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We examine the processes of quantum squeezing and decoherence of density per-

turbations produced during a slowly contracting ekpyrotic phase in which entropic

perturbations are converted to curvature perturbations before the bounce to an ex-

panding phase. During the generation phase, the entropic fluctuations evolve into

a highly squeezed quantum state, analogous to the evolution of inflationary per-

turbations. Subsequently, during the conversion phase, quantum coherence is lost

very efficiently due to the interactions of entropy and adiabatic modes. Moreover,

while decoherence occurs, the adiabatic curvature perturbations inherit their semi-

classicality from the entropic perturbations. Our results confirm that, just as for

inflation, an ekpyrotic phase can generate nearly scale-invariant curvature perturba-

tions which may be treated as a statistical ensemble of classical density perturbations,

in agreement with observations of the cosmic background radiation.
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I. INTRODUCTION

Cosmological observations, most recently by the Planck satellite [1], indicate conclusively

that at early times our universe was exceptionally flat on average, but, crucially, also con-

tained a near-Gaussian distribution of small and nearly scale-invariant density perturbations.

These small (classical) perturbations are thought to provide the seeds for the formation of

the whole cosmic web of galaxies via subsequent gravitational collapse [2]. An open question

is still what the origin of these fluctuations was.

The most popular explanation is the theory of inflation [3–5], which proposes that the

primordial density perturbations arose from the amplification of quantum fluctuations of a

scalar field during a phase of accelerated expansion of the universe. The transition from

quantum fluctuations to a statistical distribution of classical density perturbations has been

studied in detail in this context (see for example [6–12]), and it was found that there are

two effects that support the classical interpretation of the resulting fluctuations: the first

is that the (approximately Gaussian) quantum state evolves into a highly squeezed state,

which means that in the field amplitude/momentum plane there is one direction along which

the quantum mechanical uncertainty is very small, and a perpendicular direction in which

it is very high. Such a state is far from classical, but can in fact be reinterpreted as a

statistical distribution of classical states if in addition the density matrix describing these

quantum fluctuations is approximately diagonal. The density matrix must be approximately

diagonal in the field amplitude basis in order that one be able to assign definite probabilities

to different field amplitudes. Otherwise, off-diagonal elements in the density matrix would

imply the existence of coherent superpositions of states with different field amplitudes, in

which case no equivalent classical description would apply. The suppression of the off-

diagonal elements of the density matrix is called “decoherence”, and is typically found

to occur when one considers the coupling of the fluctuations to an environment (usually

provided by additional fields). Thus, given such a coupling to an environment, inflation

can successfully describe the origin of all structure in the universe out of initial quantum

fluctuations.

However, even though inflation has many compelling features, it also has important open

problems – for a comprehensive recent discussion see [13]. For this reason it is certainly of in-

terest to explore the properties of alternative cosmological models. A particularly attractive
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alternative to inflation is provided by cyclic models of the universe, containing an ekpyrotic

phase [14–16]. This is a phase of slow contraction of the universe, which also renders the

universe spatially flat while producing nearly scale-invariant density perturbations (again

via amplification of quantum fluctuations). In order to provide a truly viable alternative to

inflation, it is necessary that the perturbations produced in ekpyrotic/cyclic models can be

reinterpreted as a statistical distribution of classical perturbations. In this paper, we show

that, for the currently best-understood ekpyrotic models, this is indeed so.

These models, which are in good agreement with the observations of the Planck satel-

lite [17], employ the entropic mechanism for producing density perturbations [18–20]. In

these models one considers gravity minimally coupled to two scalar fields with potentials.

The perturbations are created via a two-step process. First, during the slowly contracting

ekpyrotic phase, nearly scale-invariant entropy perturbations are generated. These entropy

perturbations evolve into a highly squeezed quantum state during this generation phase.

Subsequently, in the approach to the bounce, the ekpyrotic potential becomes unimportant,

and the universe enters a phase in which the energy density is mostly comprised of the

kinetic energy of the scalar fields. During this phase, the field space trajectory describing

the dynamics undergoes a bend (see Fig. 1). As a result, the entropy perturbations are con-

verted into adiabatic curvature perturbations which inherit both their squeezed state and

their spectrum. What we find in addition is that during this second phase the interactions of

entropic and adiabatic modes are already sufficient to cause the density matrix to decohere

efficiently, without the need to couple these perturbations to an additional environment. The

end result is that the produced curvature perturbations can indeed be faithfully described

as a statistical mixture of classical perturbations. Thus, an ekpyrotic phase can equally well

provide the seeds for the large-scale structure in our universe, and should be regarded on

the same footing as inflationary models in this respect.

The plan of our paper is as follows: in section II, we will discuss the generation of

adiabatic and entropic fluctuations during an ekpyrotic phase, including a detailed study

of the issues of amplification and squeezing. In section III, we will then analyze how the

entropy modes become a source for the adiabatic modes, as a result of which the latter ones

inherit the classicality properties of the former ones. We also quantify the decoherence of the

reduced density matrix that occurs simultaneously. After our discussion section, we include

a technical appendix where we present the general formalism for treating two-scalar-field
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FIG. 1: In the models that we study, the evolution starts out with an ekpyrotic contracting

phase to the right of the figure. During this phase, nearly scale-invariant entropy perturbations,

which are perturbations transverse to the background trajectory, are amplified and evolve into a

highly squeezed quantum state. Such a squeezed quantum state is approximately classical in the

sense that it can equivalently be described as a statistical mixture of classical perturbations. After

the ekpyrotic phase, the trajectory in scalar field space enters the kinetic phase and bends - this

bending causes the conversion of entropy into curvature perturbations, with the latter inheriting

both their spectrum and their near-classicality from the entropy perturbations. Moreover, the

interactions of entropy and curvature modes during the bending phase cause decoherence to occur,

such that the resulting curvature perturbations can be assigned definite classical probabilities for

their amplitude. In this way, the ekpyrotic phase produces an ensemble of nearly scale-invariant

classical density perturbations in the approach to the bounce.

models quantum mechanically, and we highlight potential ambiguities that can arise when

performing integrations by parts on the Lagrangian of the system under consideration. A

second appendix lists a number of useful formulae involving Bessel functions.
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II. GENERATION OF COSMOLOGICAL PERTURBATIONS AND

SQUEEZING

The model that we discuss involves gravity minimally coupled to two scalar fields, with

action

S =

∫ √
−g
[
R

2
− 1

2
(∂φ1)2 − 1

2
(∂φ2)2 − V (φ1, φ2)

]
. (II.1)

We are assuming that during the ekpyrotic phase, both fields have (steep and negative)

ekpyrotic-type potentials, i.e.

