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Abstract

Rice provides about half of the calories consumed in Asian countries, but its productivity is often reduced by drought,
especially when grown under rain-fed conditions. Cultivars with increased drought tolerance have been bred over centuries.
Slow selection for drought tolerance on the basis of phenotypic traits may be accelerated by using molecular markers
identified through expression and metabolic profiling. Previously, we identified 46 candidate genes with significant
genotype 6environment interaction in an expression profiling study on four cultivars with contrasting drought tolerance.
These potential markers and in addition GC-MS quantified metabolites were tested in 21 cultivars from both indica and
japonica background that varied in drought tolerance. Leaf blades were sampled from this population of cultivars grown
under control or long-term drought condition and subjected to expression analysis by qRT-PCR and metabolite profiling.
Under drought stress, metabolite levels correlated mainly negatively with performance parameters, but eight metabolites
correlated positively. For 28 genes, a significant correlation between expression level and performance under drought was
confirmed. Negative correlations were predominant. Among those with significant positive correlation was the gene coding
for a cytosolic fructose-1,6-bisphosphatase. This enzyme catalyzes a highly regulated step in C-metabolism. The metabolic
and transcript marker candidates for drought tolerance were identified in a highly diverse population of cultivars. Thus,
these markers may be used to select for tolerance in a wide range of rice germplasms.
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Introduction

Rice (Oryza sativa L.) is one of the world’s most important staple

foods with 720 million tons harvested in 2011 (www.fao.org

24.07.2012). In Asia, its main cultivation area, rice provides 35–

60% of the calories consumed [1]. Rice was domesticated at least

twice independently, which resulted in the two subspecies indica

and japonica [2]. Centuries of breeding furthermore yielded a wide

range of cultivars adapted to different watering regimes from

irrigated, deep-water cultures to rain-fed lowland and upland

cultivars [3]. About 50% of the rice acreage is rain-fed and not

irrigated [4]. In these areas, drought is the major environmental

factor that reduces productivity by 13–35% [5,6]. Drought stress

causes yield loss not only in rice, but in many other crops like

potato, wheat and maize. The situation will aggravate in future as

agriculture competes with others consumers for limited water

supplies. Thus, more food will have to be produced with less water

to provide for the increasing world population [7].

Therefore, strategies to identify drought-tolerant germplasms

are of major interest. Traditionally, breeding of drought-tolerant

cultivars relied on selection based on phenotypic and physiological

traits observed under drought stress [8,9], namely leaf rolling [10–

12], cell membrane stability [13], carbon isotope discrimination,

gas exchange and chlorophyll fluorescence measurements [14–19],

stomatal conductance and water use efficiency [19,20], root traits

[21] and yield [22,23]. However, this selection process is labour-

intensive and slow as it requires cultivation of breeding popula-

tions under drought conditions [24]. The phenotypic evaluation

can, however, be replaced by the use of molecular markers such as

DNA polymorphisms or chemical tags [25] associated with the

trait. Marker-assisted selection (MAS) is cheaper and more

convenient than phenotype-based selection and it presently is

the only option to combine traits by gene pyramiding [25]. DNA

based markers can be derived from quantitative trait loci (QTL)

and allow selection already in the seedling stage. QTLs for

drought tolerance traits have been identified in the last decade in

rice [12,13,23,26–30], wheat [31,32], maize [33,34] and other

crops. New breeding markers based on transcript or metabolite

abundance can be derived from multi-parallel methods like

expression and metabolic profiling [3]. For complex traits like

drought tolerance, studies have shown that markers will indicate

traits contributing to drought tolerance rather than overall

tolerance [25]. Thus, ideally, the concentration of a marker

transcript or metabolite will correlate with one or several traits

contributing to drought tolerance in a wide range of cultivars.

For our marker search, we used metabolite and expression

profiling. Metabolite were measured on the Golm Metabolomics

platform [35]. In a previous microarray study, we have identified
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genes that were differentially expressed in four rice genotypes of

contrasting drought tolerance [36] and thus could be marker

candidates for drought tolerance. As the ideal marker should

correlate positively with drought tolerance in a wide range of

genetic backgrounds, we tested the potential markers in an

association type study. We choose indica and japonica cultivars that

originated from a variety of Vietnamese agro-ecosystems and had

been selected into a breeding program for drought and salt stress.

Some well characterised cultivars from the International Rice

Research Institute (IRRI, Manila, Philippines) were included

additionally. All cultivars have been characterised for several traits

related to drought tolerance under control and long-term drought

stress in a parallel study (Do et al. PLOS ONE 10.1371/

journal.pone.0060325). In the present study, we checked, which

RNA and metabolite levels allowed prediction of drought

tolerance related traits. These transcripts and metabolites may

be drought tolerance markers in rice.

Results

Genotyping of Cultivars
In our study, 17 of the 21 cultivars (Table 1) originated from a

Vietnamese breeding program for drought stress resistance. As

information on the pedigree of these cultivars was limited, six

subspecies-specific sequence tagged sites (STS) markers located on

four chromosomes [37] were chosen to determine to which

subspecies (japonica or indica) the cultivars belong (Table 1).

Cultivars with known pedigree (japonica cultivars 50, 51 and 54,

indica cultivars 52, 55 and 62) were included as references. Based

on the results, three of the Vietnamese cultivars were classified as

japonica and eight as indica. Four cultivars (3, 13, 15 and 17) were

mainly japonica with some indica introgression. Two cultivars (14

and 18) were classified as mainly indica with some japonica

introgression. Thus, the studied genotypes represent both the

indica and japonica gene pools.

