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We study the impact of TeV-scale sterile neutrinos on electro-weak precision observables and
lepton number and flavour violating decays in the framework of a type-I see-saw extension of the
Standard Model. At tree level sterile neutrinos manifest themselves via non-unitarity of the PMNS
matrix and at one-loop level they modify the oblique radiative corrections. We derive explicit
formulae for the S, T, U parameters in terms of the neutrino masses and mixings and perform a
numerical fit to the electro-weak observables. We find regions of parameter space with a sizable
active-sterile mixing which provide a better over-all fit compared to the case where the mixing is
negligible. Specifically we find improvements of the invisible Z-decay width, the charged-to-neutral-
current ratio for neutrino scattering experiments and of the deviation of the W boson mass from
the theoretical expectation.
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I. INTRODUCTION

The Standard Model (SM) is extremely successful and
has passed numerous experimental tests. Moreover the
last missing piece, the Higgs particle, has recently likely
been seen by the ATLAS and CMS collaborations [1, 2].
On the other hand, the SM is for a number of theoret-
ical reasons incomplete. It also does not explain three
known experimental facts, namely the tiny active neu-
trino masses, the baryon asymmetry of the Universe and
the existence of dark matter. A simple yet elegant way to
solve two or even all of these problems is to supplement
the SM by three singlets:

L = LSM + 1
2N̄i

(

i/∂ −Mi

)

Ni

− hαiℓ̄αφ̃Ni − h†
iαN̄iφ̃

†ℓα , (1)

where Ni = N c
i are Majorana fields, ℓα are the lepton

doublets, φ̃ ≡ iσ2φ
∗ is the conjugate of the Higgs doublet,

and h are the corresponding Yukawa couplings.
This is a small modification of the SM, also because so

far the principles which select the fermionic representa-
tions in a given theory are (besides for anomaly condi-
tions) unknown. Nevertheless, this modification allows to
accommodate those three experimental facts: First, after
breaking of the electro-weak symmetry the active neutri-
nos acquire masses via the type-I see-saw mechanism [3–
6]. Second, within the same setup the observed baryon
asymmetry of the Universe can be naturally explained
by leptogenesis [7]. According to this scenario the lepton
asymmetry which is produced by the heavy neutrinos
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is converted into the baryon asymmetry by anomalous
electro-weak processes [8–10]. Depending on the values
of the masses and couplings in (1) the generation of the
asymmetry proceeds either through decays [11–23] or via
oscillations of the heavy neutrinos [24]. The extension
of the SM spectrum by sterile neutrino states may even
provide a solution to the third problem, since sterile neu-
trinos are a perfect dark matter candidate (see e.g. [25–
32]). A further possible implication of sterile neutrinos
is a modified active neutrino flux in reactor experiments
[33]. This could explain the observed reduced electron
antineutrino fluxes [34].

Note that the addition of singlets to the SM has actu-
ally important consequences. Not only are there many
new parameters, but also the global symmetries are
changed, since lepton number is broken. Furthermore the
single scale of the SM, namely the electro-weak VEV, is
amended by the new mass scales Mi. Within the type-I
see-saw the sterile neutrinos pick up masses proportional
to Mi and these could in principle have any value which
is not excluded by experiment. It is therefore interest-
ing to study implications of sterile neutrinos assuming
any mass. Some effects exist even for ultra heavy sterile
neutrinos, while some are only phenomenologically im-
portant for not so heavy states, which are in the mass
range of several TeV or lower.

The existence of Majorana neutrinos has well known
consequences on the phenomenology below the electro-
weak scale. In particular, the new states can contribute
to the amplitude of the neutrinoless double-beta decay
[35–39] and induce rare charged lepton decays [40, 41].
Furthermore, they can affect the electro-weak precision
observables (EWPOs) via tree-level as well as loop con-
tributions and thus provide an explanation for anomalies
in the experimental data. In particular, the tree-level
effects result in non-unitarity of the active neutrino mix-
ing matrix [40] and lead to a suppression of the invisi-
ble Z-decay width. This is in agreement with the long
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standing fact that the LEP measurement of the invisible
Z-decay width is two sigma below the value expected in
the SM [42]. Furthermore the neutral-to-charged-current
ratio in neutrino scattering experiments can be changed
thus providing an explanation for the NuTeV anomaly
[43]. Also a slight shift of the W boson mass from the
value derived from other SM parameters is induced, re-
ducing the tension between the input parameters of the
electro-weak fit and the experimentally observed value
[44]. These electro-weak observables are affected not only
at tree-level but also by loop effects. The latter can be
taken into account in the form of the oblique corrections
and can partially ‘screen’ the tree-level contributions, as
we will see later. The impact of oblique corrections on
models with non-universal neutrino gauge coupling has
been studied in [45–47]. In these works the tree-level ef-
fects (ǫe, ǫµ and ǫτ ) and oblique (S, T and U) corrections
have been treated as independent parameters. However,
in the model described by the Lagrangian (1) they are
functions of the Majorana masses and Yukawa couplings
and are therefore not independent.

Encouraged by the fact that sterile neutrinos are very
well motivated we study their phenomenological impact
in this paper. Specifically we consider TeV-scale sterile
neutrinos with a sizable active-sterile mixing and deter-
mine their over-all contributions to the EWPOs and to
indirect detection experiments in the framework of the
see-saw type-I extension of the SM. In contrast to the
previous studies we derive expressions for the S, T, U -
parameters in terms of the masses and mixing angles
of the Majorana neutrinos, thus all quantities effecting
the observables are functions of the parameters in (1).
Our approach is therefore completely self-consistent. In
Sec. II we discuss the influence of heavy Majorana neutri-
nos on the phenomenology below the electro-weak scale
and provide expressions for the S, T, U -parameters. Next
we perform in Sec. III a likelihood fit to the EWPOs tak-
ing into account up-to-date experimental constraints in-
cluding neutrino oscillation data and limits from the non-
observation of rare charged lepton decays and neutrino-
less double-beta decay. We find that TeV-scale sterile
neutrinos improve the overall fit by bringing the invisi-
ble Z-decay width, the charged-to-neutral current ratio
for neutrino scattering and the W boson mass in agree-
ment with the experimentally observed values within
the experimental precision. The best-fit regions provide
testable experimental signatures. For the normal- and
quasi-degenerate light neutrino mass spectra we find that
0νββ decay rates are close to the current experimental
sensitivities. For the inverted hierarchy the mass region
is such that part of the parameter space can be tested at
the LHC after the 14 TeV upgrade. Finally, in Sec. IV
we summarize the obtained results and present our con-
clusions.

II. OBSERVABLES

Despite the fact that the Majorana neutrinos in (1) are
SM singlets, after the electro-weak symmetry breaking
they mix with the active neutrinos through the induced
Dirac mass terms and therefore also couple to the Z and
W bosons. Expressed in terms of the mass eigenstates
the corresponding part of the Lagrangian takes the form

Lint = − e

2cwsw
Zµ

∑3+n
i,j=1

∑

α=e,µ,τ ν̄iU
†
iαγ

µPLUαjνj

− e√
2sw

Wµ

∑3+n
i=1

∑

α=e,µ,τ ν̄iU
†
iαγ

µPLeα + h.c. , (2)

where eα denote the charged leptons, νi denote the light
(for i ≤ 3) as well as heavy (for 4 ≤ i ≤ 3+n) neutrinos,
and U is the full unitary (3+n)×(3+n) neutrino mixing
matrix. To give masses to at least two active neutrinos,
as required by oscillation experiments, we need two or
more heavy neutrinos, i.e. n ≥ 2, but otherwise n is un-
constrained. Below we review the phenomenology of (2)
together with the corresponding up-to-date experimental
results.
Lepton-flavor violating decays. In the scenario under

consideration the branching ratio of µ → eγ decay is gi-
ven by [48]

BR(µ → eγ) =
Γ(µ → eγ)

Γ(µ → eνν̄)
=

3α

32π
|δν |2 , (3)

where δν = 2
∑

i U
∗
eiUµi g

(

m2
i /M

2
W

)

and the loop func-
tion g is defined by

g(x) =

∫ 1

0

(1− α)dα

(1− α) + αx
[2(1− α)(2 − α) + α(1 + α)x].