V (φ1, φ2) = −V1e
−c1φ1 − V2e

−c2φ2 . (II.2)

Then the analysis is greatly simplified by rotating to the new fields σ and s pointing trans-

verse and perpendicular to the field velocity respectively [21, 22]. It is convenient to first

introduce the angle θ in field space, defined by [23]

cos θ ≡ φ̇1√
φ̇2

1 + φ̇2
2

, sin θ ≡ φ̇2√
φ̇2

1 + φ̇2
2

. (II.3)

Then, if we write the fields together as φJ = (φ1, φ2) the adiabatic and entropy directions

are defined respectively by the vectors

eJσ = (cos θ, sin θ) , eJs = (− sin θ, cos θ) . (II.4)

In terms of these new variables, the potential can be re-expressed as

V = −V0 e
√

2εσ
[
1 + κ2εs

2 + · · ·
]
, (II.5)

with 1/ε = 2/c2
1 + 2/c2

2 and V0 a constant. For exact exponentials of the form (II.2), one

has κ2 = 1, which indicates that if we slightly extend the class of potentials we consider

we may take κ2 to be close to 1 (as we will see below, in such a case the spectral index

of the entropy perturbations will be close to scale-invariant [17, 24]). The ellipsis denotes

higher-order terms in s in the potential, which determine the non-gaussian corrections to

the primordial perturbations – these are discussed in detail in [25–27], for a review see [28].

The ekpyrotic scaling solution is given by

a(t) = (−t)1/ε σ = −
√

2

ε
ln

(
−
√

ε2V0

ε− 3
t

)
s = 0, (II.6)
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where time runs from large negative to small negative values, and with the angle θ being

constant. The solution corresponds to motion along a ridge in the potential and thus the

two-field ekpyrotic background evolution is unstable [20, 29]. This instability has significant

consequences: it determines the global structure of a cyclic universe employing the entropic

mechanism (this is discussed in detail in [30, 31] – see also the essay [32]), and it is also

responsible for amplifying the quantum perturbations in the entropic direction.

In order to discuss the quantum fluctuations, we must expand the action to second order

in fluctuations. The gauge-invariant fluctuations that we are interested in are the comoving

curvature perturbationR and the entropy perturbation δs. In comoving gauge, the curvature

perturbation is defined as a space-time dependent fluctuation in the scale factor

ds2 = −dt2 + a(t)2e−2R(t,x)dx2, (II.7)

while the entropy perturbation is defined (in any gauge) as

δs = eJs δφJ = cos θ δφ2 − sin θ δφ1. (II.8)

In fact, the re-scaled versions

vσ = zR, vs = aδs, with z =
aσ̇

H
, (II.9)

turn out to be the canonically normalized variables. We will also switch to conformal time

τ (with dt = a dτ), and denote derivatives w.r.t. conformal time with primes. Moreover, we

find it most convenient to work in momentum space from the start, but since modes with

different wavenumbers k are decoupled, we will for the most part suppress such labels. Then,

as shown in [33], the Lagrangian for the real/imaginary parts of the Fourier components of

the curvature and entropy perturbations reads

L =
1

2
v′2σ +

1

2
v′2s −

z′

z
v′σvσ −

a′

a
v′svs − 2θ′v′σvs −

1

2
m2
σv

2
σ + 2θ′

z′

z
vσvs −

1

2
m2
sv

2
s ,(II.10)

m2
σ = k2 − z′2

z2
, (II.11)

m2
s = k2 − a′2

a2
+ a2Vss − θ′2 , (II.12)

where

z ≡ a
σ′

H
, H ≡ a′

a
, σ′ ≡

(
φ′21 + φ′22

)1/2
, (II.13)
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Vss ≡
(
V,φ1φ1φ

′2
2 − 2V,φ1φ2φ

′
1φ
′
2 + V,φ2φ2φ

′2
1

)
/σ′2 . (II.14)

Varying the Lagrangian leads to the linearized equations of motion

v′′σ + µ2
σvσ −

2

z
(zθ′vs)

′ = 0 , (II.15)

v′′s + µ2
svs + 2zθ′

(vσ
z

)′
= 0 , (II.16)

where

µ2
σ = k2 − z′′

z
, µ2

s = k2 − a′′

a
+ a2Vss − θ′2. (II.17)

The canonical momenta are

πσ = v′σ −
z′

z
vσ − 2θ′vs, πs = v′s −

a′

a
vs, (II.18)

and consequently the Hamiltonian is given by

H =
1

2

(
πσ +

z′

z
vσ + 2θ′vs

)2

+
1

2

(
πs +

a′

a
vs

)2

(II.19)

+
1

2
m2
σv

2
σ +

1

2
m2
sv

2
s − 2θ′

z′

z
vσvs .

We can quantize the perturbations as usual by promoting the fields to operators. In our

case, the general solution of the resulting Heisenberg equations can be written in terms of

two sets of creation/annihilation operators:

v̂σ = fσâ+ f ∗σ â
† + gσ b̂+ g∗σ b̂

† , (II.20)

v̂s = fsâ+ f ∗s â
† + gsb̂+ g∗s b̂

† , (II.21)

where fσ,s and gσ,s are time-dependent, complex, linearly independent solutions of the equa-

tions of motion. Analogous expressions for the momentum operators follow from Eq. (II.18).

The following quantities (Wronskians) are constants of motion,

fσ(f ∗′σ −
z′

z
f ∗σ − 2θ′f ∗s ) + fs(f

∗′
s −

a′

a
f ∗s )− c.c. = i, (II.22)

gσ(g∗′σ −
z′

z
g∗σ − 2θ′g∗s) + gs(g

∗′
s −

a′

a
g∗s)− c.c. = i, (II.23)

fσ(g′σ −
z′

z
gσ − 2θ′gs) + fs(g

′
s −

a′

a
gs)− (f ↔ g) = 0, (II.24)

fσ(g∗′σ −
z′

z
g∗σ − 2θ′g∗s) + fs(g

∗′
s −

a′

a
g∗s)− (f ↔ g) = 0, (II.25)
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where we have fixed the right hand sides in such a way as to ensure the canonical normaliza-

tion of the mode functions. Using these Wronskian relations, it is then possible to re-express

the annihilation operators â, b̂ in terms of the mode functions and their canonical momenta:

i â = (f ∗′σ −
z′

z
f ∗σ − 2θ′f ∗s )v̂σ − f ∗σ π̂σ + (f ∗′s −

a′

a
f ∗s )v̂s − f ∗s π̂s , (II.26)

i b̂ = (g∗′σ −
z′

z
g∗σ − 2θ′g∗s)v̂σ − g∗σπ̂σ + (g∗′s −

a′

a
g∗s)v̂s − g∗s π̂s . (II.27)

We define the vacuum state as usual by requiring that it vanishes when acted upon by the

annihilation operators

â |0〉 = b̂ |0〉 = 0 . (II.28)

Using the expressions above and the canonical replacements πσ,s → −i ∂
∂vσ,s

we can then

obtain an expression for the corresponding (Schrödinger picture) wavefunction Ψ :

