
Effective Harmonic Potentials: Insights into the Internal
Cooperativity and Sequence-Specificity of Protein
Dynamics
Yves Dehouck1,2*, Alexander S. Mikhailov1

1 Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany, 2 Department of BioModelling, BioInformatics and BioProcesses,
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Abstract

The proper biological functioning of proteins often relies on the occurrence of coordinated fluctuations around their native
structure, or on their ability to perform wider and sometimes highly elaborated motions. Hence, there is considerable
interest in the definition of accurate coarse-grained descriptions of protein dynamics, as an alternative to more
computationally expensive approaches. In particular, the elastic network model, in which residue motions are subjected to
pairwise harmonic potentials, is known to capture essential aspects of conformational dynamics in proteins, but has so far
remained mostly phenomenological, and unable to account for the chemical specificities of amino acids. We propose, for
the first time, a method to derive residue- and distance-specific effective harmonic potentials from the statistical analysis of
an extensive dataset of NMR conformational ensembles. These potentials constitute dynamical counterparts to the mean-
force statistical potentials commonly used for static analyses of protein structures. In the context of the elastic network
model, they yield a strongly improved description of the cooperative aspects of residue motions, and give the opportunity
to systematically explore the influence of sequence details on protein dynamics.
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Introduction

Deciphering the motions that underlie many aspects of protein

function is a major current challenge in molecular biology, with

the potential to generate numerous applications in biomedical

research and biotechnology. Although molecular dynamics (MD)

hold a prominent position among computational approaches,

considerable efforts have been devoted to the development of

coarse-grained models of protein dynamics [1]. Besides their

ability to follow motions on time scales that are usually not

accessible to MD simulations, these models also give the possibility

to better understand the general principles that rule the dynamical

properties of proteins.

The elegant simplicity of the elastic network models (ENM)

certainly contributed to their popularity, and they have been

successfully exploited in a wide range of applications [2–5]. In

these models, the residues are usually represented as single

particles and connected to their neighbors by Hookean springs

[6,7]. The input structure is assumed to be the equilibrium state,

i.e. the global energy minimum of the system. Common variants

include the homogeneous ENM, in which springs of equal stiffness

connect pairs of residues separated by a distance smaller than a

predefined cutoff, and other versions in which the spring stiffness

decays as the interresidue distance increases [8–10]. In all cases,

the equations of motion can be either linearized around

equilibrium, to perform a normal mode analysis of the system

[11–13], or integrated to obtain time-resolved relaxation trajec-

tories [14,15].

Despite their many achievements, purely structural ENM also

come with severe limitations. Notably, modeling the possible

effects of mutations within this framework usually requires random

local perturbations of the spring constants [16], or a more drastic

removal of links from the network [17]. A few attempts have been

made to include sequence-specificity in the ENM by setting the

spring constants proportional to the depth of the energy minima,

as estimated by statistical contact potentials [18,19]. However, this

approach cannot be extended to distance-dependent potentials, for

they are not consistent with the ground hypothesis of the ENM,

i.e. that all pairwise interaction potentials are at their minimum in

the native structure. Other studies have led to the conclusion that

the ENM behave as entropic models dominated by structural

features, and that the level of coarse-graining is probably too high

to incorporate sequence details [7,20]. Still, the chemical nature of

residues at key positions can have significant effects on the main

dynamical properties of a protein. Hinge motions [21], for

instance, obviously require some architectural conditions to be

fulfilled, such as the presence of two domains capable of moving

relatively independently. But the amplitude and preferred

direction of the motion are most likely determined by fine tuning

of specific interactions in the hinge region. In proteins subject to
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domain swapping, the hinge loops have indeed been shown to

frequently include residues that are not optimal for stability [22].

The importance of the amino acid sequence has also been

repeatedly emphasized by experimental studies of the impact of

mutations on the conformational dynamics of proteins [23–25].

A major obstacle to the definition of accurate coarse-grained

descriptions of protein dynamics lies in the highly cooperative

nature of protein motions, which makes it difficult to identify the

properties of the individual building blocks independently of the

overall architecture of each fold. By condensing the information

contained in a multitude of NMR ensembles, we build here a

mean protein environment, in which the behavior of residue pairs

can be tracked independently of each protein’s specific structure.

This methodology brings an efficient way of assessing coarse-

grained models of protein dynamics and of deriving effective

energy functions adapted to these models. In the context of the

ENM, we identify a set of spring constants that depend on both the

interresidue distances and the chemical nature of amino acids, and

that markedly improve the performances of the model.

Results

Dynamical properties of proteins from the perspective of
an average pair of residues

The mean-square fluctuations of individual residues (MSRF)

have been extensively relied on to characterize protein flexibility

and to evaluate coarse-grained models of protein dynamics [26], in

part because of their widespread availability as crystallographic B-

factors. However, since the MSRF carry little information about

the cooperative and anisotropic nature of residue motions, we

propose to examine the dynamical behavior of proteins from the

perspective of residue pairs rather than individual residues.

Information about the fluctuations of interresidue distances is

contained in the data of NMR experiments for numerous proteins,

and will be exploited here. We define the apparent stiffness of a

pair of residues (i, j) in a protein p:

cpij~2kBT=s2
rpij

ð1Þ

where kB is the Boltzmann constant, T the temperature, and s2
rpij

the variance of the distance r between residues i and j, in a

structural ensemble representative of the equilibrium state. cpij is

defined up to a multiplicative factor, which corresponds to the

temperature. We also introduce the uncorrelated apparent stiffness

c0pij , to quantify the impact of the individual fluctuations of residues

i and j on the fluctuations of the distance that separates them. This

is achieved by using s0
rpij

instead of srpij
in eq. 1, where s0

rpij
is

computed after exclusion of all correlations between the motions

of residues i and j (see Methods).