Identification of Potential Gene Expression-based
Markers

Potential marker genes had been identified in an expression

profiling study on four rice genotypes of contrasting drought

tolerance [36]. Genes had been selected as marker candidates,

when their expression response to drought stress differed between

tolerant and sensitive cultivars. This response pattern was

identified in an analysis of variance by a significant interaction

effect of the factors condition (drought, control) and tolerance

group (sensitive cultivars, tolerant cultivars) on gene expression

[36]. To reduce the list of candidates to those with agricultural

relevance, we have compared the position of the candidate gene to

the positions of published QTL for drought tolerance in rice [36].

From 108 candidate genes with significant interaction and location

Table 1. Rice cultivars in study population belong to indica or japonica subspecies.

Marker Name

Cultivar ID S01022 S03020 S03136 S04128 S07011 S07103

CR203 1 ind. ind. ind. ind. ind. ind.

DR2 2 ind. ind. ind. ind. ind. ind.

Loc 3 jap. jap. jap. ind. jap. jap.

C70 4 ind. ind. ind. ind. ind. ind.

C71 5 ind. ind. ind. ind. ind. ind.

K.lua nuong 13 jap. jap. jap. ind. jap. jap.

Cuom 14 jap. ind. ind. ind. ind. jap.

Khau cham 15 jap. jap. jap. ind. jap. jap.

Khau hom 16 jap. jap. jap. jap. jap. jap.

Khau non 17 jap. jap. jap. ind. jap. jap.

Tra linh 18 ind. ind. ind. ind. ind. jap.

Nep men 19 ind. ind. ind. ind. ind. ind.

Loc dau 20 ind. ind. ind. ind. ind. ind.

Lua man 22 ind. ind. ind. ind. ind. ind.

LC-93-1 29 jap. jap. jap. jap. jap. jap.

LC-93-2 30 ind. ind. ind. ind. ind. ind.

LC-93-4 31 jap. jap. jap. jap. jap. jap.

Nipponbare 50 jap. jap. jap. jap. jap. jap.

Taipei309 51 jap. jap. jap. jap. jap. jap.

IR57311-95-2-3 52 ind. ind. ind. ind. ind. ind.

Zonghua 53 jap. jap. jap. jap. jap. jap.

CT 9993-5-10-1 54 jap. jap. jap. jap. jap. jap.

IR 62266-42-6-2 55 ind. ind. ind. ind. ind. ind.

IR 64 62 ind. ind. ind. ind. ind. ind.

Genotyping of rice cultivars based on the amplification of six subspecies-specific sequence tagged sites (STS) markers. ind. – indica, jap. – japonica. Bold print of cultivar
name: reference cultivars with known genotype.
doi:10.1371/journal.pone.0063637.t001
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in a published QTL, we have chosen the 46 genes with the lowest

p-values for further analysis in the present study. Expression levels

of these genes were measured by qRT-PCR in leaf blades of 21

rice cultivars grown under control and drought stress condition

identical to those in the previous microarray study (see Table S1

for all qRT-PCR results). Hierarchical clustering of expression

patterns in biological samples (Figure 1) separated samples from

well-watered and drought treated plants neatly. The few

exceptions were from extreme cultivars. The highly sensitive

cultivar 53 showed a drought stress expression pattern already

under control conditions. In contrast, under drought stress the

expression pattern of the highly tolerant cultivar 18 resembled the

expression pattern found in other cultivars under well-watered

conditions. Most marker candidates were more highly expressed

under drought stress than under control conditions.

To identify markers, correlations between relative expression levels

of the candidate genes and physiological parameters contributing to

performance under drought were determined. These traits were

assessed on vegetative plants after 18 days of growth under control or

drought stress conditions (see the accompanying paper Do et al.

PLOS ONE 10.1371/journal.pone.0060325). Under drought stress,

the parameters drought score (representing the stay-green trait) and

mean water use efficiency (WUE) were determined. Additionally,

correlations to shoot fresh and dry weight, total fresh and dry weight

and photosynthetic yield (measured as photosystem II quantum use

efficiency by chlorophyll fluorescence spectroscopy) under control

and drought stress were analysed (Figure 2). Parameters were

mathematically transformed to ensure that high parameter values

indicate good performance (see Methods, ‘Correlation analyses).

Ideally, correlation to all performance parameters should show the

same direction if the candidate gene expression is a good predictor for

several tolerance traits. Under drought stress, expression levels of 28

of the 46 candidate genes correlated significantly (p,0.05) with

physiological performance parameters under drought stress (Figure 2).

For 11 genes, expression under drought stress correlated

negatively with several phenotypic parameters, indicating high

expression levels in cultivars with poor performance. The

expression of genes coding for an aconitate hydratase, an AMP

deaminase and an asparagine synthetase correlated negatively

with most performance parameters under drought stress (s.

Figure 3). Also under control conditions, expression of asparagine

synthase and AMP deaminase genes correlated negatively with

performance parameters under drought. Both genes were thus

more strongly expressed in drought-sensitive cultivars than in

tolerant cultivars under water-sufficient and water-deficient

conditions, suggesting a constitutive increase in the expression of

Figure 1. RNA expression response to drought differs between rice cultivars. Hierarchical clustering and heatmap of expression levels in
leaves of rice plants grown under control conditions (c) or drought stress (d). The code below the heatmap indicates the line id (see Table 1) and the
condition (blue: control = c, green: drought stress = d).
doi:10.1371/journal.pone.0063637.g001
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these genes in drought-sensitive compared to drought-tolerant

cultivars. Expression of the asparagine synthetase gene and genes

encoding a transmembrane amino acid transporter protein and an

expressed protein at LOC_Os07g47590 also correlated negatively

with performance parameters under control conditions. High

expression levels of these genes thus indicated slow growth rather

than poor performance especially under drought. For the other

genes, expression under control conditions did not correlate with

growth or photosynthesis under control conditions. This suggests

that the difference in gene expression between cultivars was not

linked to general differences in growth rates. High expression

levels of these genes indicated drought sensitivity.

