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We construct N=1 supergravity extensions of scalar field theories with higher-derivative kinetic
terms. Special attention is paid to the auxiliary fields, whose elimination leads not only to correc-
tions to the kinetic terms, but to new expressions for the potential energy as well. Our formalism
allows one to write a supergravity extension of any higher-derivative scalar field theory and, there-
fore, has applications to both particle physics and cosmological model building. As an illustration,
we couple the higher-derivative DBI action to N=1 supergravity. This displays a number of new
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important, the potential is everywhere negative. Thus, DBI inflation cannot occur in its most in-
teresting, relativistic regime. We show how to overcome this problem by coupling the model to
an additional chiral supermultiplet. In this way, one obtains effective single real scalar field DBI
models with arbitrary positive potentials. A further applications of our formalism is a supergrav-
ity versions of the ghost condensate. We discuss its physical properties, including the fact that the
ghost condensate allows one to break local supersymmetry while the gravitino remains massless.
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1. Introduction and motivation

In cosmology, there are situations of interest where higher-derivative kinetic terms are impor-
tant. The best-known examples are probably the models of DBI inflation [1] and k-inflation [2],
where higher-derivative kinetic terms allow for slow-roll inflationary dynamics in potentials that
would otherwise be too steep for successful inflation to take place. These models were inspired by
certain higher-derivative terms that naturally appear in string theory, e.g. in the effective description
of D-brane dynamics. An open question is whether one can derive such models from an explicit
string compactification. In the present work, we will rather work from the opposite end, and ask
whether these models can be formulated in N = 1 supergravity. Eventually, our approach should
of course meet with the compactification approach.

Perhaps surprisingly, further motivation for studying higher-derivative cosmological models
comes from the framework of eternal inflation [3]. As is well-known, eternal inflation is plagued
by the measure problem, namely the necessity to choose a measure to regulate the infinities inherent
to eternal inflation. However, recently a generic feature has emerged, which is of crucial importance
for predictions stemming from eternal inflation: the currently known measures that do not lead to
blatant paradoxes have in common that they predict that the dominant vacuum in the multiverse
is the longest-lived vacuum. This so-called master vacuum has been conjectured to exhibit two
important, and related, properties [4]: 1. To be very long-lived, it must be nearly supersymmetric,
and hence likely has a small cosmological constant. 2. If it is nearly supersymmetric, it likely
cannot support life, because of the implied near-symmetry between matter and forces. These two
assumptions imply that the most likely place to be in the multiverse is in the habitable vacuum that
can be reached via the fastest decay process from the master vacuum.

We know that in the past our universe had a high Hubble rate, and a high energy scale. To
reach a universe like ours from the master vacuum, a large violation of the Null Energy Condition
(NEC) must have occurred [5]. Thus, the fastest possible NEC violation will play a crucial role
in the multiverse. Presently, several conjectures exist as to how the NEC can be violated in a
cosmological context. These conjectures can be subdivided into two broad categories, namely
quantum NEC violations and classical ones. The best-understood quantum NEC violation is that
of up-tunneling, where an extended spacetime region in de Sitter space can perform a quantum
jump (described by a Coleman-de Luccia instanton) to a higher-Hubble-rate de Sitter vacuum [6].
This process is reasonably well understood in semiclassical quantum gravity, but it is ultra-slow,
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Figure 1: Quantum violations of the Null Energy Condition: on the left via uptunneling, and on the right
via a quantum resolution of a classical big crunch singularity.
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Figure 2: Classical violations of the NEC: on the left a non-singular bounce such as envisioned in new
ekpyrotic cosmology, and on the right the emergent phase in the Galilean genesis scenario.

and will only be truly relevant if no faster NEC-violating processes exist. A second such quantum
violation of the NEC is the conjectured quantum resolution of classically singular big crunch/big
bang transitions [7]. If feasible, such processes will have dramatic consequences for cosmology,
see e.g. [8].

One may wonder whether it is also possible to have classical violations of the NEC. Here, very
few models are currently available: the only known scalar-field models are the ghost condensate
[9] and the closely related Galileons [10] - both of these involve higher derivatives in an essential
manner. These theories have already led to new cosmological models, such as new ekpyrotic
cosmology [11] or Galilean genesis [12], which, if consistent, would play an important role in a
multiverse context [5]. What is not clear at present is whether such models are truly consistent, and
whether or not they can be embedded into a UV complete framework. As a first step in performing
such an analysis, we will construct a supergravitational version of the ghost condensate model
below.

The plan of this contribution is as follows: we will first introduce our formalism for construct-
ing chiral superfield actions with higher derivatives, first in global and then in local supersymmetry.
We will then look at the elimination of the auxiliary fields, especially the auxiliary field F that is
contained in chiral multiplets, and show that this leads to new expressions for the scalar field po-
tentials. When the higher-derivative terms are small, we obtain correspondingly small corrections
to both the kinetic and potential terms. For large higher-derivative terms, the corrections are cru-
cial, and a generic effect that we find is that the potential becomes negative in this regime. Thus
a simple implementation of DBI inflation actually fails. We subsequently show how to overcome
this limitation by coupling the model to an additional chiral superfield. Finally, we look at the
ghost condensate model in supergravity, and discuss its properties, such as its ability to break lo-
cal supersymmetry without the super-Higgs effect taking place. We will conclude with a short
discussion.