Ψ(vσ, vs) = N exp

(
−1

2
Aσσv

2
σ − Aσsvσvs −

1

2
Assv

2
s

)
, (II.29)

where N is a normalization factor and where the correlators are given by

Aσσ = −ig
∗
sf
∗′
σ − f ∗s g∗′σ

g∗sf
∗
σ − f ∗s g∗σ

+ i
z′

z
, (II.30)

Ass = −if
∗
σg
∗′
s − g∗σf ∗′s

f ∗σg
∗
s − g∗σf ∗s

+ i
a′

a
, (II.31)

Aσs = −if
∗
σg
∗′
σ − g∗σf ∗′σ

f ∗σg
∗
s − g∗σf ∗s

+ 2iθ′ = −ig
∗
sf
∗′
s − f ∗s g∗′s

g∗sf
∗
σ − f ∗s g∗σ

. (II.32)

The correlators satisfy their own equations of motion, which can be derived either via the

equations of motion of the mode functions, or via the time-dependent Schrödinger equation

iΨ′ = ĤΨ. Both methods lead to

iA′σσ = (Aσσ − i
z′

z
)2 + A2

σs −m2
σ , (II.33)

iA′ss = (Ass − i
a′

a
)2 + (Aσs − 2iθ′)2 −m2

s , (II.34)

iA′σs = Aσs(Aσσ + Ass)− i(
z′

z
+
a′

a
)Aσs − 2iθ′Aσσ . (II.35)

Having set up the necessary formalism, we can now apply it to the ekpyrotic phase, during

which the following relations hold:

σ = −
√

2

ε
ln

(
−
√

ε2V0

ε− 3
t

)
, s = 0 , (II.36)
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a = a0(−t)1/ε = ā0(−τ)1/(ε−1) , (II.37)

a′′

a
=

z′′

z
= − ε− 2

(ε− 1)2

1

τ 2
, (II.38)

a′′

a
− a2V,ss ≈ (2κ2 −

2κ2

ε
− 1

ε
)

1

τ 2
. (II.39)

Hence the mode equations (II.15) and (II.16) read

v′′ +

(
k2 +

1
4
− α2

η2

)
v = 0 , (II.40)

with

α2
σ =

(ε− 3)2

4(ε− 1)2
, α2

s ≈
1

4
+ 2κ2 −

2κ2

ε
− 1

ε
. (II.41)

Note that during the ekpyrotic phase θ′ = 0 and thus there is no coupling between adiabatic

and entropic modes. Consequently, the two modes can be treated independently. The

solutions respecting the Wronskian conditions may be written in terms of Bessel functions,

v =

√
π

4k

√
−kτ

(
Jα(−kτ) + i Yα(−kτ)

)
. (II.42)

When ε is large and |κ2 − 1| � 1 one has

ασ ≈
1

2
− 1

ε
, (II.43)

αs ≈
3

2
+

2

3
(κ2 − 1)− 1

ε
, (II.44)

where these solutions apply to the two non-zero mode functions fσ and gs, while fs and

gσ are zero during the ekpyrotic phase. Using the asymptotic behaviors of Bessel functions

provided in Appendix B we obtain

fσ '
Γ(α)2α√

4πk

(
π

22αΓ(α)Γ(α + 1)
(−kτ)1−1/ε − i (−kτ)1/ε

)
, (II.45)

gs '
Γ(α)2α√

4πk

(
π

22αΓ(α)Γ(α + 1)
(−kτ)2+2(κ2−1)/3−1/ε − i

(−kτ)1+2(κ2−1)/3−1/ε

)
.(II.46)

We are now in a position to evaluate the correlators during the ekpyrotic phase. Again using

the formulae of Appendix B as well as the relation (1 − 2ασ)(ε − 1) = 2, we find that the

correlators are given by

Aσσ ≈
k2ασ

22ασ−1Γ(ασ)
|τ |2ασ−1

(
π

Γ(ασ)
− iασΓ(−ασ) cos(πασ)

)
, (II.47)

Aσs = 0 (II.48)
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Ass ≈
πk2αs

22αs−1Γ(αs)2
|τ |2αs−1 − i

(
αs − 1

2
+ 1

ε

)
|τ |

, (II.49)

where ασ and αs were listed above in Eqs. (II.43)-(II.44), and where we have kept only

the leading real and imaginary parts. One can immediately see that the adiabatic and

entropic correlators behave very differently: let us first look at the adiabatic modes, which

are characterized by a blue spectrum ns = 4 − 2ασ ≈ 3. The criterion for describing a

quantum state as being semi-classical (in a WKB sense) is that the phase of the wavefunction

must vary much faster than its amplitude. From (II.29) we can see that this corresponds

to the criterion that the imaginary part of the correlator must be much larger than the real

part. However, in the present case, the real and imaginary parts of Aσσ have the same time

dependence, and thus their relative magnitude remains fixed over time. Moreover, as the

explicit expression (II.47) shows, their magnitudes are of the same order

Re(Aσσ) ≈ Im(Aσσ) (II.50)

at all times, and hence these blue modes cannot be given a classical interpretation. This

calculation reproduces the results of [34]. We note that the correlator becomes large as

τ → 0−, which implies that the dispersion of the vσ modes becomes small as the ekpyrotic

phase progresses. Thus there occurs no significant production of these modes.

By contrast, the real part of the entropic correlator Ass becomes small as τ → 0−. Hence

in this case the dispersion of the entropic perturbations becomes large – in other words, such

modes are amplified as the ekpyrotic phase proceeds. Moreover, the imaginary part of the

correlator becomes large in magnitude, so that the phase of the wavefunction evolves much

faster than its amplitude 1. Over time such modes behave increasingly classically in a WKB

sense, with
|Im(Ass)|
|Re(Ass)|

≈ 1

|kτ |2αs
� 1 as |kτ | � 1. (II.51)

This formula shows that the perturbation modes evolve into a highly squeezed Gaussian

state as they leave the horizon, in complete analogy with inflationary perturbations. The

entropic modes of interest to us belong to this category (with αs ≈ 3
2
). Their spectral index

is given by

ns = 4− 2αs ≈ 1− 4

3
(κ2 − 1) +

2

ε
, (II.52)

1 It is interesting to note that the leading imaginary term of the correlator Ass does not appear in Aσσ,

where it cancels out exactly due to Eq. (II.41).
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and thus their spectrum is nearly scale-invariant spectrum when ε� 1 and |κ2−1| � 1. All

of these features, with one important exception, make these modes suitable candidates for

producing the seeds of the large-scale structure in the universe. The exception is of course

that these modes correspond to local perturbations in the entropy, whereas observations

indicate that the temperature fluctuations in the cosmic background radiation are primarily

due to adiabatic curvature fluctuations. As we will see in the next section, it is precisely

the process that converts such entropic into adiabatic fluctuations that is also responsible

for decohering them, thus confirming their classical appearance.