Note that we use mi to denote the masses of both light
and heavy neutrinos. Since the masses of the active neu-
trinos are very small we can neglect them in the loop
integral, g(m2

i /M
2
W ) ≈ g(0) = 5/3. Using unitarity of

the full mixing matrix we then find

δν = 2
∑3+n

i=4 U
∗
eiUµi

[

g
(

m2
i /M

2
W

)

− 5/3
]

. (4)

The recent limit on this branching ratio obtained by the
MEG collaboration [49] is

BR(µ+ → e+γ) ≤ 2.4 · 10−12 (5)

at 90% confidence level. From (4) and (5) we can infer
bounds on the products of the mixing elements Uµi and
Uei. An analogous relation also exists for the τ → eγ
decay. However, the corresponding experimental con-
straints are much weaker and will not be considered here.
Neutrinoless double-beta decay. Neutrinoless double-

beta decay constrains the effective mass of the electron
neutrino 〈mee〉. The latter receives contributions from
the light as well as from the heavy mass eigenstates [35]:

|〈mee〉| ≈
∣

∣

∑3
i=1U

2
eimi −

∑3+n
i=4 F (A,Mi)U

2
eimi

∣

∣ . (6)
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For masses of the heavy neutrinos in the TeV range one
can use an approximation: F (A,mi) ≈ (ma/mi)

2f(A),
where ma ≈ 0.9 GeV and f(A) depends on the decay-
ing isotope under consideration [39, 50]. A conservative
bound, |〈mee〉| < 0.4 eV, has been recently obtained by
EXO collaboration [51].
Unitarity and lepton universality violation. For the

following analysis it is convenient to represent U in the
form

U =

(

U R

W V

)

. (7)

The (n × 3) matrix R describes the active-sterile mix-
ing. An obvious consequence of a nonzero active-sterile
mixing is that the (3 × 3) PMNS matrix U is no longer
exactly unitary [40]. The deviation from unitarity can be
parameterized by

ǫα ≡∑i≥4|Uαi|2 . (8)

In general the quantities ǫe, ǫµ and ǫτ are not equal. In
other words, there is also a violation of lepton universal-
ity. Experimental bounds on linear combinations of the
ǫα read [45]

ǫe − ǫµ = 0.0022± 0.0025 , (9a)

ǫµ − ǫτ = 0.0017± 0.0038 , (9b)

ǫe − ǫτ = 0.0039± 0.0040 . (9c)

The stringent experimental bound on the µ → eγ branch-
ing ratio implies that either ǫe or ǫµ is negligible in (9).
Heavy neutrinos at colliders. Heavy singlet Majorana

fermions have been searched for at the LEP and LHC
colliders, see [52, 53] for a review. The searches were
based on the production of the heavy state due to a con-
siderable mixing to the active neutrinos.
At LEP the heavy neutrino could be produced in e+e−

annihilation, e+e− → Nν, via s-channel Z-exchange as
well as via t-channel W -exchange. The produced Ma-
jorana neutrinos then rapidly decay via the weak neu-
tral or charged currents: N → Zν and N → We. A
search for heavy neutrinos with masses up to ∼ 200 GeV
has been performed by the L3 and Delphi collaborations
using the latter decay channel with W decaying into
hadrons [54, 55]. The experimental signature of these
events would be one isolated electron plus hadronic jets.
New limits on the active-sterile mixing for the heavy

neutrino masses up to 210 GeV have been obtained re-
cently by the CMS collaboration [56] using a dilepton de-
cay channel with two leptons of equal charge and flavour
plus jets, see Fig. 1. Violation of lepton number in this
process occurs due to the Majorana nature of the sterile
neutrino. For large Majorana masses the square of the
momentum transfer in the propagator of the intermedi-
ate neutrino can be neglected and the production cross
section depends on the combination |∑i U

2
αi m

−1
i |. As-

suming that only one of the heavy neutrinos couples to
the electron with a strength |Uei|2 ≈ 5.2·10−3 it has been

q′

q̄

N

e+α

e+α

Jet

Jet

W+

W−

Uαi

Uαi

FIG. 1: Lepton number violating process mediated by the
sterile neutrino.

estimated in [57] that after the LHC upgrade to
√
s ≈ 14

TeV this channel can be used to search for Majorana
neutrinos with masses up to roughly 800 GeV. For these
parameters we get |∑iU

2
αi m

−1
i | ≃ 6.5 ·10−3 TeV−1 and

one event per 100 fb−1 is expected. Even though this is
a very weak statistical signal it has been noted that in
the highest mass region (800GeV) the leptons are emit-
ted back to back providing a very clean signature and
allowing for an excellent background suppression. If the
luminocity of ∼ 400 fb−1 is reached one can hope to find
the heavy neutrinos even if the above defined combina-
tion of the mixings and masses is as small as 3.25 · 10−3

TeV−1.
A possible way of testing even higher mass ranges is

to study electron-proton collisions where the dominant
detection channel is e− + q → q′ + e+ + W with the
Majorana neutrino as an intermediate state. In [58] it
has been estimated that at an electron-positron collider
with a center of mass energy

√
s ≈ 6 TeV mass ranges

up to 1.5 TeV can be tested.
Non-unitarity in neutrino oscillations. The standard

oscillation formula assumes unitarity of the PMNS ma-
trix U , which is violated in the model under considera-
tion. The non-unitarity of U will manifest in a modified
oscillation probability formula [40], which in particular
includes a zero-length effect [59]:

Pαβ(L = 0) =
δαβ (1− 2ǫα) + ǫαǫβ
(1− ǫα)(1 − ǫβ)

. (10)

Being of second order in ǫ for α 6= β this effect is strongly
suppressed. As discussed by a number of authors, see [40]
and references therein, the probabilities do not add up
to unity. At non-zero distances the non-unitarity effects
are linear in ǫ [60] and may affect the results of global
fits. For the purposes of this work we will use the best-
fit results for the light neutrino parameters obtained in
a unitary fit as an input, see [61]. The order ǫ correc-
tions to the parameters of the active neutrinos will be
computed using (20). At the end, when comparing the
corrected values to the results of the unitary fit in [61]
we find agreement within the one sigma intervals. The
values are also consistent with the one sigma intervals
obtained in a non-unitary fit [40]. Furthermore, we have
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checked that our results are not sensitive to changes of
the active neutrino parameters within their experimental
errors, which justifies our procedure.
Electroweak precision observables. An important con-

sequence of non-unitarity is that the couplings of the light
neutrinos to the Z and W bosons are suppressed with re-
spect to their SM values. Taking this effect into account
we find that the invisible Z-decay width is suppressed:

Γinv/ [Γinv]SM = 1
3

∑

α(1− ǫα)
2 . (11)

This means that the ‘effective number of neutrinos’
measured in the Z-decay is slightly less than three,
which is qualitatively agreeing with the LEP results
[42]. Similarly, cross-sections of the charged- and neutral-