Significant positive correlations between expression levels under

drought and drought score were found for six candidate genes

(Figure 2). The expression of these genes could serve as tolerance

markers. For three of these genes, expression levels were also

positively correlated with shoot and total dry weight under

drought conditions (Figure 2 and Figure S1). These genes encode a

cytosolic fructose-1,6-bisphosphatase, a glycine-rich cell wall

structural protein, and a transposon protein. For these genes,

high expression levels under drought stress indicated high drought

tolerance. Their expression levels under control conditions showed

only a few significant correlations to performance parameters

under drought stress. Thus, in contrast to the constitutive

sensitivity markers (e.g. asparagine synthase gene and an AMP

deaminase encoding gene, see above), expression of most tolerance

marker genes seemed to be drought-induced, i.e. their expression

levels could only be used as markers under drought stress. Both,

the cytosolic fructose-1,6-bisphosphatase and the plastidial pre-

cursor of fructose-1,6-bisphosphatase correlated significantly with

the photosynthetic yield (Figure 4).

Identification of Potential Metabolic Markers
Metabolite levels were determined in leaves of control and

drought-stressed plants from 21 cultivars (see Table S2). Hierar-

chical clustering for both metabolites and samples (cultivars 6
condition) are shown in Figure 5. The clustering of samples

showed a complete separation of the metabolite pattern between

samples from control and drought-treated material. The drought

treatment was thus the main source of variance in the data, which

indicates a complete change of metabolism under stress conditions

in all cultivars. The changes induced by the treatment are

predominantly larger than the differences between cultivars within

a treatment. The upper cluster in the metabolite hierarchy shown

in Figure 5 contains metabolites that increased under drought

stress; it contains glutamine, glutamic acid and derivatives. In

Figure 2. Correlation of physiological data with candidate gene expression. Annotation, primer (P), locus identifier of and correlation
coefficients for candidate genes with significant (p,0.05) positive (blue) or negative (red) correlation of log-transformed expressions levels with
physiological data under drought (d) or control (c) conditions. Data of 21 different cultivars with 2 to 3 replicates per cultivar and condition, 51 data
pairs in total. Negative rank - mean scoring rank multiplied with -1; WUE - water use efficiency; yield - chlorophyll-a fluorescence yield; FWS - fresh
weight shoot; DWS - dry weight shoot; FWT - total fresh weight; DWT - total dry weight. Sorted by LocusID.
doi:10.1371/journal.pone.0063637.g002
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contrast, metabolites grouping with sugar phosphates (lowest

cluster in Figure 5) decreased under drought stress.

Most of the significant correlations between metabolite levels

and performance parameters were negative under drought stress

(Figure 6). Negative correlations were found for the concentration

of the amino acids asparagine, glutamate, glutamine, glycine,

serine and threonine, and for the organic acids erythronic,

galactonic and threonic acid. Higher concentrations of these

metabolites were connected with lower fresh and dry weight, lower

photosynthetic quantum yield and lower water use efficiency. In

sensitive cultivars, levels were 10 to 100 fold higher than in

tolerant cultivars (see Figure 7 and Figure S2, notice log-10 scale

for metabolite levels). Under control conditions, levels of

asparagine, erythronic acid-1,4-lactone, serine and threonine

correlated positively with performance under drought. Asparagine,

threonine and serine levels were significantly higher (p,0.05)

under drought than under control conditions. Those cultivars that

accumulated asparagine more than most other cultivars (levels

above mean plus one standard deviation) predominantly showed a

below than average water use efficiency (WUE) (Figure 8). Thus,

high asparagine levels indicated low WUE.

Figure 3. Expression of genes for aconitate hydratase (A), an
AMP deaminase (B) and asparagine synthetase (C) correlated
negatively with shoot dry weight. Relative expression levels of
genes and average shoot dry weight measured in rice cultivars in three

independent experiments. The regression coefficient r for the linear
regression of shoot dry weight against expression level is shown in the
upper right corner.
doi:10.1371/journal.pone.0063637.g003

Figure 4. Expression of the fructose-1,6-bisphosphatase gene
correlated with photosynthetic quantum yield. Correlation of
relative expression levels of genes coding for a cytosolic (A) and a
plastidial (B) fructose-1,6-bisphosphatase with photosynthetic quantum
yield of leaves measured after 18 days of growth under drought stress.
doi:10.1371/journal.pone.0063637.g004
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Positive correlations between metabolite levels and drought

tolerance traits were identified for allantoin, galactaric acid,

gluconic acid, glucose, a salicylic acid glucopyranoside and three

unknown analytes with a retention time index of 1574.3, 1730.77

and 2482.9 (Figure 6, Figure 9 and Figure S2). Concentrations of

these metabolites were 10 to 1000fold higher in tolerant plants

than in sensitive plants. Under drought stress, levels of these

metabolites were high in tolerant cultivars. However, for most of

these metabolites no correlations between levels under control

conditions and performance under drought were found. In

contrast, galactaric acid concentrations under control conditions

correlated positively with the performance under drought. As

levels under control conditions correlated positively with growth

under control conditions too, galactaric acid levels seemed to

relate to growth rate rather than to drought tolerance. Glucose

and gluconic acid, for which positive correlations between

concentration and performance were restricted to drought stress

conditions, were thus better marker candidates.

