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1 Introduction 

Cancer is the second most frequent cause of death after cardio-vascular-diseases in 

Germany [1]. Besides others, melanoma is one of the most frequent forms of cancer [2]. 

During this disease, which mostly affects women at an average age of 60, men at 66 [3], 

the patient forms black tumors on the skin [4]. The big problem occurring in the 

progression of the disease is not the cancer on the skin itself, but the high probability of 

forming metastasis [5]. Since chemotherapy being one of the common procedures to treat 

cancer is not effective in melanoma [6], it is crucial to find other approaches to influence 

the progress of the disease. 

One alternative to the well-established chemotherapy is the so called immunotherapy, 

also referred to as biotherapy [7]. This approach deals with the modification of the immune 

system or the utilization of parts of the immune system as cancer treatment [7]. The 

general idea is the targeted treatment of cancer cells without affecting healthy cells by 

boosting the immune system, thus harnessing the potential of the host immune system to 

detect and eliminate transformed cells [8]. This can be achieved for example by the use of 

antibodies selectively recognizing antigen structures on the outer membrane of the tumor 

[9]. This principle can either be used to help the immune system detecting the cancer cells 

as foreign and start attacking them or harnessing the antibody as carrier for other potent 

anti-cancer drugs to be transported to their destination. As detailed described by Robert 

O. Dillman [7], several other types of immunotherapy exist. Rituximab is targeting a 

certain protein expressed on lymphomas, Trastuzumab is affecting a tumor antigen, just to 

mention two of the immunotherapy agents that made it into clinical use [8]. To conclude, 

the advantage of immunotherapy based treatment, compared to commonly applied 

chemotherapy is the targeted effect on the cancer cells and therefore avoiding the dose-

limiting toxicity of chemotherapy resulting in lower side-effects and protection of healthy 

cells [10]. 

Also melanoma is medicated with immunotherapy. Ipilimumab is a monoclonal antibody 

conjugate which is able to interfere with the immune system, particularly blocking the 

regulatory T-cells (nTreg) [7]. This drug is approved in Switzerland since 2011 and 

commercially available as Yervoy® and is also approved by the food and drug 

administration (FDA) in the US [9]. nTreg cells have immune-suppressive properties, thus 

blocking those leads to a stimulation of the immune system [8]. Since the immune system 

misunderstands tumor cells as “self” and therefore inhibits their eradication by effector T-
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cells, excitation of this component is a promising approach to force the immune system to 

attack the malignant cells [8]. Based on this strategy, influencing nTreg cells is focused in 

this project. An inhibitor is applied, targeting the second messenger used by the cells to 

communicate and therefore control the immune-suppressive properties of nTreg-cells [11]. 

1.1 Motivation and objectives 

The aim of this work is the design and synthesis of novel adenylyl cyclase inhibitors 

containing a cleavable linker and targeting moiety for improving melanoma-specific T-cell 

responses by cAMP-mediated disarming of regulatory T-cells and therefore the 

attenuation of the progress of melanoma cancer. 

Since commonly applied chemotherapy is often ineffective in melanoma skin cancer, the 

development of new alternatives is crucial. One approach is cancer immunotherapy, 

which modifies the immune system or utilizes parts of it, for example antibodies. Those 

components can be harnessed either as marker to help the immune system to recognize 

the cancer cells or as carrier for potent anti-cancer drugs.  

In this project it is focused on a drug which is used in cancer research called NKY-80 (2-

amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone). It inhibits adenylyl cyclase (AC), the 

enzyme converting adenosinetriphosphate (ATP) to cyclic adenosine monophosphate 

(cAMP), an important second messenger fulfilling several tasks. It is included in for 

example activating protein kinases (PKA), which are enzymes being involved in 

phosphorylation of different cellular proteins which subsequently regulate cell division, cell 

differentiation, and ion transport or ion channels. Especially cell division and cell 

differentiation are, besides their invasiveness and the ability to build metastasis, the key 

properties distinguishing cancer cells from normal cells. An intervention in these pathways 

thus is able to influence the progress of cancer. Furthermore, cAMP plays a central role in 

the suppression of the immune system. nTreg-cells control the immune system and are 

able to suppress it in order to avoid autoimmunity, allergies and anti-tumor responses as 

well [12]. Since nTreg-cells mediate their suppressive function by transferring cAMP into 

responding T-cells (resT) via gap junction intercellular communication (GJIC) and cAMP is 

a general inhibitor of T-cell growth, differentiation and proliferation, the intervention in its 

generation and dismantling can be an approach to interfere in the function of nTreg-cells 

[13]. The connection between AC, NKY-80 and nTreg is displayed in Figure 1. 
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Figure 1: Generation and degradation of cAMP and its key role as second messenger in the 
GJIC between nTreg and resT. ATP=Adenosinetriphosphate, AC=Adenylyl cyclase, 
cAMP=cyclic Adenosinemonophosphate, PDE=Phosphodiesterase, nTreg=naturally 
occurring regulatory T-cells, resT=responding T-cells 

 

During this project, the above mentioned drug NKY-80 should be coupled to a cell-

penetrating peptide (CPP). This could be accomplished by the synthesis of a linker 

bearing two functionalities. These offer the possibility to link the NKY-80 via a pH sensitive 

hydrazone bond, and on the other side making a connection with the peptide possible via 

disulfide bond. The big advantage of introducing a disulfide is the variable applications this 

moiety can be used for as displayed in Figure 2.  

 

 

Figure 2: Structure of the linker (orange) coupled to NKY (black) via hydrazone. Additional 
capability to bind different carriers (blue): i) CPP=cell-penetrating peptide, ii) FA=folic acid, 
iii) AB=antibody by forming a disulfide bond 

 

NKY-80 itself lacks in potency which is why it requires the coupling to a carrier, but this 

also needs to fulfill the targeting demand. During this project, NKY-80 should be coupled 

to a cell-penetrating peptide via a linker, which will also be synthesized within this project. 

As described, cAMP is involved in miscellaneous pathways within the body, making a 
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systematically administration of NKY-80 impossible. Although the coupling to a CPP 

should increase the uptake level of the drug into a cell, it would not improve the selectivity 

of the drug. But since melanoma is represented on the skin, a direct injection into the 

tumor could be possible, bypassing the selectivity problem. In order to also treat the 

metastasis occurring frequently when suffering from skin cancer, a targeting application is 

also necessary. This could be achieved by coupling NKY-80 via the introduced linker to 

either an antibody or a folic acid, since both act via receptor mediated endocytosis [14, 

15]. To target nTreg-cells the conjugate with antibodies (AB), for targeting melanoma cells 

the folic acid conjugate could be applied. 

The synthesis of folic acid containing NKY-80 will be carried out during this project. Since 

quickly dividing cells have a higher consumption and need of folic acid for reproducing 

themselves, they express more folic acid receptors on their cell membrane than “normal” 

cells do [16]. This fact can be exploited to target these quickly dividing cells, thus cancer 

cells [17]. In order to attach the linker to folic acid, a thiol has to be introduced into the 

vitamin, which should be achieved by the conversion with 2-aminoethanethiol. 

In brief, a linker bearing a hydrazine and an activated thiol will be synthesized in a two-

step reaction. An adenylyl cyclase inhibitor called NKY-80 will be attached by the 

formation of a hydrazone bond. On the other side the thiol offers the possibility of coupling 

either a cell-penetrating peptide or a folic acid moiety, which will be both performed during 

this project. All products will be characterized using NMR spectroscopy and mass 

spectrometry. 
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2 General part 

2.1  Cancer and Melanoma 

2.1.1 General procedure of treating cancer 

About 26 % (221.500 people) died because of cancer in Germany in 2011, thereof 

119.755 men and 101.836 women. The former suffer from cancer affecting the intestinal 

tract (32 %) or the respiratory system (26 %). Also females die most commonly due to 

intestinal cancer (30 %), followed by breast cancer (18 %). Siegel et al. report that 5 % of 

all new diagnoses of cancer are accounted for melanoma in 2012 in the US. The mortality 

rate increased from 8790 in 2011 to 9180 in 2012. Due to the general permanently 

increasing number of cancer patients this means, that 1 of 3 women and 1 of 2 men will 

develop cancer during his or her lifetime in the US Thereof 7 % of both, men and women, 

are affected by melanoma [18-20]. 

Three different procedures which are mainly applied in the treatment of cancer are 

available, surgical excision, irradiation and drug therapy, also called chemotherapy. 

Depending on the type and the progress of the disease, the patient is treated in a different 

way with one of the above mentioned approaches or combinations of them. The big 

difficulty in cancer therapy is the differentiation between malignant and healthy cells.  

In case of melanoma the affected skin part is excised. Depending on the progress, the 

size of the removed area around the mole varies. Furthermore, the closest located lymph 

node can also be eliminated [21].   

Additionally, chemotherapy is applied to melanoma, on which patients do not respond in 

every case [6]. Therefore immunotherapy is a promising alternative to treat melanoma. In 

immunotherapy the immune system is activated to eliminate or attenuate the progress of 

the tumor [7, 8]. Different approaches exist, focusing on different pathways within the 

tumor cell.  

The standard chemotherapy agent used for the treatment of melanoma is Dacarbazine 

(DTIC). It is the only one being approved by both, the FDA (food and drug administration) 

and the EMA (European medicines agency) [22]. Dacarbazine is a monofunctional 

triazene alkylating the bases of the DNA when administered to a cell which stops the 
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proliferation [23]. However, DTIC has shown objective responses for only 15.3 % and 

complete response rates for 4.1 %, tested with 3356 patients in more than 20 studies [24]. 

Besides chemotherapy, melanoma is treated with immunotherapy agents like high-dose 

interleukin-2 (HD IL-2) or Interferon-α (IFN-α) [25]. Drawbacks of these drugs are also the 

low response rates, as well as the high toxicity especially in high dose application and the 

associated side-effects. In order to optimize the efficiency, INF-α was pegylated and 

combinations of chemotherapy and immunotherapy as well as mulitdrugchemotherapy 

was tested in clinical trials. Approaches including IL-2 and IFN-α led to higher responses, 

but associated with this, toxicities also increased [25].  

