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Abstract

Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences,
especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is
that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational
understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird,
which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by
striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that
the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a
novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian
model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them
robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken
by different speakers and with different accents—an everyday situation in which current state-of-the-art speech recognition
models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive
predictions for future experiments.
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Introduction

Can we learn something about how humans recognize speech

from how birds recognize song? The last common ancestor of

humans and birds lived about 300 million years ago, nevertheless

human and songbird communication share several striking

features at the cognitive, neuronal and molecular level [1,2].

When we recognize speech, our brains map fast speech sound

wave modulations to spectrotemporal auditory representations

[3,4]. Similarly, songbirds map song sound wave modulations to

specific internal representations [5,6]. In addition, similar to

humans, songbirds gain their vocal abilities early in life by listening

to adults, and memorizing and practicing their songs [2]. The

similarities include anatomical and functional features that

characterize the pathways for vocal production, auditory process-

ing and learning [1,2,7]. For example, the auditory system in both

humans and songbirds is organized hierarchically [8–10] where

fast time scales are represented by lower levels and slow time scales

by levels higher up in the hierarchy [11,12]. Much more is known

experimentally about the exact neuronal mechanisms in songbirds

than in humans, due to detailed electrophysiological studies which

have shown that songbirds use a sequence of auditory dynamics to

generate and recognize song in a highly effective manner [6,13].

These detailed findings in songbirds enabled us to derive a

neurobiologically plausible, computational model of how song-

birds recognize the songs of their conspecifics [14]. Our aim in the

present paper is to attempt to translate this birdsong model to

human speech by assuming that humans and birds use similar

internal models for recognizing sounds. Such a translation would

provide a unique opportunity to derive a mechanistic understand-

ing and make predictions at both the microscopic and macro-

scopic neuronal level for the human speech learning and

recognition system.

The birdsong model described in [14] performs a Bayesian

version of dynamical, predictive coding based on an internal

generative model of how birdsong is produced [15]. The core of

this generative model consists of a two-level hierarchy of nonlinear

dynamical systems and is the proposed mechanistic basis of how

songbirds extract online information from an ongoing song. We

translated this birdsong model to human sound recognition by

replacing songbird related parts with human-specific parts

(Figure 1). This included processing the input with a human

cochlea model, which maps sound waves to neuronal activity. The

resulting model is able to learn and recognize any sequence of

sounds such as speech or music. Here, we focus on the application

of the model on speech learning and recognition. The contribution
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of this article is threefold: First, inspired by songbird circuitry, it

proposes a mechanistic hypothesis about how humans recognize

speech using nonlinear dynamical systems. Secondly, if the

resulting speech recognition system shows good performance,

even under adverse conditions, it may be used to optimize

automatic speech recognition. Thirdly, the neurobiological plau-

sibility of the model would allow it to be used to derive predictions

for neurobiological experiments.

Model

Here, we first describe the model conceptually, followed by

mathematical details of the generative model, cochlear model,

online Bayesian recognition and further details of the simulations

described in Results.

Conceptual overview: A generative model of human
speech

As a model, we employ a novel Bayesian recognition method of

dynamical sensory input such as birdsong and speech. The

Bayesian approach first requires building of a so-called generative

(internal) model, which is then converted to a learning and

recognition model. The key advantage of this approach, as

opposed to standard models in both human speech recognition

and automatic speech recognition, is that the generative model is

formulated as hierarchically structured, nonlinear dynamical

systems. This means that one can employ generative models

specifically tailored to birdsong or speech recognition. As we show

in the following, this feature is crucial for translating experimental

birdsong results to a concrete recognition model. This translation

would not be possible with generic models such as are standard

and widely used in automatic speech recognition, e.g. the hidden

Markov model and, very recently, deep belief networks and liquid

state machines [16–18]. Our model has also several differences

from the influential models such as TRACE [19] and Shortlist

[20,21] and we provide a more detailed comparison in the

Discussion.

In the birdsong model, we used experimental insights about the

firing patterns of the premotor area HVC (formerly known as the

high vocal center) and the nucleus RA (robust nucleus of the

arcopallium) to derive a hierarchical song generation model [14].

In the high level structure HVC, specific neurons called HVC(RA),

fire sequentially at temporally precise moments [13,22,23] where

each neuron of this sequence fires only once during the song to

provide input to a group of RA neurons.

We translated these two levels to the human speech model in

the present study (Figure 1). The second, higher level encodes a

recurrent neural network producing a sequential activation of

neurons in a winner-less competition setting (stable heteroclinic

channels [24], see below). These dynamic sequences control

dynamics at a first, lower level (Hopfield attractor, see below),

where we model amplitude variations in specific frequency bands.

In comparison to the birdsong model, the generative model here

does not explicitly model the vocal tract dynamics but rather the

dynamics at the cochlea which would be elicited by the stimulus.

Therefore, the second level dynamics act as a timing mechanism

providing the temporal information and the first level dynamics

represent the spectral content at different frequency bands. Such a

separation of temporal and spectral processing is also suggested for

the human auditory system [25]. We do not restrict the

functionality of the second level ensembles to specific phonemes

or syllables but rather use them as time markers for the

represented spectrotemporal stimulus (mostly words in this paper).

By using this generative model (Figure 1), we can apply Bayesian

inference to derive a mechanism, which can learn and recognize a

single word. We call this mechanism for the remainder of this

paper a module. Here, a module is essentially a sophisticated

template matcher where the template is learned and stored in a

hierarchically structured recurrent neural network and compared

against a stimulus in an online fashion. Individual modules can be

combined into an agent to achieve classification tasks as shown in

the ‘‘Word Recognition Task’’ below, see Figure 2A for an

overview. A crucial parameter in the model is called precision

which is the inverse of the variance of an internal state. This is

used in the model as a way to balance the (top-down) prior

information and (bottom-up) sensory evidence. In the simulations,

we show that the precision settings are crucial to learn new stimuli

or to recognize sounds in noisy environments. We further discuss

the biological plausibility of the resulting recognition model in the

Discussion.

Mathematical details: A generative model of human
speech

Second level: Sequential dynamics. One of the well-

established ways for modeling the sequential activation of

neuronal ensembles is the Lotka-Volterra type dynamics

[26,27], which is well known in population biology. Rabinovich

et al. applied this idea to neuronal dynamics under the name of

winnerless competition [24,27–30]. In the winner-less compe-

tition setting, there are N equilibrium points, i.e., neuronal

ensembles, which are saddles of a nonlinear dynamical system.

Each of these equilibrium points has a single unstable direction

that connects them to the next equilibrium point while

remaining directions are stable forming a so-called stable

heteroclinic channel. In the phase space, this looks like beads

on a string, which attracts nearby orbits. Therefore, a typical

solution of such system with a heteroclinic contour travels

through all saddle points, i.e., neuronal ensembles, in a circular

fashion thereby activating each ensemble for a brief period until

it is deactivated as the next ensemble becomes active.