As illustrated in Figure 1, c can be quite different from one

residue pair to another. Indeed, besides the impact of direct

interactions, c is also strongly dependent on the overall fold of the

protein, and on the position of the pair within the structure. To

remove the specific influence of each protein’s architecture, we

define the apparent stiffness in a mean protein environment c(s, d):

c(s, d)~
2kBT

s2
r (s, d)

,with s2
r (s, d)~

PP
p~1

PNp(s, d)

ij Mps2
rpijPP

p~1 Np(s, d)Mp

ð2Þ

where s is one of 210 amino acid pairs, d the discretized equilibrium

distance between pairs of residues (dƒrpijvdz0:5Å), Mp the

number of structures in the equilibrium ensemble of protein p, and

Np(s, d) the number of (s, d) residue pairs in protein p. Pairs of

consecutive residues were dismissed, so as to consider only non-

bonded interactions. The mean protein environment is thus

obtained by averaging over a large number of residue pairs in a

dataset of P~1500 different proteins (see Methods).

The influence of the distance separating two residues on the

cooperativity of their motions can be investigated by considering

amino acid types indistinctively in eq. 2. Interestingly, c(d) follows

approximately a power law, with an exponent of about 22.5

(Figure 2). Finer details include a first maximal value occurring for

Ca–Ca distances between 5 and 5.5 Å, i.e. the separation between

hydrogen-bonded residues within regular secondary structure

elements, and a second around 9 Å, which corresponds to indirect,

second neighbor, interactions. The high level of cooperativity in

residue motions is well illustrated by the comparison of c(d) and its

uncorrelated counterpart c0(d). Indeed, these two functions would

take identical values if the variability of the distance between two

residues could be explained solely by the extent of their individual

fluctuations. In a mean protein environment, however, c(d) is

about two orders of magnitude larger than c0(d) at short-range,

and the difference remains quite important up to about 30–40 Å.

The comparison of c(d) values extracted from subsets contain-

ing exclusively small, large, all-a, or all-b proteins indicates that

the content of the dataset has a remarkably limited impact on c(d)
(Figure S1). This distance dependence can thus be seen as a

general property of protein structures, a signature of protein

cooperativity at the residue pair level. Of course, since c(d) is

representative of a mean protein environment, deviations may

occur for individual proteins, according to their specific structural

organizations (Figure S2).

The apparent stiffness c(s) is computed for each type of amino

acid pair s using eq. 2, by considering only residue pairs separated

by less than 10 Å. As shown in Figure 3A, the chemical nature of

the interacting residues is a major determinant of their dynamical

behavior. Unsurprisingly, Glycine and Proline appear as the most

Author Summary

Decades of experimental evidence have underlined the
fact that protein structures can hardly be considered as
static objects. To understand how a protein achieves its
biological purpose, it is therefore quite often necessary to
unravel the complexity of its dynamical behavior. Howev-
er, the definition of accurate and computationally tractable
descriptions of protein dynamics remains a highly
challenging task. Indeed, even though proteins are all
built from a limited set of amino acids and local
conformational arrangements, the specific nature of
biologically relevant motions may vary widely from one
protein to another, which constitutes a serious obstacle to
the identification of common rules and properties. Here,
instead of focusing on the study of a single protein, we
adopt a more general perspective by condensing the
information contained in a multitude of NMR conforma-
tional ensembles. This approach allows us to characterize
the dynamical behavior of residues and residue pairs in a
mean protein environment, independently of each pro-
tein’s specific architecture. We describe how this analysis
can be exploited to assess the performances of coarse-
grained models of protein dynamics, to take advantage of
existing experimental data for a more rational and efficient
parametrization of these models and, ultimately, to
improve our understanding of the intrinsic dynamical
properties of amino acid chains.

Effective Harmonic Potentials for Protein Dynamics
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effective ingredients of flexibility. Pairs involving hydrophobic and

aromatic amino acids tend to be considerably more rigid, with c(s)
values up to 6 times larger. These differences originate in part in

the individual propensities of different amino acids to be located in

more or less flexible regions (e.g. hydrophobic core vs. exposed

surface loops). However, there is only a limited agreement between

c(s) and c0(s) (Figure 3A–B): the correlation coefficient is equal to

0.71, and c(s) spans a much wider range of values. Beyond

individual amino acid preferences, the specifics of residue-residue

interactions play thus a significant role in determining the extent of

cooperativity in residue motions.

Accuracy of elastic network models in reproducing the
dynamical properties of proteins

The computation of the apparent stiffness of residue pairs

in a mean protein environment provides an interesting tool

to probe the dynamical properties of proteins. It also

generates a very straightforward approach to assess the

ability of coarse-grained models to reproduce accurately this

general behavior.