EWPO Theory (Standard Model) Experiment

Γlept (MeV) 84.005 ± 0.015 83.984 ± 0.086

Γinv/Γlept 5.9721 ± 0.0002 5.942 ± 0.016

sin2 θW 0.23150 ± 0.0001 0.2324 ± 0.0012

g2L 0.3040 ± 0.0002 0.3026 ± 0.0012

g2R 0.0300 ± 0.0002 0.0303 ± 0.0010

MW (GeV) 80.359 ± 0.011 80.385 ± 0.015

TABLE I: Theoretical predictions and experimental results
for electro-weak precision observables (EWPO). The theoret-
ical predictions are taken from [62]. The experimental values
for the invisible and leptonic Z-decay widths as well as the
Weinberg angle are from [42]. For the Weinberg angle we use
the value measured in the hadronic processes to make sure
that it is free of the non-unitarity corrections. The values of
gL and gR are taken from the NuTeV results after including
a recent NNLO analysis [43, 63].

current neutrino scatterings on quarks are also affected:

σCC
α = σCC

α,SM(1− ǫα) , (12a)

σNC
α = σNC

α,SM(1− ǫα)
2 . (12b)

The stronger relative suppression of the neutral current
interactions can be observed in experiments measuring
ratios of the corresponding cross sections. In particu-
lar, it is qualitatively consistent with the results of the
NuTeV experiment [64–67]. Another important conse-
quence of non-unitarity is that Gµ – the Fermi con-
stant measured in the muon decay – is not equal to
the Fermi constant measured in experiments with semi-
leptonic processes, but

G2
µ = G2

F (1− ǫµ)(1 − ǫe) . (13)

Since the muon decay width is used as an input in the SM
fits, this modification influences many observables and
has been used in [40] to obtain bounds on the active-
sterile mixing. However, as argued in [45, 46], the im-
pact of the heavy neutrinos is not limited to the above
discussed tree-level effects. Heavy neutrinos contribute
to the self-energies of the W and Z bosons and therefore

modify their propagators. These loop effects can be de-
scribed in terms of the S, T, U parameters [68]. A more
detailed description of the oblique correction formalism
is presented in Appendix A, while the calculations are
shown in AppendixB. Combining the tree-level and one-
loop contributions one obtains [45, 46]

Γlept

[Γlept]SM
= 1 + 0.6 (ǫe + ǫµ + 0.0145T )

− 0.0021S , (14a)

Γinv/Γlept

[Γinv/Γlept]SM
= 1− 0.67 (ǫe + ǫµ + ǫτ )

+ 0.0021S − 0.0015T , (14b)

sin2 θleptw
[

sin2 θleptw

]

SM

= 1− 0.72 (ǫe + ǫµ + 0.0145T )

+ 0.0016S , (14c)

g2L
[g2L]SM

= 1 + 0.41 ǫe − 0.59 ǫµ

− 0.0090S + 0.0022T , (14d)

g2R
[g2R]SM

= 1− 1.4 ǫe − 2.4 ǫµ

+ 0.031S − 0.0067T , (14e)

MW

[MW]SM
= 1 + 0.11 ǫe + 0.11 ǫµ

− 0.0036S + 0.0056T + 0.0042U . (14f)

Comparing (11) and (14b) we see that the first line in
the latter equation is the leading-order expansion of the
former one and that the loop corrections enter through
the T and S parameters.
Cancellation mechanism. Since S and U are related to

derivatives of the W and Z boson self-energies whereas T
is proportional to a difference of the two, usually S and
U are subdominant in comparison to T . If S is neglected
then (14a) and (14c) depend on the same combination
of tree-level and one-loop corrections, ǫe + ǫµ + 2αemT ,
where αem is the fine structure constant. The reason is
that in this approximation the shift of these observables
is solely due to a shift in Gµ [46]. It has been argued in
[40] that a shift in Gµ has dramatic effect on the electro-
weak observables and thus ǫe and ǫµ are strongly con-
strained. However, as follows from (14), if the tree-level
and radiative contributions are of a similar size the shift
induced by the tree-level effects can be ‘screened’ by a
sizable negative T parameter. Typically, most of the SM
extensions result in a positive T parameter. Therefore, it
was assumed in [46] that the Higgs mass is much larger
than the used reference value, mH = 115 GeV. However,
interpreting the recent discovery of the ATLAS and CMS
collaborations as the SM Higgs, this option is excluded.
Majorana neutrino contribution to the S, T, U param-

eters. Here we argue that the screening can be realized
without invoking any new physics beyond that already
introduced in (1). As demonstrated in [69] for a model
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with a single heavy neutrino, in a certain range of the
parameter space Majorana neutrinos can generate a neg-
ative contribution to the T parameter. In the model with
n heavy neutrinos we find

Ttot = TN + TSM = − 1

8πs2wM
2
W

×
[
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
jβUβi Q(0,m2

i ,m
2
j)

+
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
iβUβjmimjB0(0,m

2
i ,m

2
j)

− 2
∑3+n

i=1

∑

αU
†
iαUαi Q(0,m2

i ,m
2
α)

+
∑

αm
2
αB0(0,m

2
α,m

2
α)
]

, (15)

where mα denote masses of the charged leptons. To shor-
ten the notation we have introduced

Q(q2,m2
1,m

2
2) ≡ (D − 2)B22(q

2,m2
1,m

2
2)

+ q2
[

B1(q
2,m2

1,m
2
2) +B21(q

2,m2
1,m

2
2)
]

, (16)

where B0, B1, B21 and B22 are the usual one-loop func-
tions [70], D ≡ 4 − 2ǫ and ǫ → 0. Details of the calcula-
tion can be found in Appendix B. Note that although
the loop functions are divergent and contain an arbi-
trary scale µ, their combination (15) is finite and inde-
pendent of µ. This can be shown using the unitarity of
the full mixing matrix and the type-I see-saw condition
(mL)αβ ≡

∑3+n
i=1 UαimiU

T
iβ = 0 with α, β ∈ {e, µ, τ}.

Therefore, to compute (15) one can simply drop the ǫ−1

terms in the expansion of the loop functions and eval-
uate the remaining integrals numerically or analytically.
As indicated in (15), the T parameter is a sum of the
SM and new contributions. The SM contribution can be
obtained from (15) by setting the active neutrino masses
to zero and taking into account that R = 0 and U is
unitary in the SM:

TSM = − 1

8πs2wM
2
W

[

3Q(0, 0, 0)− 2
∑

α Q(0, 0,m2
α)

+
∑

αm
2
αB0(0,m

2
α,m

2
α)
]

. (17)

This expression is also finite. Note that the PMNS ma-
trix does not appear in (17) since the mixing becomes un-
physical for massless neutrinos. The S parameter reads

Stot = SN + SSM = − 1

2πM2
Z

×
[
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
jβUβi∆Q(M2

Z ,m
2
i ,m

2
j)

+
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
iβUβjmimj∆B0(M

2
Z ,m

2
i ,m

2
j)

+
∑

αm
2
αB0(0,m

2
α,m

2
α) +

∑

αQ(M2
Z ,m

2
α,m

2
α)

− 2
∑

αm
2
αB0(M

2
Z ,m

2
α,m

2
α)
]

, (18)

where ∆Q(q2,m2
1,m

2
2) ≡ Q(0,m2

1,m
2
2) − Q(q2,m2

1,m
2
2)

and ∆B0 is defined in the same way. The SM contribu-
tion, SSM , is calculated analogously to TSM . For the U

parameter we obtain

Utot = UN + USM =
1

2πM2
Z

×
[
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
jβUβi ∆Q(M2

Z ,m
2
i ,m

2
j)

+
∑3+n

i,j=1

∑

αβ U
†
iαUαjU

†
iβUβjmimj∆B0(M

2
Z ,m

2
i ,m

2
j)

+
∑

αm
2
αB0(0,m

2
α,m

2
α)−

∑

αQ(M2
Z,m

2
α,m

2
α)

− 2
∑

αm
2
αB0(M

2
Z ,m

2
α,m

2
α)

− 2(MZ/MW )2
∑

αU
†
iαUαi∆Q(M2

W ,m2
i ,m

2
α)
]

. (19)

For a single generation Eqs. (15), (18) and (19) reduce to
the expressions derived in [69]. The observation that the
heavy neutrinos can ‘screen’ the tree-level contributions
by generating a negative T parameter together with the
explicit formulae for the S, T, U constitutes one of the
main results of the present work.