Vemurafenib, Ipilimumab and Tremelimumab are immunotherapy agents containing a 

monoclonal antibody targeting different pathways within a tumor cell in order to stop the 

progress. Vemurafenib strongly and selectively inhibits mutant BRAF being part of the 

RAS/RAF/MEK/ERK (MEK=mitogen-activated protein kinase, ERK=extracellular-signal 

regulated kinase) pathway. This pathway is responsible for the conversion of stimulatory 

signals of growth factors by binding to their cognate receptors on the outer membrane, 

resulting in activation of several cytoplasmic and nuclear substrates. A genetic mutation in 

the BRAF gene (called V600E mutation, valine to glutamic acid substitution at codon 600) 

which is very common in melanoma, leads to significant activation of ERK and therefore 

supporting cell proliferation and survival. Vemurafenib is just effective for patients 

suffering from BRAFV600E mutation, but even after successful cure, patients experience 

tumor recurrence or develop resistance against the drug. Consequently, multi- instead of 

monodrug therapy is suggested [26].  

Ipilimumab and Tremelimumab target cytotoxic T-lymphocyte antigen 4 (CTLA-4), a 

membrane protein on T-cells where it acts as a negative regulator. The drugs are capable 

of increasing T-cell activity by blocking of negative regulation signals. Thus, they inhibit 

the CTLA-4 protein which down regulates the immune system and therefore antitumor 

immunity is supported. Ipilimumab bears the benefit of improving the 1-year and 2-year 

survival rates, which has been tested with 676 people by Hodi et al in 2010, but it also 

reaches low response rates when used as single therapy [27]. Tremelimumab did not lead 

to improved survival when compared with DTIC [28].  
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2.1.2 Genesis of a cancer cell 

Due to mutations in the DNA, a normal cell can become a cancer cell. This can have 

several reasons like being inherited, acquired or as a result of exposure to carcinogen 

substances like tobacco or as an effect of viruses. Furthermore, the activation of proto-

oncogenes (control cell division, apoptosis and differentiation) to oncogenes (induce 

malignant change by viral or carcinogen action) as well as the inactivation of tumor 

suppressor genes (anti-oncogenes) higher the potency of contracting cancer. The 

characteristics that distinguish cancer cells from normal cells are uncontrolled 

proliferation, dedifferentiation and loss of function, invasiveness and the ability to form 

metastasis. Besides that, a tumor consists of different types of cells which make a 

successful therapy difficult. About 5 % of the cells are dividing cells, which can easily be 

affected by chemotherapy. In addition to that there are cells which do not divide anymore 

but be a part of the tumor, bearing no problem because they cannot harm the body 

anymore. But the biggest risk comes from the resting cells, which are not dividing 

anymore, thus are not affected by the common therapy which affects the cell division in 

most cases, but do still have the possibility to start proliferation again [29]. 

In case of melanoma the highly malign tumor is coming from the melanocytes. It forms 

metastasis already in early stage in the lymph nodes and haematogenic. The quick 

invasion of melanoma cells into the thin lymph tissue or upper dermis and therefore early 

metastasis is explained by the fact that benign and malign melanocytes do not grow in cell 

groups and do not form intracellular bridges [21]. The genesis includes several steps 

which can undergo a linear or non-linear sequence [5]. The detailed correlation is 

explained by Villanueva et al. [30].  

2.2 Signal transduction to influence the regulatory T-cells 

cAMP is an important second messenger bearing miscellaneous functions. It is generated 

from adenosinetriphosphate (ATP) by adenylyl cyclase (AC) and degraded to 5’-

adenosinemonophosphate (5’-AMP) by phosphodiesterase (PDE).  

Mammals express ten different isoforms of AC, which are membranous bound enzymes 

being activated by binding of hormones and neurotransmitters to their G-Protein-coupled 

receptors (GPCR) [31]. The catalytic core of AC is made up by two cytosolic, 

pseudosymmetrically domains (C1 and C2) with six predicted helices each. At their 

interface they form the catalytic site and the regulatory diterpene site. The different 
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isoforms are differentially expressed in different cells and tissues, leading to the 

assumption they having specific (patho)physiological functions [32]. The stimulation and 

influence of AC is displayed in Figure 3.  

 

Figure 3: Signal transduction pathway of adenylyl cyclase [33]. 
GTP=Guanosinetriphosphate, ATP=Adenosinetriphosphate, 
cAMP=cyclic Adenosinemonophosphate 

 

In general ACs catalyze the generation of cAMP, which activates the protein kinase A 

(PKA). This in turn controls the function of several cellular proteins by regulating protein 

phosphorylation. Furthermore, enzymes involved in energy metabolism, cell division, cell 

differentiation, ion transport and channels and contractile proteins in smooth muscle are 

influenced and modulated by PKA [29]. Besides this, cAMP is crucial for the maintenance 

of the immune system. nTreg-cells are a thymus derived subset of T-cells which are of 

capital importance for preventing autoimmunity [8]. They transfer cAMP via gap junction 

intermolecular communication (GJIC) to resT, resulting in inhibition of IL-2 gene 
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expression [12], which means that the immune response is decreased, since IL-2 is 

essential for proliferation and differentiation of T-cells [34]. The exact underlying molecular 

mechanism still remains unclear, but Bodor et al. [35] suggest, that a competition between 

transcriptional repressor (ICER) and transcription factor (CREB, cAMP response element 

binding protein) results in decreased IL-2 expression. 

To sum up, cAMP expression results from activation of GPCR of AC by hormones or 

neurotransmitters [29]. This leads to immune suppression via GJIC of nTreg to resT 

mediated by cAMP [36]. Consequently, modulation of the generation and degradation of 

cAMP is a promising approach to shape the immune response.  

2.3 Characteristics of the non-nucleoside adenylyl cyclase 

inhibitor NKY-80 

NKY-80 (2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone), displayed in Figure 4 is 

a non-nucleoside AC inhibitor [37]. According to the interrelation explained 

 

Figure 4: Structure of NKY-80 

 

in chapter 2.2 it allows the regulation of the suppression of the immune system by 

attenuating the amount of expressed cAMP. NKY-80 is capable to interfere with the P-site 

(catalytic side) of the AC, which means binding to the same site as the substrate ATP [32]. 

However, the mode of inhibition is either un- or non-competitive as shown by kinetic 

analysis [38]. The inhibitor was discovered after virtual screening of more than 850,000 

compounds on the basis of the pharmacophore analysis of AC and P-site ligands [37]. 

The focus of the initially research was put on inhibitors of the catalytic side, resulting in 

nucleoside-based compounds like THFA (9-(tetra-hydro-2-furanyl)-9H-purin-6-amine), 

also known as 9-THF-Ade [32]. These moieties bear a big disadvantage, the risk of 

interfering in DNA synthesis due to their structural similarity to nucleosides being the 

building blocks for the genetic material [32]. Unlike other studied compounds which have 

been listed by Seifert et al. in 2011, NKY-80 carries the properties of being a catalytic side 

inhibitor not containing an adenosine ring. Besides this drug, there is only MDL, also being 



10 
 

an AC inhibitor which is used for cell studies [39] holding the same features. In contrast to 

that, one drawback of NKY-80 is the lack in potency. IC50 values achieved in an AC assay 

in the presence of Mg2+ gave the following results displayed in Table 1. 

Table 1: Overview of IC50 values of NKY-80 for three different isoforms of adenylyl cyclase, 
reported by two different references 

 IC50 AC2 IC50 AC3 IC50 AC5 

Iwatsubo et.al. [40] 2.6 mM 230 µM 15 µM 

Onda et.al.[37] 1.7 mM 130 µM 8.3 µM 

 

Due to the fact that this compound is of low potency, it is difficult to obtain fully saturated 

concentration/response curves for precise calculation of IC50 values explaining the 

deviation between the two sources [37]. 

2.4 Cell-penetrating peptides 

Cell-penetrating peptides (CPP) are a group of peptides being capable of crossing the 

cellular membrane [41]. Since the first CPP, the transcription-transactivating (Tat) protein 

of HIV-1 has been discovered by Frankel and Pabo in 1988 [42], they are utilized in a 

diversity of applications like being attached to siRNA, nucleotides, small molecules, 

liposomes or proteins beyond others [43, 44], thus in case of a drug being coupled to a 

CPP a drug-delivery-system (DDS) is formed. Due to the difficulties in drug delivery, CPPs 

are a promising approach to overcome general problems in the administration of 

pharmacologically active substances [45]. The requirements for a drug being applied to an 

intracellular target site are oppositional to each other. They need to be both polar enough 

to ensure an easy administration and equal distribution and also show hydrophobicity to 

allow the penetration of the lipid bilayer of the cell [46]. This is the reason why several 

drugs fail to make it into clinical trials. To circumvent the necessity of extensive 

modification and fine-tuning in their final structure, connection to a CPP offers a promising 

alternative to ensure a good bioavailability [46]. In this way the potential therapeutic space 

can be expanded due to increased availability of targets [47]. CPPs, also referred to as 

protein-transduction domains (PTD) [44], typically consist of 5-30 amino acids, that can be 

divided into two groups depending on their binding properties. On the one hand are 

peptides requiring chemical linkage with the drug and on the other hand the ones forming 

stable, non-covalent complexes with the cargo [48]. Furthermore, they can be sorted 
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depending on their amino acid composition. CPPs containing several arginine or lysine 

residues represent the group of cationic CPPs. In contrast to that, also anionic or neutral 

sequences are possible. All of them vary in hydrophobicity and polarity, resulting in 

different modes of uptake. Furthermore, the level of uptake is dependent on diverse 

parameters like cell line, the cargo and the way it is attached to the CPP [49-52]. In 

general, different mechanisms of cell penetration are discussed extensively [53], as 

displayed in Figure 5. 

 

 

Figure 5: Different possible mechanisms of cellular uptake for cell-penetrating peptides [54] 

 

Endocytosis and direct translocation are the major mechanisms explaining how 

substances are delivered into the cell. Endocytosis can further be split into clathrin-

dependent endocytosis (CDE) and clathrin-&caveolin independent endocytosis (CDI).  

In CDE, the cytoplasmic domains of plasma membrane proteins are recognized by 

adaptor proteins and packaged into clathrin-coated vesicles that are brought into the cell 

[55]. Due to the involved surface receptors this is the most selective form of endocytosis 

by that a CPP can enter a cell. 

