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We examine the processes of quantum squeezing and decoherence of density perturbations produced
during a slowly contracting ekpyrotic phase in which entropic perturbations are converted to curvature
perturbations before the bounce to an expanding phase. During the generation phase, the entropic
fluctuations evolve into a highly squeezed quantum state, analogous to the evolution of inflationary
perturbations. Subsequently, during the conversion phase, quantum coherence is lost very efficiently due to
the interactions of entropy and adiabatic modes. Moreover, while decoherence occurs, the adiabatic
curvature perturbations inherit their semiclassicality from the entropic perturbations. Our results confirm
that, just as for inflation, an ekpyrotic phase can generate nearly scale-invariant curvature perturbations
which may be treated as a statistical ensemble of classical density perturbations, in agreement with
observations of the cosmic background radiation.
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I. INTRODUCTION

Cosmological observations, most recently by the Planck
satellite [1], indicate conclusively that at early times our
Universe was exceptionally flat on average, but, crucially,
also contained a near-Gaussian distribution of small and
nearly scale-invariant density perturbations. These small
(classical) perturbations are thought to provide the seeds for
the formation of the whole cosmic web of galaxies via
subsequent gravitational collapse [2]. An open question is
still what the origin of these fluctuations was.
The most popular explanation is the theory of inflation

[3–5], which proposes that the primordial density pertur-
bations arose from the amplification of quantum fluctua-
tions of a scalar field during a phase of accelerated
expansion of the Universe. The transition from quantum
fluctuations to a statistical distribution of classical density
perturbations has been studied in detail in this context (see
for example [6–12]), and it was found that there are two
effects that support the classical interpretation of the
resulting fluctuations: the first is that the (approximately
Gaussian) quantum state evolves into a highly squeezed
state, which means that in the field amplitude/momentum
plane there is one direction along which the quantum
mechanical uncertainty is very small, and a perpendicular
direction in which it is very high. Such a state is far from
classical, but can in fact be reinterpreted as a statistical
distribution of classical states if in addition the density
matrix describing these quantum fluctuations is approx-
imately diagonal. The density matrix must be approxi-
mately diagonal in the field amplitude basis in order that
one be able to assign definite probabilities to different field

amplitudes. Otherwise, off-diagonal elements in the density
matrix would imply the existence of coherent superposi-
tions of states with different field amplitudes, in which case
no equivalent classical description would apply. The
suppression of the off-diagonal elements of the density
matrix is called “decoherence,” and is typically found to
occur when one considers the coupling of the fluctuations
to an environment (usually provided by additional fields).
Thus, given such a coupling to an environment, inflation
can successfully describe the origin of all structure in the
Universe out of initial quantum fluctuations.
However, even though inflation has many compelling

features, it also has important open problems—for a
comprehensive recent discussion, see [13]. For this reason
it is certainly of interest to explore the properties of
alternative cosmological models. A particularly attractive
alternative to inflation is provided by cyclic models of the
Universe, containing an ekpyrotic phase [14–16]. This is a
phase of slow contraction of the Universe, which also
renders the Universe spatially flat while producing nearly
scale-invariant density perturbations (again via amplifica-
tion of quantum fluctuations). In order to provide a truly
viable alternative to inflation, it is necessary that the
perturbations produced in ekpyrotic/cyclic models can be
reinterpreted as a statistical distribution of classical per-
turbations. In this paper, we show that, for the currently
best-understood ekpyrotic models, this is indeed so.
These models, which are in good agreement with the

observations of the Planck satellite [17], employ the
entropic mechanism for producing density perturbations
[18–20]. In these models one considers gravity minimally
coupled to two scalar fields with potentials. The perturba-
tions are created via a two-step process. First, during the
slowly contracting ekpyrotic phase, nearly scale-invariant
entropy perturbations are generated. These entropy
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perturbations evolve into a highly squeezed quantum state
during this generation phase. Subsequently, in the approach
to the bounce, the ekpyrotic potential becomes unimpor-
tant, and the Universe enters a phase in which the energy
density is mostly comprised of the kinetic energy of the
scalar fields. During this phase, the field space trajectory
describing the dynamics undergoes a bend (see Fig. 1). As a
result, the entropy perturbations are converted into adia-
batic curvature perturbations which inherit both their
squeezed state and their spectrum. What we find in addition
is that during this second phase the interactions of entropic
and adiabatic modes are already sufficient to cause the
density matrix to decohere efficiently, without the need to
couple these perturbations to an additional environment.
The end result is that the produced curvature perturbations
can indeed be faithfully described as a statistical mixture of
classical perturbations. Thus, an ekpyrotic phase can
equally well provide the seeds for the large-scale structure
in our Universe, and should be regarded on the same
footing as inflationary models in this respect.
The plan of our paper is as follows: in Sec. II, we will

discuss the generation of adiabatic and entropic fluctuations
during an ekpyrotic phase, including a detailed study of the
issues of amplification and squeezing. In Sec. III, we will
analyze how the entropy modes become a source for the
adiabatic modes, as a result of which the latter ones inherit
the classicality properties of the former ones. We also
quantify the decoherence of the reduced density matrix that

occurs simultaneously. After our discussion section, we
include a technical appendix where we present the general
formalism for treating two-scalar-field models quantum
mechanically, and we highlight potential ambiguities that
can arise when performing integrations by parts on the
Lagrangian of the system under consideration. A second
appendix lists a number of useful formulas involving
Bessel functions.

II. GENERATION OF COSMOLOGICAL
PERTURBATIONS AND SQUEEZING

The model that we discuss involves gravity minimally
coupled to two scalar fields, with action

S¼
Z ffiffiffiffiffiffi

−g
p �

R
2
−
1

2
ð∂ϕ1Þ2−

1

2
ð∂ϕ2Þ2−Vðϕ1;ϕ2Þ

�
: (2.1)

We are assuming that during the ekpyrotic phase, both fields
have (steep and negative) ekpyrotic-type potentials, i.e.

Vðϕ1;ϕ2Þ ¼ −V1e−c1ϕ1 − V2e−c2ϕ2 : (2.2)

Then the analysis is greatly simplified by rotating to the
new fields σ and s pointing transverse and perpendicular to
the field velocity, respectively [21,22]. It is convenient to
first introduce the angle θ in field space, defined by [23]

cos θ≡ _ϕ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2
1 þ _ϕ2

2

q ; sin θ≡ _ϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2
1 þ _ϕ2

2

q : (2.3)

Then, if we write the fields together as ϕJ ¼ ðϕ1;ϕ2Þ, the
adiabatic and entropy directions are defined respectively by
the vectors

eJσ ¼ ðcos θ; sin θÞ; eJs ¼ ð− sin θ; cos θÞ: (2.4)