These dynamics can be obtained from a neural mass model of

mean membrane potential and action firing potential [31],

reviewed in [24]. We use the following equations (see Table 1

for the constants used):

Author Summary

Neuroscience still lacks a concrete explanation of how
humans recognize speech. Even though neuroimaging
techniques are helpful in determining the brain areas
involved in speech recognition, there are rarely mechanis-
tic explanations at a neuronal level. Here, we assume that
songbirds and humans solve a very similar task: extracting
information from sound wave modulations produced by a
singing bird or a speaking human. Given strong evidence
that both humans and songbirds, although genetically
very distant, converged to a similar solution, we combined
the vast amount of neurobiological findings for songbirds
with nonlinear dynamical systems theory to develop a
hierarchical, Bayesian model which explains fundamental
functions in recognition of sound sequences. We found
that the resulting model is good at learning and
recognizing human speech. We suggest that this translat-
ed model can be used to qualitatively explain or predict
experimental data, and the underlying mechanism can be
used to construct improved automatic speech recognition
algorithms.

From Birdsong to Human Speech Recognition
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_xx(2)~k2({lx(2){rS(x(2))z1)zv1
(2),

_yyi
(2)~e

x
(2)
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(2)
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(2),

v(2)~y(2)zv3
(2), ð1Þ

where x(2), y(2)[<N|1 are the hidden-state vectors (e.g., mean

membrane potentials) at the second level, k2 and l are scalars,

S(x)~1=(1ze{x) is the sigmoid function applied component-

wise and r[<N|N is the connectivity matrix with entries rij§0

giving the strength of inhibition from state j to i. While the first set

of hidden states, x(2), describes the heteroclinic channel, the

second set of hidden states, y(2), acts as smooth normalizing

dynamics for x(2) by limiting their dynamics to the interval (0,1).

The states v(2) are called causal states and are used to transmit the

output of the second level to the first level where this

Figure 1. Summary of the hierarchical model of speech learning and recognition. The core of the model is equivalent to the core of the
birdsong model [14]. The Equations 1 and 2 on the right side generate the dynamics shown on the left side, and are described in the Model section
(see also Table 1 for the meaning of parameters). Speech sounds, i.e., sound waves, enter the model through the cochlear level. The output is a
cochleagram (shown for the speech stimulus ‘‘zero’’), which is a type of frequency-time diagram. There are 86 channels, which represent the firing
rate (warm colors for high firing rate and cold colors for low firing rate) of the neuronal ensembles that encode lower frequencies as the channel
number increases. We decrease the dimension of this input to six dimensions by averaging every 14 channels (see the color coding to the right of the
cochleagram and also see Model). After this cochlear processing, activity is fed forward into the two-level hierarchical model. This input is encoded by
the activity of the first level network (shown with the same color coding on the right), which is in turn encoded by activity at the second level (no
color coding at this level, different colors represent different neuronal ensembles). From the generative model shown here (core model), we derived a
recognition model (for mathematical details see Model).
doi:10.1371/journal.pcbi.1003219.g001

From Birdsong to Human Speech Recognition
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transformation is taken as identity here. We also add normally

distributed noise vectors v1
(2),v2

(2) and v3
(2) to render the model

stochastic. Note that we use exponential functions in the dynamics

of y(2) to decrease the overlaps between the dynamics of two

sequentially activated neurons. A simpler normalization function

such as the logistic function would give mostly overlapping

activations which would be problematic during recognition.

Therefore, each neuron can be considered to be highly sensitive

to other neurons’ firing rates since even a slight activation of one

neuron quickly suppresses (due to exponential function) the

activation of all other neurons in the network. With an

appropriately chosen connectivity matrix, one can obtain a system

with N saddle points, each representing a neuronal ensemble,

forming a stable heteroclinic channel [26]. For the entries of the

connectivity matrix, one chooses high inhibition from the

previously active neuron to the currently active neuron and low

inhibition from the currently active neuron to the next neuron that

will become active:

rij~

0 j~i,

1:5 j~iz1,

0:5 j~i{1,

1 otherwise:

8>>><
>>>:

(Here iz1~1 when i~N and i{1~N when i~1).

In the majority of the simulations below, we used N~8
neuronal ensembles at the second level; longer sequences can be

used as well, e.g., see the Recognition in a Noisy Environment

simulation below and also [14]. Each second level ensemble,

during its activation, sends a signal Ik[<N|1 to the first level (see

next section) designed to control the activation of the neuronal

ensembles. The total signal sent to the first level by all second level

ensembles at any time is a linear combination of the Ik’s:

I(t)~
PN

k~1

v
(2)
k (t):Ik where v(2)[<N|1 is the output vector in Eqn.

1. Note that, except during the transitions, only one entry of v(2) is

close to one, all others are close to zero, which specifies the

currently active population and therefore the dominating Ik.

These Ik’s are crucial for the model and the learning phase

throughout the simulations above consists of reconstruction of

these vectors.

First level: Spectro-temporal dynamics. We represent a

collapsed form of lower level human auditory processing at the

first level of our model. Each neuronal ensemble of the first level

network represents spectral features of the cochleagram (see next

section). The cochleagram consists of the firing rates of simulated

auditory nerves, which are sensitive to specific frequency ranges.

We encode these firing rates by the activity at the first level. When

the neural network at the first level receives specific input I from

the second level, the activity of the network is attracted to a global

attractor encoding a specific spectral pattern in the cochleagram.

As the input I from the second level changes in a continuous,

sequential fashion, this global attractor also changes continuously

Table 1. Variables used in the generative model.

Symbol Meaning

x(i), y(i), v(i) Hidden states, x(i), y(i) and causal states, v(i)

vj
(i) Normally distributed noise at the ith level

k1, k2 Rate constants: k1 = 2, k2 = 1

l Decay rate: 1/8

r Connectivity matrix of the second level

A Diagonal matrix with diagonal a = 0.2

W Connectivity matrix of the first level

I Direct input from the second level to the first level

N, n Number of ensembles (N = 8) and (n = 6)

Note: This table lists the variables used in the generative, hierarchical model
(see Equations 1 and 2 in Figure 1 and Model).
doi:10.1371/journal.pcbi.1003219.t001

Figure 2. Schematic structure of an agent and a module. A) An agent consists of several modules, where each module contains an instance of
the model shown in Figure 1 and has learned to recognize a single word. Sensory input is recognized by all modules concurrently and each module
experiences prediction error during recognition. A module can be considered as a sophisticated dynamic, Bayes-optimal template matcher which
produces less prediction error if the stimulus matches better to the module’s learned word. A minimum operator performs classification by selecting
the module with the least amount of prediction error during recognition. B) At each level in a module, causal and hidden states (v(i) and x(i),

respectively) try to minimize the precision-weighted prediction errors (j(i)
v and j(i)

x ) by exchanging messages. Predictions are transferred from second
level to the first and prediction error is propagated back from the first to the second level (see section Model: Learning and Recognition for more
details). Adapted from [110].
doi:10.1371/journal.pcbi.1003219.g002

From Birdsong to Human Speech Recognition
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and neural activity of each ensemble encodes the cochleagram

over time.

Here, we use a Hopfield network [32] to implement such

dynamics. Hopfield network dynamics consist of stable equilibri-

um points that attract nearby orbits. Therefore, the itinerary of an

arbitrary initial point evolves to one of these equilibrium points.