Principal Component Analysis
Improved prediction of drought tolerance might be gained from

derived variables e.g. from linear combinations of gene expression

or metabolite concentration values. To that end, we checked

whether the variation in drought tolerance can be resolved by a

combination of principle components on metabolite concentra-

tions. In a dataset from leaves of control and drought-stressed

plants grown in two experiments, component 1 (PC1) separated

control and drought-stressed plants (Figure 10A). This component

explained 31% of the variance. PC1 was a linear combination of

many metabolites without obvious overrepresentation of metab-

olites from a single pathway (Table S3). A combination of PC2 and

PC3, explaining 16% and 9% of the variance, respectively,

separated japonica and indica cultivars (Figure 10B). In PC2,

erythronic acid-1,4-lactone and three amino acids (aspartate,

serine and threonine) had loadings higher than 0.2. However,

tolerance differences between the cultivars could not be resolved in

one of the PC-plots. Likewise, multiple regression approaches

(data not shown) yielded poorly reproducible results that were

highly dependent on the regression method and the quality

Figure 5. Metabolite response to drought differs between rice cultivars. Hierarchical clustering and heatmap of metabolite levels in leaves
of rice plants grown under control conditions (c) or drought stress (d). Metabolite levels were normalised within an experiment by Z-transformation
as indicated in Material and Methods. The code below the heatmap indicates the line id (see Table 1) and the condition (blue: control, green: drought
stress).
doi:10.1371/journal.pone.0063637.g005
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criterion. Thus, no combined markers based on multiple

metabolite levels could be gained from the data.

Discussion

Drought tolerance in crops is an increasingly relevant trait, as

water availability is the limiting factor for plant production

especially in those parts of the world, in Asia and in Africa, where

malnutrition is a major issue. However, drought tolerance is a

quantitative agricultural trait that is very difficult and labour-

intensive to determine. In the past, drought tolerance has been

assessed in field trials to measure either final yield or physiological

parameters that are predictive for yield under stress. Yield itself is

the most relevant parameter, but its heritability is regrettably low.

Additionally, drought tolerance depends very much on the target

environment. Thus, marker search concentrates on features that

predict traits contributing to drought tolerance in a defined

environment [8,25]. One of these traits is the stay-green trait that

estimates the degree of leaf chlorosis and necrosis [9] under stress.

The ability to maintain a high biomass under drought stress at the

juvenile stage enhances plant survival after transplanting as well as

rapid recovery after drought. Both features increase yield.

We used the stay-green trait measured as drought score

categories as the main trait for the quantification of drought

tolerance in our test population and tested the predictability of this

from transcript or metabolite data. Additionally, we checked

whether we can predict further traits relevant for drought

tolerance, such as chlorophyll fluorescence yield [38], water use

efficiency, or total and shoot biomass. In QTL studies, the

association between genes or genomic markers and various proxy-

parameters for drought tolerance is not consistent [32,39]. In our

study, some metabolites like asparagine concentrations and some

transcript levels e.g. of asparagine synthetase correlated closely to

several traits, whereas others marker candidates correlated

specifically to e.g. water use efficiency or chlorophyll fluorescence.

To speed up breeding by marker assisted selection (MAS),

markers should allow tolerance prediction from features that can

be measured on young plants, ideally without the need of prior

stress treatment [19,22]. In contrast to genomic markers,

metabolite and transcript levels vary with the environmental

conditions, the plant organ and the developmental stage. We

performed our analysis in the juvenile growth stage on fully

expanded leaves as easily accessible organ. Additionally, we tested

for correlations between tolerance traits and metabolite or

transcript levels measured under drought stress and control

conditions to find markers that are independent of the water

supply.

The Test Population
For MAS, the correlation between marker and tolerance must

hold in a wide range of genetic backgrounds. We therefore tested

potential expression and metabolite markers in 21 rice cultivars.

Most of the cultivars were selected from a Vietnamese breeding

program to gain a test population comparable to the breeding

material, for which the markers are intended. Our test population

represented the two major subspecies of rice, indica and japonica.

The substructure in our data set needs to be taken into account, as

otherwise, like in association mapping, false-positive associations

between genotype – or in our case marker - and phenotype may

result [40]. For association mapping, statistical approaches are

available to control the influence of the substructure [41]. In our

study, cultivars belonging to the indica subspecies tended to be

Figure 6. Correlation of physiological data with metabolite levels. Correlation coefficients for selected metabolites with significant (p,0.05)
positive (blue) or negative (red) correlation between log-transformed metabolite levels with physiological data under drought (d) or control (c)
conditions. Data of 21 different cultivars grown in two experiments. Mean values of three to five replicates per cultivar and condition and experiment
were correlated. Negative rank - mean scoring rank multiplied with -1; WUE – water use efficiency (g DW/g H2O per day); yield - chlorophyll-a
fluorescence yield; FWS - fresh weight shoot [g]; DWS - dry weight shoot [g]; FWT - total fresh weight [g]; DWT - total dry weight [g].
doi:10.1371/journal.pone.0063637.g006
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more tolerant than the japonica cultivars. Subspecies-specific

differences in a metabolite level can thus lead to pseudocorrela-

tions. The consequence of the substructure in the population is

clearly visible in the PCA on the metabolite data set, where the

third component separated indica and japonica cultivars. For the

transcript data, the substructure was broken by the pre-selection of

the candidate genes [36]. The expression of these genes in two

sensitive (both japonica) and two tolerant cultivars (one indica and

one japonica) was significantly affected by condition 6 tolerance

group interaction. The risk of pseudocorrelations was therefore

much lower for the selected candidate genes than for the

metabolite markers.