III. CONVERSION OF ENTROPIC INTO ADIABATIC PERTURBATIONS

AND DECOHERENCE

In the previous section, we have shown that the ekpyrotic phase produces two sets of

fluctuations: adiabatic perturbations with a blue spectrum, a small amplitude and no clas-

sical interpretation, alongside nearly scale-invariant entropic modes in a highly squeezed

semi-classical state. In the entropic mechanism, after the ekpyrotic phase has come to an

end the entropy modes get converted into adiabatic curvature perturbations. This conver-

sion occurs when the trajectory in field space undergoes a bend, as shown in Fig. 1. (As

described in [35], such a bending of the trajectory occurs automatically in the embedding

of ekpyrotic models into heterotic M-theory.) In the following, we would like to examine to

what extent the semi-classical properties of the entropic modes get inherited by the adia-

batic modes during this process. In the model that we are studying, after the conversion

process the universe briefly remains in a phase dominated by the kinetic energy of the scalar

fields before it undergoes a bounce into an expanding hot big bang phase (without inflation

occurring). The idea is that the bounce is not completely elastic, and that a small fraction

of the energy density gets converted into radiation and matter degrees of freedom during

the bounce phase [15]. (Models describing either classically singular or non-singular bounces

form an active research topic, see e.g. [36–42].) The curvature perturbation corresponds

to a local fluctuation in the scale factor of the universe, and thus it has the effect that the

bounce will occur at slightly different times in different regions of the universe. In this way,

any radiation and matter that get produced during the bounce inherit their perturbations

directly from the curvature perturbation.
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A. The reduced density matrix and decoherence

We are assuming here that the entropy field decays sometime after the ekpyrotic phase

has come to an end, e.g. during reheating at the bounce. Then the only observable imprint

from the ekpyrotic phase on the cosmic background radiation is represented by the adiabatic

curvature perturbations - concerning this point see also the analogous discussion in the

context of two-field inflation in [10]. This means that we should treat the entropic modes

as an inaccessible environment for the curvature modes, and hence, in order to characterize

the generated curvature perturbations, we must study the reduced density matrix that

one obtains by tracing over the entropic degrees of freedom. As we will see, this reduced

density matrix allows us to quantify the effective classicality of the curvature perturbations.

Explicitly, it is given by

ρ(vσ, v̄σ) = 〈vσ|Trvs ρ̂|v̄σ〉 (III.1)

=

∫
dvsΨ(vσ, vs)Ψ

∗(v̄σ, vs) (III.2)

= Ñ exp

(
−1

2
CSSv

2
S −

1

2
CDDv

2
D − i CSDvSvD

)
, (III.3)

where Ñ is a normalization factor and ρ̂ denotes the full density matrix. For simplicity, we

will adhere to common practice and call the left-hand side ρ the reduced density matrix,

although it actually only corresponds to one particular element thereof. Here we have defined

vS ≡
1

2
(vσ + v̄σ) , (III.4)

vD ≡ vσ − v̄σ , (III.5)

while the correlators are given by [10]2

CSS = 2ARσσ

(
1− (ARσs)

2

ARssA
R
σσ

)
, (III.6)

CSD = AIσσ

(
1− AIσsA

R
σs

ARssA
I
σσ

)
, (III.7)

CDD =
1

2
ARσσ

(
1 +

(AIσs)
2

ARssA
R
σσ

)
. (III.8)

2 In [10] an additional erroneous factor of 2 is present inside the brackets in the expression of CSD. Our

preliminary analysis shows that the use of the correct expression (III.7) does not significantly change the

conclusions of that work, while it plays a crucial role in the results of the present paper.
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Note the extra factor of i that we have pulled out of the coefficient of the mixed vSvD term,

such that CSD is real.

The situation that we are aiming for is one where the density matrix is approximately

diagonal in the field amplitude basis - in this case we say that the density matrix has deco-

hered. More explicitly, we would like the density matrix to yield a sizeable probability when

we choose the field amplitudes vσ and v̄σ to be equal, but a zero or very small probability

when they are unequal, vσ 6= v̄σ. In this case, the density matrix describes with high ac-

curacy a statistical mixture of states with definite field amplitudes, and thus the quantum

perturbations that we are studying can then equivalently be described as an ensemble of

classical density perturbations3. We can specify the amount of decoherence by evaluating

the so-called entanglement entropy

sk =
1

2
ln

(
4CDD
CSS

)
, (III.9)

which quantifies the extent to which the difference terms vD are suppressed relative to the

vS terms. The entanglement entropy sk does not obey a simple evolution equation, and one

must in fact evaluate the correlators CSS, CDD directly in terms of the original correlators

Aσσ, Aσs and Ass, and these in turn are most easily evaluated via their dependence on the

mode functions fσ,s, gσ,s. Although approximation techniques exist in order to solve for the

evolution of the mode functions during the conversion phase [43], we have found these to

be insufficiently accurate for our present purposes, and thus we have solved for the mode

functions numerically. In analogy to the numerical calculations performed in [27] in the

context of non-gaussian corrections to the perturbations that we are studying here, we

model the bending of the trajectory during the conversion phase by assuming a repulsive

potential

Vrep =
Ṽ

φ2
2

e−(10φ2)2 + V0, (III.10)

where Ṽ , V0 are small constants (we chose the explicit values Ṽ = 8 ·10−9, V0 = 10−12). Thus

the trajectory bends in the vicinity of the φ2 = 0 line. We have added the small constant

term V0 in order to improve the numerical stability of our computations. Compared to

3 If the density matrix is not diagonal in the field amplitude basis, then the fluctuation modes are in coherent

superpositions of states with different field amplitudes. Evidently, such a situation cannot be described

classically.
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[27], we have also added an exponential suppression term, which ensures that away from

the φ2 = 0 line the potential quickly reaches a constant value. This implies that at the

start of our computation, the angle of the trajectory in scalar field space is almost exactly

constant (with our initial conditions, the starting value of the rate of change of the angle

is θ′ ≈ 10−36). This allows us to see the onset of decoherence with high precision. We

have started our numerical evaluation right after the ekpyrotic phase has come to an end,

when the background dynamics becomes dominated by the kinetic energy of the scalar fields

(incidentally, even during the bending the energy density still remains dominated by the

kinetic energy of the scalars). As initial conditions for the mode functions fσ and gs we have

used the explicit analytic expressions (II.45) and (II.46). During the ekpyrotic phase, the

other two mode functions, fs and gσ, are zero. This is consistent as long as θ′ = 0, but since

θ′ assumes a (tiny) non-zero value already at the start of our computation, we have also set

f ′s(τ0) = −2θ′fσ(τ0), gσ(τ0) = 0 (III.11)

such that the Wronskians (II.22)-(II.25) remain exactly satisfied at the starting time τ0.