Hopfield networks have been proposed to model associative

memory, where each stable equilibrium point represents a

memory item and an orbit attracted to such an equilibrium point

represents a retrieved memory. In our model, at any given time,

there is only one equilibrium point and this point changes

depending on the sequential second level dynamics. We use the

following equations for the first level of the generative model:

_xx(1)~k1({Ax(1)zWQ(x(1))zI)zv(1)
1 ,

v(1)~x(1)zv(1)
2 , ð2Þ

where x(1), v(1)[<n|1 are hidden and causal states, respectively;

A~diag(a)[<n|n with scalar aw0, is a self-connectivity matrix,

W[<n|n is an asymmetric synaptic connectivity matrix with

entries wij denoting the direction-specific connection strength from

ensemble j to i, w : <n|1?<n|1 is a sigmoid function which we

take as the tanh function applied component-wise, I[<n|1 is the

direct input from the second level, k1 is a scalar and v
(1)
j are

normally distributed noise vectors. As previously described in [14],

under mild assumptions on W [33], one can choose the input

vector I appropriately to create a global attractor with desired

firing rate values. In the simulations, we show that it is also possible

to learn the proper I vectors from the speech stimulus using

Bayesian techniques. Here, we use n~6 neuronal ensembles (see

‘‘Extensions and Limitations of the Model’’ in Discussion), which

represent the reduced spectral output of the cochlear model. As a

result, we obtain the necessary spectrotemporal dynamics where

the sequential dynamics are provided by the second level and the

mapping to the spectrum is encoded by the first level. A detailed

explanation for the cochlear model is provided next.

Cochlear model: From sound wave to firing rates. The

cochlea is a spiral-shaped peripheral organ of hearing in the inner

ear which is a key component of the auditory system for translating

acoustic waves into neural signals (see [34] for a review). Hearing

starts with the travelling of sound waves through the ear canal and

transmission of the resulting vibrations to the cochlea. The

frequency specific representation of sounds comes partially from

the differential stiffness of the basilar membrane, the elastic

structure that extends through the cochlea. The base of the basilar

membrane responds to higher frequencies and the other end, the

apex, responds to lower frequencies.

Extensive research has been carried out to model the

mechanism of the cochlea which is based on the fluid and the

basilar membrane dynamics. Here, we use a classical model by

R.F. Lyon [35] because it is simple and sufficient for our purposes,

however note that more involved models exist in the literature (e.g.

[36–40]). The output of the model, the cochleagram, is a time-

frequency representation with values between zero and one which

represent the firing rate of the corresponding auditory nerves

(channels) at each time point.

The number of channels in the model depends on the sampling

rate of the original signal and the frequency overlap between

filters. For the results in this paper, we used the LyonPassiveEar

function of the Auditory Toolbox [41] with default parameters

that gives us 86 channels where these channels are ordered from

higher to lower frequencies, i.e. the 1st channel represents the

highest frequency (,8 kHz) and the 86th channel represents the

lowest frequency (,0 kHz). Bayesian inference of 86 channels is

computationally too expensive and therefore, we decrease the

number of channels to six by averaging 14 channels at every time

point (from channel 1 up to 84 = 1466) and remove the last two

channels which usually do not carry any significant signal. This gives

us six neuronal ensembles’ firing rate dynamics. As shown in

Results, these six channels are sufficient to give good discrimination

results between several speech stimuli. The time duration of these

channels depends on the length of the stimulus and the decimation

factor. Except stated otherwise, we scaled the duration of these six

signals to 100 time units which allowed us to use the same number of

second level ensembles for each stimulus. However note that in all

figures, we used the original length of the corresponding stimuli in

milliseconds along the x-axes for clarity.

Learning and recognition
For a given speech stimulus z (preprocessed by the cochlear

model) and a model m, the model evidence or marginal likelihood of z is

defined by the conditional probability p(zDm) where the model m

consists of all differential equations described before and priors for

model parameters. The task for the module is to infer the

corresponding causal states v and hidden states x at all levels as well

as the parameters h, i.e. the Ik’s that connect the levels, which we

all together denote by u~fx, v, hg. Therefore the goal is to

estimate the posterior density, p(uDz, m), which describes the mean

distribution of the variables as well as the uncertainty about them.

We approximate the posterior in an indirect way:

The marginal likelihood of z is given by p(zDm)~
Ð

p(z, uDm)du

where p(z, uDm)~p(zDu, m)p(uDm) is defined in terms of the

likelihood p(zDu, m) and the prior p(uDm). We approximate this

intractable integral by introducing a free-energy term which is a lower

bound for the marginal likelihood. It is straightforward to show that:

ln p(zDm)~F (q, z)zD(qDDp),

where F (q, z)~
Ð

q(u) ln
p(z, u)

q(u)
du is the free-energy,

D(qDDp)~
Ð

q(u) ln
q(u)

p(uDz, m)
du is the Kullback-Leibler divergence

and q(u) is the recognition density. Note that q(u) is an auxiliary

function that we will use to approximate the posterior density. The

divergence term D is nonnegative, D§0, and D~0 if and only if

q(u)~p(uDz, m). This means F (q, z) is a lower bound for ln p(zDm),
and if we can maximize F(q, z), this will minimize D(qDDp) providing

an approximation q(u)&p(uDz, m) for the posterior density.

To find q(u) that maximizes F (q, z), we make a Gaussian

assumption about the form of q(u), the so called Laplace

approximation. Therefore we take q(u)~N(f)~N(m, S) where

f~fm, Sg consists of the mode m and the variance S. Now, the

question turns into a maximization problem of the free energy

with respect to f:

f�~ max
f

F (q, z),

which gives the approximation for the posterior density

p(uDz, m)&q(u)~N(f�). Note that the above maximization

process is a simplified description and is only suitable for the

time-independent u parameters (static case). When time-dependent

states are involved, i.e. causal and hidden states, one needs to

From Birdsong to Human Speech Recognition
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replace the free energy with free action F which is the anti-derivative

of free energy in time, i.e. LtF~F . In this case, one aims at

minimizing free action under the Laplace assumption. We note

that time-dependent and independent variables can be handled

concurrently and we refer the reader to [42] for details.

For all simulations in this paper, we used fixed prior variances

for all states and parameters. The variances for the corresponding

simulations are usually described in terms of the precision, P, which

is defined as the inverse of the variance, i.e. P~S{1. Therefore, a

high prior precision for an internal state means that the dynamics

are not allowed to deviate much from expectations provided by the

generative model (top-down influence) whereas a low prior

precision means the dynamics is relatively susceptible to

(bottom-up) influences (wider standard deviation). Throughout

the Results section, we report the log-precision values; the

corresponding standard deviations can be computed by the

formula: standard deviation = exp(2log precision/2).

The above maximization process can also be formulated in a

hierarchical setting. Let us denote all hidden and causal states at

level i by x(i) and v(i), respectively. We also write f (i) and g(i) to

describe the dynamics of the hidden and causal states at the i th

level (see Eqns. 1 and 2):

_xx(2)~f (2)(x(2))zv2
(2),

v(2)~g(2)(x(2))zv1
(2),

_xx(1)~f (1)(x(1),v(2))zv2
(1),

v(1)~g(1)(x(1),v(2))zv1
(1),

where vj
(i) denotes the normally distributed fluctuations at the i

th level. Note that the second level causal states v(2) provide

input to the first level while the hidden states x(i) are intrinsic to

each level. The preprocessed speech stimulus enters the system

through the first level: v(1)&z(t). The optimization process

described above, i.e. finding the optimum mode and variance

for states and parameters, can be implemented in a message

passing scheme [42] where the optimization problem turns into

a gradient descent on precision-weighted prediction errors (see

also Figure 2B):

j(i)
v ~P(i)

v e(i)
v ~P(i)

v (v(i){ĝg(i)),

j(i)
x ~P(i)

x e(i)
x ~P(i)

x ( _xx(i){f̂f (i)),

where e(i)
v and e(i)

x are causal and hidden prediction errors at the i

th level, weighted by the causal and hidden precisions P(i)
v and

P(i)
x respectively; ĝg(i) and f̂f (i) denote the internal predictions of

the corresponding level for v(i) and _xx(i), respectively. Internal

predictions set the states to the right trajectory for future input.