In terms of these new variables, the potential can be re-
expressed as

V ¼ −V0e
ffiffiffiffi
2ϵ

p
σ½1þ κ2ϵs2 þ � � ��; (2.5)

with 1=ϵ ¼ 2=c21 þ 2=c22 and V0 a constant. For exact
exponentials of the form (2.2), one has κ2 ¼ 1, which
indicates that if we slightly extend the class of potentials we
consider we may take κ2 to be close to 1 (as we will see
below, in such a case the spectral index of the entropy
perturbations will be close to scale invariant [17,24]). The
ellipsis denotes higher-order terms in s in the potential,
which determine the non-Gaussian corrections to the
primordial perturbations—these are discussed in detail in
[25–27]; for a review, see [28]. The ekpyrotic scaling
solution is given by

aðtÞ¼ ð−tÞ1=ϵ σ¼−
ffiffiffi
2

ϵ

r
ln

�
−

ffiffiffiffiffiffiffiffiffiffi
ϵ2V0

ϵ−3

r
t

�
s¼ 0; (2.6)
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FIG. 1 (color online). In the models that we study, the evolution
starts out with an ekpyrotic contracting phase to the right of the
figure. During this phase, nearly scale-invariant entropy pertur-
bations, which are perturbations transverse to the background
trajectory, are amplified and evolve into a highly squeezed
quantum state. Such a squeezed quantum state is approximately
classical in the sense that it can equivalently be described as a
statistical mixture of classical perturbations. After the ekpyrotic
phase, the trajectory in scalar field space enters the kinetic phase
and bends—this bending causes the conversion of entropy into
curvature perturbations, with the latter inheriting both their
spectrum and their near-classicality from the entropy perturba-
tions. Moreover, the interactions of entropy and curvature modes
during the bending phase cause decoherence to occur, such that
the resulting curvature perturbations can be assigned definite
classical probabilities for their amplitude. In this way, the
ekpyrotic phase produces an ensemble of nearly scale-invariant
classical density perturbations in the approach to the bounce.
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where time runs from large negative to small negative
values, and with the angle θ being constant. The solution
corresponds to motion along a ridge in the potential
and thus the two-field ekpyrotic background evolution
is unstable [20,29]. This instability has significant conse-
quences: it determines the global structure of a cyclic
universe employing the entropic mechanism (this is
discussed in detail in [30,31]—see also the essay [32]),
and it is also responsible for amplifying the quantum
perturbations in the entropic direction.
In order to discuss the quantum fluctuations, we must

expand the action to second order in fluctuations. The gauge-
invariant fluctuations that we are interested in are the
comoving curvature perturbation R and the entropy pertur-
bation δs. In comoving gauge, the curvature perturbation is
defined as a space-time dependent fluctuation in the scale
factor,

ds2 ¼ −dt2 þ aðtÞ2e−2Rðt;x
¯
Þdx

¯

2;
(2.7)

while the entropy perturbation is defined (in any gauge) as

δs ¼ eJsδϕJ ¼ cos θδϕ2 − sin θδϕ1: (2.8)

In fact, the rescaled versions,

vσ ¼ zR; vs ¼ aδs; with z ¼ a _σ
H

; (2.9)

turn out to be the canonically normalized variables. We will
also switch to conformal time τ (with dt ¼ adτ), and denote
derivatives with respect to conformal time with primes.
Moreover, we find it most convenient to work in momentum
space from the start, but since modes with different wave
numbers k are decoupled, we will for the most part suppress
such labels. Then, as shown in [33], the Lagrangian for the
real/imaginary parts of the Fourier components of the
curvature and entropy perturbations reads

L ¼ 1

2
v02σ þ 1

2
v02s −

z0

z
v0σvσ −

a0

a
v0zvs − 2θ0v0σvs −

1

2
m2

σv2σ

þ 2θ0
z0

z
vσvs −

1

2
m2

sv2s ; (2.10)

m2
σ ¼ k2 −

z02

z2
; (2.11)

m2
s ¼ k2 −

a02

a2
þ a2Vss − θ02; (2.12)

where

z≡ a
σ0

H
; H≡ a0

a
; σ0 ≡ ðϕ02

1 þ ϕ02
2 Þ1=2; (2.13)

Vss ≡ ðV;ϕ1ϕ1
ϕ02
2 − 2V;ϕ1ϕ2

ϕ0
1ϕ

0
2 þ V;ϕ2ϕ2

ϕ02
1 Þ=σ02: (2.14)

Varying the Lagrangian leads to the linearized equations of
motion

v00σ þ μ2σvσ − 2

z
ðzθ0vsÞ0 ¼ 0; (2.15)

v00s þ μ2svs þ 2zθ0
�
vσ
z

�0
¼ 0; (2.16)

where

μ2σ ¼ k2 −
z00

z
; μ2s ¼ k2 −

a00

a
þ a2Vss − θ02: (2.17)

The canonical momenta are

πσ ¼ v0σ −
z0

z
vσ − 2θ0vs; πs ¼ v0s −

a0

a
vs; (2.18)

and consequently the Hamiltonian is given by

H ¼ 1

2

�
πσ þ

z0

z
vσ þ 2θ0vs

�
2

þ 1

2

�
πs þ

a0

a
vs

�
2

þ 1

2
m2

σv2σ þ
1

2
m2

sv2s − 2θ0
z0

z
vσvs: (2.19)

We can quantize the perturbations as usual by promoting
the fields to operators. In our case, the general solution of
the resulting Heisenberg equations can be written in terms
of two sets of creation/annihilation operators:

v̂σ ¼ fσâþ f�σâ† þ gσb̂þ g�σb̂
†; (2.20)

v̂s ¼ fsâþ f�s â† þ gsb̂þ g�s b̂
†; (2.21)

where fσ;s and gσ;s are time-dependent, complex, linearly
independent solutions of the equations of motion.
Analogous expressions for the momentum operators follow
from Eq. (2.18). The following quantities (Wronskians) are
constants of motion:

fσ

�
f�0σ −

z0

z
f�σ − 2θ0f�s

�
þ fs

�
f�0s −

a0

a
f�s

�
− c:c: ¼ i; (2.22)

gσ

�
g�0σ −

z0

z
g�σ − 2θ0g�s

�
þ gs

�
g�0s −

a0

a
g�s

�
− c:c: ¼ i; (2.23)

fσ

�
g0σ −

z0

z
gσ − 2θ0gs

�
þ fs

�
g0s −

a0

a
gs

�
− ðf↔gÞ ¼ 0; (2.24)

fσ

�
g�0σ −

z0

z
g�σ − 2θ0g�s

�
þ fs

�
g�0s −

a0

a
g�s

�
− ðf↔gÞ ¼ 0; (2.25)
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where we have fixed the right-hand sides in such a way
as to ensure the canonical normalization of the mode
functions. Using these Wronskian relations, it is then
possible to re-express the annihilation operators â; b̂
in terms of the mode functions and their canonical
momenta:

iâ ¼
�
f�0σ −

z0

z
f�σ − 2θ0f�s

�
v̂σ − f�σπ̂σ

þ
�
f�0s −

a0

a
f�s

�
v̂s − f�s π̂s; (2.26)

ib̂ ¼
�
g�0σ −

z0

z
g�σ − 2θ0g�s

�
v̂σ − g�σπ̂σ

þ
�
g�0s −

a0

a
g�s

�
v̂s − g�s π̂s: (2.27)

We define the vacuum state as usual by requiring that it
vanishes when acted upon by the annihilation operators

âj0i ¼ b̂j0i ¼ 0: (2.28)