CDI is additionally divided in different forms, such as macropinocytosis, caveolae and/or 

lipid raft-mediated endocytosis. Macropinocytosis involves cell surface ruffling, providing a 
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relatively large cavity and thereby offer an efficient way for non-selective endocytosis of 

solute macromolecules [56]. Next, the formed macropinosome is carried along 

microtubules inside the cell [55]. In opposite to that, caveolae, a special form of lipid rafts, 

is mediated by a protein called caveolin, which is suggested to be responsible for stability 

of the membrane and shape of caveolae. Lipid rafts are microdomains present in the 

plasma membrane consisting of a combination of glycosphingolipids and protein 

receptors, being able to float freely in the membrane bilayer [57]. This mechanism is not 

well characterized and also referred to as nonclathrin/noncaveolar endocytosis [55]. 

In contrast to the endocytosis mediated delivery is the direct translocation. This 

mechanism in turn is divided in the carpet model and the barrel-stave model, differing in 

the organization of the membrane phospholipids. The carpet model describes an 

extensive reorganization of the previously mentioned membrane, whereas the barrel-

stave model applies the formation of transient pores, resulting in a disturbance of the lipid 

bilayer. However, this model is not likely to occur for high molecular weight conjugates 

[58]. 

To sum up, all these pathways differ in their uptake mechanism but share a common 

result: extracellular substances are internalized into the cell after release of the plasma 

membrane by means of lipid vesicles [59]. Furthermore, they are harmless to the cells and 

do not destabilize the membranes or loose cellular integrity [58].  

Whatever the case, the mechanism of delivery is strongly dependent on different 

parameters like the composition of the peptide or the cargo. With respect to this 

knowledge and experience, which physicochemical properties favor one mechanism over 

another, it will be possible to generate peptides following a certain uptake mechanism 

relevant to their application [54]. 

During this project, a peptide with the sequence Cys-Gly-Gly-Trp-Arg8 has been used. 

Since octaarginin based proteins are well explored, it is assumed that this peptide is taken 

up by the cell via endocytosis instead of direct penetration. But still, the exact mechanism 

remains controversy and elusive [60]. Different assumptions are displayed in Figure 6. 
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Figure 6: Different cellular uptake mechanisms in the case of oligoarginines depending on 
the chain length [60]. R4 and R10 describe the amount of repeated arginines, R4B and R10B 
stands for a different conjugation in contrast to R4 and R10. 

 

As explained above, different endocytosis pathways are possible, like clathrin or caveolin 

coated vesicles, as well as macropinocytosis for bigger molecules consisting of longer 

arginine chains. Whatever uptake mechanism is carried out, the conjugate arrives inside 

the cell either as lysosome or is released into the cytosol. 

Due to the change from physiological pH to acidic conditions in endosomes (pH 5.0-6.5) 

and lysosomes (pH 4.5-5.0) [10], the cargo can be cleaved from the CPP depending on 

the linkage. As in this project a hydrazone moiety is applied, which will be hydrolyzed at a 

pH lower than 6 [61]. This approach has already been reported by Kaneko et al. [62] for 

coupling a drug call doxorubicin to the linker applied in this project. 

Beyond the beneficial properties of CPPs, there is also one big drawback being the 

imprecision in targeting, meaning all cells can be penetrated without distinction [44]. 

Nevertheless, cell-penetrating peptides offer a good strategy to deliver different types of 

cargos into cells and in case of drugs thereby reducing the applied dose and thus lowering 

the side effects.  
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2.5 Folic acid 

Folic acid (FA) is an essential vitamin which is involved in DNA synthesis and therefore in 

cell proliferation [29]. Its structure is displayed in Figure 7 . 

 

Figure 7: Structure of folic acid 

 

It is synthesized by a couple of microorganisms before it is consumed by humans with 

their diet. After the uptake, the substance is reduced to active metabolites, whereof 5-

Methyltetrahydrofolate is the most important one. Since the metabolites act as coenzymes 

during the transfer of carbon-moieties (e.g. methyl groups), they play a significant role in 

the synthesis of DNA-bases [63]. Due to this fact, quickly dividing cells require a higher 

amount of folic acid than normal cells do. This circumstance can be harnessed as 

targeting approach in cancer therapy, since cancer cells proliferate fast. To absorb the 

folic acid into the cell, special folic acid receptors are present at the cell membrane. 

Because quickly proliferating cells have a higher need of folic acid, they over express the 

corresponding receptor [16].  

The absorbance mechanism of folic acid into the cell still remains unclear. However, it is 

assumed that it is mediated by endocytosis as displayed in Figure 8. 
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Figure 8: Uptake mechanism of folate conjugates via folate receptor [16] 

 

According to this relation, anti-cancer drugs are coupled to folic acid derivatives to achieve 

a higher concentration of the drug inside the cell and without affecting healthy cells [17]. 

This procedure has been successfully applied for nanoparticles, protein toxins, anti-T-cell 

receptor antibodies, interleukin-2, chemotherapy agents, g-emitting radiopharmaceuticals, 

magnetic resonance imaging contrast agents, liposomal drug carriers and gene 

transfervectors [14]. The conjugation with folic acid bears several benefits as its small 

size, stability against temperatures and pH values making it capable for chemical 

modification, inexpensiveness, non-immunogenicity and its high affinity for binding to the 

folic acid receptor [64]. 

The figure shows the uptake of a folate-drug conjugate. First, the folate moiety is 

recognized by the folate receptor present at the membrane of the cancer cell. Next, an 

endosome is formed implicating the ligand-receptor complex. The endosome is 

transported to the inside of the cell, where it releases the folate-drug conjugate, which is 

decomposed resulting in free, uncoupled drug molecules. As displayed in the picture 

ambiguous, the endosome does not break within the cell. In case of the NKY-FA 

conjugate (conjugate of NKY-80 with folic acid), the hydrazone bond linking them together 

breaks within the acidic conditions inside the endosome, leading to release of the drug 

which is then small and hydrophobic enough to pass the endosome bilayer membrane. 

This promising targeting approach is assumed to reduce the dose of the drug on the one 

hand and on the other hand limiting the side-effects. 
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3 Results and discussion 

In order to influence the immune system to eradicate tumor cells, two final products have 

been synthesized during this project containing the adenylyl cyclase inhibitor NKY-80. On 

the one hand, it has been coupled with a cell-penetrating peptide to increase the cellular 

uptake since NKY-80 lacks in potency [37, 40]. The conjugate of CPP and NKY-80 could 

be applied by direct injection into the melanoma. On the other hand, NKY-80 was 

connected to folic acid. The second approach was done due to the folic acid receptors 

being present on cell membranes especially in higher amount on quickly dividing cells like 

melanoma cells. This fact can be used as targeting approach helping to decrease the 

applied dose of the drug and based on the selectivity of the folic acid to its receptor 

lowering the side-effects meaning affecting healthy cells. As displayed in Figure 9, a linker 

was synthesized bearing a hydrazine to couple the drug and furthermore offering a 

disulfide making it reactive against several possible coupling partners. 

 

 

Figure 9: Structure of the linker (orange) coupled to NKY-80 (black) via hydrazone. 
Additional capability to bind different carriers (blue): i) CPP=cell-penetrating peptide, ii) 
FA=folic acid, iii) AB=antibody by forming a disulfide bond 

 

A linker is necessary to bind NKY-80 to different carriers. The linker synthesized during 

this project, 3-(2-pyridyldithio)propionic acid hydrazide (PDPH), has been used for the 

coupling of different moieties, e.g. as described by Ansell et al. in 1996, conjugating an 

antibody with a liposome [65] or Zara et al. making immunoconjugates with the same 

linker [66]. It benefits of the presences of both, a hydrazine and an activated thiol. The first 

can form a hydrazone by reacting with a carbonyl-group as it is present in NKY-80. The 

activated thiol makes the coupling to other moieties offering a thiol possible, as in this 

project the conjugation with a cell-penetrating peptide and a modified folic acid, which are 

necessary to carry the drug into cells. Additionally, with this linker it would be possible to 

attach the drug to an antibody. The hydrazone bond ensures the release of the drug after 

internalizing into a cell. The internalization is mainly achieved by receptor mediated 
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endocytosis, thus resulting in the assumed formation of endosomes or lysosomes. Both 

bear an acidic environment within their compartment leading to cleavage of the hydrazone 

bond [61], thus free NKY-80 is present, which can then pass through the compartment 

into the cytosol. In case of another transportation pathway referred to as direct 

translocation, the drug-delivery-system ends up directly in the cytosol thus no change in 

pH will occur. However, the cytosol contains disulfide cleaving glutathione. Glutathione is 

a tripeptide present in almost all cells of the body, acting as antioxidants and disulfide 

reducing agent [67]. Consequently, the release of the drug is guaranteed, independent of 

the uptake mechanism into the cell, thus either the hydrazone or the disulfide is cleaved. 

Furthermore the bonds are stable within the blood stream to ensure the bioavailability at 

the point of action [68]. 

Chapters 3.1-3.4 discuss the single steps of the synthesis and a complete overview about 

the synthesis pathway performed is displayed in Figure 10. 
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Figure 10: Complete overview about the performed synthesis 
 

3.1 Linker synthesis 

A linker containing two functionalities in order to be capable for coupling two different 

compounds was synthesized in a two-step reaction as displayed in Figure 11. 

 

Figure 11: Two-step synthesis of linker bearing hydrazone and disulfide functionality 
making it capable of reacting with different moieties and couple them together 
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The first step reaction was carried out as described by Delius et al. in 2010 [69] resulting 

in a yield of 98 % and a purity of 95 %. The product was used without further purification 

for the second reaction step which was carried out in accordance to van der Vlies et al. in 

2010 [70] and in house experiences. In opposite to the described procedure the product 

was purified using column chromatography, resulting in a slightly yellow solid with a yield 

of 74 %.  

The synthesis of the cross-linker has been reported in literature, but using another 

pathway [66], starting from N,N'-bis(tert-butyloxycarbonyl)-L-cystine dimethyl ester forming 

the bis(hydrazide) by reacting with hydrazide. After protection of the hydrazide, the 

tetrakis-(BOC)cysteine derivative was formed which was then reduced to obtain the 

cysteine derivative. Next, the product was treated with 2,2’-dipyridyl disulfide to achieve 

the desired linker. The advantage of the reactions used in this project is the length, being 

short with two steps in opposite to 5 steps as reported. As reported by Zara et al. [66], the 

conversion with hydrazine yielded 87 %, the formation of the disulfide 53 %. 