2. Higher-derivative chiral superfield actions in N = 1 supergravity

2.1 Higher-derivative chiral superfields in global supersymmetry

We begin by considering global N = 1 supersymmetry and will work in superspace. Our
notations and conventions are those of Wess and Bagger [13]. A chiral superfield Φ, defined by the

3



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
1
8

Scalars with higher derivatives in supergravity and cosmology Jean-Luc Lehners

constraint D̄Φ = 0, has the expansion

Φ = A(x)+
√

2θ χ(x)+θθF(x)+ iθσ
m

θ̄ ∂mA(x)− i√
2

θθ∂mχ(x)σm
θ̄ +

1
4

θθθ̄ θ̄�A(x), (2.1)

where A is a complex scalar, χα is a spin- 1
2 fermion and F is a complex auxiliary field. The

component expansion (2.1) can be simplified by using the coordinates ym = xm + iθσmθ̄ , in terms
of which

Φ = A(y)+
√

2θ χ(y)+θθF(y). (2.2)

This form of the component expansion has a straightforward generalization to curved superspace.
A general feature of superspace is that the highest component (that is, the θθθ̄ θ̄ component)

transforms under supersymmetry into a total spacetime derivative. Thus, the highest component
of a superfield, which can be isolated by integrating over superspace, can be used to construct a
supersymmetric Lagrangian.

In [14], it was shown how to construct supersymmetric actions involving higher-derivatives of
chiral superfields. The construction is based on a particular supersymmetric extension of the scalar
field Lagrangian (∂φ)4 given by DαΦDαΦD̄α̇Φ†D̄α̇Φ†. Ignoring the fermion χ , this superfield
contains only the θθθ̄ θ̄ component

Dα
ΦDαΦD̄α̇Φ

†D̄α̇
Φ

† = θθθ̄ θ̄

(
16(∂A)2(∂A∗)2−32 |∂A|2|F |2 +16|F |4

)
, (2.3)

where the complex scalar A is composed of two real scalars φ ,ξ as

A =
1√
2
(φ + iξ ) (2.4)

and |∂A|2 ≡ ∂A ·∂A∗. Thus, the superspace integral of the superfield (2.3) yields the term

16(∂A)2(∂A∗)2 = 4(∂φ)4 +4(∂ξ )4−8(∂φ)2(∂ξ )2 +16(∂φ ·∂ξ )2 (2.5)

plus terms involving the auxiliary field F . Hence, Eq. (2.3) constitutes a possible supersymmetric
extension of (∂φ)4. This superfield possesses several particularly useful properties: 1) It constitutes
a supersymmetric extension of the precise expression (∂φ)4, and does not contain other terms
involving φ alone. 2) Despite the higher-derivative nature of the superfield, the auxiliary field F
does not obtain a kinetic energy. This is non-trivial, as on dimensional grounds a term such as
|A|2|∂F |2 could have arisen, and implies that F remains truly auxiliary. 3) The auxiliary field now
appears at quartic order in the action and, thus, its equation of motion is cubic. Hence, in contrast
to the usual two-derivative supersymmetric theories, there exist now up to three different solutions
for F . 4) Finally, the most crucial property for our present purposes is the fact that the bosonic
part of DαΦDαΦD̄α̇Φ†D̄α̇Φ†, given in (2.3), only contains a non-zero top θθθ̄ θ̄ component– all
lower components vanish. It follows that if one multiplies this superfield with any function T of
Φ, Φ† and (an arbitrary number of) their spacetime derivatives, then the component expansion
will be given by (2.3) times T |, where inside T | the chiral superfield Φ is simply replaced by its
lowest component A. This allows one to easily construct a supersymmetric extension of any higher-
derivative scalar Lagrangian containing (∂φ)4 as a factor, simply by performing the replacement
φ →

√
2A→

√
2Φ in the co-factor.
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This last property allows one to construct a supersymmetric extension of theories with La-
grangian P(X ,φ), where X ≡ −1

2(∂φ)2. Specifically, for P(X ,φ) = ∑n≥1 an(φ)Xn, the higher-
derivative terms in the supersymmetric generalization are the d2θd2θ̄ integral of

1
16

DΦDΦD̄Φ
†D̄Φ

† T (Φ,Φ†,∂mΦ,∂nΦ
†), (2.6)

where T (Φ,Φ†,∂mΦ,∂nΦ
†) = ∑

n≥2
an

(
1
4

∂
m(Φ+Φ

†)∂m(Φ+Φ
†)

)n−2

, (2.7)

with an = an

(
Φ+Φ†
√

2

)
. Particular applications are a supersymmetric form of the DBI action [14],

as well as a supersymmetric ghost condensate theory– both in flat spacetime. However, the most
interesting phenomenological consequences occur when these models are coupled to gravity– for
example, inflation driven by the DBI part of the action or cosmic bounces induced by a ghost
condensate. It is, therefore, of interest to include gravity in the analysis. In a supersymmetric
context, this means extending the above construction to curved superspace. This will be the topic
of the next section.