The samples for the marker search were taken in the early

vegetative growth phase of the cultivars before flower initiation.

Under the climate chamber conditions employed in the experi-

ment, the cultivar with the shortest live cycle (Nipponbare)

flowered 55 days after sowing, most of the other cultivars flowered

about 100 days after sowing, some considerably later (Köhl,

unpublished data). By precise definition of the sampling time in the

vegetative growth phase, we reduced the effect of differences in the

live cycle term between cultivars on the validity of the marker. The

cultivars showed considerable variation in height and tiller number

(see accompanying paper Do et al. PLOS ONE 10.1371/

journal.pone.0060325) and cultivars with short shoots generally

grew more tillers than cultivars with high shoots. Thus, the

selected population represented the variance in growth patterns

found in rice.

Multi-parallel Methods for Marker Search
Metabolite and expression profiling both allow multi-parallel

measurements of several hundreds to thousands of parameters

with predictive capability. Each method has their relative merits.

Expression profiling by microarray hybridization is by now well

established for several crops. Based on such analyses, PCR based

tests can be established for candidate genes. If a linked genetic

marker can be identified, a genome-based test can be designed.

This allows fast screening at an early growth stage, independent of

environmental conditions. If the functions of the proteins encoded

Figure 7. Levels of serine (A) threonine (B) and threonic acid (C)
correlated negatively with shoot dry weight of rice plants
under drought stress. Average metabolite levels and average shoot
dry weight of 20 rice cultivars from two independent experiments.
doi:10.1371/journal.pone.0063637.g007

Figure 8. High asparagine levels are predominantly found in
cultivars with low water use efficiency. Water use efficiency (g
water per g final dry weight per day) of rice cultivars grown under
control or drought conditions plotted against the relative asparagine
level (Z score of log2 transformed values) in their leaves. The vertical
reference lines indicate the average asparagine level of all samples
minus (left) or plus (right) one standard deviation.
doi:10.1371/journal.pone.0063637.g008
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by the genes showing altered expression are known, regulatory or

metabolic pathways that affect drought tolerance can be identified.

The gained insight into drought tolerance mechanisms can then be

used to increase tolerance by altering the expression of a key gene

[24,42].

Metabolite profiling generally yields less response parameters

than expression profiling and the ratio between found analytes and

known metabolites is generally worse than the ratio between genes

of known and unknown function. In rice, for which metabolite

profiling is still in an early stage, GC-MS profiling yields 50–150

known metabolites [43]. In spite of this limitation, metabolomics is

becoming a major tool to study plant stress responses [44–48] and

will become a key factor in molecular breeding [49–51]. A major

advantage of metabolite profiling is the huge body of reference

data available from more than a hundred years of biochemical

research compared to only thirty years of genomic research. If a

metabolite is found to correlate with stress tolerance, relevant

pathways, in which the metabolite is involved, can thus be rapidly

identified and the mechanism of tolerance unravelled. In contrast

to most genes, metabolite markers provide condensed information

over several processes [52]. Thus, metabolite and gene expression

markers both have their advantages.

The main disadvantage of metabolite and expression markers is

their lower stability compared to genomic markers. Metabolite

and RNA concentrations can be influenced by diurnal rhythm,

environmental conditions and developmental stage of the plant.

This can be taken into account by standardising the sampling

conditions and choosing developmental stages that are metabol-

ically relatively stable (e.g. vegetative growth in Poaceae) and time

intervals in the diurnal cycle, in which metabolite and transcript

concentrations change but slowly [53]. Another approach is to

choose metabolite or transcript markers, in which concentration

differences between tolerant and sensitive cultivars are large

compared to the changes caused by environmental factors or

diurnal rhythms. In contrast to transcript and metabolite markers,

genomic DNA markers like SSR or SNPs are independent of

environmental conditions and developmental stages. The identi-

fication of genomic markers by association or QTL mapping

requires phenotyping and genotyping of a sufficiently large

segregating mapping population [54] and is thus much more

labour-intensive than the identification of metabolite or transcript

markers. However, both approaches can be combined. Instead of

doing a genome-wide association study, the region of interest can

be narrowed down to the location of candidate genes from

transcript profiling. In contrast to genomic markers, transcript and

metabolite markers can be preselected based on their response to

the stress, for which tolerance markers are to be identified.

Marker Identification by Correlation Analysis
To test the value of potential markers, we first characterised a

population of 21 rice cultivars for drought tolerance and

phenotyped them for traits that had been used to predict drought

tolerance. Levels of 46 candidate genes and 79 metabolites were

measured in leaves of 21 cultivars, which had been grown under

control and drought conditions. Potential drought tolerance

markers were identified by analysing correlations of expression

and metabolite levels with the phenotypic traits. Significant

positive correlations of metabolite or transcript levels with

phenotypic traits indicate a high expression or metabolite level

in tolerant cultivars, while negative correlations indicate high levels

in sensitive cultivars. As high levels of a metabolite or transcript

can be ascertained more reliably than low levels or absence, we

focus on the prediction from high levels. In the first case (positive

correlation), the metabolite or gene expression would be a

Figure 9. Levels of galactaric acid (A), glucose (B) and MST
2482.9 (C) correlate positively with shoot dry weight of rice
plants under drought stress. Average metabolite levels and average
shoot dry weight of 20 rice cultivars from two independent
experiments.
doi:10.1371/journal.pone.0063637.g009
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tolerance marker, as high levels indicate tolerance. Gene

expression or metabolites with negative correlation are sensitivity

markers.