Consequently, the conditions applied in this project do not only reduce the amount of work 

but also result in higher yields. 

The structures of both obtained products (1 and 2) were confirmed using NMR 

spectroscopy (1H and 13C) and ESI-ToF-MS. For the first product, it is difficult to 

distinguish whether the disulfide or the free thiol has been formed. Directly after the 

synthesis of 1 has been performed, 1H-NMR spectra were recorded in different solvents 

(DMSO-d6 and CDCl3). In both cases it was not clear if the free thiol is present due to the 

missing coupling between CH2 and SH and the doubtful SH signal as displayed in Figure 

12.  
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Figure 12: 
1
H-NMR spectrum (250 MHz, CDCl3, 298 K, reference: residual solvent CHCl3) of 3-

mercaptopropanehydrazide (1) 

 

At a shift of around 3.8 ppm a hump is visible in the spectrum, possibly bearing signal 1 

and 5. In comparison with literature data of 3-mercaptopropanehydrazide (1), the reported 

shifts for the CH2-groups fit to the ones recorded. The compared spectra were measured 

in CDCl3 [69]. The presence of the disulfide would influence the CH2-S-group leading to a 

bigger shift difference between the two CH2-groups (comparison with methyl-3-

mercoptopropanoate and dimethyl 3,3'-dithiodipropionate, [71]). But since the shifts of the 

recorded and reported spectra fit, the presence of the free thiol is assumed. Additionally, 

for the two reference compounds, the shifts for carbons 3 and 4 vary when a disulfide is 

formed. In case of a free thiol, 4 can be assigned to a peak at around 20 ppm, 3 at around 

38 ppm. After formation of a disulfide, both carbons would give peaks at around 33 ppm. 

The 13C-NMR spectrum measured for compound 1 shows peaks at 20 ppm and 37 ppm, 

proving the presence of the free thiol. 

The ESI-ToF-MS measurement of 1 was performed after some days of storage in the 

fridge while the high viscous oil change into a partly crystal structure. The mass showed 

the formation of disulfides. However, this aggregation can either have happened during 

storage or measurement. Nevertheless, the next reaction step could be carried out without 

problems.  

The structure of 2 was confirmed by 1H-NMR spectroscopy as displayed in Figure 13 as 

well as by 13C-NMR spectroscopy (data not shown). 
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Figure 13: 
1
H-NMR spectrum (250 MHz, DMSO-d6, 298 K, reference: residual solvent DMSO) 

of product 2 confirming the desired structure 

 

This NMR spectrum shows the four protons of the inserted pyridine moiety (number 5-8). 

The peaks 1-4 represent the groups that have already been present in the spectrum 

before, but after disulfide formation the CH2 groups have shifted to low field.  

This spectrum proves the successful reaction. This leads to the assumption, that 1 has 

been present as free thiol making the conversion to 2 possible. During the reaction 2-

pyridinethiol is formed which tautomerizes to 2-pyridinethion, displayed in Figure 14, a 

yellow and stable molecule. The formation of this side-product is observed during reaction 

monitoring using TLC. In case of 1 has formed a disulfide, on the one hand the yellow 

compound could not be seen, and on the other hand the driving force of the reaction, the 

formation of the stable 2-pyridinethion, is lost. Although it could be thought about a 

disulfide-disulfide exchange reaction, it is not likely that this has happened in this case. 
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Figure 14: Tautomerism of the side product 2-pyridinethiol formed during the second step 
of the linker synthesis 

 

The introduction of the 2-pyridinethiol group into the linker activates the thiol and being 

therefore beneficial for the following conjugation since it is additionally a good leaving 

group due to the above mentioned tautomerism. 

The incomplete reaction proven by TLC led to the necessity of purification using column 

chromatography (solvent: EtOAc:MeOH 9:1, silica gel, pore size 0.04-0.063 mm). This 

process can simply cause loss of product due to mixed fractions. Furthermore loss during 

imprecise work can explain the yield of 74 %. Nevertheless, this process results in a pure 

product as also seen after recording an HPLC chromatogram showing 91 % purity. 

ESI-ToF-MS spectrum displayed in Figure 15 shows the molecule peak as well as 

aggregates, adducts and fragments. 
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Figure 15: ESI-ToF-MS (positive mode) measurement of product of second step linker 
synthesis proving the structure by showing the protonated molecule peak, the 
corresponding sodium adduct, aggregates of two and three molecules as sodium adduct 
and one fragment as protonated and sodiated ion 

 

The experimental and theoretical masses are displayed in Table 2. Furthermore the 

deviation in Da, as well as in percentage is shown. ESI-ToF-MS is a precise method 

giving results with an accuracy of about m/z ± 0.1, consequently the obtained results are 

satisfying and thus prove the correct mass of the product. 

Table 2: Comparison of experimental and theoretical masses measured with ESI-ToF-MS for 
product 1. Molecular formula: C8H13N3O, exact mass: 229.03 Da. 

Peak Experimental 

mass [Da] 

Theoretical 

mass [Da] 

Δmass [Da] Deviation [%] 

[M+H]+ 230.06 230.04 0.01 0.01 

[M+Na]+ 252.04 252.02 0.01 0.01 

[2M+Na]+ 481.09 481.05 0.01 0.01 

[3M+Na]+ 710.25 710.08 0.02 0.02 
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The presence of the protonated molecule [M+H]+ and its corresponding sodium adduct 

[M+Na]+, besides the aggregates [2M+Na]+ and [3M+Na]+ confirms the structure of this 

reaction. Additionally, no peak with an m/z ratio of 120 is detected, proving the absence of 

1, the same applies for aldrithiol having an m/z ratio of 220 which is not identified within 

the above shown spectrum. However, the other peaks present in the spectrum cannot be 

assigned. 

To sum up, both reactions led to the desired products which are confirmed by NMR 

spectroscopy and ESI-ToF-MS, furthermore the positive reaction within the next step 

proves the structures. The successful performances of these two reactions result in the 

linker being able to couple the drug to different carriers. 

3.2 Coupling of linker to NKY-80 

The linker, bearing a hydrazine moiety can be attached to the carbonyl-group NKY-80 as 

displayed in Figure 16.  

 

 

Figure 16: Coupling of linker to NKY-80 via hydrazone formation by reaction of hydrazine 
and keto-group 

 

To find out the right conditions, the reaction was carried out three times. It was started 

with a ratio of 2:1 (2:NKY-80) and acetic acid as catalyst, since the TFA, which is used in 

literature [62], is a strong acid capable of cleaving the hydrazone bond. Since NKY-80 

was not consumed completely, the equivalents of 2 were increased to 3, yielding in 57 %. 

During the second try, the reaction was additionally catalyzed with TFA, resulting in an 

increased yield of 62 %. When catalyzing the reaction with TFA only and using a ratio of 

3:1 for 2:NKY-80, the reaction yielded 67 %. 
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This conditions are similar to as reported by Kaneko et al. in 1991 [62] who used 

Doxorubicin in methanol. Since this exact reaction using NKY-80 has not been reported in 

literature, there is no reference to compare the yields. However, Kaneko et al. reported a 

yield of 90 % for the coupling to another drug called doxorubicin also via the formation of a 

hydrazone to the same linker as applied in this project. The loss can happen due to 

imprecise working. 

During the formation of the hydrazone bond two isomers, E and Z, can be formed, which 

gets obvious when looking at the mechanism displayed in Figure 17. 

 

Figure 17: Formation of the hydrazone bond during the coupling of NKY-80 to linker 

 

The lone pair of the hydrazine attacks the partial positive carbonyl atom of the NKY-80. 

After the formation of the nitrogen-carbon bond a negatively charged oxygen remains, 

taking up two protons which are acting as catalyst. Next, water is split off, resulting in 

nitrogen-carbon double bond carrying the positive charge. In this step it is decided 

whether the E or Z isoform is formed. By removal of the catalyst proton, a neutral 

molecule bearing a hydrazone bond is formed.  

The assumption of two isomers is confirmed by NMR spectroscopy. As displayed in 

Figure 18, the 1H-NMR spectrum shows two peaks for one proton in several positions in 

the low field. 
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Figure 18: Cut-out of 
1
H-NMR spectrum (700 MHz, DMSO-d6, 298 K, reference: residual 

solvent DMSO) of the conjugation between linker and drug (3) for structure prove 

 

The isomeric ratio is determined by integration of the peaks in circle in Figure 18 resulting 

in 0.4/0.6. Peaks belonging to proton 2’ and 7 are highly influenced by the 

stereochemistry, resulting in higher shift differences. Peaks of proton 1, 2, 3 and 8 

(dashed circles) are still influenced resulting in double peaks but giving almost the same 

shift. The influence gets obvious when comparing this spectrum with the one of unreacted 

NKY-80 where these double peaks do not appear. To sum up, the stereochemistry affects 

the whole molecule, however, due to overlapping, the stereochemistry cannot be proven 

for peaks of the pyridine ring and the ones appearing in high field. Furthermore, it is not 

possible to elucidate which peaks belong to which isomer. 

An H-N correlation measurement further confirms the presence of E and Z isoforms. The 

NH group of the hydrazone bond is strongly influenced by the stereo chemistry inside the 

molecule. Consequently, two peaks can be assigned for the coupling between nitrogen 

and proton, which have almost the same shifts and together result with an area under the 

curve (AUC) of 1 in integration. 

13C-NMR spectroscopy, as well as 2D measurements were carried out to confirm the 

structure (data not shown). 

TLC is used to monitor the reaction. In the reaction mixture, two spots are detected, 

referring to 2 and the new product. NKY-80 was completely consumed since no third spot 
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referred to NKY-80 is visible in the reaction mixture anymore. Although it has been 

converted completely, the reaction yielded 67 %. Compound 2 has been used in access 

explaining the presence of that spot in the reaction mixture. The elucidation if the new 

spot belongs to the desired product was obtained by different NMR measurements (see 

above), as well as ESI-ToF-MS and MALDI-ToF-MS. Both methods were applied to be 

absolutely sure to have the right product since this is the starting point for the following 

formation of the final products. 

Figure 19 shows the ESI-ToF-MS spectrum. 