2.2 Extending to supergravity

We now want to extend the above results to N = 1 supergravity. As with global super-
symmetry, supergravity is most easily expressed in superspace–now, however, with non-vanishing
curvature. In this case, one can introduce new fermionic coordinates Θ which are defined precisely
so that the (A,χ,F) components of a chiral superfield Φ arise as the coefficients of the expansion

Φ = A+
√

2Θ
α

χα +Θ
α

ΘαF. (2.8)

In curved superspace, supersymmetric Lagrangians can be constructed from the chiral integrals∫
d2

Θ(D̄2−8R)L, (2.9)

where L is a scalar, hermitean function. Note that the chiral projector in curved superspace is
D̄2− 8R, where D̄α̇ is a spinorial component of the curved superspace covariant derivative DA =

(Da,Dα ,D̄α̇) and R is the curvature superfield. In its component expansion, R contains the Ricci
scalar R and the gravitino ψm, as well as the auxiliary fields of supergravity– namely a complex
scalar M and a real vector bm. A second superfield that we will need is the chiral density E - this
contains the determinant of the vierbein e, as well as M and ψm. For most of this contribution, we
will set the fermions to zero.

We introduce a hermitean Kähler potential K(Φi,Φ†k∗) of the chiral superfields Φi (where i
enumerates the fields), along with a holomorphic superpotential W (Φi). Their Lagrangian is

L =
∫

d2
Θ2E

[3
8
(D̄2−8R)e−K(Φi,Φ†k∗)/3 +W (Φi)

]
+h.c. (2.10)

We now add the higher-derivative kinetic terms for the chiral superfields, now, however, in a mani-
festly diffeomorphism invariant manner [15, 16]. Specifically, we introduce

Lh−d = −1
8

∫
d2

Θ2E (D̄2−8R)DΦ
iDΦ

jD̄Φ
†k∗D̄Φ

†l∗Ti jk∗l∗+h.c.

= 16 e[(∂Ai ·∂A j)(∂Ak∗ ·∂Al∗)−2F iFk∗(∂A j ·∂Al∗)+F iF jFk∗F l∗]Ti jk∗l∗|, (2.11)
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where Ti jk∗l∗| is the lowest component of the tensor superfield Ti jk∗l∗. Let us clarify the meaning of
Ti jk∗l∗. First, this superfield transforms as a four-index tensor on the Kähler manifold in which the
scalar fields take their values and, thus, ensures target space diffeomorphism invariance. Second,
Ti jk∗l∗ is required to be hermitian and symmetric in the pair of indices i, j as well as in k∗, l∗.
Third, any tensor satisfying these constraints can be multiplied by an arbitrary real function of
the chiral superfields and an unlimited number of their Dm covariant derivatives, as long as all
indices stemming from the covariant derivatives are contracted. The simplest example of Ti jk∗l∗
is 1

2(gik∗g jl∗+ gil∗g jk∗), where gi j∗ is the Kähler metric. We would like to stress that the fact that
one can multiply this tensor with an arbitrary function of the chiral superfields and their spacetime
derivatives means that we can obtain a supergravity extension of any term that involves (∂φ)4 as
a factor. An illustrative example of the usefulness of this property is provided by the DBI action
presented in Section 3.

The sum of the two actions Eqs. (2.10)+(2.11) does not lead to ordinary Einstein frame grav-
ity but, rather, to a scalar-gravity theory of the form e−K/3R. One can transform the action into
Einstein frame by performing the Weyl rescaling

en
a→ en

aeK/6. (2.12)

Note that the higher-derivative term does not contribute to the gravity-scalar coupling and, hence,
we can perform the same Weyl rescaling as in ordinary chiral supergravity without higher-derivatives.
This is a non-trivial feature of our framework, which greatly facilitates subsequent calculations.
After Weyl rescaling and the elimination of the auxiliary files bm and M, the Lagrangian becomes

1
e
LWeyl = −

1
2
R−gik∗∂Ai ·∂Ak∗+gik∗eK/3F iFk∗+ e2K/3[F i(DAW )i +Fk∗(DAW )∗k∗]+3eKWW ∗

+ 16[(∂Ai ·∂A j)(∂Ak∗ ·∂Al∗)−2F iFk∗(∂A j ·∂Al∗)+F iF jFk∗F l∗]Ti jk∗l∗Weyl|. (2.13)

In the next section, we will discuss the remaining auxiliary field, namely F , in detail.