Using the expressions above and the canonical replace-
ments πσ;s → −i ∂

∂vσ;s we can then obtain an expression for

the corresponding (Schrödinger picture) wave function Ψ∶

Ψðvσ;vsÞ¼N exp

�
−
1

2
Aσσv2σ−Aσsvσvs−

1

2
Assv2s

�
; (2.29)

where N is a normalization factor and where the correlators
are given by

Aσσ ¼ −i
g�sf�0σ − f�sg�0σ
g�sf�σ − f�sg�σ

þ i
z0

z
; (2.30)

Ass ¼ −i
f�σg�0s − g�σf�0s
f�σg�s − g�σf�s

þ i
a0

a
; (2.31)

Aσs ¼ −i
f�σg�0σ − g�σf�0σ
f�σg�s − g�σf�s

þ 2iθ0 ¼ −i
g�sf�0s − f�sg�0s
g�sf�σ − f�sg�σ

: (2.32)

The correlators satisfy their own equations of motion,
which can be derived either via the equations of motion
of the mode functions, or via the time-dependent
Schrödinger equation iΨ0 ¼ ĤΨ. Both methods lead to

iA0
σσ ¼

�
Aσσ − i

z0

z

�
2

þ A2
σs −m2

σ; (2.33)

iA0
ss ¼

�
Ass − i

a0

a

�
2

þ ðAσs − 2iθ0Þ2 −m2
s ; (2.34)

iA0
σs ¼ AσsðAσσ þ AssÞ − i

�
z0

z
þ a0

a

�
Aσs − 2iθ0Aσσ: (2.35)

Having set up the necessary formalism, we can now
apply it to the ekpyrotic phase, during which the following
relations hold:

σ ¼ −
ffiffiffi
2

ϵ

r
ln

�
−

ffiffiffiffiffiffiffiffiffiffi
ϵ2V0

ϵ − 3

r
t

�
; s ¼ 0; (2.36)

a ¼ a0ð−tÞ1=ϵ ¼ ā0ð−τÞ1=ðϵ−1Þ; (2.37)

a00

a
¼ z00

z
¼ −

ϵ − 2

ðϵ − 1Þ2
1

τ2
; (2.38)

a00

a
− a2V;ss ≈

�
2κ2 −

2κ2
ϵ

−
1

ϵ

�
1

τ2
: (2.39)

Hence, the mode equations (2.15) and (2.16) read

v00 þ
�
k2 þ

1
4
− α2

η2

�
v ¼ 0; (2.40)

with

α2σ ¼
ðϵ − 3Þ2
4ðϵ − 1Þ2 ; α2s ≈

1

4
þ 2κ2 −

2κ2
ϵ

−
1

ϵ
: (2.41)

Note that during the ekpyrotic phase θ0 ¼ 0 and thus
there is no coupling between adiabatic and entropic
modes. Consequently, the two modes can be treated
independently. The solutions respecting the Wronskian
conditions may be written in terms of Bessel functions,

v ¼
ffiffiffiffiffi
π

4k

r ffiffiffiffiffiffiffiffi
−kτ

p
ðJαð−kτÞ þ iYαð−kτÞÞ: (2.42)

When ϵ is large and jκ2 − 1j ≪ 1 one has

ασ ≈
1

2
−
1

ϵ
; (2.43)

αs ≈
3

2
þ 2

3
ðκ2 − 1Þ − 1

ϵ
; (2.44)

to the two nonzero mode functions fσ and gs, while fs and
gσ are zero during the ekpyrotic phase. Using the asymp-
totic behaviors of Bessel functions provided in Appendix B
we obtain

fσ ≃ ΓðαÞ2αffiffiffiffiffiffiffiffi
4πk

p
�

π

22αΓðαÞΓðαþ 1Þ ð−kτÞ
1−1=ϵ − ið−kτÞ1=ϵ

�
;

(2.45)
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gs ≃ ΓðαÞ2αffiffiffiffiffiffiffiffi
4πk

p
�

π

22αΓðαÞΓðαþ 1Þ ð−kτÞ
2þ2ðκ2−1Þ=3−1=ϵ

−
i

ð−kτÞ1þ2ðκ2−1Þ=3−1=ϵ

�
: (2.46)

We are now in a position to evaluate the correlators during
the ekpyrotic phase. Again using the formulas of
Appendix B as well as the relation ð1 − 2ασÞðϵ − 1Þ ¼ 2,
we find that the correlators are given by

Aσσ ≈
k2ασ

22ασ−1ΓðασÞ
jτj2ασ−1

×

�
π

ΓðασÞ
− iασΓð−ασÞ cosðπασÞ

�
; (2.47)

Aσs ¼ 0 (2.48)

Ass ≈
πk2αs

22αs−1ΓðαsÞ2
jτj2αs−1 − i

ðαs − 1
2
þ 1

ϵÞ
jτj ; (2.49)

where ασ and αs were listed above in Eqs. (2.43)–(2.44),
and where we have kept only the leading real and imaginary
parts. One can immediately see that the adiabatic and
entropic correlators behave very differently: let us first look
at the adiabatic modes, which are characterized by a blue
spectrum ns ¼ 4 − 2ασ ≈ 3. The criterion for describing a
quantum state as being semiclassical (in a WKB sense) is
that the phase of the wave function must vary much faster
than its amplitude. From (2.29) we can see that this
corresponds to the criterion that the imaginary part of
the correlator must be much larger than the real part.
However, in the present case, the real and imaginary parts
of Aσσ have the same time dependence, and thus their
relative magnitude remains fixed over time. Moreover, as
the explicit expression (2.47) shows, their magnitudes are
of the same order,

ReðAσσÞ ≈ ImðAσσÞ; (2.50)

at all times, and hence these blue modes cannot be
given a classical interpretation. This calculation reproduces
the results of [34]. We note that the correlator becomes
large as τ → 0−, which implies that the dispersion of
the vσ modes becomes small as the ekpyrotic phase
progresses. Thus, there occurs no significant production
of these modes.
By contrast, the real part of the entropic correlator Ass

becomes small as τ → 0−. Hence, in this case the
dispersion of the entropic perturbations becomes large—
in other words, such modes are amplified as the ekpyrotic
phase proceeds. Moreover, the imaginary part of the
correlator becomes large in magnitude, so that the phase
of the wave function evolves much faster than its

amplitude.1 Over time such modes behave increasingly
classically in a WKB sense, with

jImðAssÞj
jReðAssÞj

≈
1

jkτj2αs ≫ 1 as jkτj ≪ 1: (2.51)

This formula shows that the perturbation modes evolve into
a highly squeezed Gaussian state as they leave the horizon,
in complete analogy with inflationary perturbations. The
entropic modes of interest to us belong to this category
(with αs ≈ 3

2
). Their spectral index is given by

ns ¼ 4 − 2αs ≈ 1 −
4

3
ðκ2 − 1Þ þ 2

ϵ
; (2.52)

and thus their spectrum is nearly a scale-invariant spectrum
when ϵ ≫ 1 and jκ2 − 1j ≪ 1. All of these features, with
one important exception, make these modes suitable
candidates for producing the seeds of the large-scale
structure in the Universe. The exception is of course that
these modes correspond to local perturbations in the
entropy, whereas observations indicate that the temperature
fluctuations in the cosmic background radiation are pri-
marily due to adiabatic curvature fluctuations. As we will
see in the next section, it is precisely the process that
converts such entropic into adiabatic fluctuations that is
also responsible for decohering them, thus confirming their
classical appearance.