The accumulation of a metabolite or transcript under stress is

not necessarily functionally connected with an increase in the

tolerance level or with tolerance differences between genotypes.

Metabolite levels can increase as a result from an accelerated

degradation or a reduced biosynthesis of another metabolite

without any protective effect. Likewise, not all candidate genes, for

which expression levels are significantly correlated with physio-

logical data, are necessarily connected with drought tolerance. It

could, for example, also be generally correlated with the growth

rate not only under drought but also under control conditions. To

identify such false positives, we studied the correlation between

expression and metabolite levels under control conditions and

phenotypic traits measured under these conditions. Indeed,

expression levels of, for example, the genes coding for an

asparagine synthetase and an AMP deaminase were negatively

correlated with shoot and total fresh and dry weight under drought

conditions as well as under control conditions. This suggests that

high expression of those genes indicated slow growth rather than

specific performance under drought.

Metabolite Markers
Among metabolite levels, potential sensitivity markers were

identified that correlated significantly and negatively with pheno-

typic traits under drought stress. This group contains many amino

acids (asparagine, glutamate, glutamine, glycine, serine and

threonine). Their concentrations were high in drought-sensitive

cultivars with low biomass under drought stress. This agrees with

findings in Arabidopsis thaliana grown under optimal conditions

where intermediates of the central metabolism were mostly

negatively correlated with biomass production [48,55]. High

amino acid levels observed in sensitive cultivars reflect the increase

in protein degradation and the decrease in protein synthesis under

drought stress [36,48,56,57]. Accordingly, high amino acid levels

have been observed in plants subjected to other stresses and in

senescing leaves [58–61].

In contrast, eight metabolites were identified, whose levels

under drought stress were higher in tolerant than in sensitive

cultivars. This pattern was found for allantoin, galactaric and

gluconic acid, glucose and salicylic acid glucopyranoside plus three

unidentified metabolites. These metabolites are promising candi-

dates for drought tolerance markers. Especially mid-day glucose

level in young leaves is an interesting marker candidate, as levels of

glucose were already shown to be increased during drought in

Eucalyptus [61,62], during salt stress in Lotus [48] and to correlate

significantly with acclimated freezing tolerance in Arabidopsis

thaliana [48,63,64]. In all these stresses, glucose may be part of a

C-based osmotic adjustment [65,66]. In contrast to sucrose and

starch, glucose concentration is not negatively correlated with

biomass production under unstressed conditions [67]. The positive

correlations were restricted to plants under stress conditions and

were not found under control conditions. Thus, no constitutive

metabolite markers could be identified.

Gene Expression Markers
Among the 46 candidate genes selected from a previous study

[36], more than 20% showed significant correlation between

expression and plant performance under drought stress in the test

population. Similar to the metabolite markers, negative correla-

tions dominated. For many of these sensitivity markers, the

correlation with performance under drought could also be found

for expression levels measured under control conditions. These

sensitivity markers seem to be constitutive and may thus be useful

to exclude germplasms from a breeding population at an early

stage. In the case of asparagine synthetase, the increased gene

expression in sensitive cultivars was matched by an increased

asparagine level in these cultivars.

Many of the genes with a positive correlation between

expression and performance under drought showed this correla-

tion exclusively under drought conditions. These genes are

scientifically interesting, but of limited value as breeding markers.

These tolerance markers code for proteins involved in several

pathways, which fits the general assumption of a multigenic nature

of drought tolerance. Remarkably, expression levels of a cytosolic

Figure 10. Principal component analysis (PCA) separated samples by treatment and genetic origin of rice cultivars. PCA plots on
normalised metabolite levels with PC1 and PC2 (A) separated samples of plants grown under control (c) and drought conditions (d). PC2 and PC3 (B)
separated samples of indica (blue) and japonica cultivars (green). Numbers for cultivars see Table 1.
doi:10.1371/journal.pone.0063637.g010
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(cFBPase) and a plastidial fructose-1,6-bisphosphatase (pFBPase)

were positively correlated with drought tolerance or photosyn-

thetic yield under drought stress, respectively. In sensitive cultivars,

the cFBPase was slightly down-regulated under drought stress,

whereas it was significantly induced in tolerant cultivars [36]. Both

enzymes are physiologically and biochemically very well studied

[68–70]. The plastidial enzyme catalyzes a rate-limiting, highly

regulated step in the Calvin-Benson cycle [71] towards regener-

ation of ribulose-bis-phosphate and starch production in the

chloroplast. The cytosolic enzyme promotes a highly regulated

step in the conversion of triose phosphates into sucrose, which then

may be exported to sink organs such as roots. A down-regulation

of the genes for the cytosolic enzyme has been observed before in

water-stressed sunflower plants [72]. The authors suggest that the

down-regulation of this enzyme could be involved in the non-

stomatal limitation of photosynthesis [72]. Additionally, it is

discussed that rates of sucrose synthesis and rates of photosynthesis

may be coordinated by changes in the activity of this enzyme [73].