2.3 New expressions for potentials after eliminating the auxiliary field F

We now consider the most interesting of the auxiliary fields, namely F. Its equation of motion
is

gik∗F i + eK/3(DAW )∗k∗+32F i(eK/3F jF l∗−∂A j ·∂Al∗)Ti jk∗l∗Weyl|= 0. (2.14)

This equation is now cubic in F and, thus, it can have up to three inequivalent solutions. As we
will see, these different solutions lead to different theories! Here, we will restrict our analysis to
a single chiral superfield Φ1 = Φ, the extension to multiple superfields being straightforward to
implement. In this case, the equation of motion for F becomes

K,AA∗F + eK/3(DAW )∗+32F(eK/3|F |2−|∂A|2)T = 0, (2.15)

where we use the simplified notation

T ≡ T111∗1∗Weyl|. (2.16)

Note that T is effectively an arbitrary real scalar function of A,A∗ and their spacetime covariant
derivatives Dm . . .∂nA, Dm . . .∂nA∗. Multiplying (2.15) with F∗ shows that (DAW )∗F∗ must be real.

6
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Thus, one can relate F and F∗ via F∗ = F DAW/(DAW )∗ as long as (DAW )∗ 6= 0, which we now
assume. One can use this relation to obtain a cubic equation for F alone. This is given by

K,AA∗F + eK/3(DAW )∗+32(eK/3 DAW
(DAW )∗

F3−|∂A|2F)T = 0. (2.17)

In general, this equation admits three distinct solutions– which we denote by F1,F2,F3 –leading to
three different theories. One can find these solutions using Cardano’s formula. Define

p = e−K/3 (DAW )∗

DAW

(
K,AA∗

32T
−|∂A|2

)
, q =

1
32T

(DAW )∗2

DAW
, D =

(q
2

)2
+
( p

3

)3
.

Then the solutions are given by
Fk+1 = ω

kF++ω
−kF− , (2.18)

where k = 0,1,2, ω = e2πi/3 = −1
2 + i

√
3

2 is a cube root of unity and F± = (−q
2 ±D1/2)1/3. Sub-

stituting these solutions back into the action generates three different branches of the theory. Only
one of these solutions approaches the usual solution for F when T → 0 - we call this solution the
ordinary branch, and we will focus on this solution here. For more details, see [15].

The higher-derivative terms are all proportional to the T tensor. Therefore, by assuming that
T contains a factor that can be tuned to be small, one can treat such terms as sub-leading. The
T → 0 limit then corresponds to q� p3/2, which for the ordinary branch implies

F1 = −K,AA∗eK/3(DAW )∗

+32T e4K/3(K,AA∗)4(DAW )∗2DAW −32T eK/3(K,AA∗)2(DAW )∗|∂A|2 +O(T 2) .(2.19)

Note that this corresponds to a small correction to the usual solution for the auxiliary field F in the
presence of a superpotential. Correspondingly, we obtain small corrections in the Lagrangian by
substituting this solution for F . To first order in the higher-derivative terms, we get

1
e
Lordinary,T→0 =−

1
2
R−K,AA∗ |∂A|2−32 eKK,AA∗ |DAW |2K,AA∗ |∂A|2 T (2.20)

+16 (∂A)2(∂A∗)2 T − eK(K,AA∗ |DAW |2−3|W |2)+16e2K(K,AA∗ |DAW |2)2 (K,AA∗)2T .

An interesting feature is that both the kinetic terms and the potential get corrected. The potential
now becomes

V = eK(K,AA∗ |DAW |2−3|W |2)−16(eKK,AA∗ |DAW |2)2 (K,AA∗)2Tnoder., (2.21)

where Tnoder. stands for the part of T that does not contain spacetime derivatives. Note that all the
correction terms in the Lagrangian above are invariant under Kähler transformations.

As an example, consider the case where K = ΦΦ†, T = τ(K,AA∗)
2 is of canonical form with τ

a small parameter and W = Φ. Then the potential, to first order in τ , is given by V = V̄ +δV. Near
the minimum at A = 0 the potential can be approximated by

V̄ ≈ 1+
1
2
|A|4 + · · · . (2.22)

7
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Note that the |A|2 = φ 2 + ξ 2 term cancels in the expansion. Therefore, this potential is very flat
near the origin, rising only quartically as (φ 2 +ξ 2)2. The leading order correction to this potential
is given by

δV ≈ −16τ(1+6|A|2 +16|A|4 + · · ·). (2.23)

For 1
128 > τ > 0, the minimum at A= 0 becomes a local maximum. The potential is now minimized

along a circle defined by |A|2 = 12τ/(1−128τ). In other words, the potential changes from a slowly
rising quartic potential with a minimum at the origin to a “Mexican hat”.