Fig. 2 then shows our results for the evolution of the entanglement entropy sk as a

function of scale-factor time N ∝ ln a. Since the universe is contracting, N is decreasing,

and hence in the figure time is running from right to left. The figure shows how, for

different values of the wavenumber k, we start with perfect quantum coherence on the right,

and then, as the conversion process takes place the environment provided by the entropy

modes effectively decoheres the reduced density matrix. As is evident from the figure, the

entanglement entropy reaches a constant value after the conversion process has ended. As

mentioned above, the entanglement entropy sk does not obey a simple evolution equation,

as its evolution is governed by

s′k = −2θ′
ARσσA

R
σs + AIσσA

I
σs

ARσσA
R
ss + (AIσs)

2
, (III.12)

but this explicit formula immediately confirms that sk is constant when θ′ = 0. From a

physical point of view, this is also easy to understand, as the adiabatic and entropy modes

become decoupled when θ′ = 0.

An interesting feature of the model we are studying is that the amount of decoherence

increases rapidly for longer (comoving) wavelengths 1/k. As illustrated in Fig. 2, right panel,



15

k = 10
-5

k = 10
-7

k = 10
-9

k = 10
-11

N

s k

1 1.5 2 2.5 3
0

5

10

15

s k, final

k

10-11 10-9 10-7 10-5 0.001

0

5

10

15

FIG. 2: These figures show the entanglement entropy sk as a function of time for various wavenum-

bers k. Time runs from the right to the left, and is given in units of scale-factor time N ∝ ln(a).

Left panel: the perfect quantum coherence at the end of the ekpyrotic phase is rapidly destroyed

during the conversion process, and reaches a constant value in the approach to the bounce. Right

panel: for small–wavelength modes, the final amount of decoherence sk,final can be seen to be

inversely proportional to k – the dashed line corresponds to the fitting formula ((III.13)).

the final values of sk are well fitted by the relation

sk,final ∼ − ln

(
k

k0

)
, k0 ∼ 10−4, (k . k0). (III.13)

The modes of cosmological interest, i.e. those that we can observe in the cosmic background

radiation, have wavenumbers on the order of k ∼ 10−25. We have not been able to reach

such small values numerically, but if we just extrapolate the fitting formula above, we can

estimate that for such modes the entanglement entropy is on the order of 50. Recalling that

sk is essentially half of the logarithm of the suppression factor in the reduced density matrix,

we see that decoherence is extremely effective for all modes of cosmological interest (thus,

for such modes, off-diagonal elements are suppressed by a factor 1042 relative to the diagonal

elements), and that in the present model one does not even have to consider a coupling to an

additional environment in order to obtain sufficient decoherence – the interactions between

adiabatic and entropic modes during the conversion phase are entirely sufficient!
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B. Amplification, squeezing and semi-classicality

As we have just seen, the reduced density matrix decoheres very effectively during the

conversion phase. Hence, at the end of that process, we are left with adiabatic curvature

perturbations that have a nearly scale-invariant spectrum and that behave like an ensemble

of classical perturbations with definite amplitudes. However, it would still be interesting to

know precisely to what extent the curvature perturbations have become classical: to what

extent has the squeezed state of the entropic perturbations been inherited by the curva-

ture perturbations? In other words, to what extent is the field momentum correlated with

the amplitude according to the classical relation? This question is relevant for cosmolog-

ical applications, as the acoustic peaks in the cosmic background radiation show that the

momentum of the perturbations must have been highly correlated with the field amplitudes.

We can address this question by looking at the Wigner function. As is well-known, due

to the uncertainty relations, it is impossible in quantum mechanics to talk about a precisely

defined phase space. However, for semi-classical states an effective phase space description

becomes available by making use of quasi-probability distributions, of which the Wigner

function is the best-known example - for a review see [44]. The Wigner function for vσ, πσ

can be obtained from the reduced density matrix via

W (v, π) =
1

2π

∫
dvD ρ(v − vD

2
, v +

vD
2

) eivDπ (III.14)

=
C

1/2
SS

2πC
1/2
DD

exp

(
−CSS

2
v2 − 1

2CDD
(π + CSDv)2

)
, (III.15)

where we have imposed that the total probability is normalised to one,
∫
dvdπW (v, π) = 1,

and where we are now dropping the σ subscripts when a possible confusion seems unlikely.

We may rewrite the Wigner function as

W ∝ exp

(
− v2

2(∆v)2
− 1

2(∆πcl)2
(π − πcl(v))2

)
. (III.16)

This form lets us identify the classical correlation between v and π that describes the quan-

tum state in the optimal way4

πcl(v) = −CSD v. (III.17)

4 By this we mean that the expectation value 〈(π̂ − λv̂)2〉 is minimized for λ = −CSD.
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FIG. 3: The figure shows the amplification of the curvature perturbations (∆v)2 = 1/CSS as a

function of time (left panel) and at the reference time N = 1 (right panel) for various wavenumbers

k. Noting the logarithmic scale on the vertical axis, it is evident that long-wavelength modes become

highly amplified during the conversion process. In particular, at fixed time one finds (∆v)2 ∝ k−3.

During the kinetic phase, this amplification is reduced somewhat, but will remain large if the

bounce occurs within not too large a number of e-folds after conversion.

The dispersions of v and π − πcl can be read off directly from the Wigner function:

∆v2 ≡ 〈v̂2〉 = C−1
SS , (III.18)

∆π2
cl ≡ 〈(π̂ + CSDv̂)2〉 = CDD . (III.19)

Given that 〈π̂〉 = 0, the total dispersion of momentum is given by

(∆π)2 ≡ 〈π̂2〉 =

∫
dvdπW (v, π)π2 = ∆π2

cl + C2
SD∆v2 = CDD +

C2
SD

CSS
. (III.20)

In passing, we note that the entanglement entropy is also directly related to the dispersions

in field amplitude and momentum via

1

2
esk =

√
CDD
CSS

= ∆v∆πcl ≥
1

2
. (III.21)

Expressed in this form, one can see that the exponential of the entanglement entropy is

given by the area of the Wigner ellipse in phase space (see also Figure 4).
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If the dispersion ∆v is large, this indicates that the curvature perturbations are amplified.

In Fig. 3 we show our numerical results for the amplification (we have plotted (∆v)2)

again as a function of the wavenumber k. As the figure shows, for small wavenumbers

the perturbations are highly amplified during the conversion process, while afterwards, in

the approach to the bounce, this amplification is reduced somewhat. If the bounce occurs

within a few e-folds after the end of the conversion process, as is natural in the entropic

mechanism, then a large amount of amplification remains. The right panel of Fig. 3 shows

the amplification (plotted here at the reference time N = 1) as a function of wavenumber.

The curve is well fitted by assuming a k-dependence

∆v ∝ k−3/2, (III.22)

which confirms that small-wavelength modes are highly amplified, and that they inherit

their spectrum from the entropy modes5.