In the Arabidopsis mutant (hcef ) with increased cyclic electron flow

around photosystem I, the mutation has been mapped to the

pFBPase [74]. Antisense repression of cFBPase reduced sucrose

synthesis in Arabidopsis [75] and potato [76]. When cFBPase is

overexpressed together with the triose phosphate/phosphate

transporter, photosynthetic CO2 assimilation rates are enhanced

and glucose levels increased compared to the wildtype [77]. The

increased expression of both FBPase genes in tolerant rice cultivars

under stress is counterintuitive, as the enzymes are crucial parts of

competing pathways. However, a similar situation was revealed in

a detailed metabolic analysis of Arabidopsis under drought stress

[65]. The activity of AGPase, the rate limiting enzyme in plastidial

starch synthesis, was increased in severely drought-stressed plants

compared to control plants during the entire diurnal cycle. At the

same time, the amount of sucrose exported to the roots increased

under drought stress. A possible explanation is that a higher

expression level of both genes may allow a higher turnover of the

enzymes and thus an increased regulatory capacity for the switch

between photosynthetic CO2 fixation and starch storage in the

chloroplasts and carbohydrate exports to the sinks, especially the

roots. The adaptive value of modifications in the source/sink

relationship has been shown in rice. Increase in cytokinin synthesis

by genetic modification improved grain yield under drought [78].

A regulation switch with a high capacity is obviously only needed,

if triose phosphates are produced by photosynthesis. In sensitive

cultivars, where chlorosis and necrosis reduced photosynthesis

under drought stress, this regulatory capacity may not be needed,

thus gene expression levels may be decreased.

Altogether, the application of expression and metabolic profiling

methods on rice cultivars subjected to long-term drought stress

revealed several marker candidates for drought tolerance. The

most promising markers were glucose, high levels of which

indicated high tolerance and high expression levels of the cFBPase

and pFBPase genes. Their elevated expression in tolerant cultivars

may contribute to the adjustment of photosynthesis and source-

sink relationships under drought. The test population, in which

these marker candidates were identified, was highly diverse in

drought tolerance and genetic background. This makes it likely

that the markers are useful for breeder’s selection in a wide range

of rice germplasm. As the correlations between transcript and

metabolite levels and drought tolerance were found in a

controlled-environment drought stress system, the next step

required would be the validation in field experiments. These

experiments would also give insight into the effect of environ-

mental factors other than water supply on the potential markers.

Materials and Methods

Plant Material and Stress Treatment
Twenty-one rice (Oryza sativa L.) cultivars (Table 1) originating

either from the IBT (Institute of Biotechnology, Hanoi, Vietnam)

or from the IRRI (International Rice Research Institute, Manila,

Philippines) were grown under water sufficient and water limiting

conditions in three independent experiments (#1–3) in a

controlled climate chamber as described by Degenkolbe et al.

[36]. The design was a split-plot design with five blocks per

drought or control treatment. Each treatment and cultivar was

represented by five replicate pots with one plant per pot. Pots were

randomized within the blocks. Block position was rotated daily.

Plants were cultivated in 10 cm pots on a 7.5 cm deep layer of an

artificial substrate. The shallow substrate level was chosen to

reduce the effect of differences in rooting patterns between

cultivars on the result. Pots were positioned in polypropylene

boxes filled with water to the level of the substrate surface. Rice

plants were grown in 12 h day (600 mE m22 s21) with 26uC and

75% relative humidity in the light and 22uC and 70% relative

humidity at night. Twenty-six days after sowing, water was

removed from half of the boxes and plants were left to dry for four

days, until the soil water content had reached the permanent

wilting point (PWP) for 50% of the plants. Thereafter, the soil

water content was kept constant to the fixed PWP value over a

period of 14 days by weighing each pot at the end of the light

period and adding the amount of water lost during the last 24

hours.

After 18 days of drought stress, plants were harvested four to six

hours after the beginning of the light period. Samples for

expression and metabolic profiling were harvested from the

middle section of the blades of fully expanded green leaves,

weighted and immediately frozen in liquid nitrogen, and stored at

-80uC until use.

Cultivars were genotyped for seven subspecies-specific sequence

tagged site (SS-STS) markers [37] as described before [36].

RNA Isolation and cDNA Synthesis
Frozen leaf material was homogenized in a ball mill for 90 sec

at 28 Hz. Plant material from five replicate plants per cultivar and

condition was pooled and 60 to 90 mg were used for total RNA

isolation using the NucleoSpin RNA plant kit (Macherey-Nagel,

Düren, Germany) following manufacturer’s instruction. RNA

concentration was determined with the Nanodrop N-1000

Spectrophotometer (Nanodrop Technologies, Wilmington, DE).

To remove remaining genomic DNA, samples were treated with

Baseline-ZERO DNase. The absence of genomic DNA contam-

ination was subsequently confirmed by quantitative RT-PCR

(qRT-PCR) with primers for an intron (LOC_Os01g01840). The

integrity of total RNA was checked on an 1.7% (w/v) agarose gel.

cDNA synthesis from 4 mg of total RNA with Superscript III

reverse transcriptase was performed following the manufacturer’s

instruction (Invitrogen, Karlsruhe, Germany). Quality of synthe-

sized cDNA was checked by qRT-PCR with two primer pairs

binding to the 39 and 59 ends of the actin 1 (LOC_Os03g50890)

transcript, respectively.

Quantitative RT-PCR
Expression levels of 46 candidate genes (Table S1) were

measured in leaf material from 21 rice cultivars grown under

control and drought stress conditions in three experiments.

Primers for qRT-PCR (Table S4) were designed on the published

japonica sequence with PrimerExpress 2.0 (Applied Biosystems,

Darmstadt, Germany) and checked with NetPrimer (www.
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premierbiosoft.com/netprimer/netprlaunch/netprlaunch.html).