We focus here on four common variants of the residue-based

ENM [27,28], which differ only by the functional form of the

spring constants k. The dependence of k on the interresidue

distance rpij is defined by two parameters: the cutoff distance ld ,

above which residues i and j are considered disconnected, and the

exponent a that determines how fast k decreases with increasing

distances:

kpij(ENMa
ld

)~apH(ld{rpij)r
{a
pij ð3Þ

where H is the Heaviside function. The value of the temperature-

related factor ap is obtained, for each protein independently, by

fitting the predicted MSRF with the experimental ones. This

ensures that the amplitude of the individual fluctuations of the

beads in the network is on average equal to that observed in the

corresponding NMR ensemble, and that the predicted c(s, d)
values can thus be directly compared with those extracted from the

NMR data. We consider the following models: ENM0
10, ENM0

13,

ENM2
50, ENM6

50. These ENM variants were used to estimate the

value of s2
rpij

for each pair of residues in the 1500 proteins of our

NMR dataset (see Methods), and to subsequently compute c(d)
and c(s) from eq. 2.

Strikingly, all ENM variants systematically predict c(d) values

to be lower than the experimental ones, at least up to

interresidue distances of 20–30 Å (Figure 2). These models

overestimate thus the amplitude of pairwise fluctuations,

relatively to the amplitude of individual fluctuations. For

example, if two residues in a protein undergo highly correlated

Figure 1. Schematic illustration of the apparent stiffness c. A simple model containing 8 beads connected by elastic springs was subjected to

107 integration steps under Gaussian noise. Selected values of v(DRi)
2
w, c and c0 are given in arbitrary units. Individually, the pairs A–B and C–D

would be identical, but they experience differently the influence of the other beads. As a result, the C–D pair is effectively more rigid than A–B
(cABvcCD). In both cases, the motions are somewhat correlated, as the apparent stiffness c is larger than what is expected from the knowledge of
their individual motions (c0). Beads A and E do not interact directly but the effect of the network on their relative motions is captured by the values of
cAE and c0AE .
doi:10.1371/journal.pcbi.1003209.g001

Figure 2. Comparison of the experimental and predicted
values of the apparent stiffness c(d). Experimental values of c(d)
(continuous black) and c0(d) (dashed black), extracted from the dataset
of 1500 NMR ensembles. Values of c(d) predicted on the same dataset

by the ENM0
10 (dashed red); ENM0

13 (continuous red); ENM2
50 (dashed

blue); ENM6
50 (continuous blue).

doi:10.1371/journal.pcbi.1003209.g002

Effective Harmonic Potentials for Protein Dynamics
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motions, the amount of thermal energy necessary to induce a

moderate variance on the distance between them will generate

high variances on their individual coordinates. Consequently, if

the motions of the beads of the ENM are less coordinated,

adjusting the scale of the spring constants to reproduce the

amplitude of individual fluctuations leads to an overestimated

variance on the interresidue distances, and thus to lower c(d)
values. This problem is particularly apparent when k is assumed

to decrease proportionally to the square of the interresidue

distance, in the ENM2
50. Although this model was shown to

perform well in predicting MSRF values [10], our results suggest

that it negates almost completely the coordinated aspect of

residue motions. Indeed, as shown in Figure 2, the c(d) values

predicted by this model are very close to those obtained from

the experimental data after removal of the correlations between

the motions of the different residues (c0(d)). This observation is

consistent with the extremely short atom-atom correlation

length characteristic of the ENM2
50, recently estimated on the

basis of an X-ray structure of Staphylococcal nuclease [27].

The ENM is often considered as an entropic model, not detailed

enough to include sequence information in a relevant way [7,20].

It is therefore hardly surprising that common ENM variants

produce a poor description of the sequence specificities of protein

dynamics. Individual amino acid preferences for more or less

Figure 3. Comparison of the experimental and predicted values of the apparent stiffness c(s). For each amino acid, the median value of
c(s) over the 20 possible partners is given in units of kBT , along with the maximal, minimal, 1st and 3rd quartile values. Outliers from these
distributions are depicted as circles. (A) Experimental values of c(s), extracted from the dataset of 1500 NMR ensembles. (B) Experimental values of

c0(s), extracted from the same dataset. (C) Values of c(s) predicted by the ENM6
50, on the same dataset. (D) Values of c(s) predicted by the ENM2

50, on
the same dataset.
doi:10.1371/journal.pcbi.1003209.g003

Effective Harmonic Potentials for Protein Dynamics
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densely connected regions are responsible for some variety in the

predicted values of c(s) (Figure 3C–D). However, this variety is far

from matching the one observed in the experimental data, as

shown by a much narrower range of c(s) values, and a limited

correlation coefficient with the experimental c(s) values, e.g. 0.64

for the ENM2
50 and 0.62 for the ENM6

50 (Figure S3). There is a

much better agreement between the c(s) values predicted by the

ENM2
50, and the experimental values of the uncorrelated apparent

stiffness c0(s) (Figure 3B,D, correlation coefficient of 0.84), which

confirms that this model ignores the coordinated aspects of residue

motions.

Derivation of effective harmonic potentials
Mean-force statistical potentials are commonly used to

perform energetic evaluations of static protein structures [29–

31]. These potentials do not describe explicitly the ‘‘true’’

physical interactions, but provide effective energies of interac-

tion in a mean protein environment, in the context of a more or

less simplified structural representation. Similarly, within the

ENM framework, k(s, d) defines for each pair of residues an

harmonic interaction potential. This potential is also effective in

nature, accounting implicitly for everything that is not included

in the model (e.g. the surrounding water). Hence, we seek to

identify the value of k yielding the most accurate reproduction

of the dynamical behavior of each type of pair (s, d) in a mean

protein environment, which is conveniently captured by the

apparent stiffness c(s, d).