Therefore, it can be seen that as prediction error is minimized,

internal predictions fit better to the external input. Intuitively,

high precision for a variable means the prediction error is

amplified and therefore only small errors are tolerated whereas

low precision means large errors are tolerated and therefore the

approximation to the states is less precise.

Neuronal network implementation. Finally, the Bayesian

inference described above can be implemented in a neurobiolog-

ically plausible fashion using two types of neuronal ensembles. The

modes of the expected causal and hidden states, m(i), can be

represented by the neural activity of state ensembles, while

prediction error is encoded by the activity of error ensembles, with

one matching error ensemble for each state ensemble. State and

error ensembles interact within and between levels. The messages

sent from second to first level state ensembles encode the

expectations of the second level on the dynamics of the first level

whereas error units at each level compare these expectations to the

ongoing activity of state ensembles and compute prediction errors,

which are passed on via forward and lateral connections. These

error units can be identified with superficial pyramidal cells as they

originate forward connections in the brain which correspond to

the bottom-up error messages in our setting [43]. The sources of

backward connections can be identified with deep pyramidal cells

which encode top-down expectations of the state units. This

message passing scheme efficiently minimizes prediction errors

and optimizes predictions at all levels (for more details, see

[43,44]).

Software note: The routines (including commented Matlab source

code) implementing this dynamic inference scheme, which were

also used for the simulations in this paper, are available as

academic freeware (Statistical Parametric Mapping package

(SPM8) from http://www.fil.ion.ucl.ac.uk/spm/; Dynamic Ex-

pectation Maximization (DEM) Toolbox).

Results

A Bayesian model for learning and online recognition of
human speech

In each module (see Model), learning and recognition of speech

are simultaneous processes of adapting internal connections and

inferring the speech message dynamics of the speaker. As in the

brain, learning changes parameters, such as the synaptic connectiv-

ity, of the modules relatively slowly, whereas recognition is based

on rapidly changing states of the system, such as the membrane

potentials and firing rate [45,46]. In all simulations below, there

are two main tasks: (i) a learning task where the feedback

parameters from second level to first are allowed to change and (ii)

a recognition task where parameters are fixed and the model only

reconstructs the hidden dynamics. In both cases, the model is

given the appropriate precision settings from the beginning of the

experiment and it either performs a learning task or a recognition

task. A single learning step consists of learning one word by one

module.

Both recognition and learning in a module starts with sensation;

a speech sound wave (a single word for all but one simulations

below), and after passing through the cochlea model this serves as

a dynamic input to the module. The speech signal is preprocessed

by the cochlear model and the dynamic output of the cochlear

model, which we denote by a vector z(t), reaches the first level of

the module (Figure 1; for mathematical details see Model). Given

this time-dependent vector z(t) and the two-level generative model

(Equations 1 and 2 in Figure 1, see Model), each module infers the

states of the first and second levels (recognition) and learns the

connection weights from the second to the first level (I’s), see first

line of Equation 2. To implement this, we used the Bayesian

inference technique ‘‘Dynamic Expectation Maximization’’ [42].

Both levels of a module consist of neuronal populations that

interact within and between levels. These populations encode

expectations about the cochlea model dynamics, i.e. the sensory

input, using the internal generative model described in the

previous section. These expectations predict the neuronal activity

(i.e., firing rates) at the next lower level, i.e., either at the

cochleagram or the first level. The hierarchical inference uses top-
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down and bottom-up messages, which aim to minimize an error

signal, the so-called prediction error. At any given time t, the input

from the cochlear model, z(t), is compared to the predictions at the

first level which are produced by the generative model. During

recognition, the prediction error is propagated to the second level

where, again, prediction errors are computed using the generative

model. Both levels adjust their internal predictions to minimize the

prediction errors [42]. The module’s expectation of how much an

internal state will vary is a key parameter of the model: It is called

‘‘precision’’. The precision determines how much error is tolerated

at a specific level and we illustrate its relevance to speech learning

and recognition in the next section.

During recognition, the second level forms predictions that are

transmitted to the first level. This is only possible if the parameters

for the backward connections between these two levels are

appropriate; each module has to learn these parameters. In

contrast to recognition, learning is not accomplished online

because the information about parameters is obtained at a slower

time scale, i.e., over the course of a complete stimulus (word) or

repetitions of a stimulus. For learning, prediction errors are

summed up for the whole stimulus duration and used after

stimulus presentation to update the parameters. Therefore, as each

module is exposed to repeated stimuli, the parameters are updated

to minimize the prediction error accumulated over time, while

states are updated in an online fashion to minimize temporally local

prediction errors.

In summary, learning and recognition are realized as parts of

the same inference scheme and work together to minimize overall

prediction error. The necessary computations can be described as

the dynamics of a hierarchically structured recurrent neural

network operating online on the continuous speech input [43,47].

For further details, see Model.

Testing the human speech learning and recognition
model

Learning speech. Before speech can be recognized, it has to

be learned [48,49]. We, therefore, first tested whether the model

could learn to recognize words. For this, we used the sound waves

of the words for digits zero to nine spoken by one speaker. We took

the stimuli from a speech database (TI-46, www.ldc.upenn.edu),

which is a standard benchmark test for speech recognition

algorithms [50,51]. We first put each module into learning mode,

which is characterized by very high precision at the second level

states and relatively lower precisions at the first level states

(Figure 3A). This makes each module expect sequential dynamics

at the second level and adapt states at the first level accordingly,

using prediction error. In addition, at the first level, we set each

module’s precision for the sensory states, i.e., causal states at the

first level (see Text S1) relatively high, while the internal dynamics

at the first level have lower precision (Figure 3A). This precision

ratio at the first level is crucial for learning: The relatively high

precision forces each module to closely match the external

stimulus, i.e., minimize the prediction error about the sensory

input, and allow for more prediction error on the internal

dynamics. To reduce these prediction errors, each module is

forced to adapt the backward connections from the second level to

the first level, which are free parameters in the model (the I’s in

Equation 2). This automatic optimization process iterates until the

prediction error can be no further reduced and is typically

completed after five to six repetitions of a word. With this learning

mode, we found that learning is typically completed after five to six

repetitions of a word. In general, we found that precisions

deviating from these settings will lead to either slower learning

rates or no learning at all. To illustrate the quality of learning, we

read out the internal model of each module by using the learned

parameters to generate cochleagram dynamics and compared it

with the actual stimulus that was learned. In Figure 4, we show a

typical sample where the dynamics generated using the learned

parameters (dashed lines) follow the cochleagram dynamics (solid

lines) closely. Qualitatively, all words have been learned similarly

well.

