ Γ
ŝu(2)6

1
⊕ŝu(2)6

1
∩ Γ̃L, as well as

ĉ(β1) = ĉ(β2) = ĉ(β3) = ĉ(ξ) = i , (E.35)

ĉ(β1 + β2) = ĉ(β1 + β3) = ĉ(β2 + β3) = −1 , (E.36)

ĉ(β1 + β2 + β3) = −i , (E.37)

ĉ(ξ + β1) = ĉ(ξ + β2) = ĉ(ξ + β3) = 1 , (E.38)

ĉ(ξ + β1 + β2) = ĉ(ξ + β1 + β3) = ĉ(ξ + β2 + β3) = −i , (E.39)

ĉ(ξ + β1 + β2 + β3) = −1 . (E.40)
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Consistency follows by arguments analogous to those already given in Appendix E.1. The

supercharges are then

G+(z) =
( i− 1

2

)[
V++++++(z) + V++−−−−(z)− iV+−+−+−(z)− iV+−−+−+(z)

+ iV++++−−(z) + iV++−−++(z) + V+−+−−+(z) + V+−−++−(z)
]

=
( i− 1

2

)[
Vξ(z) + V−ξ+β1+β2

(z)− iV−ξ+β1+β3+β5
(z)− iVξ−β2−β3−β5

(z)

+ iV−ξ+β1+β2+β3+β4
(z) + iVξ−β3−β4

(z) + Vξ−β2−β4−β5
(z) + V−ξ+β1+β4+β5

(z)
]

=
( i− 1

2

)[
iV̂ξ(z)− iV̂−ξ+β1+β2

(z) + iV̂−ξ+β1+β3+β5
(z)− iV̂ξ−β2−β3−β5

(z)

+ V̂−ξ+β1+β2+β3+β4
(z)− V̂ξ−β3−β4

(z) + V̂ξ−β2−β4−β5
(z)− V̂−ξ+β1+β4+β5

(z)
]

=
( i− 1

2

)[
iV̂γ̂1+γ̂3+γ̂5(z)− iV̂γ̂2−γ̂3+γ̂6(z) + iV̂γ̂2+γ̂4−γ̂6(z)− iV̂γ̂1−γ̂4−γ̂5(z)

+ V̂γ̂2+γ̂3+γ̂6(z)− V̂γ̂1−γ̂3+γ̂5(z) + V̂γ̂1+γ̂4−γ̂5(z)− V̂γ̂2−γ̂4−γ̂6(z)
]

=
( i− 1

2

)[
iχ̂∗

1χ̂
∗
3χ̂

∗
5(z)− iχ̂∗

2χ̂3χ̂
∗
6(z) + iχ̂∗

2χ̂
∗
4χ̂6(z)− iχ̂∗

1χ̂4χ̂5(z)

+ χ̂∗
2χ̂

∗
3χ̂

∗
6(z)− χ̂∗

1χ̂3χ̂
∗
5(z) + χ̂∗

1χ̂
∗
4χ̂5(z)− χ̂∗

2χ̂4χ̂6(z)
]

=
( i− 1

2

)
χ̂∗
1(z)

[
iχ̂∗

3χ̂
∗
5(z)− iχ̂4χ̂5(z)− χ̂3χ̂

∗
5(z) + χ̂∗

4χ̂5(z)
]

+
( i− 1

2

)
χ̂∗
2(z)

[
−iχ̂3χ̂

∗
6(z) + iχ̂∗

4χ̂6(z) + χ̂∗
3χ̂

∗
6(z)− χ̂4χ̂6(z)

]
,

with similar expressions for the other supercharges.

F Theta function identities

F.1 Definitions and useful identities

In this appendix we fix our conventions for the various modular functions that we shall

use. We shall always use the parametrisation q := e2πiτ and y := e2πiz. The Dedekind eta

function is defined as

η(τ) := q1/24
∞∏

n=1

(1− qn) , (F.1)
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while the Jacobi theta functions have product formula presentations of the form

ϑ1(τ, z) := i
∞∑

n=−∞
(−1)nq

1

2
(n− 1

2
)2yn−

1

2 =iq
1

8y−
1

2

∞∏

n=1

(1− qn)(1− qn−1y)(1− qny−1),

ϑ2(τ, z) :=
∞∑

n=−∞
q

1

2
(n− 1

2
)2yn−

1

2 =q
1

8 y−
1

2

∞∏

n=1

(1− qn)(1 + qn−1y)(1 + qny−1),

ϑ3(τ, z) :=

∞∑

n=−∞
q

n2

2 yn =

∞∏

n=1

(1− qn)(1 + qn−
1

2y)(1 + qn−
1

2y−1), (F.2)

ϑ4(τ, z) :=

∞∑

n=−∞
(−1)nq

n2

2 yn =

∞∏

n=1

(1− qn)(1− qn−
1

2 y)(1− qn−
1

2 y−1).

We always use the shorthand ϑk(τ) := ϑk(τ, 0), k = 1, . . . , 4.