For that purpose, let us define E
bond

(s, d) as the energy of the

elastic spring connecting two residues of type (s, d), in a mean

protein environment:

E
bond

(s, d)~
1

2
k(s, d)s2

r (s, d)~kBT
k(s, d)

c(s, d)
ð4Þ

where c(s, d) is the apparent stiffness extracted from the

experimental data. E
bond

(s, d) is unknown and is expected to be

different for different pair types (s, d). The knowledge of c(s, d) is

thus not sufficient to estimate directly k(s, d). However, from any

approximate set of spring constants k’(s, d), we may build the

ENM for all proteins in our dataset, to reproduce the mean

protein environment, and compute for each pair type an estimated

value of the apparent stiffness, c’(s, d), and bond energy,

E
’
bond(s, d).

Since the behavior of a given residue pair is highly dependent

on its environment, we can make the assumption that

E
’
bond(s, d) is a relatively good approximation of E

bond
(s, d),

even if k’(s, d)=k(s, d):

E
’bond

(s, d)~kBT
k’(s, d)

c’(s, d)
^E

bond
(s, d) ð5Þ

Indeed, if the spring stiffness of a residue pair is underestimated

(k’vk), it will also appear as less rigid in the ENM than in the

experimental data (c’vc). A more detailed discussion is given in

Supporting Text S1. From eqs. 4 and 5, we devise thus an iterative

procedure in which k(s, d) is updated at each step k by

confronting the predicted values of the apparent stiffness,

ck(s, d), with the experimental ones, c(s, d). It is expected to

converge when ck(s, d)?c(s, d), that is, when the predictions of

the model agree with the experimental data:

kkz1(s, d)~kk(s, d)
c(s, d)

ck(s, d)
ð6Þ

We used this approach to derive, from the NMR data, four

novel ENM variants: the distance-dependent dENM ; the

sequence-dependent sENM10 and sENM13, with a distance

cutoff of 10 and 13 Å, respectively, and the sequence- and

distance-dependent sdENM (see Methods).

Interestingly, the k values for the 210 amino acid pairs in the

sENM10 are relatively well correlated with the corresponding

contact potentials [30], even though they result from totally

different approaches (Figure S4). Some common general trends

can be identified, e.g. hydrophobic contacts tend to be associated

with both favorable interaction energies and large k values

(Figure 4A). However, the overall correspondence remains limited,

indicating that the determinants of protein rigidity and stability are

related, but distinct.

The distance dependence of k in the dENM is remarkably

similar to the r{6 power law that was previously obtained by

fitting against a 1.5 ns MD trajectory of a C-phycocyanin dimer

[8] (Figure 4B), although our new model presents more detailed

features. Notably, k remains approximately constant up to

interresidue distances of 5–6 Å, and then drops by about two

orders of magnitude to reach a second plateau between 7 and

12 Å. The bootstrap estimates of the 90% confidence intervals

displayed on Figure 4B underline the robustness of our derivation

scheme, and indicate that the k(d) values determined here depend

only marginally on the content of the dataset.

The k values of the sdENM are shown in Figure 4C, for a few

amino acid pairs. This model not only combines the strengths of

the sENM and the dENM, but also reveals the sequence specificity

of the k distance dependence. The D-R pair, for example, is

almost as rigid as I-I at short distances consistent with the

formation of a salt bridge, but almost as flexible as G-G at larger

distances. There is of course a larger uncertainty on the

determination of k(s, d) values, which is reflected by wider

confidence intervals than those on k(d) in the dENM

(Figure 4B,C). This is due to the limited amount of available

experimental data, and to the fact that the modelled dynamical

behavior of a protein is obviously less sensitive to variations of the

spring constant values for one type of amino acid pair, than for all

amino acid pairs indistinctively. However, this uncertainty remains

small enough to allow the identification of significant differences

between the k(s, d) values determined for different types of amino

acid pairs. In the example of Figure 4C, k(I{I, d) is consistently

larger than k(G{G, d) over the whole range of inter-residue

distances, whereas k(D{R, d) is significantly larger than

k(G{G, d) at short-range (4–6 Å), and significantly smaller than

k(I{I, d) at mid-range (6–12 Å).

Performances of the new ENM
The sdENM yields a much more accurate reproduction of the

dynamical behavior of residue pairs in a mean protein environ-

ment than the common ENM variants, as demonstrated by the

good agreement between experimental and predicted values of

c(s) (Figures 5A, S5), and c(d) (Figure 5B).

Beyond its performances in a mean protein environment, our

new model also brings highly notable improvements with respect

to previously described ENM variants when it is applied to the

specific architecture of a given protein. This is illustrated by two

examples, on Figure 6. A more thorough assessment of the ability

Effective Harmonic Potentials for Protein Dynamics
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of the different ENM variants to capture the motions of

individual proteins was performed on an independent dataset of

349 proteins. The correlation coefficient between predicted and

observed MSRF (rB) has been widely used in the past but

ignores the cooperativity inherent to protein dynamics, and

presents other shortcomings. Therefore, we introduce a new

measure (es) that quantifies the relative error on the estimation

of the variability of the distance between residue pairs, and is

thus focused on the cooperative aspects of residue motions (see

Methods).

Among the 4 previously described ENM variants, the ENM6
50 is

better at predicting the individual residue fluctuations (Table 1).