Word recognition task. After learning has concluded for

each module separately and backward connections are fixed, we

tested whether the agent showed high performance in a word

classification task. We tested classification performance on a subset

of the TI-46 speech database, which contained ten samples of ten

words for digits (zero to nine) spoken by five female speakers,

adding up to a total of 500 speech samples. To measure

recognition performance, we used a cross-validation procedure,

as is standard in speech recognition benchmark testing [51]: We

randomly divided the 500 words into a training set (400 samples; 8

samples per digit and speaker) and a test set (100 samples; 2

samples per digit and speaker). In the training set, each module,

one module for each digit sample, learned the backward

connections between the second and first levels which gives us

400 parameter sets. To obtain ten speaker-independent and word-

specific modules (one for each digit), we averaged these

connections within digit. During the test phase, each of the 100

test samples, which had not been used during learning, were

recognized by each of these ten modules while learning was turned

off. For classification, we used a winner-take-all process (see Text

S1) where the winner was the module with the lowest prediction

error, i.e. the module which can best explain the sensory input

using its internal model. The average Word Error Rate (WER;

ratio of incorrectly classified test samples and the total number of

test samples) was 1.6%. This is at roughly the same level as state-

of-the art automatic speech recognition systems (Table 2).

Next, we tested whether the model is robust against noise.

Following a noise reduction step at the cochlear level (see Text S1),

the classification results in WER for different signal-to-noise ratios

of 30 dB, 20 dB and 10 dB were 3.6%, 5% and 11.2%,

respectively. The results compare well with the state-of-the art

speech recognition system that has been tested on the same noisy

input, i.e., using the liquid state machine (8.5%, 10.5% and 11.5%

WER), respectively [51].

We next exposed the modules to situations that are quite typical

for conditions under which humans perceive speech well but

which pose severe challenges to automatic speech recognition

schemes. These are variations in speech rate and accent, and

cocktail party situations.

Variations in speech rate. The human auditory system

shows remarkable flexibility for variations in speech rate [52,53],

whereas such variations pose a serious problem for automatic

speech recognition models [50,54,55]. We, therefore, tested

whether our recognition model is capable of dealing with time-

compressed speech.

We compressed the cochleagrams in time to induce variability

in speech rate. We exposed a module, which was trained on a

normal length of spoken digit ‘‘eight’’ (M8), to a sample

compressed by 25%, without changing pitch. The results show

that the module can recognize the time-compressed word

(Figure 5A). Importantly, this recognition does not require any

parameter learning. The module is inherently robust against time

compression because it explains away the compression, using

prediction error, by speeding up the sequential dynamics at the

second level (see compressed dynamics at the second level in

Figure 5A, middle panel). This works well because the module is

informed, by its second level, about the sequence of dynamics
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expected for a specific word and temporal variation do not change

this sequence. Importantly, even under compression, the recogni-

tion performance is still high. For example, a module that was

originally trained on a normal-length ‘‘three’’ stimulus experiences

a lot of prediction error when confronted with a compressed

‘‘eight’’ stimulus. This can be seen qualitatively by the confused

sequential dynamics at the second level (Figure 5A, bottom). The

module trained on normal length ‘‘eight’’ stimulus recognizes the

correct sequence (Figure 5A, middle) and produces the lowest

prediction errors for the time compressed ‘‘eight’’ stimulus, among

all ten modules each trained on a different normal length digit

(Figure 5B).

Recognition in a noisy environment. Humans are able to

concentrate on a specific speaker’s voice when there are other

competing speakers, as typically experienced at a cocktail party

[56–59]. This is often tested with sentence-long stimuli with an

increasing number of speakers. Here we used the target sentence

‘‘She argues with her sister.’’ (stimulus taken from [58]) and

presented it to a module without background speaker, with one

background speaker, and with three background speakers.

Therefore, a module represents the dynamics of a whole sentence

instead of a single word as in the previous simulations. The

background speakers speak different sentences, and have a

loudness level that corresponds to a location in space that is twice

as far away from the listener as the target speaker. The module, as

expected, is able to reconstruct the second level dynamics perfectly

when it is exposed to the clear stimulus without background

speakers (Figure 6, left column). It also reconstructs the target

sentence dynamics when there is one additional speaker in the

background (Figure 6, middle column). The second level always

shows the correct order of activation even though some of the

elements of the sequence are slightly misplaced in time when the

background speaker masks the target (Figure 6). This is

immediately corrected once the target sentence is again discernible

in the cochleagram, i.e., when interference with the target

sentence becomes small enough. In humans, such periods of

recognition may be useful to help recognize the target sentence

[58]. The module can very roughly reconstruct the second level

dynamics and the correct order of activations when there are three

background speakers (Figure 6, right column); the dynamics can

be recovered at the beginning and towards the end of the sentence.

These simulations suggest that the module uses expectations about

Figure 3. Schema of ideal precision settings, at the first and second levels of a module, for learning and recognition under noise.
The precision of a population at each level is indicated by the line thickness around the symbols, and the influence of a population over another is
indicated by arrow strength. A) During learning, the precision ratio at the first level (precision of the sensory states, i.e., causal states, over precision of
the internal (hidden) dynamics) should be high. Consequently, the internal dynamics at the first level are dominated by the dynamics of the sensory
input. At the second level, a very high precision makes sure that the module is forced to explain the sensory input as sequential dynamics by
updating (learning) the connections between first and second levels (the I’s in the first line of Equation 2). B) Under noisy conditions, the sensory
input is not reliable and recognition performance is best if the precision at the sensory level is low compared to the precision of the internal dynamics
at both levels (low sensory/internal precision ratio). This allows the module to rely on its (previously learned) internal dynamics, but less-so on the
noisy sensory input. For the exact values of the precision settings in each scenario, see Text S1.
doi:10.1371/journal.pcbi.1003219.g003
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sequential dynamics, i.e., dynamic predictions, at the second level

to recover a target sentence from corrupted sensory dynamics.

Adaptation and learning of speech
In the following two sections, we describe how we tested the

hypothesis that the prior precision setting of a module is

fundamental for understanding the learning of speech. This

hypothesis follows from the construction of the module where only

two different interpretations of suboptimal speech recognition

exist: (i) the sensed speech is noisy, or (ii) the module’s internal

model is not appropriate and needs to be adapted. This is why the

precision ratio at the first level, i.e., a module’s expectation about

how noisy speech dynamics are relative to its internal dynamics, is

fundamental for learning. A precision setting as shown in

Figure 3A will effectively exclude the module’s assumption that

speech is noisy; rather it will rely on the assumption that speech is

sequential based on a high precision of the dynamics at the second

level. This will prompt the module to adapt its internal speech

model.

Accent adaptation. Foreign accents are often a cause of

severe variations in spoken language. Behaviorally, recognition of

foreign-accented speech can affect the comprehension of words

[60] and increase the processing time of listeners who are used to

unaccented speech [61]. However, relatively brief exposure

(between 2 and 64 sentences) to foreign-accented speech improves

listeners’ recognition accuracy [62] and efficiency, measured in

terms of error rates and reaction times [63].

Here, we show how this rapid accent adaptation can be

implemented by the present model and how behavioral differences

in adaptation can be explained. By ‘‘adaptation’’ we mean that the

learning of the parameters in a module proceeds from a previously

learned parameter set (base accent) as opposed to learning from

scratch in the ‘‘Learning speech’’ simulation. Therefore, adapta-

tion can be understood as slight changes of the backward

connections instead of learning a completely new word.