F.2 Partition function of the 〈g〉-orbifold of our K3 model

Using the ŝu(2)1 characters (D.9), (D.10), one confirms that our K3-model has partition

function

Ze,e(τ, z) =

( |ϑ3(2τ, 2z)|2 + |ϑ2(2τ, 2z)|2
|η(τ)|2

)
·
( |ϑ3(2τ)|2 + |ϑ2(2τ)|2

|η(τ)|2
)5

=
1

2

(
4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
4
)2

· 1
2

4∑

k=1

∣∣∣∣
ϑk(τ, z)

η(τ)

∣∣∣∣
4

, (F.3)

in agreement with (C.5).

Let g denote the special symmetry (6.1) of our K3 model. Since Q = g2 is the quantum
symmetry which reverses the usual Z2-orbifold of the D4-torus model, orbifolding our K3
model by g2 yields the partition function of the D4-torus model obtained from (A.13) and
(A.14):

1

2

(
Ze,e(τ, z) + Ze,g2(τ, z) + Zg2,e(τ, z) + Zg2,g2(τ, z)

)
=

1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

· 1
2

4∑

k=1

∣∣∣∣
ϑk(τ, z)

η(τ)

∣∣∣∣
4

. (F.4)

Using the action of g on the ŝu(2)1 characters as in (6.2), we have worked out the remaining
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twisted twining characters of the K3 sigma model. Explicitly we find

Ze,g(τ, z) = Ze,g3(τ, z)

=

( |ϑ3(2τ, 2z)|2 + |ϑ2(2τ, 2z)|2
|η(τ)|2

)
·
( |ϑ3(2τ)|2 − |ϑ2(2τ)|2

|η(τ)|2
)
·
(
ϑ4(2τ)

2ϑ3(2τ)

|η(τ)|2

)4

=
1

8

ϑ3(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ3(τ)

4

+ ϑ4(τ)
4

+ 2ϑ3(τ)
2

ϑ4(τ)
2
)

(F.5)

·

(
−ϑ1(τ, z)

2 ϑ2(τ, z)
2 − ϑ2(τ, z)

2 ϑ1(τ, z)
2

+ ϑ3(τ, z)
2 ϑ4(τ, z)

2

+ ϑ4(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 ,

Zg,e(τ, z) = Zg3,e(τ, z)

=
1

8

ϑ3(τ)
2 ϑ2(τ)

2

|η(τ)|4
(
ϑ3(τ)

4

+ ϑ2(τ)
4

+ 2ϑ3(τ)
2

ϑ2(τ)
2
)
· (F.6)

·

(
ϑ1(τ, z)

2 ϑ4(τ, z)
2

+ ϑ4(τ, z)
2 ϑ1(τ, z)

2

+ ϑ3(τ, z)
2 ϑ2(τ, z)

2

+ ϑ2(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 ,

Zg,g(τ, z) = Zg3,g3(τ, z)

=
1

8

ϑ2(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ4(τ)

4 − ϑ2(τ)
4 − 2iϑ2(τ)

2

ϑ4(τ)
2
)
· (F.7)

·

(
−ϑ1(τ, z)

2 ϑ3(τ, z)
2

+ ϑ3(τ, z)
2 ϑ1(τ, z)

2

+ ϑ4(τ, z)
2 ϑ2(τ, z)

2 − ϑ2(τ, z)
2 ϑ4(τ, z)

2
)

|η(τ)|4 ,

Zg,g2(τ, z) = Zg3,g2(τ, z)

=
1

8

ϑ2(τ)
2 ϑ3(τ)

2

|η(τ)|4
(
ϑ3(τ)

4

+ ϑ2(τ)
4 − 2ϑ3(τ)

2

ϑ2(τ)
2
)
· (F.8)

·

(
ϑ1(τ, z)

2 ϑ4(τ, z)
2

+ ϑ4(τ, z)
2 ϑ1(τ, z)

2

+ ϑ3(τ, z)
2 ϑ2(τ, z)

2

+ ϑ2(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 ,

Zg,g3(τ, z) = Zg3,g(τ, z)

=
1

8

ϑ2(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ4(τ)

4 − ϑ2(τ)
4

+ 2iϑ2(τ)
2

ϑ4(τ)
2
)
· (F.9)

·

(
−ϑ1(τ, z)

2 ϑ3(τ, z)
2

+ ϑ3(τ, z)
2 ϑ1(τ, z)

2

+ ϑ4(τ, z)
2 ϑ2(τ, z)

2 − ϑ2(τ, z)
2 ϑ4(τ, z)

2
)

|η(τ)|4 ,

Zg2,g(τ, z) = Zg2,g3(τ, z)

=
1

8

ϑ3(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ3(τ)

4

+ ϑ4(τ)
4 − 2ϑ3(τ)

2

ϑ4(τ)
2
)
· (F.10)

·

(
−ϑ1(τ, z)

2 ϑ2(τ, z)
2 − ϑ2(τ, z)

2 ϑ1(τ, z)
2

+ ϑ3(τ, z)
2 ϑ4(τ, z)

2

+ ϑ4(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 .