Interestingly, the ENM0
10, with its simple cutoff distance, appears

superior when it comes to the reproduction of cooperative motions

(es~0:59). The new ENM variants based on our effective

harmonic potentials present enhanced performances in compar-

ison with the common models. In particular, the dENM reaches

the same level of quality as the ENM6
50 for individual fluctuations

(rB~0:69), but surpasses even the ENM0
10 for the description of

cooperativity (es~0:54). On the other hand, the impact of

introducing sequence specificity can be examined by comparing

sENM10=13 with ENM0
10=13, and sdENM with dENM. It consists

in a slight improvement of the correlation coefficient rB, and a

pronounced decrease of the error es, especially at short- (0–15 Å)

and mid- (15–30 Å) range.

Discussion

For the last decades, statistical potentials extracted from datasets

of known protein structures [29–31] have played a critical role in

static analyses of protein structures, with major applications

including structure prediction, protein-protein docking, or rational

mutant design. Our study demonstrates that a similar approach

can be taken to derive effective energy functions that are

specifically adapted to the coarse-grained modeling of protein

dynamics.

Figure 4. Effective harmonic potentials. (A) Spring constants of the sENM10, for the 210 amino acid pairs. (B) Spring constants of the dENM. The
dashed line corresponds to k*r{6 . (C) Spring constants of the sdENM for 3 amino-acid pairs. The error bars in panels B–C correspond to the
bootstrap estimates of the 90% confidence intervals (see Methods). All k values are given in Tables S2, S3, S4, S5, and in Dataset S1.
doi:10.1371/journal.pcbi.1003209.g004

Figure 5. Performances of the sdENM in a mean protein environment. (A) Experimental and predicted values of c(s), in the dataset of 1500
NMR ensembles. The Pearson correlation coefficient between predictions and experimental data is equal to 0.95 (pv2:10{16). See also Figures S3 and
S5. (B) Experimental (continuous) and predicted (dashed) values of c(d), in the dataset of 1500 NMR ensembles. See also Figure S2.
doi:10.1371/journal.pcbi.1003209.g005

Effective Harmonic Potentials for Protein Dynamics
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Figure 6. Performances of the sdENM on individual proteins. The accuracy of the estimation of pairwise residue fluctuations by different ENM
variants is illustrated on the basis of two individual proteins. For each protein, 20 randomly selected residue pairs (10 with rpijƒ15Å, and 10 with
rpijw15Å) are connected by solid lines. A green line indicates that the amplitude of the fluctuations of the interresidue distance is well estimated by
the model. A red (blue) line indicates that the amplitude of the fluctuations of the interresidue distance is largely overestimated (underestimated) by

Effective Harmonic Potentials for Protein Dynamics
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More precisely, in the context of the ENM, we exploited a

dataset of 1500 NMR ensembles to determine the values of the

spring constants that describe best the behavior of pairs of

residues, as a function of both their chemical nature and the

distance separating them. The success of our approach is attested

by a drastic enhancement of the ability to accurately reproduce the

cooperative nature of residue motions, with respect to previously

described ENM variants. Moreover, a definite advantage of our

method is that the effective parameters characterizing the strength

of the virtual bonds are directly extracted from the experimental

data without any a priori conception of their functional form. The

fact that the distance dependence of the spring constants that we

retrieve is quite similar to the r{6 power law, which was

considered so far as underlying one of the best performing ENM

variants [8,27], also constitutes a major support to our approach.

In our derivation scheme, the virtual bonds are parametrized so

as to reproduce the behavior of amino acid pairs in a mean protein

environment. The analysis of the ability of different models of

protein dynamics to describe the motions of residues within this

environment sheds an interesting new light on the properties of

these models. In particular, our results indicate that previous ENM

variants underestimate, sometimes dramatically, the rigidity of

amino acid pairs at short- and mid-range. Our new model does

however provide a much more accurate reproduction of the

balance between short-range and long-range coordinated motions.

This is arguably a crucial aspect when considering, for example,

the consequences of localized alterations induced by ligand

binding on signal transduction or global conformational changes,

such as in ATP-powered molecular motors.

Importantly, our results also demonstrate that the ENM does

not have to be exclusively structural, and that sequence details

may be allowed to play a major role in coarse-grained descriptions

of protein dynamics. Thereby, this study paves the way towards

comparative analyses of motions in proteins that share a similar

structure but present differences in sequence. Such investigations

will prove particularly interesting in the context of the rational

design of (modified) proteins with controlled dynamical properties.

On the other hand, the importance of orientational effects in

protein dynamics has been underlined by both experimental and

computational studies [5,7,32–36]. At the protein level, these

effects are nicely illustrated by the strong anisotropy of a protein’s

response to applied external forces [33,34,36]. At the residue level,

the anisotropy can be related to the directional variability of the

packing density experienced by any given residue [5,35]. The

accurate description of such orientational effects should benefit

from the availability of sequence-specific models. Indeed, beyond

the number of contacts established in each direction, the actual

nature of these contacts can also have a substantial influence on

the anisotropy of residue fluctuations. Although we focused here

on residue-based elastic network models, our approach is not

limited to this particular family, and can be readily implemented

to use available dynamical data for the evaluation and optimiza-

tion of other coarse-grained models of protein dynamics. Notably,

the impact of chemical specificity on the dynamical behavior of

residues should be even more accurately rendered by effective

potentials based on a more detailed structural description.