 

Figure 19: ESI-ToF-MS (positive mode) of NKY-linker conjugate (3) 

 

The MALDI-ToF-MS spectrum shows the same masses (data not shown). Besides the 

protonated and sodiated molecule peaks ([M+H]+, [M+Na]+), double and triple aggregates 

are also visible ([2M+H]+, [2M+Na]+, [3M+H]+). The disulfide bond is assumed to break 

during the measurement, but no fragment with a corresponding m/z of 331 can be 

detected. However, a significant peak at 330.09 marked as [F1+H]+ is identified, which 

can be explained with a double bond formation between sulfur and carbon as also 

displayed within Figure 19.  
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Table 3 shows the experimental and theoretical masses for the assigned peaks, as well 

as their deviations from each other in Da and percentage. All peaks referred to the 

product show a very low deviation below 0.01 % and therefore prove the presence of the 

desired product.  

Table 3: Comparison of experimental and theoretical masses measured with ESI-ToF-MS for 
product 3. Molecular formula: C20H20N6O2S2, exact mass: 440.11 Da. 
 

Peak Experimental 

mass [Da] 

Theoretical 

mass [Da] 

Δmass [Da] Deviation [%] 

[M+H]+ 441.11 441.12 0.01 0.002 

[M+Na]+ 463.13 463.10 0.03 0.007 

[2M+H]+ 881.27 881.23 0.04 0.005 

[2M+Na]+ 903.25 903.21 0.04 0.004 

[3M+H]+ 1321.40 1321.34 0.06 0.005 

[F1+H]+ 330.09 330.10 0.01 0.002 

 

To conclude, NKY-80 was successfully coupled to the previous synthesized linker. Thus 

this conjugation now offers the opportunity of coupling the drug to either a cell-penetration 

peptide (see chapter 3.3) or a folic acid moiety (see chapter 3.4) 
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3.3 Coupling of NKY-80-linker to a cell-penetrating peptide 

The NKY-linker conjugate, bearing a disulfide group can be attached the free thiol of 

cysteine being part of a cell-penetrating peptide as displayed in Figure 20.  

 

Figure 20: Coupling of linker-drug conjugate (3) to cell-penetrating peptide 

 

The reaction was carried out as in a mixture of DMF and DPBS (Dulbecco’s phosphate 

buffered saline) referring to in house experiences, resulting in a yield of 48 %. As 

explained for the formation of the linker in chapter 3.1, the driving force of the reaction is 

the formation of the side-product 2-pyridinethion pushing the equilibrium occurring during 

disulfide exchange to the product side. The buffer is necessary to ensure a constant 

neutral pH to avoid cleavage of the hydrazone bond. 

The progress of the reaction monitored by HPLC and is displayed in Figure 21. 
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Figure 21: Progress of the coupling between NKY-80 and CPP measured by HPLC. X-axis: 
retention time in minutes, Y-axis: intensity measured with UV detector at 280 nm in atomic 
units 

 

Immediately after mixing the two starting materials, a sample was taken. The according 

measurement is displayed in the upper line in Figure 21. It shows the starting material 3 

and already formed product 4. This shows the speed of the reaction, consequently, after 

45 minutes the starting material is almost completely consumed. After 2 hours the ratio 

has not changed anymore thus purification using preparative HPLC was subsequently 

performed to remove the side product formed during the reaction, 2-pyridinethion and 

unreacted starting material. The free peptide cannot be detected in HPLC at the applied 

wavelengths, however 1H-NMR of the product confirms the purity of the product and the 

absence of any starting material or side product.  

Integration of the 1H-NMR spectrum displayed in Figure 22 and exploitation of 13C-NMR 

spectroscopy and 2D-NMR spectroscopy (data not shown) prove the successful coupling 

of the two compounds.  
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Figure 22: 
1
H-NMR spectrum (700 MHz, D2O, 298 K, reference: residual solvent HDO) of NKY-

CPP conjugate as structure prove. DEE=Diethylether 

 

The presence of the peaks 2 and 3 in the right circle confirms two of the protons of NKY-

80. Additionally the disappearance of peaks (left circle) that would belong to the pyridine 

of the starting material NKY-Linker 3 makes sure that the reaction worked. Acetate is 

present due to the purification using HPLC where it is used as buffer and now offers the 

counter ion for the guanidinium groups. Diethylether is present because it is used for 

precipitation after purification. Acidic protons cannot be assigned due to the exchange 

with D2O which has been used as solvent for the measurement. 

The isomeric ratio observed for product 3 was 0.4/0.6. This shifted towards 0.5/0.5, 

showing that one isomer is more reactive than the other. However, the shift difference for 

the isomers is different than before. Isomers can be assigned for proton 7 (CH pyrimidine) 
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and proton 3 (CH furan). The shift difference for the two peaks referred to proton number 

3 is small with 0.02, but similar to recorded for the conjugate with folic acid (see chapter 

3.4). The peak difference between the two peaks assigned to proton number 7 is also 

small with 0.01. In contrast to that, for the drug-linker conjugate 3, the peak difference is 

0.28, in the folic acid conjugate it is 0.26. This means, that the influence of the isomericity 

of the molecule for the conjugate with the CPP is decreased. Nevertheless, the splitting 

can be detected, assuming the presence of both isomers, E and Z. 

The mass is confirmed by MALDI-TOF-MS as displayed in Figure 23. 

 

 

Figure 23: MALDI-ToF-MS spectrum of final conjugation of NKY-80 and CPP via linker. The 
spectrum shows singly and multiply charged product and different fragments 

 

Not only the charged product ([M+H]+), but also its sodium ([M+Na]+) and potassium 

([M+K]+) adducts, as well as doubly (M+2H]2+) and triply ([M+3H]3+) charged ions are 

visible. Furthermore two fragments ([F1+H]+ and [F2+H]+) with their sodium and potassium 

adducts are present. All assigned masses theoretically and experimentally are listed in 

Table 4. 
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Table 4: Comparison of experimental and theoretical masses measured with MALDI-ToF-MS 
for product 4. Molecular formula: C81H135N43O14S2, exact mass: 198.06 Da 

Peak Experimental 

mass [Da] 

Theoretical 

mass [Da] 

Δmass [Da] Deviation [%] 

[M+H]+ 1999.42 1998.06 0.35 0.02 

[M+Na]+ 2021.39 2021.05 0.34 0.02 

[M+K]+ 2037.36 2037.16 0.20 0.01 

[M+2H]2+ 999.99 1000.04 0.05 0.005 

[M+3H]3+ 665.63 667.03 1,40 0.21 

[F1+H]+ 1669.34 1667.96 1.38 0.08 

[F1+Na]+ 1691.31 1689.94 1.37 0.08 

[F1+K]+ 1707.23 1706.05 1.18 0.07 

[F2+H]+ 1744.37 1742.0 2.39 0.14 

[F2+Na]+ 1766.36 1764.0 2.40 0.14 

[F2+K]+ 1782.33 1780.07 2.26 0.13 

 

MALDI-ToF-MS shows a relative standard deviation of 0.1 % below m/z 20,000 when 

external calibration is applied as it is the case here [72]. All measured masses are within 

the standard deviation, thus proving the successful assignment of the peaks and therefore 

the structure of the desired product. It is positive to obtain low deviations also for higher 

masses since calibration is performed with standards of masses between 600 and 

700 Da. 

MALDI-ToF-MS is a sensitive method even being able to distinguish between different 

isotopes. As displayed in Figure 24, the isotopic pattern for the molecule peak is visible. 

The m/z difference between each peak results from the different amounts of C13 carbons 

compared to C12, which have a relative probability of 1:99. 
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Figure 24: Isotopic pattern recorded by MALDI-ToF-MS of NKY-CPP product 4 

 

The yield of 46 % can be explained by loss during purification using HPLC and imprecise 

work-up. Peptides have a secondary structure allowing it to fold itself. It is possible that 

due to the folding some cysteine groups are in the middle of the molecule thus sterically 

hindered and consequently not capable of reacting with NKY-linker 3. Since this reaction 

is not known in literature, the yield cannot be compared to references.  

In addition to the conjugation with the above mentioned CPP, it was tried to couple 

another CPP to 3 which was not successful due to insufficient quality of the peptide. 

3.3.1 Stability test 

To prove the stability of the NKY-CPP conjugate, it was placed in an environment with 

pH 5 and degradation was followed by HPLC.  

NKY-CPP conjugate contains a hydrazone bond which ensures drug release from the 

carrier as a result of change in pH. This will occur when the conjugate enters a cell via 
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endocytosis. To confirm, that the bond will break when the conditions change, 0.4 M 

acetic acid was added to DPBS buffer to achieve a pH of ~5. To 150 µL of this solution, 

1 mg NKY-CPP was added. Subsequently, the solution was measured using HPLC under 

the same conditions as used for purification of this product. The progress was checked 

after 1, 3, 7.5 and 24 hours. During that time, the quantity of the product peak decreased 

from 96 % at t1h to 93 % at t24h, whereas another peak which is related to NKY-80 

without linker increased. The peaks were integrated to determine the quantity. The 

progress is displayed in Figure 25, showing the relative intensity of the peaks to each 

other at 280 nm. Besides NKY-CPP conjugate 4 and free NKY-80 another peak is visible 

having a similar retention time as NKY-Linker compound 3. However, since disulfide 

bonds are stable at a pH of 5 and the peak does not change in intensity, this peak is 

referred to a system peak. In case this peak arises from compound 3, it would contain a 

hydrazone which would be cleaved at the acidic conditions resulting in decreased 

intensity. 

 

Figure 25: HPLC chromatogram displaying the cleavage of NKY-80-CPP conjugate at pH 5, 
measured after 1h and 24h. X-axis: Retention time in minutes, Y-Axis: relative UV intensity 
at 280 nm in % 
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The slow release of NKY-80 can be explained by the relatively low temperature. The 

experiment was carried out at room temperature, whereas inside the body a temperature 

of 37 °C would speed up the hydrolysis. The cleavage should be checked over a longer 

time to see if the NKY-80 is fully released. Nevertheless, the fact that NKY-80 is freed is of 

importance for the administration of this conjugation into the cell since the drug needs to 

be decoupled in order to react.  
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3.4 Coupling of NKY-80-linker to folic acid 

The same NKY-linker conjugate as used in chapter 3.3 is applied for the conjugation of 

NKY-80 and folic acid, being a targeted approach for selective tissue penetration of 

melanoma cells. The conjugation between drug and folic acid was carried out as in a two-

step reaction, the general pathway is displayed in Figure 26. For the first step, a solid 

phase support using a 4-methoxytitryl resin which was preloaded with 2-aminoethanethiol 

was applied. The reactants can diffuse into the pores of the resin reacting with the 

loading. This approach simplifies the work-up since all unreacted molecules can be 

washed away. Furthermore side-reactions are limited. After successful loading the 

conjugate is cleaved with acid.  