3. DBI Inflation in supergravity - an example of higher-derivative dominance

Using our formalism, we can write a supergravity version of the single real scalar field DBI
action [17]. It turns out that we need to consider a canonical Kähler potential K,AA∗ = 1 and a tensor
superfield [18]

16T =
f (Φ,Φ†)

1+ f ∂Φ ·∂Φ†eK/3 +
√
(1+ f ∂Φ ·∂Φ†eK/3)2− f 2(∂Φ)2(∂Φ†)2e2K/3

. (3.1)

Here f (Φ,Φ†) is an arbitrary hermitian function and we have used the notation that ∂Φ · ∂Φ† =

gmnDmΦDnΦ†. In a brane setting, the lowest component of the f function can be identified with
the warp factor of the direction in which the brane moves. This leads to the Lagrangian

1
e
L = −1

2
R+3eK |W |2− 1

f

(√
1+2 f ∂A ·∂A∗+ f 2 (∂A ·∂A∗)2− f 2 (∂A)2(∂A∗)2−1

)
(3.2)

+eK/3|F |2 + e2K/3(F(DAW )+F∗(DAW )∗
)
−32 eK/3|F |2∂A ·∂A∗T +16e2K/3|F |4 T .

Here T , which is the Weyl rescaled lowest component of T, is given by

16T =
f

1+ f ∂A ·∂A∗+
√
(1+ f ∂A ·∂A∗)2− f 2 (∂A)2(∂A∗)2

(3.3)

with f = f (A,A∗). The last term in the first line of (3.2) can be recognized as the DBI action for
the two real scalar fields φ ,ξ that make up the complex scalar A. That is, the simplest N = 1
supergravity generalization of the single real scalar DBI action naturally produces a DBI theory for
both real scalar component fields. As can be seen from the action, when the fields depend only on
time there exists an upper bound on the velocity of A given by

|Ȧ|2 ≤ 1
2 f

. (3.4)

The so-called relativistic regime corresponds to the situation where this bound is (almost) saturated.
Models of DBI inflation [1] exploit this inequality. As the brane moves towards a region of large
f , the scalars are automatically constrained to move slowly–allowing for inflation to occur on
potentials that would otherwise be too steep.

In the above Lagrangian, the auxiliary field F has not yet been eliminated. When f is small,
so is T and in the ordinary branch F approaches the usual solution

F ≈−eK/3(DAW )∗. ( f small) (3.5)

8
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In this non-relativistic limit, after substituting for F one obtains the usual potential

Vnon−rel. = eK( |DAW |2−3|W |2
)
. (3.6)

Note that this expression is only valid as long as the higher-derivative terms in A are irrelevant.
More interesting for our purposes is the relativistic limit, where f is large and |Ȧ|2 correspondingly
small, with T ≈ f/8. In that case, the solution for F approaches [19]

F ≈−
(
(DAW )∗2

4 f DAW

)1/3

. ( f large) (3.7)

After substituting for F in the relativistic limit, the Lagrangian becomes [17]

1
e
Lrel. = −

1
2
R+3eK |W |2− 3

2
eK |DAW |2(

4 f eK |DAW |2
)1/3 (3.8)

−1
f

(√
1+2 f ∂A ·∂A∗+ f 2 (∂A ·∂A∗)2− f 2 (∂A)2(∂A∗)2−1

)
+O( f−2/3) .

Thus, to leading order the potential is given by

Vrel. =−3eK |W |2, (3.9)

which is negative for any choice of superpotential. The term arising from eliminating F is sub-
leading. It is evident, therefore, that inflation cannot occur since a phase of de-Sitter-like expansion
requires a positive energy density in the universe. Thus, supergravitational relativistic DBI inflation
with a single chiral superfield does not work!

Let us now extend this theory by coupling it to a second chiral superfield S with component
expansion

S = B+Θ
α

ΘαFB. (3.10)

Here B is a complex scalar and FB the complex auxiliary field associated with S. We will take
this second field to have a two-derivative action. Then, choosing a Kähler potential such that
K,AA∗ = 1 ,K,AB∗ = 0 = K,A∗B , and after the same manipulations as in the previous section– Weyl
rescaling the action and eliminating the auxiliary fields bm,M–we obtain the Lagrangian

1
e
L = −1

2
R+3eK |W |2−K,BB∗∂B ·∂B∗ (3.11)

−1
f

(√
1+2 f ∂A ·∂A∗+ f 2 (∂A ·∂A∗)2− f 2 (∂A)2(∂A∗)2−1

)
+K,BB∗eK/3|FB|2 + e2K/3(FB(DBW )+F∗B (DBW )∗

)
+eK/3|F |2 + e2K/3(F(DAW )+F∗(DAW )∗

)
−32 eK/3|F |2∂A ·∂A∗T +16e2K/3|F |4 T .

In this expression, the auxiliary fields F,FB of the two chiral multiplets have not yet been eliminated.
Their equations of motion are given by

F + eK/3(DAW )∗+32F T (eK/3|F |2−∂A ·∂A∗) = 0, (3.12)

K,BB∗FB + eK/3(DBW )∗ = 0. (3.13)

9
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Note that these equations are not coupled and, thus, F can be eliminated as in the previous section.
It is also straightforward to substitute for FB, since its equation of motion is algebraic and linear. In
the non-relativistic limit–that is, when f is small–one obtains the usual potential

Vnon−rel.,2superfields = eK( |DAW |2 +K,BB∗ |DBW |2−3|W |2
)
. (3.14)

However, in the relativistic limit the |DAW |2 term again is subdominant and the potential becomes

Vrel.,2superfields = eK(K,BB∗ |DBW |2−3eK |W |2
)
. (3.15)

Comparing this to expression Eq. (3.9), we see that in the two superfield case a new, positive
definite term enters the potential energy! Hence, by choosing the superpotential appropriately, the
overall potential can be made positive along the direction(s) of interest in field space–thus enabling
inflation to occur.