Methods

NMR dataset
We retrieved, from the Protein Data Bank [37], ensembles of at

least 20 models from solution NMR experiments, corresponding to

monomeric proteins of at least 50 residues that present at most

30% sequence identity with one another. Entries under the SCOP

classifications ‘‘Peptides’’ or ‘‘Membrane and cell surface proteins’’

were not considered. The presence of ligands, DNA or RNA

molecules, chain breaks, non-natural amino acids, and differences

in the number of residues per model were also grounds for

rejection. These criteria led to the selection of 1849 distinct

structural ensembles. A subset of 1500 ensembles was randomly

selected for the main analysis, and the remaining 349 were used to

assess the performances of the different ENM variants. Unfolded

C- or N-terminal tails were automatically identified (MSRF values

larger than twice the average for all residues in the protein) and

removed from consideration. In each ensemble, the structure with

the lowest root mean square deviation from the mean structure,

after superposition, is chosen as representative and used to build

the ENM.

Elastic network model
The network is built by considering each residue as a single

bead, placed at the position of the corresponding Ca atom in the

input structure, and connecting neighboring beads with Hookean

springs [6,7]. The ENM variants considered here differ only by the

form of the spring constant k as a function of interresidue distance

and of amino acid types. In all variants, bonded interactions are

described by a larger value of k, defined as ten times the value of k
for non-bonded interactions at a separation of 3.5 Å, averaged

over all amino acid types. The potential energy of the network is

given by: U~
P

ivj (kij=2)(rij{r0ij)
2, where rij and r0ij are the

instantaneous and equilibrium distances between residues i and j,
respectively. By definition, the input structure corresponds to the

global energy minimum, with U~0. For a protein of n residues,

the Hessian H of the system is the 3n|3n matrix of the second

derivatives of U with respect to the spatial coordinates of the

the model. Values larger than 100% or lower than 2100% are assimilated to 100% and 2100%, respectively. In addition, for each protein and each
ENM variant, we report the error es on the estimation of pairwise fluctuations (eq. 15), which accounts for all pairs of residues in the protein. (A,C,E)
High quality structural ensemble of ubiquitin, obtained by combining NMR information with molecular dynamics simulations (PDB: 1xqq) [38]. (B,D,F)
NMR structural ensemble of periplasmic chaperone FimC (PDB: 1bf8). The relatively rigid orientation of the two domains is ensured by specific

interdomain interactions [39]. (A–B) ENM2
50. (C–D) ENM6

50. (E–F) sdENM.
doi:10.1371/journal.pcbi.1003209.g006

Table 1. Performances of different ENM variants.

rB
(a) es

(b) eSR
s eMR

s eLR
s

ENM0
10

0.63 0.59 0.53 0.59 0.68

ENM0
13

0.65 0.68 0.69 0.68 0.68

ENM2
50

0.66 0.97 1.07 0.96 0.74

ENM6
50

0.69 0.64 0.59 0.66 0.66

sENM10 0.63 0.55 0.49 0.55 0.67

sENM13 0.66 0.63 0.63 0.63 0.67

dENM 0.69 0.54 0.48 0.56 0.60

sdENM 0.70 0.48 0.41 0.49 0.57

(a)Average correlation coefficient between experimental and measured MSRF.
(b)Average relative error on the fluctuations of interresidue distances.
doi:10.1371/journal.pcbi.1003209.t001
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residues. The eigenvalue decomposition of H yields the covariance

matrix C of the spatial coordinates, which constitutes the output of

the model:

C~
X3n{6

k~1

1

lk

uku>k ð7Þ

where the sum is performed over the 3n{6 non-zero eigenvalues

lk of H, and uk are the corresponding eigenvectors. C is a 3n|3n
symmetrical matrix, constituted of n|n submatrices Cij :

Cij~

vDxiDxjw vDxiDyjw vDxiDzjw

vDyiDxjw vDyiDyjw vDyiDzjw

vDziDxjw vDziDyjw vDziDzjw

0
B@

1
CA ð8Þ

where Dxi, Dyi, and Dzi correspond to the displacements of

residue i from its equilibrium position, along the three Cartesian

coordinates. The predicted MSRF of residue i is given by the

trace of submatrix Cii: v(DRi)
2
w~v(Dxi)

2
wzv(Dyi)

2
wz

v(Dzi)
2
w.

Variance of the interresidue distance
For each pair of residues in a given protein p, the experimental

value of this variance is readily computed from the NMR data:

s2
rpij

~
1

Mp

XMp

m~1

(rpijm{rpij)
2 ð9Þ

where Mp is the number of structures in the NMR ensemble, rpijm

the distance between the Ca atoms of residues i and j in structure

m of protein p, and rpij the average distance over all Mp structures.

In the context of the ENM, s2
rpij

values are estimated from the

covariance matrix of the spatial coordinates, by standard statistical

propagation of uncertainty:

s2
rpij

&J
Cii Cij

Cji Cjj

� �
J> ð10Þ

where J is the Jacobian of the distance rpij as a function of the six

spatial coordinates:

J~
Lrpij
Lxi

Lrpij
Lyi

Lrpij
Lzi

Lrpij
Lxj

Lrpij
Lyj

Lrpij
Lzj

h i
ð11Þ

This estimation of s2
rpij

takes into account the individual,

anisotropic, fluctuations of both residues, as well as the correlations

between their respective motions. It relies on the validity of the first

order Taylor expansion of the distance as function of the

coordinates in the vicinity of the average distance. We ensured

that no systematic bias arose from this approximation (Figure S6).