III. FIT TO THE OBSERVABLES

In this work we investigate the impact of TeV-scale
sterile neutrinos with a sizable active-sterile mixing on
the physics below the electro-weak scale in the framework
of the see-saw type-I extension of the SM. In the see-saw
limit the active-sterile mixing is of order m̂D(M̂R)

−1. On
the other hand, the see-saw formula for the mass ma-
trix of the light neutrinos reads m̂ν = −m̂T

D(M̂R)
−1m̂D.

Comparing the two expressions we conclude that for a
large active-sterile mixing the smallness of the active neu-
trino masses can not be explained by the scale suppres-
sion. Instead, contributions from different heavy states
have to mutually cancel. To ensure the cancellation more
than one sterile neutrino is needed. As already men-
tioned above, two heavy neutrinos are required to ensure
that at least two of the light neutrinos are massive. We
have also seen that the mixing to either the electron or
the muon neutrino has to be strongly suppressed to be
compatible with the current µ → eγ bounds. Combined
together, the two conditions imply that the cancellation
is only possible for n ≥ 3. We consider n = 3 in this
paper, which arises naturally in the framework of many
left-right symmetric or GUT models.
For n = 3 both U and R are (3 × 3) matrices which

can be written in the form [71]:

R = −iU m̂
1

2

lightO
∗m̂

− 1

2

heavy , (20a)

U =
(

1− R R
†
)

1

2 U , (20b)

with O being an arbitrary complex orthogonal matrix, U
the unitary matrix diagonalizing m̂ν , m̂heavy the diagonal
mass matrix of the heavy neutrinos and m̂light that of
the light neutrinos. The entries of U are extracted from
a global fit to atmospheric, reactor and solar neutrino
oscillation data. Note that a possible non-unitarity of U

is neglected in usual global fits, i.e. it is assumed that
U = U . The resulting best fit values and 1σ ranges for
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the three mixing angles and the Dirac CP -phase1 read
(see e.g. [61])

sin2 θ12 = 0.30± 0.013 , (21a)

sin2 θ23 = 0.41+0.037
−0.025 , (21b)

sin2 θ13 = 0.023± 0.0023 , (21c)

δCP = 300+66
−138 , (21d)

whereas the two Majorana phases are unknown and will
be set to zero in the fit. The remaining degrees of freedom
are the three masses of the heavy neutrinos and the en-
tries of the matrix O. The latter can be parametrized by
three complex angles. The freedom of choosing O may be
used to suppress the active-sterile mixing for one active
neutrino flavour. Whether this suppression is possible or
not depends on the structure of the light neutrino mass
matrix, as can be inferred from (20). Since the absolute

NH IH QD

m1 (eV) ∼ 0 4.85 · 10−2 ∼ 0.1

m2 (eV) 8.660 · 10−3 4.93 · 10−2 ∼ 0.1

m3 (eV) 4.97 · 10−2 ∼ 0 ∼ 0.1

TABLE II: Assumed masses of the light neutrinos for the nor-
mal (NH), inverted (IH) and quasi-degenerate (QD) neutrino
mass spectra.

neutrino mass scale is unknown at present, we consider
three possible neutrino mass spectra called NH, IH and
QD which are defined in Table II. In the case of the QD
mass spectrum, the masses are constrained by the recent
WMAP bound

∑

mi ≤ 0.44 eV [73]. For the numerical
example in the QD case we use mi ∼ 0.1 eV.
The minimization of the χ2 function is performed with

a statistical method described in AppendixD. The gen-
eral approach is as follows: For a given point in the pa-
rameter space we compute the µ → eγ branching ratio
and the effective electron neutrino mass 〈mee〉, relevant
for the 0νββ. For most of the points with a sizable active-
sterile mixing one of these bounds is violated. To take
the two bounds into account in the χ2 analysis we define

χ2
µ→eγ ≡

(

BRth(µ → eγ)− BRexp(µ → eγ)

BRexp(µ → eγ)

)2

× θ(BRth(µ → eγ)− BRexp(µ → eγ)) , (22a)

χ2
0νββ ≡

( |〈mth
ee〉| − |〈mexp

ee 〉|
|〈mexp

ee 〉|

)2

× θ(|〈mth
ee〉| − |〈mexp

ee 〉|) , (22b)

1 The one sigma best fit region for the CP-phase was determined
in [72] to be 0.77π − 1.36π. However, the choice of the CP-phase
has no significant impact on our results.

where BRth(µ → eγ) and 〈mth
ee〉 are the theoretical pre-

dictions computed at the chosen point of the parameter
space, whereas BRexp(µ → eγ) and |〈mexp

ee 〉| are the cor-
responding 1σ experimental upper bounds. We use the
theta step function to restrict the contributions to the
total χ2 to cases when the theoretical prediction exceeds
the one sigma exclusion limit. Additionally, we check
whether the universality constraints, see Eq. (9), are ful-
filled. Finally, we compute the S, T, U parameters and
the corrected values of the electro-weak precision observ-
ables Oi, see Eq. (14). The corresponding χ2

EWPO value
is calculated using

χ2
EWPO =

∑

i

(Oi −Oi,SM)2

(δOi)2 + (δOi,SM)2
, (23)

where Oi,SM denotes the predictions of the SM, δOi,SM

are the theoretical errors and δOi are the experimental
errors, see Table I. Note that we neglect off-diagonal el-
ements of the covariance matrix in these contributions.
The total χ2 is given by the sum of (22) and (23).
Using this definition we find that for points with negli-

gibly small active-sterile mixing (‘natural’ see-saw) χ2 ≃
χ2
0 = 7.5 (7.6 for the QD mass spectrum). This relatively

large value of χ2 is induced primarily by the anomalies
in the invisible Z-decay width, the NuTeV results and
the deviation of the W boson mass from the SM expecta-
tion. The slightly higher value for the QD mass spectrum
stems from the fact that neutrino masses of the order of
0.1 eV induce an effective electron neutrino mass 〈mexp

ee 〉
comparable to the current upper bound.
To get a rough estimate of the goodness of the fit we

compute the ratio of χ2 to the number of degrees of free-
dom. The S and U parameters are always very small
and can be neglected in the fit. Therefore, the initial set
of free parameters, the three masses and three complex
angles, maps to four quantities: ǫe, ǫµ, ǫτ and T . Since
we fit six observables and two constraints, the number of
degrees of freedom is (6 + 2)− 4 = 4 and χ2

0/d.o.f ≈ 1.9
for the case of negligible active-sterile mixing. Below we
perform a fit for each of the three light neutrino mass
spectra to all EWPOs and constraints. In the following
in all plots the full χ2 is presented.
For all mass spectra we will show how the EWPOs in

the best-fit regions are shifted with respect to the SM
predictions. The question will be addressed whether a
direct detection or an indirect signal of the new states
is feasible in near future. To study this possibility the
µ → eγ branching ratio, the 0βνν decay rate and the
strength of a collider signal will be estimated.
Normal mass hierarchy. Let us first consider the nor-

mal mass hierarchy of the light neutrinos. The µ → eγ
branching ratio is suppressed in particular if ǫµ is small.
As discussed above, if S and U are neglected then the
Z boson leptonic decay width (14a) and the Weinberg
angle (14c) depend on the same combination of tree-level
and one-loop corrections, ǫe + ǫµ + 2αemT . The reason
is that in this approximation the shift of these observ-
ables is solely due to a shift of Gµ with respect to GF .
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In Fig. 2 we show the fit to Γlept and the Weinberg angle