We trained a module to recognize the speech stimulus ‘‘eight’’

spoken with a North England accent (Figure 7A, top) and tested

recognition for an ‘‘eight’’ spoken by a different speaker with a

New Zealand accent (Figure 7A, bottom; stimuli taken from www.

soundcomparisons.com). On first presentation of the word, the

module experiences increased prediction error during recognition

of the accented word, i.e., it would perform worse in a word

recognition test. We hypothesized that a crucial criterion for

whether a module can, or cannot, adapt to an accent, is its prior

precision of the sensory states, i.e., how noisy the module expects

the sensory input to be. If this precision is low compared to the

precision of the internal dynamics (‘‘recognition mode’’, as shown

in Figure 3B), no adaptation is induced, because the module

accepts the slight variations due to the accent as noise on its

sensory input. If, however, the module expects input to be sensed

with high precision, an accented word causes the module to adapt

its internal model, i.e., its backward connections from the second

to the first level. This is, from the module’s view, the only way to

explain the unexpected variations in the input (‘‘learning mode’’,

as shown in Figure 3A). We tested this explicitly by controlling the

ratio of the module’s prior precision of the sensory states and

internal dynamics (sensory/internal precision ratio) at the first

level of the model. As expected, we found that only a module that

has a high precision ratio at the first level (learning mode,

Figure 3A) rapidly adapts to accented speech (Figure 7B). With the

three highest precision settings, this was achieved after only two to

three iterations. For lower precision ratios, practically no

adaptation occurred. This suggests a potential mechanism for

the inter-individual variability to accent adaptation: agents, and

potentially also humans, attending to sensory detail can adapt to

accents while agents/humans who literally explain deviations as

background noise cannot adapt to accents. However, it should be

noted that this is a rather simplistic explanation which has

emerged as a consequence of our simulations and does not explain

all aspects of accent adaptation. It should be considered as an

interpretation of the optimum precision settings obtained through

simulations.

Speech learning: Qualitative modeling. Can the precision

setting also explain a re-learning of speech, as for example in

second language learning? People start learning second languages

at different ages. The age of second language acquisition is an

important factor for being fluent in the new language [64,65]. This

age factor is behaviorally relevant when second language learners

are asked to recognize words or sentences embedded in

background noise [66,67]. Here, we tested whether the present

model could be used to qualitatively model behavioral results [67].

If this were possible, it would imply that the model represents a

potential computational mechanism for explaining the importance

of age in language learning.

Figure 4. Generated neuronal network activity at the first level
after learning. The solid lines represent the cochleagram dynamics
obtained from the stimulus (the word ‘‘zero’’, the same stimulus as
shown in Figure 1) that the module had to learn. Neuronal activity was
normalized to one. The dashed lines represent the neuronal activity
generated by the module after learning and shows that the module has
successfully learned the proper I vectors between two levels.
doi:10.1371/journal.pcbi.1003219.g004

Table 2. Word Error Rates (WER) for isolated digit recognition
task reported in the literature for different recognition
methods.

DEM LSTM LSM LSM 2 HMM OT

WER 1.6% 2.0% 4.3% 0.2% 0.6% 2.4%

Note: DEM (Dynamic Expectation Maximization) is the recognition system used
in this paper; LSTM (Long Short-Term Memory) network was introduced in
[111], LSM (Liquid State Machine) with 1232 neurons was reported in [51] and
was improved (LSM 2) in [18]. The results for the state-of-the-art speech
recognition system using HMM (Hidden Markov Model) were reported in [18].
OT (Occurrence Time) features were used in [103].
doi:10.1371/journal.pcbi.1003219.t002
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A previous study examined the recognition of English words by

three groups of native Italian speakers with different mean age of

arrival (mAOA) when immigrating to Canada [67]: An early

group (mAOA of 7 years), a mid group (mAOA of 14 years) and a

late group (mAOA of 19 years). In addition, there was a control

group of native English speakers. The stimuli consisted of ten

English sentences presented at four different signal-to-noise ratios

(26, 0, 6 and 12 dB). The participants repeated as many words as

possible after each presentation of a sentence. Significantly higher

recognition accuracies were obtained for early, as compared to the

mid and late groups, and the native group performed significantly

better than all immigrant groups (Figure 8A).

We simulated second language learning using the present model

to explain these behavioral results. As second language, we used

digit words and simulated different ages of arrival by using

different precision settings (from high first level sensory/internal

precision ratio for native English speakers to progressively lower

ratios for early, mid and late groups, see details in Text S1). The

recognition results compared well with the experimental results

(Figure 8B). The recognition accuracy improved with increasing

signal-to-noise ratios in all groups and the native speakers

recognized more accurately at all noise levels followed by the

early, mid and late groups. These results suggest the computa-

tional mechanism for the behavioral results found in the four

groups: The longer someone is exposed to his/her native

language, the more precise the expectations could be about the

brain’s internal dynamics when recognizing speech. This high

precision would be counter-productive when learning a second

language because internal dynamics are not learned optimally: the

agent, i.e., the brain, would rather explain away prediction error

by assuming that speech of the second language is relatively noisy

as compared to speech of the first language. However, it should be

noted that there is no experimental evidence for such a claim yet,

i.e. that the words in a second language are considered to be noisy

in late learners, and this point should be taken as an interpretation

of our computational results. In fact, as pointed out by one of the

reviewers, many studies have concluded that the amount and

variability of second language input [68–70] as well as the

frequency of using the native language during learning [71] have

considerable influence in the age of acquisition effects.

Discussion

We have developed a novel model of speech learning and

recognition that is implemented as a hierarchically structured

recurrent neural network. The core structure of the network was

taken from a birdsong model that was based on key experimental

findings in songbirds [14]. We found that the resulting compu-

tational model achieves very high recognition performance when

recognizing words directly from speech sound waves, both under

ideal noise-free and noisy conditions. In addition, the model deals

well with situations in which automatic speech recognition usually

fails, but humans still perform well: adaptation to varying speech

rate and competition by multiple speakers. The model is also able

to explain inter-individual differences in accent adaptation, as well

as age of acquisition effects in second language learning.