Finally, as also discussed in [10], it is important to evaluate the degree of classicality of

the final adiabatic modes. The effective classicality is largely determined by the dispersion

∆πcl, i.e. by the length of the (typically) shorter axis of the Wigner ellipse (see Figure 4,

top left panel). For this quantity to be small, the dispersion of v must necessarily be large

according to (III.21). This implies a large ratio between the lengths of the principal axes

of the Wigner ellipse, and is for this reason referred to as squeezing. A large amount of

squeezing is required in order for the correlations between v and π to closely follow their

classical counterpart. Combining our definitions and results (III.13), (III.21) and (III.22),

it follows that
∆πcl
∆v

≤ ∆π

∆v
∝ k2 (III.23)

and thus on large scales the curvature perturbations are in a highly squeezed state. The

crucial question here is whether this effective classicality is such that the produced curvature

perturbations lead to the observed features of the cosmic background radiation, and in

particular whether they will lead to the observed pattern of peaks and troughs in the angular

power spectrum of the cosmic microwave background. These peaks and troughs are caused by

5 Some reader may not be accustomed to seeing the variance of the perturbations expressed in this way.

To provide a link to the usual calculation, note that for a single field the variance is given by (∆v)2 =

1/CSS = 1/Re(−iv∗′/v∗) = 1/[−i(v∗′/v∗−v′/v)] = vv∗, where in the last step we have used the wronskian

(II.22).
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acoustic oscillations after the curvature perturbations re-enter the horizon in the expanding

phase of the universe. At that point, the evolution of the perturbations is given by circular

classical trajectories in the (k1/2v, k−1/2π) plane. When the Wigner ellipse is highly squeezed

in these reduced variables the initial phase (temporal phase) of the oscillations is the same

for all the modes with the same wavenumber. The classical value of the temporal phase is

given by

tanϕ ≡ |πcl(v)|
k v

=
CSD
k

. (III.24)

Moreover, as long as ϕ is small (which will be the relevant case here), the variance of the

temporal phase of a squeezed wavepacket is approximately given by

∆ϕ ' ∆πcl
k∆v

. (III.25)

Fig. 4 presents numerical results for this indicator. As shown in the bottom left panel, the

variance of the temporal phase decreases dramatically during the conversion phase, then

starts slowly growing again due to the contraction. The bottom right panel shows that, at

a fixed reference time after the conversion, the following approximate scaling holds:

∆ϕ ∝ k, k . 10−6 . (III.26)

Moreover, our numerical results show that, for sufficiently small k, the classical value of the

temporal phase after the conversion phase is much smaller than its variance,

∆ϕ

ϕ
∼ 103, (III.27)

but this relation is independent of k for sufficiently small k. Thus, the classical value of

the angle ϕ also scales in proportion to k. Hence the classical relation between v and π

is essentially π = 0 and the inclination of the Wigner ellipse is effectively invisible for

small-k modes (see Fig. 4, top right panel). This implies that for all long-wavelength

modes, the initial temporal phase is zero. If one describes the acoustic oscillations of the

density perturbations upon horizon re-entry as a linear sum of a cos and a sin solution,

then our results imply that (for all observationally relevant scales) purely the cos mode is

realized, and consequently all modes with the same wavenumber k will reach maximal and

minimal amplitudes in synchrony. This is precisely what is needed to reproduce the acoustic

oscillations observed in the cosmic microwave background [45].
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Let us briefly contrast our results with the two-field inflationary model studied in [10],

where the temporal phase was found to have a definite classical value ∆ϕ
ϕ
∼ 10−3, where this

ratio is much smaller than in our case. However, it should be clear now that the precise

numerical value of this ratio is rather unimportant – what really matters is that for all

observationally relevant scales both the numerator and the denominator in this expression

become very small. And this occurs both in the inflationary model of [10] and in the model

that we study here.

A final comment: the scaling (III.26) can be seen as a consequence of the approximate

conservation, at the quantum level, of the comoving curvature perturbation

R̂ ≡ v̂σ
z
. (III.28)

The Heisenberg equation for R̂ reads (see (II.18))

zR̂′ = v̂′σ −
z′

z
v̂σ = π̂σ + 2θ′v̂s . (III.29)

Therefore, after the conversion (θ′ = 0) we have approximately

zR̂′ = π̂σ . (III.30)

Hence, the degree of conservation of R is directly connected to the dispersion of πσ. In

our case, this quantity is simply related to the dispersion of the temporal phase, since the

Wigner ellipse is almost horizontal and ∆πcl ' ∆π:

∆ϕ ' ∆π

k∆v
. (III.31)

As previously shown, after the conversion ∆v ∝ k−3/2, hence

∆R′ ≡ 〈R̂′2〉1/2 ∝ k1/2 . (III.32)

This confirms that, after the conversion phase, long wavelength adiabatic curvature pertur-

bations evolve classically in the sense that they are very accurately conserved at the full

quantum level.

IV. DISCUSSION

The proposition put forward both by the inflationary theory of the early universe and

by the alternative ekpyrotic/cyclic models is that all structure in the universe originated
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FIG. 4: Top, left panel: general shape of the Wigner ellipse for a gaussian state. Top, right panel:

shape of the Wigner ellipses in the rescaled phase space at N = 1 for k = 10−7,10−8 and 10−9.

The plot shows that the dispersion of v scales very accurately as k−3/2, while the dispersion of the

temporal phase rapidly goes to zero: the k = 10−9 ellipse is barely distinguishable from a segment

of the π = 0 line. Bottom panels: behavior of the temporal phase dispersion (III.25) as a function

of N and at N = 1 for different values of k. The right panel indicates that ∆ϕ ∝ k (dotted line)

for sufficiently small k.
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out of primordial quantum fluctuations, generated either during the currently expanding

phase of the universe respectively in a prior contracting phase. This stunning proposition

requires that there was a phase in the history of the universe when the usually tiny quan-

tum fluctuations were amplified in such a way as to end up behaving as classical density

perturbations.

In the context of inflationary cosmology, it became progressively clear over the last three

decades that the quantum-to-classical transition of perturbations relies on several key ingre-

dients: for one, the approximately Gaussian state of the perturbations becomes amplified

and highly squeezed during the inflationary phase, as the fluctuation modes exit the horizon.

Secondly, decoherence must occur so that one can explain why these squeezed states can be

interpreted as a classical ensemble of density perturbations. A final, still unresolved aspect,

is to explain why we observe one particular outcome of this classicalization process on the

microwave sky, rather than a different (but statistically very similar) one6[46].

Here, we have performed an analogous analysis for ekpyrotic models. Because the back-

ground dynamics is very different in these models, it was not a priori clear that a similar

quantum-to-classical transition could occur here as well. And in fact, during the ekpyrotic

phase, the adiabatic curvature perturbations, which have a blue spectrum, are neither am-

plified nor do they get squeezed. Hence they cannot be interpreted classically. This result,

which was previously noticed in [34], has implications for single-field ekpyrotic models: it was

originally thought that such blue modes could end up with a scale-invariant spectrum due

to (essentially classical) matching conditions at the bounce [47]. This now appears unlikely,

as the modes of interest cannot be treated classically in the approach to the bounce.