χ2 (color coded)

0 10−3 2·10−3

−2αemTN

0

5·10−4

10−3

1.5·10−3

ǫ e
+

ǫ µ

0

0.3

0.6

0.9

1.2

1.5

FIG. 2: χ2 as a function of ǫe + ǫµ and 2αemTN (NH), here
only Γlept and the Weinberg angle are fitted.

only. The plot shows the (approximately) linear relation
between ǫe + ǫµ and the T parameter. The fact that the
band does not start at the origin indicates that the two
observables favour a slightly negative T in general even
in a different new physics model. This plot demonstrates
how a negative value of the T parameter can screen the
contributions of the neutrino mixing ǫe+ ǫµ to the above
mentioned observables. We will see that this cancella-
tion mechanism is still at work when more observables
are considered. Large cancellations are present when the

χ2 (color coded)

0 10−3 2·10−3 3·10−3

−2αemTN

0

5·10−4

10−3

1.5·10−3

ǫ e
+

ǫ µ

0

0.5

1

1.5

2

2.5

FIG. 3: χ2 for three d.o.f. as a function of ǫe+ǫµ and 2αemTN

(NH). Here the W boson mass is excluded from the fit.

other EWPOs except the W boson mass are taken into
account. However, in this case the simple linear depen-
dence is violated due to the necessity of fitting the other
observables, see Fig. 3. TheW boson mass has been mea-
sured with a very high accuracy and a large negative T
would induce unacceptably large corrections to it. The
fit excluding MW is of interest since an extended scalar
sector appearing, for instance, in the type-I+II see-saw
extension of the SM will shift the W mass and might ab-
sorb the additional negative T contribution restricted in
the type-I see-saw.

χ2 (color coded)

0 2·10−4 4·10−4

−2αemTN

0

5·10−4

10−3

1.5·10−3

ǫ e
+

ǫ µ

4

4.5

5

5.5

6

6.5

7

7.5

FIG. 4: χ2 for four d.o.f. as a function of ǫe+ ǫµ and 2αemTN

(NH), fit to all EWPOs in (14).

In Fig. 4 we show how the cancellation pattern chan-
ges if all observables in (14) are included. In this case for
the best-fit points we have χ2 ≈ 4.0 and a small negative
T is favored. The latter partially compensates the small
positive contribution of ǫe + ǫµ to Gµ.
As can be inferred from Fig. 6, at the best-fit points

at least one the Majorana neutrinos is relatively light,
around one TeV, and has a sizable coupling to at least
one of the charged leptons, see Fig. 5. In other words, the
current data favour the low-scale type-I see-saw with a
considerable active-sterile mixing over the standard sce-
nario (‘natural’ see-saw) where this mixing is negligible
and the masses of the heavy neutrinos are close to the
GUT scale. On the other hand, as can be seen in a
different projection of the same plot in Fig. 6, heavy neu-
trinos with masses below TeV scale are also disfavoured.
The reason is that for sizable active-sterile mixing in this
mass range experimental bounds are more stringent. As
already mentioned above, for a sizable active-sterile mix-
ing the cancellation of the contributions to the light neu-
trino masses imposes constraints on the mass spectrum
of the heavy ones. Due to requirements of suppressed
ǫe/µ an active-sterile mixing pattern occurs where the
first and third heavy mass eigenstates have comparable,
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mi (TeV, color coded)

0 2·10−3 4·10−3 6·10−3

ǫe + ǫµ + ǫτ
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7
χ
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FIG. 5: The lightest heavy neutrino mass as a function of χ2

for four d.o.f. and ǫe + ǫµ + ǫτ (NH). Here ǫµ is suppressed.

ǫe + ǫµ + ǫτ (color coded)

1 10 102

mi (TeV)

4
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7

χ
2

0

10−3

2·10−3

3·10−3

4·10−3

5·10−3

6·10−3

7·10−3

FIG. 6: ǫe+ǫµ+ǫτ as a function of the lightest heavy neutrino
mass and χ2 for four d.o.f. (NH). Here ǫµ is suppressed.

sizable mixing to the active flavours while the mixing
of the second is small. We find that the first and third
heavy mass eigenstates have approximately equal masses
whereas the mass of the remaining sterile neutrino is con-
siderably larger. This mass pattern leads to a small neg-
ative T parameter as discussed above.

At the best-fit points the deviation of the PMNS ma-
trix from unitarity is of the order of

|(U U
†)αβ − δαβ | ≈







1 · 10−3 1 · 10−4 2 · 10−3

1 · 10−4 1 · 10−5 2 · 10−4

2 · 10−3 2 · 10−4 5 · 10−3






,

which is in excellent agreement with the bounds derived
in [74]. This consistency check justifies our procedure
and the applicability of the approximation in (20). The
corresponding (largest) zero-length transition probability
is Pνe→ντ ≈ 7 · 10−5. This value is too small to explain
the current short-baseline anomalies [75] but might con-
tribute to the observed discrepancies.
In Fig. 7 we demonstrate how the EWPOs in the con-

sidered scenario are shifted from the values expected in
the SM towards the experimentally observed ones. At
the chosen best-fit point χ2 ≈ 4.0 and therefore the ab-
solute improvement of the fit is ∆χ2 ≈ 3.5 leading to
a χ2/d.o.f ≈ 1.0. Some of the observables are shifted
away from the experimentally measured value compared
to the SM prediction. Nevertheless, they remain within
the one sigma interval around the experimental results.
In addition, observables for which the SM prediction is
in tension with data are brought into the one sigma in-
tervals around their experimental values. This leads to a
global picture in which all observables agree on the one
(or in the case of g2L on the 1.2) sigma level with the
experiments. This leads to a χ2/d.o.f of order one. The

-3 -2 -1 0 1 2 3

Γlept

Γinv/Γlept

sin
2 θW

g2L

g2R

M2
W

0νββ

µ → eγ

FIG. 7: EWPOs calculated at the best-fit point for NH and
suppressed ǫµ (green dots) compared to the experimentally
observed values, denoted by the zero line. The coloured lines
stand for the respective experimental sigma deviations, thus
the displacement of the predicted values form the observations
is presented in units of the experimental error. Note that for
the 0νββ and µ → eγ constraints we present only the one
sigma exclusion limits. The theoretical predictions of the SM
with their theoretical uncertainties, see Table I, are displayed
as well (blue bars). (The best-fit point is at M1 = 20.3 TeV,
M2 = 14.1 TeV,M3 = 21.0 TeV, ǫe = 2.1·10−3 , ǫµ = 3.0·10−6

and ǫτ = 4.5 · 10−3.)

improvement stems primarily from ǫτ which leaves Gµ

unaffected (and thus equal to GF ) but suppresses the
invisible Z-decay width. Furthermore, ǫe shifts the W
boson mass towards the measured value. The NuTeV
observables are not significantly changed. The last two
rows in Fig. 7 present the ratios of the induced effective
electron neutrino mass 〈mee〉 and the µ → eγ branch-
ing ratio to the corresponding experimental bounds. It
is interesting to note that for the normal mass hierarchy
there are many points in the parameters space with val-
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FIG. 8: χ2 for four d.o.f. as a function of the ratios of the
µ → eγ branching ratio and |〈mee〉| to the corresponding
experimental bounds (NH). Here ǫµ is suppressed.

ues of these two quantities close to the threshold of the
current experimental sensitivity, see Fig. 8. Knowing the
masses of the heavy neutrinos and their couplings to the
charged leptons we can also estimate the cross-section of
the direct detection process depicted in Fig. 1. For all
best-fit points the resulting value of |∑iU

2
αi m

−1
i | turns

out to be at most of the order of 10−5 and thus beyond
the LHC reach.