To quantify the impact of the individual motions of residues on

their relative positions, we use eq. 10 to compute (s0
rpij

)2 in an

artificial construct where residue motions are not correlated. This

is achieved by extracting the covariance matrix from the NMR

data, and setting to zero all submatrices Cij where i=j.

Iterative procedure
The values of the spring constants of the new ENM variants

were derived from the dataset of 1500 NMR ensembles using eq 6.

For the dENM, sENM10 and sENM13, the initial values of the

spring constants were set equal to the experimental values of the

apparent stiffness: k0(d)~c(d) or k0(s)~c(s). Note that the c(s)
values were computed by considering only residue pairs separated

by a distance lower than the cutoff of 10 or 13 Å. For the sdENM,

the k0(s,d) values were set equal to the final values of the spring

constants in the dENM, k(d), for all amino acid types.

A correction for sparse data was devised to ensure that k(s,d)
tends to k(d) when the number of residue pairs of type (s,d) is too

small to obtain relevant estimations of s2
r (s,d). Instead of eq. 2, we

used the following definition to compute both the experimental

and predicted apparent stiffness:

c(s, d)~
2kBT

s2
r (s, d)

Nsd

NsdzS

� �
zs2

r (d)
S

NsdzS

� � ð12Þ

where Nsd~
PP

p~1 Np(s, d)Mp, Np(s, d) is the number of pairs

of type (s, d) in protein p, and Mp is the number of structures in

the NMR ensemble of protein p. The adjustable parameter S can

be understood as the number of occurrences of a (s, d) residue

pair, Nsd , that is needed to obtain a relevant estimation of s2
r (s, d).

For a given type of residue pair (s, d), if Nsd&S, then no

correction is necessary, and eq. 12 reduces to eq. 2. On the

contrary, if Nsd%S, then the data on (s, d) pairs is considered too

sparse to reliably estimate s2
r (s, d), and c(s, d)?c(d). We found

that the value of S has little impact on the overall quality of the

model, as long as it is not too small (Sv50), in which case aberrant

values of k(s, d) are determined for some uncommon (s, d) pairs,

or too large (Sw1000), in which case the performances decrease

because of a loss of information on sequence-specificity. The value

of the parameter S was set here to 500.

The k values were rescaled after each iteration step, so that the

average value of k over all amino acid types is equal to 1 for pairs

separated by a distance of 6 Å. Residue pairs of a given type (s, d)
for which k(s, d)v0:001 (after rescaling), were considered to

establish no direct interaction: k(s, d) was set to 0, and they were

no longer considered in the iterative procedure. The performances

of the new ENM variants after the first nine iteration steps are

reported in Table S1. The procedure converged rapidly for the

dENM and the sdENM, and the final models were selected after 5

and 3 iteration steps, respectively. The sENM variants did not

improve significantly with respect to the initial models (k~0),

indicating that k(s)~c(s) is a good approximation, contrary to

k(d)~c(d). The procedure was thus stopped after one iteration

step, for both the sENM10 and the sENM13.

To assess the robustness of the derivation scheme, and the

sensitivity of the k values determined for each type of residue pair

to the content of the dataset, we calculated the bootstrap estimates

of the 90% confidence intervals on k(s), k(d), and k(s, d). For that

purpose, the iterative procedure was repeated with 100 different

datasets, each one consisting of 1500 NMR ensembles randomly

picked, with replacement, from the original training dataset. All k
values, and the corresponding confidence intervals, are given in

Dataset S1.

Performance measures
The ability of coarse-grained models to accurately describe

protein dynamics is commonly evaluated by computing the

Pearson correlation coefficient between predicted and experimen-

tal MSRF, v(DRi)
2
w, over all i~1,:::, n residues of a given

protein:
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rB~

Pn
i~1 (B

exp
i {B)(B

pre
i {B)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 (B
exp
i {B)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (B

pred
i {B)2

q ð13Þ

where, for simplicity, Bi was used instead of v(DRi)
2
w. There is

indeed a direct relationship between the MSRF and the

cristallographic B-factors: Bi~(8p2=3)v(DRi)
2
w. B

exp
i and B

pre
i

correspond thus here to the MSRF of residue i extracted from the

NMR data and predicted by the ENM, respectively. The scale of

the predicted MSRF values depends on the scale of the spring

constants, which are only defined up to a constant factor. This

factor was determined, for each protein independently, by fitting

the scales of the predicted and experimental MSRF, i.e. to ensure

that:

B~
1

n

Xn

i~1

B
exp
i ~

1

n

Xn

i~1

B
pre
i ð14Þ

Although it has been widely used in previous studies, rB is

probably not the most adequate measure to evaluate the

performances of coarse-grained models of protein dynamics. As

pointed out previously [26,27], it does indeed present several

shortcomings: e.g. it is strongly affected by the presence of

highly flexible regions, and does not account for possible flaws

leading to an intercept of the regression line different from

zero. Most importantly, the MSRF describe individual fluctu-

ations but provide no information about the cooperative

aspects of residue motions. The quality of the MSRF

predictions gives thus no guarantee about the ability of the

model to describe the cooperativity of protein dynamics. The

ENM2
50 provides an interesting example, for it performs quite

well in predicting the MSRF but basically negates all

cooperativity (Figure 2, Table 1).