III. CONVERSION OF ENTROPIC INTO
ADIABATIC PERTURBATIONS

AND DECOHERENCE

In the previous section, we have shown that the ekpyrotic
phase produces two sets of fluctuations: adiabatic pertur-
bations with a blue spectrum, a small amplitude and no
classical interpretation, alongside nearly scale-invariant
entropic modes in a highly squeezed semiclassical state.
In the entropic mechanism, after the ekpyrotic phase has
come to an end the entropy modes get converted into
adiabatic curvature perturbations. This conversion occurs
when the trajectory in field space undergoes a bend, as
shown in Fig. 1. (As described in [35], such a bending of
the trajectory occurs automatically in the embedding of
ekpyrotic models into heterotic M-theory.) In the following,
we would like to examine to what extent the semiclassical
properties of the entropic modes get inherited by the
adiabatic modes during this process. In the model that
we are studying, after the conversion process the Universe
briefly remains in a phase dominated by the kinetic energy
of the scalar fields before it undergoes a bounce into an
expanding hot big bang phase (without inflation occurring).

1It is interesting to note that the leading imaginary term of the
correlator Ass does not appear in Aσσ , where it cancels out exactly
due to Eq. (2.41).
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The idea is that the bounce is not completely elastic, and
that a small fraction of the energy density gets converted
into radiation and matter degrees of freedom during the
bounce phase [15]. (For models describing either classi-
cally singular or nonsingular bounces form an active
research topic, see e.g. [36–42].) The curvature perturba-
tion corresponds to a local fluctuation in the scale factor of
the Universe, and thus it has the effect that the bounce will
occur at slightly different times in different regions of the
Universe. In this way, any radiation and matter that get
produced during the bounce inherit their perturbations
directly from the curvature perturbation.

A. The reduced density matrix and decoherence

We are assuming here that the entropy field decays
sometime after the ekpyrotic phase has come to an end, e.g.
during reheating at the bounce. Then the only observable
imprint from the ekpyrotic phase on the cosmic back-
ground radiation is represented by the adiabatic curvature
perturbations—concerning this point, see also the analo-
gous discussion in the context of two-field inflation in [10].
This means that we should treat the entropic modes as an
inaccessible environment for the curvature modes, and
hence, in order to characterize the generated curvature
perturbations, we must study the reduced density matrix
that one obtains by tracing over the entropic degrees of
freedom. As we will see, this reduced density matrix allows
us to quantify the effective classicality of the curvature
perturbations. Explicitly, it is given by

ρðvσ; v̄σÞ ¼ hvσjTrvs ρ̂jv̄σi (3.1)

¼
Z

dvsΨðvσ; vsÞΨ�ðv̄σ; vsÞ (3.2)

¼ ~N exp

�
−
1

2
CSSv2S −

1

2
CDDv2D − iCSDvSvD

�
; (3.3)

where ~N is a normalization factor and ρ̂ denotes the full
density matrix. For simplicity, we will adhere to common
practice and call the left-hand side ρ the reduced density
matrix, although it actually only corresponds to one
particular element thereof. Here, we have defined

vS ≡ 1

2
ðvσ þ v̄σÞ; (3.4)

vD ≡ vσ − v̄σ; (3.5)

while the correlators are given by [10]2

CSS ¼ 2AR
σσ

�
1 −

ðAR
σsÞ2

AR
ssAR

σσ

�
; (3.6)

CSD ¼ AI
σσ

�
1 −

AI
σsAR

σs

AR
ssAI

σσ

�
; (3.7)

CDD ¼ 1

2
AR
σσ

�
1þ ðAI

σsÞ2
AR
ssAR

σσ

�
: (3.8)

Note, the extra factor of i that we have pulled out of
the coefficient of the mixed vsvD term, such that CSD,
is real.
The situation that we are aiming for is one where the

density matrix is approximately diagonal in the field
amplitude basis—in this case we say that the density
matrix has decohered. More explicitly, we would like
the density matrix to yield a sizeable probability when
we choose the field amplitudes vσ and v̄σ to be equal, but a
zero or very small probability when they are unequal,
vσ ≠ v̄σ. In this case, the density matrix describes with high
accuracy a statistical mixture of states with definite field
amplitudes, and thus the quantum perturbations that we
are studying can then equivalently be described as an
ensemble of classical density perturbations.3 We can
specify the amount of decoherence by evaluating the
so-called entanglement entropy,

sk ¼
1

2
ln

�
4CDD

CSS

�
; (3.9)

which quantifies the extent to which the difference terms vD
are suppressed relative to the vS terms. The entanglement
entropy sk does not obey a simple evolution equation, and
one must in fact evaluate the correlators CSS; CDD directly
in terms of the original correlators Aσσ; Aσs and Ass, and
these in turn are most easily evaluated via their dependence
on the mode functions fσ;s; gσ;s. Although approximation
techniques exist in order to solve for the evolution of the
mode functions during the conversion phase [43], we have
found these to be insufficiently accurate for our present
purposes, and thus we have solved for the mode functions
numerically. In analogy to the numerical calculations
performed in [27] in the context of non-Gaussian correc-
tions to the perturbations that we are studying here, we
model the bending of the trajectory during the conversion
phase by assuming a repulsive potential,

Vrep ¼
~V
ϕ2
2

e−ð10ϕ2Þ2 þ V0; (3.10)

2In [10] an additional erroneous factor of 2 is present inside the
brackets in the expression of CSD. Our preliminary analysis
shows that the use of the correct expression (3.7) does not
significantly change the conclusions of that work, while it plays a
crucial role in the results of the present paper.

3If the density matrix is not diagonal in the field amplitude
basis, then the fluctuation modes are in coherent superpositions of
states with different field amplitudes. Evidently, such a situation
cannot be described classically.
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where ~V; V0 are small constants (we chose the explicit
values ~V ¼ 8 × 10−9,V0 ¼ 10−12). Thus, the trajectory
bends in the vicinity of the ϕ2 ¼ 0 line. We have added
the small constant term V0 in order to improve the
numerical stability of our computations. Compared to
[27], we have also added an exponential suppression term,
which ensures that away from the ϕ2 ¼ 0 line the potential
quickly reaches a constant value. This implies that at the
start of our computation, the angle of the trajectory in scalar
field space is almost exactly constant (with our initial
conditions, the starting value of the rate of change of the
angle is θ0 ≈ 10−36). This allows us to see the onset of
decoherence with high precision. We have started our
numerical evaluation right after the ekpyrotic phase has
come to an end, when the background dynamics becomes
dominated by the kinetic energy of the scalar fields
(incidentally, even during the bending the energy density
still remains dominated by the kinetic energy of the
scalars). As initial conditions for the mode functions fσ
and gs we have used the explicit analytic expressions (2.45)
and (2.46). During the ekpyrotic phase, the other two mode
functions, fs and gσ, are zero. This is consistent as long as
θ0 ¼ 0, but since θ0 assumes a (tiny) nonzero value already
at the start of our computation, we have also set

fs0ðτ0Þ ¼ −2θ0fσðτ0Þ; gσðτ0Þ ¼ 0 (3.11)

such that the Wronskians (2.22)–(2.25)remain exactly
satisfied at the starting time τ0.