The µ → eγ branching ratio is also suppressed if ǫe
is small. In this case we obtain a slightly worse best-fit
value of χ2 ≈ 4.8 which corresponds to χ2/d.o.f ≈ 1.2.
As compared to the previous case, in the best-fit points
the invisible Z-decay width is less suppressed and the
shift in the W boson mass is smaller, see Fig. 9. On the
other hand, g2L is shifted towards the value measured by
the NuTeV collaboration and thus brought in agreement
with the data within the one sigma interval.

Inverted mass hierarchy. For the inverted mass hier-
archy scenario only the option of negligible ǫe can be
realized and results in best fit values of χ2 ≈ 5.5 and
χ2/d.o.f ≈ 1.4. The EWPOs of the best-fit points are in-
fluenced such that the predicted invisible Z-decay width
is brought within the one sigma interval to the experi-
mental value, see Fig. 10. The W boson mass is shifted in
the right direction but less significantly than in the nor-
mal hierarchy scenario. On the other hand, g2L is shifted
towards the value measured by the NuTeV collaboration
and brought in good agreement with the data. As can
be inferred from Fig. 11, both the effective electron neu-
trino mass 〈mee〉 and the µ → eγ branching ratio are in
large parts of the parameter space close to the current
experimental sensitivity. Furthermore, for a small frac-
tion of the best-fit points, see Fig. 12, there is a chance

-3 -2 -1 0 1 2 3

Γlept

Γinv/Γlept

sin
2 θW

g2L

g2R

M2
W

0νββ

µ → eγ

FIG. 9: This is the analogue of Fig. 7 but for the case of
suppressed ǫe in NH. At the best-fit point M1 = 4.1 TeV,
M2 = 161.0 TeV,M3 = 7.1 TeV, ǫe = 1.0·10−6 , ǫµ = 1.5·10−3

and ǫτ = 1.2 · 10−3.

-3 -2 -1 0 1 2 3

Γlept

Γinv/Γlept

sin
2 θW

g2L

g2R

M2
W

0νββ

µ → eγ

FIG. 10: This is the analogue of Fig. 7 but for the case of
IH and suppressed ǫe. At the best-fit point M1 = 551 GeV,
M2 = 242 GeV, M3 = 469 GeV, ǫe = 3 ·10−6, ǫµ = 1.58 ·10−3

and ǫτ = 1.1 · 10−3.

of observing the heavy Majorana neutrinos at the LHC
after the planned upgrade to

√
s = 14 TeV.

Quasi-degenerate mass spectrum. For the quasi-
degenerate mass spectrum it is quite difficult to find
points with sizable ǫµ that pass the µ → eγ constraint.
On the other hand, there are points with small ǫµ and
sizable ǫe and ǫτ which satisfy the µ → eγ, neutrino-
less double-beta decay and universality constraints. For
the best-fit points χ2 ≈ 5 leading to an improvement of
∆χ2 ≈ 2.6 and to χ2/d.o.f ≈ 1.25. At the best-fit points
the shift of the invisible Z-decay width is smaller than
in the normal hierarchy scenario, but still the prediction
moves into the one sigma interval of the observations.
The shift in the W boson brings prediction and exper-
iment in excellent agreement, see Fig. 13. The neutrino
scattering observable g2L is not significantly influenced in
comparison to the standard model expectation. As can
be inferred from Fig. 14 both the effective mass of the
electron neutrino and µ → eγ branching ratio here can be
close to the exclusion limit. Note that the active neutri-
nos induce a sizable contribution to the effective electron
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FIG. 11: χ2 for four d.o.f. as a function of the ratios of
the µ → eγ branching ratio and |〈mee〉| to the corresponding
experimental bounds in the case of IH and suppressed ǫe.
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FIG. 12: χ2 for four d.o.f. as a function of mass of the heavy
neutrino giving the leading contribution and coupling to the
muon in the case of IH and suppressed ǫe. The region above
the solid line can be tested by the LHC after the upgrade to
14 TeV if the anticipated luminosity ∼ 400fb−1 is reached.

neutrino mass |〈mee〉| in this case and can constructively
or destructively interfere with the heavy neutrino contri-
butions depending on the Majorana phases of the active
neutrinos.
For all the best-fit points the resulting value of

|
∑

iU
2
αi m

−1
i | turns out to be at most of the order of

10−5 and thus beyond the LHC reach.
It has been found that for all three mass spectra the
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FIG. 13: This is the analogue of Fig. 7 but for the case of
the QD mass spectrum and suppressed ǫµ. At the best-fit
point M1 = 14.5 TeV, M2 = 10.5 TeV, M3 = 14.9 TeV,
ǫe = 1.5 · 10−3, ǫµ = 2.9 · 10−6 and ǫτ = 2.4 · 10−3.
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FIG. 14: χ2 for four d.o.f. as a function of the ratios of the
µ → eγ branching ratio and |〈mee〉| to the corresponding ex-
perimental bounds in case of quasi-degenerate mass spectrum
and suppressed ǫµ.

current data favour a type-I see-saw with considerable
active-sterile mixing over the a scenario where the mixing
is negligible. For all three cases there are many points in
the parameter space which generate signals in rare decay
experiments close to the current sensitivities. For the IH
a part of the parameter space can be tested at the LHC
after the next upgrade.

IV. SUMMARY AND OUTLOOK

In this work we have studied the impact of TeV-scale
sterile neutrinos with a sizable active-sterile mixing on
electro-weak precision observables and lepton number
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and flavour violating decays in the framework of the type-
I see-saw extension of the SM. The active-sterile mixing
can in particular improve the global fit and reduce some
anomalies in the experimental data: first, it results in
a decreased value of the invisible Z boson decay width,
which is preferred by the current data; second, it slightly
increases the mass of the W boson and brings it in the
one sigma interval around the observed value. Further-
more, in the case when ǫµ is not suppressed, the model
affects the charged-to-neutral current ratio for neutrino
scattering and brings gL in agreement with the values
observed by the NuTeV experiment.

In our analysis we have taken into account tree-level
contributions of sterile neutrinos as well as their one-loop
effects on gauge boson propagators. The tree-level con-
tributions enter via non-unitarity of the PMNS mixing
matrix, whereas the loop-contributions modify the prop-
agators of the gauge bosons and can be taken into ac-
count in form of the S, T, U parameters. The oblique
corrections can play an important role. In particular
we have demonstrated that a sizable negative T param-
eter ‘screens’ the effect of tree-level non-unitarity on the
Fermi constant. This cancellation mechanism can recon-
cile large active-sterile mixing with the current observa-
tions. As compared to previous analyses we have derived
explicit formulae for the oblique corrections in terms of
the Majorana masses and mixings and therefore studied
a full and self-consistent model. We have performed a nu-
merical fit to the electro-weak precision observables tak-
ing into account constraints from the non-observation of
µ → eγ and neutrinoless double-beta decay processes as
well as constraints on lepton non-universality. Since the
active neutrino mass hierarchy is unknown at present, we
have considered the cases of normal, inverted and quasi-
degenerate mass spectra. In all three cases regions of the
parameter space with a sizable active-sterile mixing pro-
vide a better overall fit to the data than regions where
it is negligible. In other words, the current data favour
the low-energy type-I see-saw with a considerable active-
sterile mixing over the standard scenario (‘natural’ see-
saw) where this mixing is negligible. Together with the
derivation of expressions for the oblique corrections in
the type-I see-saw this finding is one of the main results
of the present work.