However, in the entropic mechanism nearly scale-invariant entropy perturbations are cre-

ated during the ekpyrotic phase. These do get amplified and evolve into a highly squeezed

state. The subsequent conversion phase kills two birds with one stone: as the entropy per-

turbations source the curvature perturbations, the latter perturbations inherit the desirable

properties of the entropic modes (amplified, squeezed, nearly scale-invariant), while on top

of that the interactions between the two types of fluctuations lead to efficient decoherence

of the density matrix. The end result is that the entropic mechanism generates a classical

6 In a many-worlds interpretation of quantum mechanics, this is the question of why we happen to find

ourselves in one particular decohered branch of the wavefunction rather than another one.
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ensemble of nearly scale-invariant curvature perturbations in the approach to the bounce. In

terms of generating nearly scale-invariant curvature perturbations during the early history

of our universe, our results demonstrate that ekpyrotic models can now be considered as

truly standing on the same footing as inflationary models.

Recent studies of non-singular bounce models involving higher-derivative kinetic terms

for the scalar fields [48, 49], loop quantum cosmology models [50], and in particular the

recent fully non-perturbative classical study of [51] all suggest that the perturbations evolve

through the bounce unscathed, and emerge in the currently expanding phase of the universe

in agreement with cosmic microwave background observations. However, it is certainly the

case that the bounce phase remains the least understood part of ekpyrotic/cyclic models,

and it is here that future progress is most eagerly awaited.
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Appendix A: General formalism for two-field cosmological perturbations

In this appendix, we will present the general formalism for quantizing cosmological models

with two gauge-invariant scalar perturbation modes as well as the related discussion of

the associated reduced density matrix and decoherence. We do this for two reasons: the

first is that we hope that this appendix will be useful to the reader when investigating

closely related situations. And the second is to highlight the ambiguities that appear when

integrating the Lagrangian by parts. Indeed, it is usually assumed that Lagrangians related

by total derivatives are equivalent. This is of course true in the sense that they lead to the

same equations of motion. However, in quantizing the system, one is necessarily making a

choice of canonical variables, and these variables depend on the Lagrangian one is using. In

discussing decoherence, we have considered the situation where one of the two fields acts as

an environment for the other. Choosing different canonical variables then implies that one is
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tracing out different degrees of freedom, and the physical results do depend on that choice.

Below, we will elaborate more precisely how the results can change by performing such

an integration by parts on the original Lagrangian. Before doing so, we should comment

on our choice of Lagrangian: we have used the Lagrangian that one obtains directly by

substituting the definitions of gauge-invariant perturbations modes, without performing any

integrations by parts. This appears to us to be the most conservative and best-motivated

choice. However, it would certainly be interesting to try to elucidate further the role of other

Lagrangians that are equivalent to ours up to total derivative terms.

We will consider the following general quadratic lagrangian for the real/imaginary part

of the Fourier modes of two gauge-invariant perturbation modes vσ and vs

L =
κσ
2
v′2σ − `σσvσv′σ −

1

2
m2
σv

2
σ +

κs
2
v′2s − `ssvsv′s −

1

2
m2
sv

2
s

+κσsv
′
σv
′
s − `σsv′σvs − `sσvσv′s −m2

σsvσvs , (A.1)

where all the coefficients are a priori arbitrary functions of time. Integration by parts

maintains the form of the Lagrangian, except for the re–definitions

σ − σ :

 `σσ → λσσ`σσ ,

m2
σ → m2

σ − (1− λσσ)`′σσ .
, (A.2)

s− s :

 `ss → λss`ss ,

m2
s → m2

s − (1− λss)`′ss .
(A.3)

σ − s :


`σs → λσs`σs ,

`sσ → `sσ − (1− λσs)`σs ,

m2
σs → m2

σs − (1− λσs)`′σs

(A.4)

s− σ :


`σs → `σs − (1− λsσ)`sσ ,

`sσ → λsσ`sσ ,

m2
σs → m2

σs − (1− λsσ)`′sσ

(A.5)

where the functions λσσ, λσs, λss depend on the specific integration by parts one is perform-

ing. All physical quantities depend only on the invariant combinations

m̄2
σ ≡ m2

σ − `′σσ , (A.6)

m̄2
s ≡ m2

s − `′ss , (A.7)

` ≡ `σs − `sσ , (A.8)
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m̄2
σs ≡ m2

σs − `′σs = m2
σs − `′sσ − `′ . (A.9)

For instance, the Euler–Lagrange equations read

(κσv
′
σ + κσsv

′
s)
′

= −m̄2
σvσ + ` v′s − m̄2

σsvs , (A.10)

(κsv
′
s + κσsv

′
σ)
′

= −m̄2
svs − ` v′σ − m̄2

σsvσ . (A.11)

However, adding a total derivative to the Lagrangian corresponds to performing a canonical

transformation acting on momenta in the Hamiltonian formalism according to

σ − σ :

 πσ → πσ + (1− λσσ)`σσvσ

πs → πs
, (A.12)

s− s :

 πσ → πσ

πs → πs + (1− λss)`ssvs
, (A.13)

σ − s :

 πσ → πσ + (1− λσs)`σsvs
πs → πs + (1− λσs)`σsvσ

, (A.14)

s− σ :

 πσ → πσ + (1− λsσ)`sσvs

πs → πs + (1− λsσ)`sσvσ
. (A.15)

We note that each of these transformations can be written as π → π + M v, where M is a

symmetric matrix.

Proceeding to the quantization of these modes, we write the general solution of the

Heisenberg operator equations as

v̂ = Fâ+ F∗â† + Gb̂+ G∗b̂† , (A.16)

where F and G are complex, linearly independent solutions of the equations of motion and

â, â†, b̂, b̂† are two pairs of annihilation/creation operators. Due to the symmetry of the

matrix M, the following Wronskian quantities are constants of the motion, whose values we

fix in the canonical fashion:

F ·P∗F − F∗ ·PF = 1 , (A.17)

G ·P∗G −G∗ ·PG = 1 , (A.18)

F ·PG −PF ·G = 0 , (A.19)

F ·P∗G −PF ·G∗ = 0 . (A.20)
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Here the quantities denoted PF,G are the canonical momenta associated with F,G. One can

then re–express the annihilation operators as

i â = P∗F · v̂ − F∗ · π̂ , (A.21)

i b̂ = P∗G · v̂ −G∗ · π̂ . (A.22)

These expressions can be used to define a vacuum state

â |0〉 = b̂ |0〉 = 0 , (A.23)

which will depend on the choice of mode functions. The vacuum can equally well be described

by the wave–function

Ψ|0〉 ∝ exp

(
−1

2
Aσσv

2
σ − Aσsvσvs −

1

2
Assv

2
s

)
, (A.24)