Figure 2 then shows our results for the evolution of the
entanglement entropy sk as a function of scale-factor time
N ∝ ln a. Since the Universe is contracting, N is decreas-
ing, and hence in the figure time is running from right to
left. The figure shows how, for different values of the wave
number k, we start with perfect quantum coherence on the
right, and then, as the conversion process takes place the
environment provided by the entropy modes effectively
decoheres the reduced density matrix. As is evident from
the figure, the entanglement entropy reaches a constant
value after the conversion process has ended. As mentioned
above, the entanglement entropy sk does not obey a simple
evolution equation, as its evolution is governed by

s0k ¼ −2θ0
AR
σσAR

σs þ AI
σσAI

σs

AR
σσAR

ss þ ðAI
σsÞ2

; (3.12)

but this explicit formula immediately confirms that sk is
constant when θ0 ¼ 0. From a physical point of view, this is
also easy to understand, as the adiabatic and entropy modes
become decoupled when θ0 ¼ 0.
An interesting feature of the model we are studying is

that the amount of decoherence increases rapidly for longer
(comoving) wavelengths 1=k. As illustrated in Fig. 2, right
panel, the final values of sk are well fitted by the relation

sk;final ∼ − ln

�
k
k0

�
; k0 ∼ 10−4; ðk≲ k0Þ: (3.13)

FIG. 2 (color online). These figures show the entanglement entropy sk as a function of time for various wave numbers k. Time runs
from the right to the left, and is given in units of scale-factor time N ∝ lnðaÞ. Left panel: the perfect quantum coherence at the end of the
ekpyrotic phase is rapidly destroyed during the conversion process, and reaches a constant value in the approach to the bounce. Right
panel: for small-wavelength modes, the final amount of decoherence sk;final can be seen to be inversely proportional to k—the dashed
line corresponds to the fitting formula [(3.13)].
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The modes of cosmological interest, i.e. those that we can
observe in the cosmic background radiation, have wave
numbers on the order of k ∼ 10−25. We have not been able
to reach such small values numerically, but if we just
extrapolate the fitting formula above, we can estimate that
for such modes the entanglement entropy is on the order of
50. Recalling that sk is essentially half of the logarithm of
the suppression factor in the reduced density matrix, we see
that decoherence is extremely effective for all modes of
cosmological interest (thus, for such modes, off-diagonal
elements are suppressed by a factor 1042 relative to the
diagonal elements), and that in the present model one does
not even have to consider a coupling to an additional
environment in order to obtain sufficient decoherence—the
interactions between adiabatic and entropic modes during
the conversion phase are entirely sufficient!

B. Amplification, squeezing and semiclassicality

As we have just seen, the reduced density matrix
decoheres very effectively during the conversion phase.
Hence, at the end of that process, we are left with adiabatic
curvature perturbations that have a nearly scale-invariant
spectrum and that behave like an ensemble of classical
perturbations with definite amplitudes. However, it would
still be interesting to know precisely to what extent the
curvature perturbations have become classical: to what
extent has the squeezed state of the entropic perturbations
been inherited by the curvature perturbations? In other
words, to what extent is the field momentum correlated
with the amplitude according to the classical relation? This
question is relevant for cosmological applications, as the
acoustic peaks in the cosmic background radiation show
that the momentum of the perturbations must have been
highly correlated with the field amplitudes.
We can address this question by looking at the Wigner

function. As is well known, due to the uncertainty relations,
it is impossible in quantum mechanics to talk about a
precisely defined phase space. However, for semiclassical
states an effective phase space description becomes avail-
able by making use of quasiprobability distributions, of
which the Wigner function is the best-known example—for
a review, see [44]. The Wigner function for vσ; πσ can be
obtained from the reduced density matrix via

Wðv; πÞ ¼ 1

2π

Z
dvDρ

�
v −

vD
2
; vþ vD

2

�
eivDπ (3.14)

¼ C1=2
SS

2πC1=2
DD

exp
�
−
CSS

2
v2 −

1

2CDD
ðπ þ CSDvÞ2

�
; (3.15)

where we have imposed that the total probability is nor-
malized to one,

R
dvdπWðv; πÞ ¼ 1, and where we are now

dropping the σ subscripts when a possible confusion seems
unlikely. We may rewrite the Wigner function as

W ∝ exp

�
−

v2

2ðΔvÞ2 −
1

2ðΔπclÞ2
ðπ − πclðvÞÞ2

�
: (3.16)

This form lets us identify the classical correlation
between v and π that describes the quantum state in the
optimal way4:

πclðvÞ ¼ −CSDv: (3.17)

The dispersions of v and π − πclcan be read off directly
from the Wigner function:

Δv2 ≡ hv̂2i ¼ C−1
SS ; (3.18)

Δπ2cl≡hðπ̂ þ CSDv̂Þ2i ¼ CDD: (3.19)

Given that hπ̂i ¼ 0, the total dispersion of momentum is
given by

ðΔπÞ2 ≡ hπ̂2i ¼
Z

dvdπWðv; πÞπ2 ¼ Δπ2cl þ C2
SDΔv2

¼ CDD þ C2
SD

CSS
: (3.20)

In passing, we note that the entanglement entropy is also
directly related to the dispersions in field amplitude and
momentum via

1

2
esk ¼

ffiffiffiffiffiffiffiffiffi
CDD

CSS

s
¼ ΔvΔπcl ≥

1

2
: (3.21)

Expressed in this form, one can see that the exponential of
the entanglement entropy is given by the area of the Wigner
ellipse in phase space (see also Fig. 4).
If the dispersion Δv is large, this indicates that the

curvature perturbations are amplified. In Fig. 3 we show
our numerical results for the amplification (we have plotted
ðΔvÞ2) again as a function of the wave number k. As the
figure shows, for small wave numbers the perturbations are
highly amplified during the conversion process, while
afterwards, in the approach to the bounce, this amplifica-
tion is reduced somewhat. If the bounce occurs within a few
e-folds after the end of the conversion process, as is natural
in the entropic mechanism, then a large amount of
amplification remains. The right panel of Fig. 3 shows
the amplification (plotted here at the reference time N ¼ 1)
as a function of wave number. The curve is well fitted by
assuming a k-dependence

Δv ∝ k−3=2; (3.22)

4By this we mean that the expectation value hðπ̂ − λv̂Þ2i is
minimized for λ ¼ −CSD.
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which confirms that small-wavelength modes are highly
amplified, and that they inherit their spectrum from the
entropy modes.5

Finally, as also discussed in [10], it is important to
evaluate the degree of classicality of the final adiabatic
modes. The effective classicality is largely determined by
the dispersion Δπcl, i.e. by the length of the (typically)
shorter axis of the Wigner ellipse (see Fig. 4, top left panel).
For this quantity to be small, the dispersion of v must
necessarily be large according to (3.21). This implies a
large ratio between the lengths of the principal axes of the
Wigner ellipse, and is for this reason referred to as
squeezing. A large amount of squeezing is required in
order for the correlations between v and π to closely follow
their classical counterpart. Combining our definitions and
results (3.13), (3.21) and (3.22), it follows that