Sequential dynamics in song and speech recognition
In songbird studies, temporally precise sequential activation of

neurons in a high level structure, HVC, has been observed during

singing [22,23] and the same area has also been shown to be

involved during recognition of songs with similar precise

activations [6]. It has been suggested that Broca’s area in the

inferior frontal gyrus (pars opercularis) in humans corresponds

functionally to HVC in songbirds [2,72]. Similar to HVC, this

area in the human inferior frontal gyrus is involved in recognition

and production of speech. It has been implied in sequence

perception and in providing top-down predictions to auditory

speech processing areas (for a review see [73]). We suggest that this

is a candidate area for including precise sequential activation of

Figure 5. Invariance of the recognition model to variation in speech rate. A) The normal length stimulus ‘‘eight’’ (400 ms, top panel) has
been learned and recognized successfully by the module ‘‘eight’’ (M8). For clarity, we only show the second level causal states (see Model). The same
module (without any parameter adaptation) successfully recognizes a time-compressed version of the same stimulus (300 ms, middle panel). For
comparison, the module trained on a digit ‘‘three’’ (M3) fails to reconstruct its expected dynamics when exposed to ‘‘eight’’ (bottom panel). B) The
total prediction errors produced at the second level hidden states by ten different modules (M0 to M9), which were previously trained on the
corresponding digits with normal length, are shown. All modules were exposed to the same 25% time compressed ‘‘eight’’ stimulus. Module M8 (red
arrow) produces the lowest prediction error and shows that prediction error can be used for classification, even though the stimulus is time
compressed.
doi:10.1371/journal.pcbi.1003219.g005
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neurons, as modeled by dynamic sequences at the second level of

the present model. The existence of sequentially activated,

temporally precise, neuronal ensembles in the cortex has been

proposed previously [74] and provides an explanation for findings

of a precise spike timing which have been observed in experiments

in different species, e.g. [75–77]. There do not seem to be

equivalent neuronal studies in humans; however, speech process-

ing activity, as observed with magnetoencephalography, has been

explained as large-scale sequential activity [78]. Based on the

results of the current paper, we predict that such sequential

activations in the human brain, expressed at a microscopic level,

e.g., in spike timing, are crucial in organizing the auditory

information coming from the lower areas to form the dynamic

percept of phonemes, syllables and words.

Even though the second level ensembles in the proposed model

are encoded as temporally regularly spaced sequences in the

generative model, we showed that during recognition (see

Variations in Speech Rate simulation) they have the flexibility to

activate earlier or later according to the spectrotemporal features

they are tuned to. This fits well with a recent study [79] where the

authors presented evidence that HVC activity is timed to

particular time points of motor gestures during song production.

The current generative model does not include a vocal tract

mechanism [80]; however such a mechanism could be readily

incorporated with an extra level at the bottom of the hierarchy (see

[14] for an example).

To model neurobiological findings in songbirds, we used an

advanced Bayesian inference scheme using recurrent neuronal

networks. To our knowledge, this type of model has not been used

before, neither in human speech recognition nor automatic speech

recognition. One advantage of this approach is that recognition is

performed in a brain-like fashion on continuous sensory dynamics,

in contrast to a standard hidden Markov model operating on

discretized input [16]. In addition, the present model can be used,

as we have demonstrated, to incorporate experimental birdsong

findings by specifying a hierarchically structured, generative model

Figure 6. Performance of the recognition model in ‘‘cocktail party’’ situations. A module is trained on an auditory sentence (‘‘She argues
with her sister’’) without competing speakers and tested for recognition of this sentence in three conditions: Left column) No competing speaker,
Middle column) one competing speaker, and Right column) three competing speakers. Each column shows the second level dynamics, first level
dynamics and cochleagram with arbitrary units in neuronal activation. Second level dynamics were successfully reconstructed for the single speaker
and also, to an extent, for the speech sample with one competing speaker. In the case of three competing speakers, the module was not able to
reconstruct the second level dynamics completely, but showed some signs of recovery at the beginning and at the end of the sentence. Note that the
increasing difficulty in reconstruction of the speech message from one to three speakers is not reflected in the prediction errors at the first level
(dashed lines), but becomes obvious at the second level.
doi:10.1371/journal.pcbi.1003219.g006
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Figure 7. Accent adaptation of the recognition model. A) The cochleagrams represent two utterances of ‘‘eight’’. A module originally learned
the word ‘‘eight’’ spoken with a British (North England) accent (top) and then recognized an ‘‘eight’’ spoken with a New Zealand accent (bottom). B)
The module trained on the British accent was allowed to adapt to the New Zealand accent with the corresponding precision values for the first level
sensory (causal) and internal (hidden) states (sensory log-precision: 7{0:5k and internal log-precision: 0z0:5k where k~0, . . . 8 from left to right).
For each precision ratio, we plotted the reduction in prediction error (of the causal states, see Model) after five repetitions of the word ‘‘eight’’ spoken
with a New Zealand accent. As expected, accent adaptation was accomplished only with high sensory/internal precision ratios (resulting in greatly
reduced prediction errors) whereas no adaptation occurred (prediction errors remained high) when this ratio was low.
doi:10.1371/journal.pcbi.1003219.g007

Figure 8. Qualitative modeling of experimental results in second language learning. A) The behavioral results of an experiment [67] for
the recognition of English words by three groups of native speakers of Italian who differed in their age of arrival in Canada: Early, Mid and Late arrival
groups, also compared to a native English speaker (NE) group. Participants were asked to repeat as many words as possible after they heard an
English sentence. Sentences were presented at different signal-to-noise ratios given in decibels (dB). Adapted from [67]. B) The results of the learning
and recognition simulations where we used the same speech samples as in the Word Recognition Task. The different age of arrival was modeled with
different precision ratios at the first level. Recognition accuracy is measured in terms of normalized, total causal prediction errors during recognition
relative to a baseline condition of 230 dB noise, i.e., recognition accuracy = 100*[(baseline prediction error-test prediction error)/baseline prediction
error]. Note that we used different signal-to-noise ratios than the original experiment because best recognition results with our model were obtained
at 30 dB, which corresponds to almost ideal recognition results in humans around 12 dB, and we scaled the remaining ratios accordingly. Each
symbol represents the average recognition accuracy obtained from 10 digits where the stimulus was masked with noise at given signal-to-noise
ratios.
doi:10.1371/journal.pcbi.1003219.g008
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based on nonlinear dynamical systems and translate the resulting

model to human speech.

Comparison to other speech processing models in
neuroscience

Our approach is unique in the sense that we use a hierarchy of

nonlinear dynamical systems as a generative model to provide an

online Bayesian inversion mechanism of human speech. Many

other computational speech and word recognition models have

been proposed that are both neurobiologically plausible and

can explain experimental results [19,20,81–87]. These models

typically focus on the word selection process rather than on how

relevant spectrotemporal features are extracted from the sound

wave. For example, most of these models assume that relevant

phonemic features have already been extracted from the sound

wave and arrive in regular intervals. This is in distinction to

the present approach which models the extraction of relevant

speech features from a noisy, continuous sound wave with varying

speech rate. An example for these word selection models is the

hierarchical TRACE model [19,88]. There are three key

differences between the TRACE and the present model. First,

there is no learning in TRACE: the model parameters have to be

manually set to enable recognition. Second, TRACE does not

represent precision, which, as illustrated above, may be important

to explain phenomena in both perception and learning. Third,

TRACE is based on the competition of relatively simple

processing units, and, therefore, is unable to identify local mistakes

or mispronunciations; it returns the most probable word. In

contrast, the present model can monitor such mismatches in

an online fashion using the prediction error. This enables the

processing of slight differences in pronunciations, as, for example,

when the proposed model was used to adapt to speech with an

unusual accent.

Another widely known model is the Shortlist model and its

Bayesian version Shortlist B [20,21]. Both models have most of the

functionalities of the TRACE where information is processed in a

feed-forward fashion. The Bayesian approach introduced in

Shortlist B [21] illustrates a useful way to combine prior

information such as word frequency with the likelihood function

of the speech input. This demonstrates the interplay between the

priors and the precision of the agent (called reliability in [21]). This

is similar to the present model, where a differential setting of the

precision parameters causes either recognition or learning mode of

the sensory input (see Figure 3). The main differences between the

present model and Shortlist B are that (i) Shortlist B does not allow

for speech learning, (ii) Shortlist B assumes that phonemic features

have already been extracted by some preprocessing stage while we

explicitly model this stage using the cochleagram, and (iii) Shortlist

B has been formulated as a feed-forward model only while the

present model explicitly uses top-down influence to improve

recognition of noisy input.