We choose for the superpotential W an Ansatz first used in [20] and analyzed, in detail, in [21]
within the context of ordinary two-derivative supergravity. This Ansatz is

W = Sw(Φ), (3.16)

where w(Φ) is a “real” holomorphic function of Φ; that is, w(Φ) = ∑n cnΦn with cn ∈ R. The
coefficients are chosen to be real for simplicity. The lowest component of W is given by Bw(A).
On the B = 0 plane, we have W = 0,DBW = w(A) and, hence, the potential energy (3.15) becomes

VB=0 = eK(A,A∗)K,BB∗ |w(A)|2. (3.17)

Here, the Kähler potential is also evaluated at B = 0. The B field can always be rescaled so that
its kinetic term is canonical (when B = 0). Correspondingly, we will take K,BB∗ |B=0 = 1. Then the
potential further simplifies to the manifestly positive definite expression

VB=0 = eK(A,A∗)|w(A)|2. (3.18)

For this expression to be physically relevant, one must ensure that the dynamics is restricted to the
B = 0 plane. As shown in [17], this leads to the stability condition K,BBB∗B∗ .−1

3 . This condition
is analogous to that found in two-derivative supergravity models [21]. One can also restrict the
theory further, so that only a single real scalar field remains dynamical. For this purpose, choose
the Kähler potential to depend on Φ,Φ† via the combination −1

2(Φ−Φ†)2 only. Then, the Kähler
potential will not depend on φ . Correspondingly, if ξ is now stabilized around ξ = 0, then the
dynamics will take place entirely in the φ direction with the potential

Vφ = w
(

φ√
2

)2

. (3.19)

Thus, any smooth positive potential can be engineered in this way, simply by identifying w with
the square root of the desired potential and analytically continuing w to the complex plane [21].
However, for consistency, one must check that ξ is stabilized by a sufficiently high mass. As shown
in [17], this translates into the requirement K,AA∗BB∗ . 5

6 . Examples of Kähler potentials satisfying
all of the above assumptions and stability constraints were discussed in [21].

10
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Now note that for the superpotential (3.16), DAW is proportional to B and hence vanishes on
the B = 0 plane. Thus, in going from the approximately two-derivative regime to the relativistic
DBI regime, the potential does not change for the models considered here. This special feature is
entirely non-trivial, and arises as a direct consequence of the choice (3.16). It greatly facilitates the
analysis of the corresponding inflationary models.

4. A supergravitational ghost condensate

Ghost condensate vacua [9] arise in higher-derivative theories of the form L =
√
−gP(X) ,

where P(X) is a differentiable function of X containing an extremum. In a flat Friedmann-Robertson-
Walker (FRW) spacetime with metric ds2 =−dt2+a(t)2δi jdxidx j, and assuming φ to be dependent
on time alone, the scalar equation of motion becomes

d
dt

(
a3P,X φ̇

)
= 0 . (4.1)

Clearly this has a trivial solution when φ = constant. Of more interest is the solution with non-
constant φ , but for which X = 1

2 φ̇ 2 = constant, and P,X = 0 . Denoting by Xext a constant extremum
of P(X), the equation of motion admits the ghost condensate solution

φ = ct , (4.2)

where c2 = 2Xext. The explicit time-dependence of this solution spontaneously breaks Lorentz
invariance and leads to a number of interesting properties. First of all, evaluating the energy and
pressure densities one finds

ρ = 2XP,X −P, p = P ⇒ ρ + p = 2XP,X . (4.3)

Since by definition X > 0, it follows that the NEC can be violated if P,X < 0. That is, if we are
close to an extremum for P(X), then on one side the NEC is satisfied while on the other it is not.
Correspondingly, since Einstein’s equations imply Ḣ = −1

2(ρ + p), it is now possible to obtain
a non-singular bouncing universe–where H increases from negative to positive values. Crucial in
determining the viability of this theory is the question of whether or not this NEC-violating solution
is “stable”. To this end, let us expand the Lagrangian to quadratic order in perturbations around the
ghost condensate, φ = ct +δφ(xm) . We find that

L√
−g

=
1
2

(
(2XP,XX +P,X)( ˙δφ)2−P,X δφ

,i
δφ,i

)
. (4.4)

As a result of Lorentz breaking, the coefficients in front of the time and space pieces are unequal.
By inspection, one sees that the condition for the absence of ghosts is that 2XP,XX +P,X > 0 , which
can be achieved around a local minimum P,XX > 0 even in the NEC-violating region where P,X is
small but negative. This feature is arguably the most striking property of ghost condensate theories,
namely, that the NEC can be violated without the appearance of ghosts.