Aσσ = −i(κσF
′∗
σ + κσsF

′∗
s )G∗s − F ∗s (κσG

′∗
σ + κσsG

′∗
s )

F ∗σG
∗
s − F ∗sG∗σ

+ i`σσ , (A.25)

Ass = −i(κsF
′∗
s + κσsF

′∗
σ )G∗σ − F ∗σ (κsG

′∗
s + κσsG

′∗
σ )

F ∗sG
∗
σ − F ∗σG∗s

+ i`ss , (A.26)

Aσs = −i(κσF
′∗
σ + κσsF

′∗
s )G∗σ − F ∗σ (κσG

′∗
σ + κσsG

′∗
s )

F ∗sG
∗
σ − F ∗σG∗s

+ i`σs (A.27)

= −i(κsF
′∗
s + κσsF

′∗
σ )G∗s − F ∗s (κsG

′∗
s + κσsG

′∗
σ )

F ∗σG
∗
s − F ∗sG∗σ

+ i`sσ . (A.28)

Not surprisingly, the correlators depend on the quantization: the different behaviors of the

phase of the wave–function correspond to different values of momenta, related by (A.12–

A.15). By considering the time–dependent Schrödinger equation, we can obtain equations

of motion for the correlators. For this, we need an expression for the Hamiltonian of our

system. It is given by

H =
κs
2κ

(πσ + `σσvσ + `σsvs)
2 +

κσ
2κ

(πs + `svs + `sσvσ)2 −

−κσs
κ

(πσ + `σσvσ + `σsvs) (πs + `svs + `sσvσ)

+
1

2
m2
σv

2
σ +

1

2
m2
sv

2
s +m2

σsvσvs , (A.29)

κ ≡ κσκs − κ2
σs , (A.30)

and it can be quantized trivially since the ordering ambiguities correspond to an additive

constant in H. The equations for the correlators, obtained from iΨ′ = ĤΨ, or directly from
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the equations of motion for the constituent mode functions, take the form

− iκĀ′σσ = κ m̄2
σ − κsĀ2

σσ − κσ
(
Āσs + i`

)2
+ 2κσsĀσσ(Āσs + i`) , (A.31)

−iκĀ′ss = κ m̄2
s − κσĀ2

ss − κsĀ2
σs + 2κσsĀssĀσs , (A.32)

−iκĀ′σs = κ m̄2
σs −

(
κsĀσσ + κσĀss

)
Āσs − iκσ`Āss + κσs

(
ĀσσĀss + Āσs(Āσs + i`)

)
,(A.33)

Āσσ ≡ Aσσ − i`σσ , (A.34)

Āσs ≡ Aσs − i`σs , (A.35)

Āss ≡ Ass − i`ss . (A.36)

Note that the equations for the reduced correlators Ā only contain the invariant combinations

(A.6– A.9). Moreover, according to (A.25– A.27) the initial conditions for the correlators are

also independent of the quantization. Thus, so far all results are unaffected by performing

an integration by parts on the Lagrangian.

However, in discussing the reduced density matrix and decoherence, this is no longer so:

tracing over e.g. vs, the reduced density matrix for measurements of vσ reads

ρ(v̄σ, vσ) = N ′ exp

(
−1

2
CSSv

2
S −

1

2
CDDv

2
D − iCSDvSvD

)
, (A.37)

vS ≡
1

2
(vσ + v̄σ) , (A.38)

vD ≡ vσ − v̄σ , (A.39)

CSS = 2ARσσ

(
1− (ARσs)

2

ARssA
R
σσ

)
, (A.40)

CSD = AIσσ

(
1− AIσsA

R
σs

ARssA
I
σσ

)
, (A.41)

CDD =
1

2
ARσσ

(
1 +

(AIσs)
2

ARssA
R
σσ

)
. (A.42)

As discussed in the previous sections, the main indicator for decoherence is the ratio

CDD
CSS

=
ĀRssĀ

R
σσ + (ĀIσs + `σs)

2

ĀRssĀ
R
σσ − (ĀRσs)

2
. (A.43)

This quantity does depend on the quantization, as is obvious from the appearance of the

lσs term. Therefore, the answer for the amount of decoherence depends explicitly on the

choice of canonical variables. As an application, we checked that the prediction for the toy

model studied in [34], namely no decoherence for kinetically coupled scalar fields during an

ekpyrotic phase, only holds for the choice of variables adopted in that paper (`σs = a′/a).

On the other hand, if like in our case the two fields are not coupled from a given time on

(`σs ∝ θ′), this ambiguity is no longer present.
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Appendix B: Formulae involving Bessel functions

Approximating cosmological mode functions at late times requires the use of the following

asymptotic behaviors of Bessel functions (with α > 0)

Jα(x)
x→0∼ 1

Γ(α + 1)

(x
2

)α
+O(xα+2) , (B.1)

Yα(x)
x→0∼ −Γ(α)

π

(x
2

)−α
− Γ(−α) cos (πα)

π

(x
2

)α
− Γ(α− 1)

π

(x
2

)2−α
+O(xα+2) .(B.2)

In order to work out the corresponding correlators, one needs to evaluate time derivatives

of the mode functions. Denoting x ≡ −kτ, so that v′ = −kv,x, we have

dv

dx
=

√
π

4k

1

2
√
x

(
Jα + 2x

dJα
dx

+ iYα + 2ix
dYα
dx

)
,

and hence

Re

(
v′∗

v∗

)
=

1

2τ
− k

2(J2
α + Y 2

α )

d

dx

(
J2
α + Y 2

α

)
,

Im

(
v′∗

v∗

)
= − k

J2
α + Y 2

α

[
YαJ̇α − JαẎα

]
.

It turns out that we must keep sub–leading terms in order to calculate the asymptotic

behavior of the correlators. A straightforward calculation leads to

J2
α + Y 2

α =
Γ(α)2

π2

(x
2

)−2α
(

1 +
2Γ(−α) cos (πα)

Γ(α)

(x
2

)2α

+
2

α− 1

(x
2

)2

+ . . .

)
,

d

dx

(
J2
α + Y 2

α

)
= −2α

x

(
J2
α + Y 2

α

)(
1− 2Γ(−α) cos (πα)

Γ(α)

(x
2

)2α

− 2

α(α− 1)

(x
2

)2

+ . . .

)
,

so that one obtains

Re

(
v′∗

v∗

)
=

(
1

2
− α

)
1

τ
+

2αΓ(−α) cos (πα)

τΓ(α)

(x
2

)2α

+ . . .

=
(1− 2α)(ε− 1)

2
H +

2αΓ(−α) cos (πα)

τΓ(α)

(x
2

)2α

+ . . . ,

Im

(
v′∗

v∗

)
= − 2π

τΓ(α)2

(x
2

)2α

+ . . . .
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