Folic acid is added to obtain a conjugation between folic acid and cysteamine, which 

offers a free thiol which is necessary to be attached to the NKY-linker compound. This 

reaction resulted in an orange solid with a yield of 53 %. 

 

 

Figure 26: Modification of folic acid with cysteamine to introduce a thiol group and 
subsequent coupling to linker-drug conjugate 

 

According to literature data [73], only one carboxy-group reacts, which can be explained 

by sterical preferences for this or sterical hindrance for the other group. Due to the solid 

phase, a doubly addition of cysteamine is not possible because auf sterical reasons. 

Nevertheless, an attachment to the other carboxy-group would not interfere with the 
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desire as the folic acid receptor will anyhow recognize the molecule, since the pteroate 

moiety is essential for receptor binding [64]. 

The structure of FA-SH (folic acid cysteamine) 5 was not entirely confirmed by 1H-NMR 

spectroscopy, since the cysteamine protons are not doubtlessly assigned. Comparison 

with literature data proves the right allocation of the cysteamine peaks [73]. Additional 

NMR measurements (13C and 2D) were carried out to prove the structure (data not 

shown). 

ESI-ToF-MS and MALDI-ToF-MS were applied to confirm the mass. Both show [M+H]+ 

and [2M+H]+. In MALDI-ToF-MS the corresponding sodium and potassium adducts can be 

detected. 

High resolution mass spectrometry confirms the molecular formula of FA-SH 5 as 

displayed in Figure 27. 

 

 

Figure 27: High resolution mass spectrometry analysis of product 5 

 

The obtained folic acid derivative (FA-SH, 5) now offers a free thiol which can react with 

the disulfide present in the NKY-linker conjugate. The whole reaction pathway is displayed 

in Figure 26. The conjugation of folic acid derivative 5 with NKY-linker 3 resulted in an 

orange solid with a purity of 60 %, thus a yield of 22 % is obtained. 
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NMR spectra (1H and 2D measurements) of the conjugate of NKY-80 and folic acid 

confirm the structure (data not shown); also ESI-ToF-MS shows the mass of the product. 

However, ESI-ToF-MS as well as NMR spectroscopy assumes unreacted starting material 

to be present in the product. To check the purity of the compound, DOSY (diffusion-

ordered-spectroscopy) was recorded. This proves the formation of the product and refutes 

the doubts if the 1H-NMR is only a mixture of starting materials. In a DOSY measurement, 

the diffusion rate of a molecule is measured. Consequently, for each proton peak a 

diffusion rate is calculated, thus, all peaks within one molecule have the same diffusion 

rate since the whole molecule moves with the same speed. However, this measurement 

also confirms the presence of unreacted FA-SH 5, since some peaks show two diffusion 

rates thus another molecule, starting material FA-SH 5 in this case, is underlying. This 

impurity has similar properties compared to the desired product and both are difficult to 

dissolve, thus purification of the resulting solid is complicated. As in this case only 12 mg 

were obtained, column chromatography would be challenging. 

To sum up, the product is not pure and requires further purification and optimization of the 

reaction. Catalyzing the reaction with 0.3 equivalents Trifluoroacetic acid to push the 

reaction to completion and therefore avoid unreacted FA-SH 5 led to cleavage of the C=N 

bond between NKY-80 and linker. Nevertheless, the desired product was obtained but 

needs optimization in the future (see perspectives). 

 

Prior the reaction using the loaded resin described above, an unloaded resin was used as 

described by Atkinson et al. [73]. The resin was swollen in DCM, next 2-aminoethanethiol 

was dissolved and added to the resin together with pyridine. After removal of the solvent 

and washing with DCM/pyridine, the conjugation with folic acid was carried out as 

described for the preloaded resin. However, the desired product could not be obtained. 

Since folic acid lacks in solubility, the solvent amount was increased compared to the 

literature which optimized the homogeneity of the solution but still did not result in the 

product. Either the loading of the resin did not work, even though a positive ninhydrin test 

proved the presence of primary amine, or cleavage of the product was not successful. In 

order to remove the possibly formed product from the resin, the amount of TFA was 

increased from three to 50 %, also not resulting in the product. It is assumed that the 

loading was not complete due to the relatively pale blue/violet color arising after ninhydrin 

test of the resin after attachment of 2-aminoethanethiol. Ninhydrin test of the preloaded 

resin in contrast gave a dark blue/violet appearance. Both tests were not quantified, but 

judged visually. This means, that the resin has been loaded but in a relatively small 
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amount, which could not be isolated after cleavage and work-up according to the 

procedure explained in literature [73]. 

To sum up, the desired product could not be obtained by using an unloaded 4-

methoxytrityl resin, since the loading with 2-aminoethanethiol was too incomplete to 

achieve the desired product. 

 

In addition to the solid phase support, it has also been tried to carry out reactions in 

solution using different conditions.  

Referring to Zhang et al. [74], folic acid can be attached to cysteamine by forming and 

isolating the active ester of folic acid which should simplify the conjugation with 2-

aminoethanethiol. Thus, a mixture of folic acid, N-Hydroxysuccinimide (NHS), N-N'-

diisopropylcarbodiimide (DIC, coupling reagent, deviating from literature) and tiethylamine 

(TEA) was stirred for two days under argon in the dark, dissolved in DMSO. After filtration 

of a precipitate which is referred to a urea-derivative, precipitation in diethylether leads to 

a solid, which did not show the right structure in NMR spectroscopy.  

Pasut et al [75] applied a similar procedure as described by Zhang et al. However, the 

work-up procedure is slightly different, furthermore this time dicyclohexylcarbodiimid 

(DCC) is used. After the reaction was poured into diethylether for precipitation as 

suggested in literature, it was placed in the fridge where the solution turned into a gel 

making further work-up impossible. The missing formation of a urea derivative confirms 

the unsuccessful reaction. 

Another reference suggests a combination of DCC and 4-dimethylamiopyridine (DMAP) to 

form the NHS-ester of folic acid in DMSO. After stirring the mixture at 40 °C under argon 

atmosphere in a light-protected flask, a precipitate was formed which was filtered off. This 

precipitate is assigned to be a urea derivative which is always formed when working with 

DCC. Precipitation of the mixture in a cold solution of diethylether/acetone resulted in an 

orange solid. This compound shows a mass of 348.14 [M+H]+ in ESI-ToF-MS when 

expecting m/z 538.47. Also the proton NMR spectroscopy did not confirm the structure of 

the NHS-folic acid. Nevertheless, it was tried to let this compound react with cysteamine, 

since the formation of urea showed at least a progress in the reaction, although the 

structure of the product remains unknown. The reaction with cysteamine was carried out 

referring to Pinhassi et al. [76]. The unknown product, cysteamine and 

diisopropylethylamine (DIPEA) are stirred together at room temperature under argon 

atmosphere in the dark overnight in DMSO. The mixture was then poured into 

diethylether/acetone to form a precipitate which was filtered off. Even though the reaction 
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was started with 150 mg, the amount obtained was not enough for a clear NMR spectrum. 

Nevertheless, the one recorded did not show the expected peaks.  

Also a one-pot synthesis to obtain FA-SH has been carried out. Folic acid, 2-Succinimido-

1,1,3,3-tetramethyluronium-tetrafluoroborate (TSTU) and DIPEA were dissolved in DMSO. 

After stirring for 3 h, cysteamine (2-aminoethanethiol) is added. The mixture was stirred 

over night at room temperature before it was poured into cold ether to form a precipitate. 

The obtained orange solid was checked with NMR spectroscopy and ESI-ToF-MS both 

not confirming the existence of the desired product. 

To conclude, different combinations of coupling reagents and conditions for reaction and 

work-up have been tried all not resulting in the desired product. For unknown reasons the 

formation of either the NHS ester of folic acid or folic-acid-cysteamine was not successful.  
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4 Perspectives 

Within this project two final products have been synthesized. On the one hand NKY-80 

has been coupled to a cell-penetration peptide, on the other hand it is conjugated with a 

folic acid derivative.  

Prior the testing in cell-lines, the stability of the products should be tested as described in 

chapter 3.3.1 over a longer period of time and at 37 °C to see whether the hydrazone is 

cleaved at an acidic pH as it would be present in endosomes or lysosomes after 

internalization into the cell. 

Both of them should be tested in cell-tests to check their effectiveness. For the cell-tests, 

isolated immune-cells of mice and humans should be used. If effective, a murine-

melanoma-model, as well as human immune-cells and human melanoma cells will be 

applied in immunodeficient mice, to check both, the uptake as well as the release of the 

drug. They will be done in collaboration with the institute of immunology, University of 

Mainz. 

In case of NKY-CPP the potency of NKY-80 should be increased compared to free NKY-

80. The conjugate containing folic acid first needs optimization in the synthesis before a 

pure product is obtained which should also be tested in cell-tests. For this optimization it is 

suggested to use an excess of NKY-Linker to avoid the presence of unreacted FA-SH, 

which is difficult to remove from the desired product due to similar properties. Furthermore 

the reaction should be carried out in bigger scale to obtain a greater amount of product to 

be able to purify it. 

In addition to the coupling to a CPP and folic acid, NKY-80 should also be coupled to a 

suitable antibody that is also able to target regulatory T-cells and therefore also acts as 

targeting immunotherapy approach. 
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5 Summary 

Adenylyl cyclase (AC) is a transmembrane protein which catalyzes the formation of ATP 

(adenosine triphosphate) to cAMP (cyclic adenosine monophosphate), which is a second 

messenger involved in diverse pathways. One function is the regulation of the immune 

response, since naturally occurring regulatory T cells (nTregs) maintain the suppression of 

the immune system by contact dependent communication with the responding T cells, 

where cAMP is transferred via gap junction intercellular communication (GJIC). 