Δπcl
Δv

≤
Δπ
Δv

∝ k2; (3.23)

and thus on large scales the curvature perturbations are in a
highly squeezed state. The crucial question here is whether
this effective classicality is such that the produced curvature

perturbations lead to the observed features of the cosmic
background radiation, and in particular whether they will
lead to the observed pattern of peaks and troughs in the
angular power spectrum of the cosmic microwave back-
ground. These peaks and troughs are caused by acoustic
oscillations after the curvature perturbations re-enter the
horizon in the expanding phase of the Universe. At that
point, the evolution of the perturbations is given by circular
classical trajectories in the ðk1=2v; k−1=2πÞ plane. When the
Wigner ellipse is highly squeezed in these reduced vari-
ables the initial phase (temporal phase) of the oscillations is
the same for all the modes with the same wave number. The
classical value of the temporal phase is given by

tanφ≡ jπclðvÞj
kv

¼ CSD

k
: (3.24)

Moreover, as long as ϕ is small (which will be the relevant
case here), the variance of the temporal phase of a squeezed
wave packet is approximately given by

Δφ≃ Δπcl
kΔv

: (3.25)

Figure 4 presents numerical results for this indicator. As
shown in the bottom left panel, the variance of the
temporal phase decreases dramatically during the con-
version phase, then starts slowly growing again due to the
contraction. The bottom right panel shows that, at a fixed
reference time after the conversion, the following
approximate scaling holds:

FIG. 3 (color online). The figure shows the amplification of the curvature perturbations ðΔvÞ2 ¼ 1=CSS as a function of time (left
panel) and at the reference time N ¼ 1 (right panel) for various wave numbers k. Noting the logarithmic scale on the vertical axis, it is
evident that long-wavelength modes become highly amplified during the conversion process. In particular, at fixed time one finds
ðΔvÞ2 ∝ k−3. During the kinetic phase, this amplification is reduced somewhat, but will remain large if the bounce occurs within not too
large a number of e-folds after conversion.

5Some readers may not be accustomed to seeing the
variance of the perturbations expressed in this way. To provide
a link to the usual calculation, note that for a single field the
variance is given by ðΔvÞ2 ¼ 1=CSS ¼ 1=Reð−iv�0=v�Þ ¼
1=½−iðv�0=v� − v0=vÞ� ¼ vv�, where in the last step we have
used the Wronskian (2.22).
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Δφ ∝ k; k≲ 10−6 (3.26)

Moreover, our numerical results show that, for sufficiently
small k, the classical value of the temporal phase after the
conversion phase is much smaller than its variance,

Δφ
φ

∼ 103; (3.27)

but this relation is independent of k for sufficiently small
k. Thus, the classical value of the angle ϕ also scales in

proportion to k. Hence, the classical relation between v
and π is essentially π ¼ 0 and the inclination of the
Wigner ellipse is effectively invisible for small-k modes
(see Fig. 4, top right panel). This implies that for all
long-wavelength modes, the initial temporal phase is
zero. If one describes the acoustic oscillations of the
density perturbations upon horizon re-entry as a linear
sum of a cos and a sin solution, then our results imply
that (for all observationally relevant scales) purely the cos
mode is realized, and consequently all modes with the
same wave number k will reach maximal and minimal

FIG. 4 (color online). Top left panel: general shape of the Wigner ellipse for a Gaussian state. Top right panel: shape of the Wigner
ellipses in the rescaled phase space at N ¼ 1 for k ¼ 10−7,10−8 and 10−9. The plot shows that the dispersion of v scales very accurately
as k−3=2, while the dispersion of the temporal phase rapidly goes to zero: the k ¼ 10−9 ellipse is barely distinguishable from a segment of
the π ¼ 0 line. Bottom panels: behavior of the temporal phase dispersion (3.25) as a function of N and at N ¼ 1 for different values of k.
The right panel indicates that Δϕ ∝ k (dotted line) for sufficiently small k.
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amplitudes in synchrony. This is precisely what is needed
to reproduce the acoustic oscillations observed in the
cosmic microwave background [45].
Let us briefly contrast our results with the two-field

inflationary model studied in [10], where the temporal
phase was found to have a definite classical value
Δφ
φ ∼ 103;where this ratio is much smaller than in our
case. However, it should be clear now that the precise
numerical value of this ratio is rather unimportant—what
really matters is that for all observationally relevant scales
both the numerator and the denominator in this expres-
sion become very small. And this occurs both in the
inflationary model of [10] and in the model that we
study here.
A final comment: the scaling (3.26) can be seen as a

consequence of the approximate conservation, at the
quantum level, of the comoving curvature perturbation,

R̂≡ v̂σ
z
: (3.28)

The Heisenberg equation for R̂ reads [see (2.18)]

zR̂0 ¼ v̂0σ −
z0

z
v̂σ ¼ π̂σ þ 2θ0v̂s: (3.29)

Therefore, after the conversion (θ0 ¼ 0) we have
approximately

zR̂0 ¼ π̂σ: (3.30)

Hence, the degree of conservation of R is directly
connected to the dispersion of πσ . In our case, this
quantity is simply related to the dispersion of the
temporal phase, since the Wigner ellipse is almost
horizontal and Δπcl ≃ Δπ:

Δφ≃ Δπ
kΔv

: (3.31)

As previously shown, after the conversion
Δv ∝ k−3=2, hence

ΔR0 ≡ hR̂02i1=2 ∝ k1=2: (3.32)

This confirms that, after the conversion phase, long-
wavelength adiabatic curvature perturbations evolve clas-
sically in the sense that they are very accurately conserved
at the full quantum level.

IV. DISCUSSION

The proposition put forward both by the inflationary
theory of the early Universe and by the alternative
ekpyrotic/cyclic models is that all structure in the
Universe originated out of primordial quantum fluctua-
tions, generated either during the currently expanding

phase of the Universe or in a prior contracting phase.
This stunning proposition requires that there was a phase in
the history of the Universe when the usually tiny quantum
fluctuations were amplified in such a way as to end up
behaving as classical density perturbations.
In the context of inflationary cosmology, it became

progressively clear over the last three decades that the
quantum-to-classical transition of perturbations relies on
several key ingredients: for one, the approximately
Gaussian state of the perturbations becomes amplified
and highly squeezed during the inflationary phase, as the
fluctuation modes exit the horizon. Second, decoherence
must occur so that one can explain why these squeezed
states can be interpreted as a classical ensemble of
density perturbations. A final, still unresolved aspect,
is to explain why we observe one particular outcome of
this classicalization process on the microwave sky, rather
than on a different (but statistically very similar)
one [46].6