The χ2 is lowest for the normal hierarchy scenario and
slightly higher for the inverted hierarchy and the case
of the quasi-degenerate mass spectrum. We have also
studied the experimental signatures of the best-fit points
for each mass hierarchy. For all mass spectra the effec-
tive electron neutrino mass 〈mee〉 – the quantity rele-
vant for the neutrinoless double-beta decay – reaches at
many best-fit points values that are close to the sensi-
tivity threshold of current experiments. The expected
active-sterile mixing is of the order of U2

(e/µ)i ≈ 10−3 in

all three scenarios. The lightest sterile neutrino mass for
normal- and quasi-degenerate mass spectra is around 2
TeV. This ranges might become accessible at electron-
proton colliders with energies above 6 TeV. For the in-

verted hierarchy the Majorana masses can be as low as
300 GeV. Thus, given the predicted mixing, this scenario
can be partially tested at the LHC after the 14 TeV up-
grade.

The fit might improve in a type I+II see-saw extension
of the SM, since the VEV of the additional Higgs triplet
also contributes to the W boson mass. Thus the negative
T parameter can be larger and the cancellation mecha-
nism more efficient. This extension will be studied in a
forthcoming paper.
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Appendix A: Oblique corrections

The formalism of oblique corrections was developed
to study new physics which affects the observables only
via corrections to the propagators of the gauge bosons
[76, 77]. The Lorentz structure of the corresponding self-
energies is

Πµν
ab (q

2) = Πab(q
2)gµν + (qµqν terms) , (A1)

where a, b = γ,W±, Z. Since in the considered processes
all external fermions are light, the contributions of the
qµqν terms is proportional tomf/MW,Z and can safely be
neglected. For the same reason, contributions of the box
diagrams as well as the vertex corrections stemming from
the new physics are negligible. Therefore, it is sufficient
to consider only Πab. The latter can be represented in
the form

Πab(q
2) = ΠSM

ab (q2) + δΠab(q
2) , (A2)

where (ab) = (γγ), (Zγ), (ZZ), (WW ). It follows from
the Ward identity that δΠγγ(0) = δΠγZ(0) = 0 which
further constrains the number of independent quantities.
It can be shown that for heavy new physics there are only
three independent combinations of the above quantities
that enter the expressions for the electro-weak observ-
ables [76]. These are denoted by S, T and U and read
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[69, 76]:

S =
4s2wc

2
w

M2
Z

[

Π̂ZZ (0) + Π̂γγ(M
2
Z)

− c2w − s2w
cwsw

Π̂Zγ(M
2
Z)
]

, (A3a)

T =
Π̂ZZ(0)

M2
Z

− Π̂WW (0)

M2
W

, (A3b)

U = 4s2wc
2
w

[

1

c2w

Π̂WW (0)

M2
W

− Π̂ZZ(0)

M2
Z

+

+
s2w
c2w

Π̂γγ(M
2
Z)

M2
Z

− sw
cw

2Π̂Zγ(M
2
Z)

M2
Z

]

. (A3c)

The hats denote self-energies renormalized using the on-
shell renormalization condition:

Re Π̂WW (M2
W ) = Re Π̂ZZ(M

2
Z)

= Π̂Zγ(0) = Π̂γγ(0) = 0 . (A4)

Explicit formulae for the renormalized self-energies in
terms of the unrenormalized ones are [69]:

Π̂WW (q2) = ΠWW (q2)−ΠWW (M2
W )

+
(

q2 −M2
W

)

[(

c2

s2

)

R−Π′
γγ(0)

]

, (A5a)

Π̂ZZ(q
2) = ΠZZ(q

2)−ΠZZ(M
2
w)

+
(

q2 −M2
Z

)

[(

c2

s2
− 1

)

R−Π′
γγ(0)

]

, (A5b)

Π̂Zγ(q
2) = ΠZγ(q

2)−ΠZγ(0)− q2
(

c2

s2

)

R , (A5c)

Π̂γγ(q
2) = Πγγ(q

2)− q2Π′
γγ(0) , (A5d)

where

R =
ΠZZ(M

2
Z)

M2
Z

− ΠWW (M2
W )

M2
W

− 2
sw
cw

ΠZγ(0)

M2
Z

. (A6)

Substituting (A5) into (A3) and taking into account that
ΠZγ(0) = 0 we find:

S =
4s2wc

2
w

M2
Z

[

ΠZZ(0)−ΠZZ(M
2
Z) + Πγγ(M

2
Z)

− c2w − s2w
cwsw

ΠZγ(M
2
Z)

]

, (A7a)

T =
ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

, (A7b)

U = 4s2wc
2
w

[

ΠWW (0)−ΠWW (M2
W )

c2wM
2
W

− ΠZZ(0)−ΠZZ(M
2
Z)

M2
Z

+
s2w
c2w

Πγγ(M
2
Z)

M2
Z

− 2
sw
cw

ΠZγ(M
2
Z)

M2
Z

]

. (A7c)

Note that only for the T parameter the expression in
terms of the unrenormalized self-energies has the same
form as in terms of the renormalized ones, compare (A3b)
and (A7b).

Appendix B: Calculation of S,T,U

To evaluate the contribution of n Majorana neutrinos
to the S, T, U parameters defined in AppendixA we need
to calculate the self-energies entering (A7). Only charged

ℓ

ℓ̄

Z γ

ℓ̄

ℓ

γ γ

FIG. 15: Contribution of the charged leptons to Πγγ and ΠZγ

at one-loop level.

leptons contribute to ΠZγ and Πγγ , see Fig. 15. The
resulting self-energies are the same as in the SM:

Πµν
γγ(q

2) =

(

gµν − qµqν

q2

) −e2

4π2

∑

α

[

Q(q2,m2
α,m

2
α)

−m2
αB0(q

2,m2
α,m

2
α)
]

, (B1a)

Πµν
Zγ(q

2) =

(

4s2w − 1
)

4cwsw
Πµν

γγ(q
2) , (B1b)

where mα denote the masses of the charged leptons. To
shorten the notation in (B1) we have introduced

Q(q2,m2
1,m

2
2) ≡ (D − 2)B22(q

2,m2
1,m

2
2)

+ q2
[

B1(q
2,m2

1,m
2
2) +B21(q

2,m2
1,m

2
2)
]

, (B2)

where B0, B1, B21 and B22 are the usual one-loop func-
tions [70], D ≡ 4 − 2ǫ and ǫ → 0. The one-loop con-
tribution of the charged leptons and neutrinos to ΠWW

is presented in Fig. 16. Note that due to the nonzero

ν

ℓ±

W± W±

FIG. 16: Contribution of the charged leptons and neutrinos
to ΠWW .

active-sterile mixing the heavy neutrinos can also run in
the loop. In position space the resulting self-energy is
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given by:

Πµν
WW (x, y) = − e2

2s2w

∑

α,i

|Uαi|2

×
〈

T
[

ν̄i(x)γ
νPLℓ

α(x)ℓ̄α(y)γ
µPLν

i(y)+

+ ℓ̄α(x)γ
µPLν

i(x)ν̄i(y)γ
νPLℓ

α(y)
]〉

. (B3)

Since we deal with Majorana fermions, to evaluate (B3)
it is convenient to use the two component notation for the
spinors, see Appendix C for more details. The self-energy
then takes the form:

Πµν
WW (x, y) = − e2

2s2w

∑

α,i

|Uαi|2

×
〈

T
[

χi(x)σ̄
µℓαL(x)ℓ̄

α
L(y)σ̄

νχi(y)

+ ℓ̄αL(x)σ̄
µχi(x)χi(y)σ̄

νℓαL(y)
]〉

, (B4)

where ℓL denotes left-handed component of the charged-
lepton field in the two-component notation. To evaluate
(B4) we need to consider all possible contractions of the
field operators. Using the Fourier-representation of the
propagators we obtain:

Πµν
WW (q2) = −i

e2

2s2w

∑

α,i

|Uαi|2

×
∫

d4p

(2π)4
d4k

(2π)4
(2π)4δ(q − k + p)

×
tr
[

/kγµ/pγν
]

(p2 −m2
i + iε) (k2 −m2

α + iε)
. (B5)

Note that since only the left-handed component of the
charged field runs in the loop, only ‘kinetic’ contraction
is possible. This is reflected by the fact that the nu-
merator of (B5) contains only the momenta /k and /p of
the intermediate states. Taking the trace and using the
definitions of the one-loop functions we finally arrive at:

Πµν
WW (q2) = − e2

16π2s2w

∑

α,i

|Uαi|2
[

gµνQ(q2,m2
i ,m

2
α)

− qµqν P (q2,m2
i ,m

2
α)
]

, (B6)

where Q has been defined above (B2) and

P (q2,m2
1,m

2
2) ≡ 2B21(q

2,m2
1,m

2
2) + 2B1(q

2,m2
1,m

2
2) .