The g-orbifold of our K3-model can be obtained in two steps. First, one performs

the Z2-orbifold by Q = g2 to recover the original D4-torus model with partition function

(F.4). Then, one performs another Z2-orbifold of the D4-torus model, where the Z2-action

is given by the symmetry g induced by g. The three non-trivial sectors of this Z2-orbifold

thus are
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g

1

=
1

2

(
Ze,g(τ, z) + Ze,g3(τ, z) + Zg2,g(τ, z) + Zg2,g3(τ, z)

)

=
1

4

ϑ3(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ3(τ)

4

+ ϑ4(τ)
4
)
· (F.11)

·

(
−ϑ1(τ, z)

2 ϑ2(τ, z)
2 − ϑ2(τ, z)

2 ϑ1(τ, z)
2

+ ϑ3(τ, z)
2 ϑ4(τ, z)

2

+ ϑ4(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 ,

1

g

=
1

2

(
Zg,e(τ, z) + Zg3,e(τ, z) + Zg,g2(τ, z) + Zg3,g2(τ, z)

)

=
1

4

ϑ2(τ)
2 ϑ3(τ)

2

|η(τ)|4
(
ϑ2(τ)

4

+ ϑ3(τ)
4
)
· (F.12)

·

(
ϑ1(τ, z)

2 ϑ4(τ, z)
2

+ ϑ4(τ, z)
2 ϑ1(τ, z)

2

+ ϑ3(τ, z)
2 ϑ2(τ, z)

2

+ ϑ2(τ, z)
2 ϑ3(τ, z)

2
)

|η(τ)|4 ,

g

g

=
1

2

(
Zg,g(τ, z) + Zg3,g3(τ, z) + Zg,g3(τ, z) + Zg3,g(τ, z)

)

=
1

4

ϑ2(τ)
2 ϑ4(τ)

2

|η(τ)|4
(
ϑ4(τ)

4 − ϑ2(τ)
4
)
· (F.13)

·

(
−ϑ1(τ, z)

2 ϑ3(τ, z)
2

+ ϑ3(τ, z)
2 ϑ1(τ, z)

2

+ ϑ4(τ, z)
2 ϑ2(τ, z)

2 − ϑ2(τ, z)
2 ϑ4(τ, z)

2
)

|η(τ)|4 .

We find that the full partition function then is

1

4

∑

a,b∈{e,g,g2,g3}

Za,b(τ, z)

= ϑ1(τ, z)
2

[
|ϑ2(τ)|2

(
ϑ4(τ, z)

2 ϑ3(τ)
2 − ϑ3(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6

+
|ϑ3(τ)|2

(
ϑ4(τ, z)

2 ϑ2(τ)
2 − ϑ2(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6 +
|ϑ4(τ)|2

(
ϑ3(τ, z)

2 ϑ2(τ)
2 − ϑ2(τ, z)

2 ϑ3(τ)
2
)

4|η(τ)|6

]

+ϑ2(τ, z)
2

[
|ϑ2(τ)|2

(
ϑ3(τ, z)

2 ϑ3(τ)
2 − ϑ4(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6

+
|ϑ3(τ)|2

(
ϑ3(τ, z)

2 ϑ2(τ)
2 − ϑ1(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6 +
|ϑ4(τ)|2

(
ϑ4(τ, z)

2 ϑ2(τ)
2 − ϑ1(τ, z)

2 ϑ3(τ)
2
)

4|η(τ)|6

]

+ϑ3(τ, z)
2

[
|ϑ2(τ)|2

(
ϑ2(τ, z)

2 ϑ3(τ)
2 + ϑ1(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6

+
|ϑ3(τ)|2

(
ϑ4(τ, z)

2 ϑ4(τ)
2 + ϑ2(τ, z)

2 ϑ2(τ)
2
)

4|η(τ)|6 +
|ϑ4(τ)|2

(
ϑ4(τ, z)

2 ϑ3(τ)
2 − ϑ1(τ, z)

2 ϑ2(τ)
2
)

4|η(τ)|6

]

+ϑ4(τ, z)
2

[
|ϑ2(τ)|2

(
ϑ1(τ, z)

2 ϑ3(τ)
2 + ϑ2(τ, z)

2 ϑ4(τ)
2
)

4|η(τ)|6

+
|ϑ3(τ)|2

(
ϑ3(τ, z)

2 ϑ4(τ)
2 + ϑ1(τ, z)

2 ϑ2(τ)
2
)

4|η(τ)|6 +
|ϑ4(τ)|2

(
ϑ3(τ, z)

2 ϑ3(τ)
2 − ϑ2(τ, z)

2 ϑ2(τ)
2
)

4|η(τ)|6

]

=
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

· 1
2

4∑

k=1

∣∣∣∣
ϑk(τ, z)

η(τ)

∣∣∣∣
4

, (F.14)
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which again agrees with the partition function (F.4) of the D4-torus model.
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