However, in the NEC violating region the coefficient in front of the spatial derivative term in
(4.4) has the wrong sign. Therefore, the theory suffers from gradient instabilities. These can be

11
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softened by adding (small) higher-derivative terms–not of the P(X) type–to the Lagrangian, such
as−(�φ)2. These modify the dispersion relation for δφ at high momenta and suppress instabilities
for a short–but sufficient–period of time. In a cosmological context, there are additional constraints
arising from a study of the growth of cosmological perturbations, which imply that a non-singular
bounce must be fast in order to avoid perturbations from becoming uncontrollably large [22, 23].
The bottom line is that bouncing universe solutions via a ghost condensate are admissible, but the
bounce is required to occur on a fast time-scale–for more details, see [11].

The supergravity extension of the prototype scalar ghost condensate P(X) = −X +X2 is the
sum of (2.10) and (2.11), where we take K(Φ,Φ†) =−ΦΦ†,T = 1

16 , [24]. That is,

L SUGRA
T=1/16,Weyl =

1
8

[∫
d2

Θ2E (D̄2−8R)
(

3eΦΦ†/3− 1
24 (DΦDΦD̄Φ

†D̄Φ
†)
)]

Weyl
+h.c. (4.5)

It follows that the purely bosonic part of this Lagrangian is

1
e
L SUGRA

T=1/16,Weyl =−
1
2
R+ |∂A|2+(∂A)2(∂A∗)2 + . . . (4.6)

=−1
2
R+

1
2
(∂φ)2 +

1
4
(∂φ)4 (4.7)

+
1
2
(∂ξ )2 +

1
4
(∂ξ )4− 1

2
(∂φ)2(∂ξ )2 +(∂φ ·∂ξ )2 + . . .

The remaining terms in the Lagrangian are at least quadratic in the fermions χ , ψm. The Einstein
and gravitino equations can be solved in a flat FRW spacetime with a vanishing gravitino ψm = 0.
The φ , ξ and χ equations of motion continue to admit a ghost condensate vacuum of the form

φ = ct , ξ = 0 , χ = 0 (4.8)

where, to be consistent with the coupling to dynamical a(t), one must set c = 1. The scale factor is
that of a de Sitter spacetime, which–in its flat slicing–is given by

a(t) = e±
1√
12

t
. (4.9)

The choice of the ± sign corresponds to an expanding or contracting space respectively; in this
contribution, we focus on the expanding branch. As shown in [24], the expanding branch is stable
subject to small fluctuations, if appropriate supersymmetric stabilizing terms are added. These
terms, analogously to the −(�φ)2 term discussed above, modify the dispersion relations of the
scalars φ and ξ such that all fluctuations are well-behaved and gradient instabilities are under
control over short periods of time. Due to lack of space, we refer to [24] for a detailed exposition.

A particularly interesting aspect of the supergravitational ghost condensate is provided by the
fermionic sector of the theory. The relevant part of Lagrangian (to quadratic order in fermions) was
derived in [24] and shown to be

1
e
L SUGRA

T=1/16,Weyl = . . .+
1
2

ε
klmn
(

ψ̄kσ̄lD̃mψn−ψkσlD̃mψ̄n

)
(4.10)

+
i
2
(
χσ

mDmχ̄ + χ̄σ̄
mDmχ

)(
1+

1
2
(∂φ)2

)
+

i
2

φ
,m

φ,n
(
χ̄σ̄

n(Dmχ)+χσ
n(Dmχ̄)

)
+

1
2
(χσ

m
σ̄

n
ψ

p + χ̄σ̄
m

σ
n
ψ̄

p)

(
gmpφ,n +

1
2

gmnφ,p(∂φ)2− 1
2

gnpφ,m(∂φ)2
)
+ . . .

12
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where gmn is the FRW metric. For the time-dependent vev φ = t, (∂φ)2 =−1. Hence, the first and
second/third lines correspond to unmixed ψm and χ kinetic energies respectively. However, the
ghost condensate induces a mass mixing term between χ and ψm. Using σmσ̄n = −gmn + 2σmn,
the mass term can be rewritten as

−1
4

φ,m(χσ
m

σ̄
n
ψn + χ̄σ̄

m
σ

n
ψ̄n). (4.11)

This mass mixing term can be removed by redefining the gravitino. As we will discuss below,
the supersymmetry transformations suggest the field redefinition

ψmα = ψ̃mα −
2i

(∂φ)2 Dm(φ,nσ
n
αα̇ χ̄

α̇) , (4.12)

in terms of which the quadratic fermion Lagrangian becomes

1
e
L SUGRA

T=1/16,Weyl = . . .+
1
2

ε
klmn
(

˜̄ψkσ̄lD̃mψ̃n− ψ̃kσlD̃m ˜̄ψn

)
(4.13)

+
i
2
(
χσ

mDmχ̄ + χ̄σ̄
mDmχ

)
+ iφ ,m

φ,n (χ̄σ̄
n(Dmχ)+χσ

n(Dmχ̄))+ . . .