A different category of models has focused, like the present

model, on the processing of auditory stimuli by single neurons or

network of neurons [18,50,54]. For recognition, these models

typically have to wait until the end of the stimulus to obtain all

required neuronal responses. This is different from human

performance where recognition can be performed online while

the stimulus is received. This online recognition using predictions

is also a hallmark of the recognition model proposed here, where

the accumulated prediction error can be used for recognition

anytime during stimulus presentation.

Recently, so called reservoir computing techniques using

recurrent neural networks have been used for speech recognition

[18,51,89–92] and provide excellent recognition results. Typically,

these results are achieved with large networks of hundreds of

neurons. This is different from the present study where we used

few neurons for word recognition, i.e. just eight neurons at the

second level and six neurons at the first, for each module. It would

be worthwhile to consider recurrent networks as used in reservoir

computing as a generative model in a Bayesian approach to better

understand the mechanism underlying high recognition perfor-

mances in reservoir computing.

Precision: Link to neurotransmitter
Using simulations, we have shown that the precisions of the

states (i.e., how certain the agent is about its internal states and

dynamics) at different levels of the hierarchy are fundamental to

learning and recognition of speech. Here, we fixed the prior

precisions at each level to use appropriate precision settings during

learning and recognition. The actual mechanisms in the brain for

achieving such context-dependent optimum precision values are

not known. Neurobiologically, cholinergic neurons (whose main

neurotransmitter is acetylcholine, ACh) are known to be involved

in the modulation of perceptual processes [93,94]. It has been

proposed that ACh may have the role of reporting on uncertainties

of internal estimates and that high levels of ACh should

correspond to faster learning about the environment and

enhancement of bottom-up processing [95]. Such claims fit well

with the present study since we found that increased precision

about sensory states is ideal for learning speech as it enhances the

influence of sensory information; whereas, learning deteriorates

with decreasing precision ratios (Figure 3 and 7). We predict that

increased levels of ACh may enhance the learning of novel

auditory stimuli by suppressing top-down effects caused by a

relatively low precision of internal dynamics; however, this should,

in parallel, also disrupt perception of noisy stimuli since top-down

information is crucial in cocktail-party like situations, (right

column of Figure 6). Such claims could be tested with a behavioral

study while manipulating the neurotransmitter levels pharmaco-

logically [96].

A novel analysis tool for neuroimaging experiments
The proposed model makes a computational link between

sensory input (i.e., the speech sound wave) received by subjects and

the dynamics of their hypothesized internal representation [97]. In

particular, we found that the prediction error is a key quantity that

can be used to achieve high performance in speech recognition.

This quantity can be used in novel computational analysis

techniques for speech recognition neuroimaging experiments:

The idea is to use the dynamics of the module’s internal prediction

error when receiving speech input as a predictor for neuronal

activity in human subjects receiving exactly the same stimuli (see

[98] for a similar study). This modeling approach would enable

one to identify the exact computational role of specific areas in the

well-established speech recognition system. In addition, this

approach can be applied to speech learning studies (accent

adaptation and second language learning), where one would use

the module’s prediction error experienced during learning to

predict subject’s changing brain activity during learning and

estimate the precision parameters which subjects use. This may be

done using either a voxel-wise regressor-based approach, or a

network analysis (Dynamic Causal Modeling [99,100]). For

example, one may estimate the changes in effective connection

strength in a network including the inferior frontal gyrus and

primary auditory areas during accent adaptation or for speech

recognition under different levels of noise. It would also be

revealing to include a variety of precision settings as an

experimental condition in studies that specifically test the
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hierarchical predictive coding hypothesis in the auditory cortex

[101].

Extensions and limitations of the model
Here, we only used six neuronal ensembles to represent the

cochleagram in six frequency channels. This resolution is

comparable to the low number of spectral channels used in

cochlear implants [102]. Nevertheless, the model provided

competitive recognition results (Table 2). We found that this

performance drops if only four channels are used, but we did not

explore this using more channels because the required computa-

tional power quickly increases with the current implementation

(with complexity O(n3)). This computational issue could be

resolved by parallel ensemble-specific computations, which would

be another step towards biological reality and probably improving

recognition rates further. It would also be worthwhile extending

the cochlear features in the present model with other biologically

plausible preprocessing steps, such as occurrence times, which

encode the onsets and offsets of specific features [50,103].

It is important to notice that the current model is not entirely

specific to speech but can also be used to recognize other sound

sequences such as music. In a future project, we will therefore

make the model more speech-specific and extend the current

model by including a vocal tract model in addition to the cochlear

processing. This would make the inference more sensitive to

relevant features in human speech and thereby improve recogni-

tion. Moreover, such a vocal tract mechanism would be beneficial

for recognizing speech from different speakers since speaker-

specific parameters can be included in the vocal tract model and

constrain the recognition dynamics. This would allow the model to

identify the similarities between words even if they are spoken by

differently sounding speakers and therefore have little acoustic

overlap. Such a model can also be used to qualitatively model

specific findings at a phonemic level [69].

It is also worth mentioning that we assumed a fixed second-level

connectivity matrix in the model (r[<N|N in Eqn. 1) which

produces expectations about sequential dynamics by winnerless

competition. We assumed here that such a structure already

existed at the higher levels. It may also be possible to learn these

specific connections from scratch; however, we expect that one

would need relatively informative priors about these parameters to

limit the search space.

Moreover, the generative model could be extended by adding

extra levels to the hierarchy of nonlinear dynamical systems. This

would allow the modeling of sequences of phonemes and syllables

[104], or even sentences as sequence of words [105]. This can be

done either using the technique proposed in the present paper or

by using carefully designed nonlinear dynamical systems, as

exemplified in [106]. Such detailed sentence level representations

could be used to model syntactic experiments as shown in [107].

Using hierarchies, it would be useful to model the competition

between possible alternative descriptions that emerge from partial

stimuli where predictions provide constraints for the appropriate

dynamics and therefore stable perception [108]. Such a hierar-

chical extension would be ideal to model the word selection

process as exemplified in Shortlist B [21] while using real speech

(sound waves) as input. Finally, the proposed learning and

recognition technique could be extended to also estimate

dynamically the precision values based on techniques as employed

by [109]. This would allow the model to fine-tune the precision

settings as a part of the optimization process. Currently, one still

needs to provide the prior precision settings to inform the model

about the context of the experiment, i.e. whether it is a learning

task or recognition task.

Conclusion
We proposed a computational model using a hierarchy of

nonlinear dynamical systems and Bayesian online filtering for

learning and recognizing sound sequences such as speech. This

model was derived from a neuronal model for recognition of

birdsong. It achieves high speech recognition performance and

explains several auditory recognition phenomena, as well as

behavioral data. This work has three implications. First, it shows

that human speech and birdsong recognition systems may share

similar computational components. Secondly, the competitive

performance, even under adverse conditions, suggests that it

may be used to optimize automatic speech recognition. Thirdly,

the neurobiological plausibility of the model enables the

generation of predictions for neurobiological, e.g., neuroimag-

ing, experiments.
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