Melanoma cells overexpress cAMP and as a result the immune system is consequently 

suppressed allowing the cancer cells to proliferate in an uncontrolled way. The main aim 

of this project is to influence the activity of AC, which will decrease the level of cAMP in 

nTregs, leading to a reduced suppression of the immune response. In this approach, NKY-

80 (2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone) is applied as potent adenylyl 

cyclase inhibitor. Due to the various functions of cAMP it is crucial to attach the AC 

inhibitor to a targeting compound ensuring to only affect the malignant cells without killing 

the other healthy cells. A suitable linker that was synthesized within this project which 

enables the attachment of the drug to several carrier molecules like i) a cell-penetrating 

peptide (CPP), ii) folic acid (FA), which was carried out during this project. The linker, 

which was synthesized in gram scale in good yields, bears two functionalities, on the one 

hand a hydrazine moiety being connected to the keto-group of the NKY-80 by forming a 

hydrazone bond and on the other hand offering a disulfide for the connection to the 

different carriers. The presence of a hydrazone allows the drug to be released in 

endosomes or lysosomes due to a decrease in pH (pH 5.0-6.5 or pH 4.5-5.0 respectively) 

leading to hydrolysis of the hydrazone bond. In case of the conjugate not entering the cell 

via endocytosis thus bypassing the endosomes and lysosomes, the disulfide bond will be 

reduced by glutathione, an enzyme being present in the cytosol.  

NKY-80 was attached to a cell-penetrating peptide in milligram scale in order to increase 

the cellular uptake of NKY-80, which should enable the application of the conjugate in a 

locally administered dosage directly at the tumor side. Cell-penetrating peptides are a 

group of peptides that can cross the cell membrane by different mechanisms, either via 

endocytosis or direct penetration. However, this approach is limited to the direct injection 

of the conjugate into the melanoma, but not systemically, since it is not targeting the 

cancer. 
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Additionally, coupling to a folic acid moiety in miligramscale was carried out to enable the 

drug to affect only the quickly dividing cells, in systemic application, because they require 

a higher amount of folic acid for proliferation resulting in an increase in folic acid receptors 

on their outer membrane.  

These two different approaches are promising ways on the one hand to increase the 

potency of the drug by binding it to a CPP and on the other hand to achieve a targeted 

delivery of the drug into melanoma cells by conjugation with folic acid. 

To sum up, during this project a suitably linker with two functionalities was synthesized. 

After coupling NKY-80 to the linker via a hydrazone bond, both, a cell-penetrating peptide 

as well as a folic acid which was modified prior conjugation was attached to the linker via 

a disulfide bond. Both approaches will be tested in cell-tests in the future to check the 

effectiveness of the conjugation. 
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6 Zusamenfassung 

Adenylylcyclase (AC) ist ein Transmembranprotein, das die Umsetzung von ATP 

(Adenosintriphosphat) zu cAMP (zyklisches Adenosinmonophosphat) katalysiert, welches 

ein sekundärer Botenstoff ist, der in diversen Signalwegen der Zelle involviert ist. Eine 

Funktion ist die Regulation der Immunantwort, da natürlich vorkommende regulatorische T 

Zellen (nTregs) die Unterdrückung des Immunsystems durch kontaktabhängige 

Kommunikation mit T Zellen regulieren, indem cAMP mittels sogenannter Gap-Junction-

vermittelter interzellulärer Kommunikation (GJIC) transferiert wird.  

Melanom-Zellen überexprimieren cAMP, woraus eine permanente Unterdrückung des 

Immunsystems resultiert, die es den Krebszellen ermöglicht, sich unkontrolliert zu 

vermehren. Die Grundidee dieses Projektes ist es, die Aktivität der Adenylatcyclase zu 

inhibiteren, was zu einer geringeren Menge an cAMP in nTregs führt und somit die 

Unterdrückung des Immunsystems gemindert wird. In diesem Ansatz wird NKY-80 (2-

Aino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone) als potenter Adenylylcyclase-Inhibitor 

verwendet. Aufgrund der vielseitigen Funktionen von cAMP ist es notwendig, den AC 

Inhibitor an ein Molekül zu knüpfen, das diesen gezielt in maligne Zellen transportiert, um 

diese zum absterben zu bringen und gesunde Zellen am Leben lässt. Ein entsprechender 

Linker wurde hierfür synthetisiert, der es ermöglicht, den Wirkstoff an verschiedene 

Trägermoleküle wie Zell-penetrierende Peptide (CPP) oder Folsäure zu kuppeln, welches 

beides während dieses Projektes durchgeführt wurde. Der Linker, der in einer 

zweistufigen Synthese im Grammmaßstab in guten Ausbeuten synthetisiert wurde, enthält 

zwei Funktionalitäten, zum einen ein Hydrazid welches mit der Keto-Gruppe des NKY-80s 

zu einem Hydrazon reagieren kann, zum anderen ein Disulfid, welches die Kupplung zu 

Biomolekülen, die Thiolgruppen wie z.B. Cysteinreste enthalten, ermöglicht. Das 

vorhandene Hydrazon stellt die Abgabe des Wirkstoffs nach Eintritt in Endosome oder 

Lysosome sicher, da der verminderte pH (5,0-6,5 bzw. 4,5-5,0) das Hydrazon hydrolisiert. 

Falls die Verbindung in die Zelle nicht über Endozytose eintritt und somit die Endosome 

und Lysosome umgeht, kann das im Zytosol vorhandene Glutathion die Disulfidbindung 

reduzieren. 

NKY-80 wurde im Miligrammmaßstab an ein Zell-penetrierendes Peptide gebunden um 

die Aufnahme in die Zelle im Vergleich zu freiem NKY-80 zu erhöhen, was somit die 

lokale Applikation direkt in den Tumor ermöglichen soll. CPP sind eine Gruppe von 

Peptiden die die Möglichkeit haben über verschiedene Mechanismen, entweder über 
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Endozytose oder direkte Penetration, in die Zelle einzudringen. Allerdings ist die Kupplung 

von NKY-80 zu einem CPP in ihrer Anwendung auf lokale Applikation limitiert, da CPPs 

nicht gezielt in Krebszellen aufgenommen werden, somit ist eine systematische Gabe 

ausgeschlossen.  

Zusätzlich wurde NKY-80 im Miligrammmaßstab an Folsäure gebunden um den Wirkstoff 

gezielt in sich schnell vermehrende Zellen einzubringen, da diese einen höheren Bedarf 

an Folsäure haben und dadurch Folsäure Rezeptoren in vermehrter Menge an ihrer 

äußeren Membran präsentieren. Diese Kombination könnte systematisch angewendet 

werden. 

Diese zwei Ansätze sind vielversprechende Wege um auf der einen Seite die Menge an 

NKY-80 in der Zelle zu erhöhen, indem es an ein CPP gebunden wird und auf der 

anderen Seite NKY-80, durch die Kupplung an Folsäure, gezielt in Melanom Zellen zu 

transportieren. 

Während dieses Projekts wurde ein Linker mit zwei Funktionalitäten hergestellt. Nach der 

Kupplung von Linker und NKY-80 durch eine Hydrazonbindung wurde sowohl ein Zell-

penetrierendes Peptid als auch eine zuvor modifizierte Folsäure über eine Disulfidbindung 

an den Linker geknüpft. Beide Ansätze werden in Zukunft in Zelltests auf ihre Effektivität 

getestet werden. 
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7 Experimental part 

7.1 Instruments 

NMR spectra were recorded on a Bruker Avance 250 MHz, Bruker AMX 300 MHz, Bruker 

DRX 500 MHz, Bruker Avance 700 MHz and Bruker Avance 850 MHz with the use of 

solvent proton signal as internal standard at 25 °C. 

MALDI-ToF-MS analyses were performed using a Bruker Reflex II mass spectrometer 

(Germany) operating in the reflection mode. The instrument was equipped with a nitrogen 

laser (wavelength 337 nm) and spectra were recorded using a pulse rate of 3 Hz. Ions 

were accelerated by a voltage of 20 kV and detected by a micro channel plate detector. 

Calibration was carried out before each measurement using monoisotopic masses of 

fullerenes C60 and C70 at elevated laser power.  

ESI-ToF-MS anylses were performed using a QToF Ultima 3 from micromass/waters. 

Column chromatography was performed with silica gel 0.04-0.063 mm as the stationary 

phase with analytical grad solvents. 

HPLC measurements were performed using a Jasco LC 2000 plus system equipped with 

PU-2086 Plus pumps, MD-2015 diode array detector and a ReproSil 100 C18 (250 x 

4.6 mm) column with 5 µm particle size. Eluent A was water/TEAA (v:v 97.5:2.5), eluent B 

ACN. Applied gradient started with 0.0-35.0 min 0-70 % Eluent B, continued with 35-40 

min 70-0 % Eluent B, and ended with 40-45 min 0 % Eluent B. The maximum pressure 

applied was 50.0 MPa, the injection volume was 20 µL, the measured wavelengths were 

220, 280 and 340 nm, flowrate 1 mL/min. 

Preparative HPLC was performed on the same system with a ReproSil 100 C18 (250 x 20 

mm) column with 5 µm particle size and a flow rate of 1 mL/min. 
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7.2 Chemicals 

Chemical Purity and additional information Supplier 

Methyl-3-

mercaptopropanoate 

98 % Sigma Aldrich 

Hydrazine monohydrate 64-65 %, reagent grade 98 % Sigma Aldrich 

1,2-di(Pyridine-2-

yl)disulfide 

98 % Alfa Aesa 

NKY-80 N/A VitasMLab, Ltd 

Peptide >80 % Genosphere 

Cysteamine  

4-methoxytrityl resin 

Loading: 0.20 – 1.30 mmol/g 

resin. 

Polymer matrix: 

copoly/styrene-1 % DVB, 200-

400 mesh 

(DVB=Divinylbenzene) 

Novabiochem 

PyBOP N/A Novabiochem 

DIPEA  

(N-Ethyldiisopropylamine) 

99,5 % Sigma Aldrich 

Folic acid 98 % Sigma Aldrich 

Cysteamine hydrochloride N/A Fluka 
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7.3 Synthesis 

3-Mercaptopropanehydrazide (1):  

15.0 g (0.122 mol, 98 %) of methyl-3-mercaptopropanoate were 

dissolved in 20 mL methanol. 15.0 g (0.304 mol, 65%) hydrazine-

monohydrate were dissolved in 25 mL methanol and added 

dropwise to the methyl-3-mercaptopropanoate within 1 h under 

argon atmosphere and room temperature. The colorless reaction mixture was stirred over 

night at room temperature under argon atmosphere. The solvent was removed under high 

vacuum resulting in a high viscous colorless oil with a yield of 98 % (14.7 g). ESI-ToF-MS: 

m/z 239.07 [M+H]+ (disulfide), 1H-NMR (250 MHz, DMSO-d6) δ 9.05 (s, 1H, 2), 4.16 (s, 

2H, 1), 3.26-2.78 (m, 1H, 5), 2.67 (t, J = 7.0 Hz, 2H, 4), 2.32 (t, J = 7.0 Hz, 2H, 3). Rf 0.23. 