Therefore, we introduce a new measure that exploits the

information contained in the correlation matrix C, to quantify the

error on the estimation of the fluctuations of the interresidue

distances:

es~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

ij

s(exp)
rpij

{s(pre)
rpij

s0
rpij

 !2

vuuut ð15Þ

where Np is the number of non-bonded residue pairs in protein

p, s(exp)
rpij

and s(pre)
rpij

are the experimental (eq. 9) and predicted (eq.

10) values of srpij
, respectively. s(pre)

rpij
is obtained after fitting the

experimental MSRF with the predicted ones (eq. 14). The error

is normalized by s0
rpij

, which is the expected value of srpij
given

the individual, anisotropic, fluctuations of both residues

extracted from the NMR data, but neglecting all correlations

between their respective motions. This normalization ensures

that the contributions of the different pairs of residues are

equivalent, and that the measure is not dominated by highly

flexible regions.

Both rB and es are computed independently for each of the 349

proteins of our test set, and the average values are reported. We

also report the short- (eSR
s ), mid- (eMR

s ), and long-range (eLR
s )

contributions to es, obtained by considering only pairs separated

by 0–15 Å, 15–30 Å, and more than 30 Å, respectively.

Supporting Information

Dataset S1 Spring constants of the dENM, sENM10,
sENM13, sdENM (plain text).

(BZ2)

Figure S1 Comparison of the apparent stiffness c(d)
extracted from different protein datasets. The different

lines correspond to the full dataset of 1500 proteins (bold line), a

subset of 646 small (i.e. less than 100 residues) proteins (green), a

subset of 225 larger (i.e. more than 150 residues) proteins

(magenta), a subset of 253 all-a proteins (red), and a subset of

200 all-b proteins (blue).

(PDF)

Figure S2 Comparison of the experimental and predict-
ed apparent stiffness c(d) on two individual proteins. (A)

Schematic representation of the structural ensemble of ubiquitin,

obtained by combining NMR information with molecular

dynamics simulations (PDB: 1xqq) [38]. (B) Schematic represen-

tation of the NMR structural ensemble of periplasmic chaperone

FimC (PDB: 1bf8). The relatively rigid orientation of the two

domains is ensured by specific interdomain interactions [39]. (C–

D) Comparison of the experimental and predicted values of the

apparent stiffness c(d) extracted from either of these two proteins.

The bold black curves correspond to the experimental values of

c(d). The other curves correspond to the values of c(d) predicted

by different ENM variants: ENM0
10 (dashed red), ENM0

13

(continuous red); ENM2
50 (dashed blue); ENM6

50 (continuous

blue), sdENM (continuous green). The grey curves correspond to

the experimental values of c(d) extracted from the full dataset of

1500 proteins.

(PDF)

Figure S3 Comparison of the experimental and predict-
ed apparent stiffness c(s) on the dataset of 1500 NMR
ensembles. (A–E) For each amino acid, the median value of c(s)
over the 20 possible partners is given in units of kBT , along with

the maximal, minimal, 1st and 3rd quartile values. Only residue

pairs separated by an equilibrium distance of 10 Å, at most, were

considered. (F–I) The predicted values of c(s) are plotted against

the experimental ones.

(PDF)

Figure S4 Correlation between spring constants and
contact potentials. The energy values of the static contact

potentials previously derived by Miyazawa and Jernigan [30] are

plotted against the spring constants of the sENM10, for the 210

amino acid pairs.

(PDF)

Figure S5 Comparison of the experimental and predict-
ed apparent stiffness c(s) on the dataset of 1500 NMR
ensembles. (A–E) For each amino acid, the median value of c(s)
over the 20 possible partners is given in units of kBT , along with

the maximal, minimal, 1st and 3rd quartile values. Only residue

pairs separated by an equilibrium distance of 10 Å, at most, were

considered. (F–I) The predicted values of c(s) are plotted against

the experimental ones.

(PDF)

Figure S6 Comparison of the apparent stiffness c(d)
computed with or without the linear approximation. The

black bold line corresponds to the apparent stiffness observed in

the test set of 349 proteins. The red and blue lines correspond to

the apparent stiffness predicted by the ENM0
13 and the ENM2

50,

respectively, on the same dataset. The continuous lines were
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obtained in the context of the linear approximation, using eqs. 2
and 10. The dashed lines were obtained by following, for each

protein, the motions of the residues in the elastic network subjected

to gaussian noise, during 2:105 integration steps. c(d) was

subsequently computed using eqs. 2 and 9. We ensured that the

sampling was sufficient by comparing the MSRF extracted from

these trajectories with those computed from the correlation matrix

(eqs. 7, 8). The correlation coefficient between these two sets of

MSRF values was equal to 0.95 for the ENM0
13 and 0.98 for the

ENM2
50, on average over the 349 proteins of the test set. However,

for some proteins (46 with the ENM0
13 and 6 with the ENM2

50),

the length of the simulation appeared to be insufficient, as the

correlation coefficient between the MSRF obtained from both

approaches was lower than 0.9. These proteins were discarded

from the comparison.

(PDF)

Table S1 Performances of the new ENM during the
iterative procedure.
(PDF)

Table S2 Spring constants of the dENM.
(PDF)

Table S3 Spring constants of the sENM10.
(PDF)

Table S4 Spring constants of the sENM13.
(PDF)

Table S5 Spring constants of the sdENM.
(PDF)

Text S1 Derivation of effective harmonic potentials.
(PDF)
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