Sequences were blasted on the databases of GRAMENE (www.

gramene.org) and the Beijing Genomics Institute to ensure specific

amplification in both japonica and indica cultivars. Correct size of

the amplified region for each primer pair was checked by agarose

gel electrophoresis.

qRT-PCR was performed with the ABI Prism 7900HT

(Applied Biosystems, Foster City, CA) using SYBR Green Master

Mix (Eurogentec, Köln, Germany) with standard thermal cycling

conditions (50uC for 2 min, 95uC for 10 min, 40 cycles of 95uC for

15 sec and 60uC for 1 min). Dissociation curves were checked with

the SDS 2.2.1 software (Applied Biosystems) for shoulders or

additional peaks. The expression values were normalised to the

expression of the housekeeping genes actin 1 and cyclophilin and

the primer efficiency as described before [36]: ‘Normalised

expression of the genes of interest was calculated by dividing the

average relative expression (primer efficiency P to the power of

cycle number Ct) of the two housekeeping genes (H1 and H2) by

the relative expression of the gene of interest (GOI): ((PH1^CtH1+
PH2^CtH2)/2)/PGOI^CtGOI. Primer efficiency was calculated using

LinRegPCR [79].

GC-ToF-MS
From 120 mg of frozen, ground leaf material from experiment

#1 and 2, a fraction enriched in polar primary metabolites was

prepared and processed as described previously [80]. Gas

chromatography coupled to electron impact ionization-time of

flight-mass spectrometry (GC/EI-TOF-MS) was performed on an

Agilent 6890N24 gas chromatograph attached to a Pegasus III

mass spectrometer, LECO, St. Joseph, USA [81]. Chromatograms

were pre-processed with ChromaTOF software 1.00, Pegasus

driver 1.61 (Leco; http://www.leco.de). Selective peak heights

representing arbitrary mass spectral ion currents were normalised

by sample dry weight and to an internal standard that was added

upon extraction of the polar metabolite fraction. Data were

subsequently processed with TagFinder [82]. Analytes that were

detected in less than 50% of control and 50% of drought-stressed

plants were excluded from the dataset. Clusters of at least three

corresponding mass fragments were selected for relative metabolite

quantification. Metabolites were identified by matching to

references in the Golm Metabolome Database [83]. The matching

process was manually supervised for a match factor .500 and

retention index deviations ,1% [84].

Outlier samples were detected in plots of a principal component

analysis (PCA; R package pcaMethods; [80,85] of raw data and

were removed from further analysis. Log-transformed metabolite

levels were normalised by subtracting the median metabolite level

for each experiment and metabolite to remove the effect of

experiment and GC-MS run. Mean values of normalised

metabolite levels were calculated for each cultivar, condition and

experiment and analysed by PCA with the settings mean centred

matrix and unit variance scale (R package pcaMethods). Euclidean

distance of scaled data was used for hierarchical clustering.

Correlation Analysis
Expression of candidate genes and metabolites levels were

analysed for Pearson correlations (cor.test function, R) with

physiological data that are indicative of drought tolerance, namely

shoot and total fresh and dry weight, mean scoring rank, mean

water use efficiency and photosynthesis yield. Expression and

metabolite data were log-transformed. Scoring ranks were

multiplied with -1. The correlation analysis was performed on

three variable combinations, namely correlating (1) expression/

metabolite data from drought-stressed plants with performance

parameters from drought-stressed plants, (2) expression/metabo-

lite data from control plants with performance parameters under

stress and (3) expression/metabolite data from control plants with

performance parameters under control conditions.

Supporting Information

Figure S1 Average shoot dry weight in rice cultivars
plotted against the relative expression of 46 genes. The

regression coefficient r for the linear regression of shoot dry weight

against expression level is shown in the upper left corner. The

primer number and the gene name are indicated in the title of

each figure. The complete name for each gene can be retrieved

from Table S4. File SupportingFigure2.pdf, Format pdf.

(PDF)

Figure S2 Average shoot dry weight in rice cultivars
plotted against the level ( = signal intensity) of 79
metabolites. The regression coefficient r for the linear regression

of shoot dry weight against metabolite level is shown in the upper

left corner. Unidentified metabolites are labelled with their retention

time index MST. File SupportingFigureS4.pdf. Format pdf.

(PDF)

Table S1 Mean normalised expression values for 45
genes measured in 21 cultivars under drought and
control conditions. Cultivar identifiers see manuscript

Table 1. Condition d = drought, c = control. Primer identifiers

indicated in column heading see Table S4. File SupplementalTa-

bleS1.xls, Format xls.

(XLS)

Table S2 Mean normalised metabolite levels measured
in rice cultivars under drought and control conditions.
Cultivar identifiers see Table S1. Condition d = drought, c = con-

trol. Metabolite identifiers indicated in column heading see Table

S3. NA = not detected. File Supplemental Table S3.xls, Format

xls.

(XLS)

Table S3 Metabolite identifiers (Mid), retention times,
metabolite names and loadings of the first five principal
components. File Supplemental Table S5.pdf, Format pdf.

(PDF)

Table S4 List of qPCR primer sequences that were used
for quality checks and RT-PCR together with their
Primer Identifier (PId), TIGR Locus identifier (Locus
ID), OligoID from the gene chip (see Degenkolbe et al.
2009), and direction (FW = forward, RV = reverse). File

Supplemental Table S6.pdf, Format pdf.

(PDF)
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