 

3-(pyridine-2-yl-disulfanyl)propanehydrazide (2):  

5.00g (22.2 mmol, 98 %) of 1,2-di(pyridine-2-yl)disulfide 

were dissolved in 30 mL Methanol. 1.36g (10.8 mmol, 

95 %) 1 were dissolved in 20 mL methanol and added to 

the solution of 1,2-di(pyridine-2-yl)disulfide dropwise 

under argon atmosphere and room temperature. The 

yellow reaction mixture was stirred over the weekend at room temperature under argon 

atmosphere. After monitoring the reaction with TLC (solvent EtoAc:MeOH 9:1) the mixture 

was purified on column chromatography (solvent: EtOAc:MeOH 9:1, silica gel, pore size 

0.04-0.063 mm) resulting in a colorless solid with a yield of 74 % (2.00 g). ESI-ToF-MS: 

m/z 230.06 [M+H]+. 1H-NMR (250 MHz, DMSO-d6) δ 9.10 (s, 1H, 2), 8.45 (ddd, J = 5.0, 

2.0, 1.0 Hz, 1H, 5), 7.88 – 7.71 (m, 2H, 8, 7), 7.24 (ddd, J = 7.0, 5.0, 1.0 Hz, 1H, 6), 4.23 

(s, 2H, 1), 3.02 (t, J = 7.0 Hz, 2H, 4), 2.45 (t, J = 7.0 Hz, 2H, 3). Rf value: 0.32. 
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N'-(2-amino-7-(furan-2-yl)-7,8-dihydroquinazolin-3(6H)-ylidene)-3-(pyridin-2-

yldisulfanyl)propanehydrazide (3, NKY-Linker):  

1.05 g (4.17 mmol, 91%) 2 and 0.350 g (1.51 

mmol, 99 %) 2-amino-7-(furan-2-yl)-7,8-

dihydroquinazolin-5(6H)-one (NKY-80) were 

dissolved in 35 mL chloroform under argon 

atmosphere and room temperature. 0.01 mL 

(0.15 mmol) trifluoroacetic acid (TFA) were 

added dropwise to catalyze the reaction. The 

reaction was stirred under argon atmosphere 

at room temperature overnight. After 

monitoring the reaction with TLC (solvent: EtOAc:MeOH 9:1) showed completion of 

reaction, the solvent was almost completely removed, the precipitate was filtered off and 

dried under high vacuum resulting in a slightly yellow solid with a yield of 67 % (510 mg). 

ESI-ToF-MS: m/z 441.11 [M+H]+, 1H-NMR (700 MHz, DMSO-d6) δ 10.60 (s, 0.6H, 2’)*, 

10.44 (s, 0.4H, 2’), 8.74 (s, 0.4H, 7), 8.57 (s, 0.6H, 7)*, 8.46 (d J = 4.5 Hz, 0.6H, 5’)*, 8.40 

(d, J = 4.5 Hz, 0.4H, 5’), 7.86 – 7.74 (m, 2H, Py), 7.59 (d, J = 1.5 Hz, 0.4H, 1), 7.57 (d, J = 

1.5 Hz, 0.6H, 1)*, 7.24 (m, 0.6H, Py)*, 7.18 (m, 0.4H, Py), 7.01 (s, 0.8H, 8), 6.97 (s, 1.2H, 

8)*, 6.39 (dd, J = 3.0, 1.5 Hz, 0.4H, 2), 6.38 (dd, J = 3.0, 1.5 Hz, 0.6H, 2)*, 6.17 (d, J = 3.0 

Hz, 0.4H, 3), 6.15 (d, J = 3.0Hz, 0.6H, 3)*, 3.15 – 2.53 (m, 9H). Rf value: 0.57. *=Signals 

of major isomer 

 

NKY-Linker-Cys-Gly-Gly-Trp-(Arg)8*8Ac (4):  

5 mg (10.0 µmol, 88 %) of 3 was dissolved in 3 mL DMF. 44 mg (17.03 µmol, 80 %) of the 

peptide CGGWRRRRRRRR*8TFA (amidated C-terminus) were dissolved in 1 mL DPBS 

buffer (Dulbecco’s phosphate buffered saline) and added to the solution at room 

temperature dropwise. The reaction was monitored using HPLC (solvent:97.5% 

H2O/2.5 % TEAA:ACN, column: C-18). After disappearance of 3 after 2h, the mixture was 

purified using preparative HPLC. The combined fractions were lyophilized, the crude was 

dissolved in 1 mL methanol and poured into 100 mL diethylether resulting in a colorless 

solid with a yield of 46 % (12.0 mg) and a purity of 96 %. MALDI-ToF-MS: m/z 1999 

[M+H]+. Isomeric ratio of hydrazone bond 
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0.5/0.5: 1H-NMR (700 MHz, D2O) δ 8.70 (s, 0.5H, 7), 8.69 (s, 0.5H, 7), 7.35 (s, 1H, 1), 

7.29 (d, J = 8.0 Hz, 1H, 20), 7.26 (dd, J = 8.0, 4.0 Hz, 1H, 23), 7.16 (d, J = 11.5 Hz, 1H, 

25), 7.04 (m, 1H, 21), 6.92 (m 1H, 22), 6.30 – 6.27 (dd, J = 3.0, 1.5 Hz, 1H, 2), 6.01 (d, J = 

3.0 Hz, 0.5H, 3), 6.00 (d, J = 3.0 Hz, 0.5H, 3), 4.38 (m, 1H, 18), 4.28 – 4.19 (m, 7H, 27), 

4.11 (m, 1H, 27), 3.92 – 3.72 (m, 5H, 11, 13, 16), 3.16 – 2.62 (m, 25H, 30, 19, 9, 3’, 4’, 4, 

6, 5), 1.81 – 1.35 (m, 32H, 28, 29).  

 

2-(4-(((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)amino)benzamido)-5-((2-

mercaptoethyl)amino)-5-oxopentanoic acid*TFA (5): 

0.393 g (173 µmol, loading: 0.44 mmol/g) of a 4-methoxytrityl resin preloaded with 2-

aminoethanethiol were swollen in 8 mL dichloromethane (DCM) for 30 minutes. After the 

solvent was removed, a solution of 382 mg (857 µmol, 99 %) folic acid and 450 mg (865 

µmol, 95 %) PyBOP dissolved in 10 mL DMSO is added. Afterwards 412 µL (2.41 mmol, 

99.5 %) diisopropylethylamine (DIPEA) is added dropwise. The reaction was shaken over 

night at 40 °C in the oven. After removal of the solvent, the resin was washed with DMSO, 

DMF, DCM and methanol (5x10 mL each). A negative Ninhydrin test of the resulting resin 

proved no primary amine being present anymore. For cleaving the product from the resin, 

8 mL TFA/DCM (v:v 1:1) is added. The mixture is shaken for 1 h at room temperature. 

The removed orange solution is poured into 400 mL diethylether to precipitate the product. 

62.3 mg of an orange solid are obtained with a yield of 53 % (62.3 mg). ESI-ToF-MS: m/z 

501.16 [M+H]+.  
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1H-NMR (300 MHz, DMSO-d6) δ 8.68 (d, J = 1.0 Hz, 1H, 23 (long range with 17 assigned 

by 2D measurement), 8.11 – 7.88 (m, 2H, 1, 8), 7.66 (dd, J = 9.0, 3.0 Hz, 2H, 11/15), 7.44 

(broad, 3H, 26, 29), 6.62 (dd, J = 9.0, 1.0 Hz, 2H, 12/14), 4.52 (s, 2H, 17, coupling to 23 

assigned by 2D measurement), 4.38 – 4.23 (m, 1H, 7), 3.59 – 3.50 (m, 1H, 16), 3.28 – 

3.08 (m, 2H, 2), 2.45 – 1.76 (m, 6H, 5, 6, 34). Furthermore the molecular formula is 

proven by high-resolution MS: formula: C21H25N8O5S.  

 

2-(4-(((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)amino)benzamido)-5-((2-((3-(2-

(2-amino-7-(furan-2-yl)-7,8-dihydroquinazolin-5(6H)-ylidene)hydrazinyl)-3-

oxopropyl)disulfanyl)ethyl)amino)-5-oxopentanoic acid (6):  

26.4 mg 3 (52.7 µmol, 88 %) were dissolved in 1 mL DMSO. 27 mg 5 (39.6 µmol, 90 %) 

were dissolved in 2 mL DMSO separately and added dropwise to the solution of 3 within 2 

minutes. The yellow reaction mixture was stirred at room temperature for 1 day. 

Precipitation of the product in 50 µL diethylether resulted in an orange powder with a yield 

of 22 % (12.0 mg) and a purity of 60 %. The product was not further purified. ESI-ToF-MS: 

m/z 830 [M+H]+. Isomeric ratio: 0.4/0.6: 
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1H-NMR (300 MHz, DMSO-d6) δ 11.36 (d, J = 34.1 Hz, 1H, 32), 10.58 (s, 0.6H, 40)*, 

10.43 (s, 0.4, 40), 8.75 (s, 0.6H, 52)*, 8.57 (s,0.4H, 52), 8.64 (s, 1H, 23), 8.01 (m, 2H, 2 

NH, 1, 8), 7.79 (s, 1H, 26), 7.70 – 7.57 (m, 3H, 11, 15, 56), 6.98 (broad, 4H,29, 58), 6.64 

(d, J = 9.0 Hz, 2H, 12, 14), 6.38 (m 1H 55), 6.16 (m, 1H, 56 ArH), 4.48 (d, J = 5.0 Hz, 2H, 

17), 4.32 (m, 1H, 7), 3.56 (d, J =5.0 Hz, 1H, 16), 2.90 – 1.77 (m, overlapping with solvent, 

2, 5, 6, 34, 37, 38, 44, 46, 45). 
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