This Lagrangian describes a) a massless gravitino ψ̃m with Lorentz covariant kinetic energy and b)
a massless fermion χ with kinetic terms whose Lorentz invariance is broken in the ghost condensate
background. We note that after the field redefinition of the gravitino, the kinetic terms for χ now
appear with an additional overall multiplicative factor of 2.

Given this result, one can analyze the super-Higgs effect within the context of the supergravity
ghost condensate. The variations of the fermions χ and ψm–in a bosonic background–are given by

δ χ = i
√

2σ
m

ζ̄ ∂mA+
√

2eK/6
ζ F , (4.14)

δψm = 2
(
Dm +

1
4
(K,A∂mA−K,A∗∂mA∗)

)
ζ + ieK/2Wσmζ̄ . (4.15)

In standard two-derivative chiral theories coupled to supergravity spontaneous breaking of super-
symmetry is achieved by choosing a non-vanishing W for which 1) the potential energy is mini-
mized at constant A, and 2) when evaluated at this minimum F = −K,AA∗eK/3(DAW )∗ 6= 0. The
non-vanishing F-term in (4.14) then renders the χ transformation inhomogeneous, spontaneously
breaking supersymmetry, while the transformation of a redefined gravitino ψ̃m vanishes. Therefore,
χ is the massless Goldstone fermion while ψ̃m is the physical gravitino. Generically, W 6= 0 in the
vacuum giving the gravitino a non-vanishing mass

m3/2 = eK/2|W | . (4.16)

In the process the Goldstone fermion χ gets “eaten” by the now massive gravitino. This is the
super-Higgs effect.

Let us now return to the supergravity ghost condensate vacuum. In this case we have W = 0,
from which it follows that F = 0. However, A now develops a non-zero, linearly time-dependent
vev 〈A〉= 〈φ〉/

√
2 = ct/

√
2, where we restore the dimension-two constant c. The χ transformation

in (4.14) then becomes

δ χ = i
√

2σ
m

ζ̄ ∂mA = iσ0
ζ̄ c . (4.17)
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As previously, the fermion transforms inhomogeneously and, hence, supersymmetry is sponta-
neously broken. For the ghost condensate, however, the inhomogeneous term arises from the linear
time-dependent vev of φ rather than from the F-term. Now consider the gravitino transformation
(4.15), which here reduces to

δψm = 2
(
Dm +

1
4
(K,A∂mA−K,A∗∂mA∗)

)
ζ = 2Dmζ . (4.18)

Note that even though the factor K,A∂mA−K,A∗∂mA∗ vanishes in this vacuum, the de Sitter space-
time covariant derivative Dmζα = ∂mζα − 1

2 ωmpl(σ
pl)α

β ζβ does not vanish, as ωi0 j = gi jH, and,
hence, ψm transforms inhomogeneously. However, in analogy with the ordinary two-derivative
case, let us redefine the gravitino as in (4.12). It is straightforward to shown that in the ghost
condensate background

δψ̃m = 0 . (4.19)

This then identifies χ as the massless Goldstone fermion and ψ̃m as the physical gravitino. The
generic expression for the gravitino mass was given by (4.16). In the ghost condensate, however,
W = 0 and, hence, m3/2 = 0. That is, the breaking of local supersymmetry via a ghost condensate
can occur without the gravitino obtaining a mass. This result for the supergravity ghost condensate
is completely consistent with–and gives a physical explanation for–the preceding direct calculation
of the quadratic fermion Lagrangian (4.14).

5. Discussion and outlook

The construction of supergravity coupled chiral superfield actions with higher derivatives has
led to a number of surprises: 1) We have shown that these higher-derivative actions can be con-
structed in such a way that the auxiliary fields remain truly auxiliary. However, the auxiliary field
F that is associated with the chiral supermultiplets, now appear at quartic order in the action. Elim-
inating this field via its equation of motion in general now leads to three distinct branches of the
theory, one of which is related to the usual solution for F. 2) Implementing DBI inflation in super-
gravity is harder than one might have thought: the higher-derivative terms, via their auxiliary fields,
have a significant effect on the potential, and, generically, the potential becomes negative definite
when the higher-derivative terms are important. We showed however how to circumvent this prob-
lem from a model-building point of view by coupling the theory to an additional chiral superfield
with an ordinary kinetic term and an appropriate superpotential. 3) Perhaps surprisingly, we en-
countered no serious obstacle in constructing a supergravitational ghost condensate theory. This
theory should allow one to explore in much more detail the relationship between supersymmetry
and NEC violation.

There are many open questions for further research. Let us just mention a few: can such higher-
derivative supergravity models be derived by a direct string compactification? Can a full new-
ekpyrotic model now be formulated in supergravity, combining the ordinary and ghost-condensate
regimes? Can the present formalism be extended to a construction of other classes of supergrav-
itational higher-derivative theories, and in particular to the Galileon theories (which were already
extended to global supersymmetry in [25])? We hope to return to at least some of these questions
in the future.
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