Here, we have performed an analogous analysis for
ekpyrotic models. Because the background dynamics are
very different in these models, it was not a priori clear
that a similar quantum-to-classical transition could occur
here as well. And in fact, during the ekpyrotic phase,
the adiabatic curvature perturbations, which have a blue
spectrum, are neither amplified nor do they get
squeezed. Hence, they cannot be interpreted classically.
This result, which was previously noticed in [34], has
implications for single-field ekpyrotic models: it was
originally thought that such blue modes could end up
with a scale-invariant spectrum due to (essentially
classical) matching conditions at the bounce [47].
This now appears unlikely, as the modes of interest
cannot be treated classically in the approach to the
bounce.
However, in the entropic mechanism nearly scale-

invariant entropy perturbations are created during the
ekpyrotic phase. These do get amplified and evolve into
a highly squeezed state. The subsequent conversion phase
kills two birds with one stone: as the entropy perturbations
source the curvature perturbations, the latter perturbations
inherit the desirable properties of the entropic modes
(amplified, squeezed, nearly scale-invariant), while on
top of that the interactions between the two types of
fluctuations lead to efficient decoherence of the density
matrix. The end result is that the entropic mechanism
generates a classical ensemble of nearly scale-invariant
curvature perturbations in the approach to the bounce. In
terms of generating nearly scale-invariant curvature per-
turbations during the early history of our Universe, our
results demonstrate that ekpyrotic models can now be

6In a many-worlds interpretation of quantum mechanics, this is
the question of why we happen to find ourselves in one particular
decohered branch of the wave function rather than another one.
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considered as truly standing on the same footing as infla-
tionary models.
Recent studies of nonsingular bounce models involving

higher-derivative kinetic terms for the scalar fields [48,49],
loop quantum cosmology models [50], and in particular the
recent fully nonperturbative classical study of [51] all
suggest that the perturbations evolve through the bounce
unscathed, and emerge in the currently expanding phase of
the Universe in agreement with cosmic microwave back-
ground observations. However, it is certainly the case that
the bounce phase remains the least understood part of
ekpyrotic/cyclic models, and it is here that future progress
is most eagerly awaited.
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APPENDIX:A GENERAL FORMALISM FOR
TWO-FIELD COSMOLOGICAL

PERTURBATIONS

In this appendix, we will present the general formalism
for quantizing cosmological models with two gauge-
invariant scalar perturbation modes as well as the related
discussion of the associated reduced density matrix and
decoherence. We do this for two reasons: the first is that we
hope that this appendix will be useful to the reader when
investigating closely related situations. And the second is to
highlight the ambiguities that appear when integrating the
Lagrangian by parts. Indeed, it is usually assumed that
Lagrangians related by total derivatives are equivalent. This
is of course true in the sense that they lead to the same
equations of motion. However, in quantizing the system,
one is necessarily making a choice of canonical variables,
and these variables depend on the Lagrangian one is using.
In discussing decoherence, we have considered the sit-
uation where one of the two fields acts as an environment
for the other. Choosing different canonical variables then
implies that one is tracing out different degrees of freedom,
and the physical results do depend on that choice. Below,
wewill elaborate more precisely how the results can change
by performing such an integration by parts on the original
Lagrangian. Before doing so, we should comment on our
choice of Lagrangian: we have used the Lagrangian that
one obtains directly by substituting the definitions of
gauge-invariant perturbation modes, without performing
any integrations by parts. This appears to us to be the most
conservative and best-motivated choice. However, it would
certainly be interesting to try to further elucidate the role of

other Lagrangians that are equivalent to ours up to total
derivative terms.
We will consider the following general quadratic

Lagrangian for the real/imaginary part of the Fourier modes
of two gauge-invariant perturbation modes vσ and vs:

L ¼ κσ
2
v02σ − lσσvσv0σ −

1

2
m2

σv2σ þ
κs
2
v02s − lssvsv0s

−
1

2
m2

sv2s þ κσsv0σvs0 − lσsv0σvs − lsσvσv0z −m2
σsvσvs;

(A1)

where all the coefficients are a priori arbitrary functions of
time. Integration by parts maintains the form of the
Lagrangian, except for the redefinitions,

σ − σ∶
�
lσσ → λσσlσσ;

m2
σ → m2

σ − ð1 − λσσÞl0
σσ

; (A2)

s − s∶
�
lss → λsslss;

m2
s → m2

s − ð1 − λssÞl0
ss;

(A3)

σ − s∶

8<
:

lσs → λσslσs;

lsσ → lsσ − ð1 − λσsÞlσs;

m2
σs → m2

σs − ð1 − λσsÞl0
σs

(A4)

s − σ∶

8<
:

lσs → lσs − ð1 − λsσÞlsσ

lsσ → λsσlsσ;

m2
σs → m2

σs − ð1 − λsσÞl0
sσ;

(A5)

where the functions λσσ; λσs; λss depend on the specific
integration by parts one is performing. All physical
quantities depend only on the invariant combinations,

m̄2
σ ≡m2

σ − l0
σσ; (A6)

m̄2
s ≡m2

s − l0
ss; (A7)

l≡ lσs − lsσ; (A8)

m̄2
σs ≡m2

σs − l0
σs ¼ m2

σs − l0
sσ − l0: (A9)

For instance, the Euler-Lagrange equations read

ðκσv0σ þ κσsv0sÞ0 ¼ −m̄2
σvσ þ lv0s − m̄2

σsvs; (A10)

ðκsv0s þ κσsv0σÞ0 ¼ −m̄2
svs − lv0σ − m̄2

σsvσ: (A11)

However, adding a total derivative to the Lagrangian
corresponds to performing a canonical transformation act-
ing on momenta in the Hamiltonian formalism according to
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σ − σ∶
�
πσ → πσ þ ð1 − λσσÞlσσvσ
πs → πs

; (A12)

s − s∶
�
πσ → πσ

πs → πs þ ð1 − λssÞlssvs
; (A13)

σ − s∶
�
πσ → πσ þ ð1 − λσsÞlσsvs
πs → πs þ ð1 − λσsÞlσsvσ

; (A14)

s − σ∶
�
πσ → πσ þ ð1 − λsσÞlsσvs
πs → πs þ ð1 − λsσÞlsσvσ

: (A15)

We note that each of these transformations can be written as
π → π þMv, where M is a symmetric matrix.
Proceeding to the quantization of these modes, we

write the general solution of the Heisenberg operator
equations as

v̂ ¼ Fâþ F�â† þGb̂þG�b̂†; (A16)

where F andG are complex, linearly independent solutions
of the equations of motion and â; â†; b̂; b̂† are two pairs
of annihilation/creation operators. Due to the symmetry of
the matrix M, the following Wronskian quantities are
constants of the motion, whose values we fix in the
canonical fashion:

F · P�
F − F� · PF ¼ 1; (A17)

G · P�
G −G� · PG ¼ 1; (A18)

F · PG − PF ·G ¼ 0; (A19)

F · P�
G − PF ·G� ¼ 0: (A20)

Here, the quantities denoted PF;G are the canonical
momenta associated with F;G. One can then re-express
the annihilation operators as

iâ ¼ P�
F · v̂ − F� · π̂; (A21)

ib̂ ¼ P�
G · v̂ −G� · π̂: (A22)

These expressions can be used to define a vacuum state,

âj0i ¼ b̂j0i ¼ 0; (A23)

which will depend on the choice of mode functions. The
vacuum can be described equally well by the wave
function,

Ψj0i ∝ exp

�
−
1

2
Aσσv2σ − Aσsvσvs −

1

2
Assv2s

�
; (A24)

Aσσ¼−i
ðκσF0�

σ þκσsF0�
s ÞG�

s−F�
sðκσG0�

σ þκσsG0�
s Þ

F�
σG�

s−F�
sG�

σ
þilσσ;

(A25)

Ass¼−i
ðκsF0�

s þκσsF0�
σ ÞG�

σ−F�
σðκsG0�

s þκσsG0�
σ Þ

F�
sG�

σ−F�
σG�

s
þilss;

(A26)

Aσs¼−i
ðκσF0�

σ þκσsF0�
s ÞG�

σ−F�
σðκσG0�

σ þκσsG0�
s Þ

F�
sG�

σ−F�
σG�

s
þilσs

(A27)

¼ −i
ðκsF0�

s þ κσsF0�
σ ÞG�

s − F�
sðκsG0�

s þ κσsG0�
σ Þ

F�
σG�

s − F�
sG�

σ
þ ilsσ:

(A28)

Not surprisingly, the correlators depend on the quantiza-
tion: the different behaviors of the phase of the wave
function correspond to different values of momenta, related
by (A12)–(A15). By considering the time-dependent
Schrödinger equation, we can obtain equations of motion
for the correlators. For this, we need an expression for the
Hamiltonian of our system. It is given by

H ¼ κs
2κ

ðπσ þ lσσvσ þ lσsvsÞ2 þ
κσ
2κ

ðπs þ lsvs þ lsσvσÞ2

−
κσs
κ
ðπσ þ lσσvσ þ lσsvsÞðπs þ lsvs þ lsσvσÞ

þ 1

2
m2

σv2σ þ
1

2
m2

sv2s þm2
σsvσvs; (A29)

κ ≡ κσκs − κ2σs; (A30)

and it can be quantized trivially since the ordering
ambiguities correspond to an additive constant in H. The
equations for the correlators, obtained from iΨ0 ¼ ĤΨ, or
directly from the equations of motion for the constituent
mode functions, take the form

−iκĀ0
σσ ¼ κm̄2

σ − κsĀ2
σσ − κσðĀσs þ ilÞ2

þ 2κσsĀσσðĀσs þ ilÞ; (A31)

−iκĀ0
ss ¼ κm̄2

s − κσĀ2
ss − κsĀ2

σs þ 2κσsĀssĀσs; (A32)

−iκĀ0
σs ¼ κm̄2

σs − ðκsĀσσ þ κσĀssÞĀσs − iκσlĀss

þ κσsðĀσσĀss þ ĀσsðĀσs þ ilÞÞ; (A33)

Āσσ ≡ Aσσ − ilσσ; (A34)

Āσs ≡ Aσs − ilσs; (A35)

Āss ≡ Ass − ilss: (A36)
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Note that the equations for the reduced correlators Ā only
contain the invariant combinations (A6)–(A9). Moreover,
according to (A25)–(A27) the initial conditions for the
correlators are also independent of the quantization. Thus,
so far all results are unaffected by performing an integration
by parts on the Lagrangian.
However, in discussing the reduced density matrix and

decoherence, this is no longer so: tracing over e.g. vs, the
reduced density matrix for measurements of vσ reads

ρðv̄σ; vσÞ ¼ N0 exp
�
−
1

2
CSSv2S −

1

2
CDDv2D − iCSDvSvD

�
;

(A37)

vS ≡ 1

2
ðvσ þ v̄σÞ; (A38)

vD ≡ vσ − v̄σ; (A39)

CSS ¼ 2AR
σσ

�
1 −

ðAR
σsÞ2

AR
ssAR

σσ

�
; (A40)

CSD ¼ AI
σσ

�
1 −

AI
σsAR

σs

AR
ssAI

σσ

�
; (A41)

CDD ¼ 1

2
AR
σσ

�
1þ ðAI

σsÞ2
AR
ssAR

σσ

�
: (A42)

As discussed in the previous sections, the main indicator for
decoherence is the ratio

CDD

CSS
¼ ĀR

ssĀR
σσ þ ðĀI

σs þ lσsÞ2
ĀR
ssĀR

σσ − ðĀR
σsÞ2

: (A43)

This quantity does depend on the quantization, as is
obvious from the appearance of the lσs term. Therefore,
the answer for the amount of decoherence depends explic-
itly on the choice of canonical variables. As an application,
we checked that the prediction for the toy model studied in
[34], namely no decoherence for kinetically coupled scalar
fields during an ekpyrotic phase, only holds for the choice
of variables adopted in that paper (lσs ¼ a0=a). On the
other hand, if like in our case the two fields are not coupled
from a given time on (lσs ∝ θ0), this ambiguity is no longer
present.

APPENDIX:B FORMULAS INVOLVING
BESSEL FUNCTIONS

Approximating cosmological mode functions at late
times requires the use of the following asymptotic behav-
iors of Bessel functions (with α > 0):

JαðxÞ ∼x→0 1

Γðαþ 1Þ
�
x
2

�
α

þOðxαþ2Þ; (B1)

YαðxÞ ∼x→0 −
ΓðαÞ
π

�
x
2

�
−α

−
Γð−αÞ cosðπαÞ

π

�
x
2

�
α

−
Γðα − 1Þ

π

�
x
2

�
2−α

þOðxαþ2Þ: (B2)

In order to work out the corresponding correlators, one needs to evaluate time derivatives of the mode functions. Denoting
x≡ −kτ, so that v0 ¼ −kv;x, we have

dv
dx

¼
ffiffiffiffiffi
π

4k

r
1

2
ffiffiffi
x

p
�
Jα þ 2x

dJα
dx

þ iYα þ 2ix
dYα

dx

�
;

and hence

Re

�
v0�

v�

�
¼ 1

2τ
−

k
2ðJ2α þ Y2

αÞ
d
dx

ðJ2α þ Y2
αÞ; Im

�
v0�

v�

�
¼ −

k
J2α þ Y2

α
½Yα

_Jα − Jα _Yα�:

It turns out that we must keep subleading terms in order to calculate the asymptotic behavior of the correlators.
A straightforward calculation leads to

J2α þ Y2
α ¼

ΓðαÞ2
π2

�
x
2

�
−2α

�
1þ 2Γð−αÞ cos ðπαÞ

ΓðαÞ
�
x
2

�
2α

þ 2

α − 1

�
x
2

�
2

þ � � �
�
;
d
dx

ðJ2α þ Y2
αÞ

¼ −
2α

x
ðJ2α þ Y2

αÞ
�
1 −

2Γð−αÞ cos ðπαÞ
ΓðαÞ

�
x
2

�
2α

−
2

αðα − 1Þ
�
x
2

�
2

þ � � �
�
;

so that one obtains
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Re

�
v0�

v�

�
¼

�
1

2
− α

�
1

τ
þ 2αΓð−αÞ cos ðπαÞ

τΓðαÞ
�
x
2

�
2α

þ � � �

¼ ð1 − 2αÞðϵ − 1Þ
2

Hþ 2αΓð−αÞ cos ðπαÞ
τΓðαÞ

�
x
2

�
2α

þ � � � ; Im
�
v0�

v�

�
¼ −

2π

τΓðαÞ2
�
x
2

�
2α

þ � � � :
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