For the Z boson self-energy we need to consider two di-
agrams with the neutral or charged states propagating
in the loop, see Fig. 17. In this case both ‘kinetic’ and
‘mass’ contractions are possible. In complete analogy to
(B6) the kinetic contraction of the two neutrino lines re-
sults in:

Πµν
ZZ(1)(q

2) = − e2

32π2s2wc
2
w

∑

ij

∑

αβ

U
†
iαUαjU

†
jβUβi

×
[

gµνQ(q2,m2
i ,m

2
j)− qµqν P (q2,m2

i ,m
2
j)
]

. (B7)

ν

ν̄

Z Z

ℓ̄

ℓ

Z Z

FIG. 17: Contribution of the charged leptons and neutrinos
to ΠZZ .

Since the intermediate neutrinos are Majorana particles
the ‘mass’ contraction is also possible:

Πµν
ZZ(2)(q

2) = − e2

32π2s2wc
2
w

∑

ij

∑

αβ

U
†
iαUαjU

†
iβUβj

×
[

gµν mimjB0(q
2,m2

i ,m
2
j)
]

. (B8)

This contribution vanishes for vanishing Majorana mass
as it should. Note also that the flavor structures of (B8)
are slightly different compared to (B7).
Since the left- and right-handed charged leptons couple

to Z with the strengths 1−2s2w and 2s2w respectively, the
contribution of the kinetic contraction reads:

Πµν
ZZ(3)(q

2) = − e2

32π2s2wc
2
w

∑

α

[

(1− 2s2w)
2 + (2s2w)

2
]

×
[

gµνQ(q2,m2
α,m

2
α)− qµqν P (q2,m2

α,m
2
α)
]

. (B9)

Since charged leptons are Dirac particles the mass term
appears only for contractions of the left- and right-
handed components and is therefore proportional to a
product of the two couplings:

Πµν
ZZ(4)(q

2) = − e2

32π2s2wc
2
w

∑

α

4s2w(1− 2s2w)

×
[

gµν m
2
αB0(q

2,m2
α,m

2
α)
]

. (B10)

The total contribution to the Z boson self-energy is given
by the sum of Eqs. (B7)-(B10).
Substituting the terms proportional to gµν of Πµν

WW
and Πµν

ZZ into the definitions of the S, T, U parameters
we obtain Eqs. (15), (18) and (19). Since the one-loop
integrals are divergent,

Qdiv(q2,m2
1,m

2
2) = ǫ−1(m2

1/2 +m2
2/2− q2/3) , (B11a)

Bdiv
0 (q2,m2

1,m
2
2) = ǫ−1 , (B11b)

each of the terms in these expressions is divergent as well.
However, their combinations in Eqs. (15), (18) and (19)
are finite. This can be checked explicitly by using the uni-
tarity of the full mixing matrix U as well as the relation
(mL)αβ =

∑3+n
i=1 UαimiU

T
iβ = 0, where α, β ∈ {e, µ, τ}.

The latter reflects the fact that for a type-I see-saw the
upper-left corner of the mass matrix is zero in the fla-
vor basis. Since the divergences and the scale µ in the
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finite parts of the loop integrals always appear in the
same combination, ǫ−1 + lnµ2, the cancellation of the
divergences implies that the µ-dependence drops out as
well. In other words, the S, T, U parameters depend only
on physical quantities like the couplings, masses and mo-
mentum transfer. This is a consequence of the fact that
they are defined in terms of the on-shell renormalized
self-energies, see Eq. (A3).

Appendix C: Two-component notation

To evaluate the contribution of the Majorana fermions
to the self-energies it is convenient to use the two-
component spinor notation. In terms of the two-
component spinors the four-component Dirac spinor and
its Dirac-conjugate read [78]:

ΨD =

(

χβ

ξ̄β̇

)

, Ψ̄D = (ξβ , χ̄β̇) , (C1)

with ξ = eL and ξ̄ = eR for the charged leptons. For
Majorana fermions the two spinors in (C1) are not inde-
pendent, ξ = χ, and therefore the number of degrees of
freedom is reduced from four to two:

ΨM =

(

χβ

χ̄β̇

)

, Ψ̄M = (χβ , χ̄β̇) , (C2)

with χ = ν for the Majorana neutrino. The Dirac matri-
ces can be written in the form

γµ =

(

0 σµ

σ̄µ 0

)

, γ5 =

(

−1 0

0 1

)

, (C3)

where σ̄0 = σ0 = 1 and σ̄µ = −σµ with σµ being the
Pauli matrices for µ = 1, 2, 3. Using this representation
and the known formula for traces of the Dirac matrices
we find:

tr[γµγν ] = tr[σµσ̄ν ] + tr[σ̄µσν ] , (C4a)

tr[γµγνγργλ] = tr[σµσ̄νσρσ̄λ] + tr[σ̄µσν σ̄ρσλ] . (C4b)

Using (C2) and the known form of the Feynman propa-
gator of a Dirac field we can now infer the form of the
propagator of a Majorana field:

〈TΨM(x)ΨM (y)〉 =
(

〈Tχβ(x)χ
γ(y)〉 〈Tχβ(x)χ̄γ̇(y)〉

〈T χ̄β̇(x)χγ(y)〉 〈T χ̄β̇(x)χ̄γ̇(y)〉

)

= i

∫

d4p

(2π)4
e−ip(x−y)

p2 −m2 + iǫ

(

mδγβ pµσ
µ
βγ̇

pµσ̄
µ,β̇γ mδβ̇γ̇

)

. (C5)

The diagonal components of (C5) describe contractions
of the field with itself and reflect the Majorana nature of
the field.

To use the above formulae we need to rewrite La-
grangian (2) in terms of the two-component spinors:

L = − e

2cwsw
Zµ

∑3+n
i,j=1

∑

αν̄i,β̇U
†
iασ̄

µ,β̇β
Uαjνj,β

− e√
2sw

Wµ

∑3+n
i=1

∑

αν̄i,β̄U
†
iασ̄

µ,β̇βeLα,β + h.c. , (C6)

where α are the flavor and β, β̇ the spinor indices. As can
be inferred from (C6), the contribution to the Z boson
self-energy is proportional to

〈

T
[

ν̄β̇(x)σ̄
µ,β̇γνγ(x)ν̄ρ̇(y)σ̄

ν,ρ̇ηνη(y)
]〉

, (C7)

where we have suppressed the generation indices to
shorten the notation. Now we need to use Wick’s the-
orem and find all possible contractions. From (C5) it
follows that for Majorana fermions there are two possi-
bilities. The first is the contraction of the field with its
conjugate. This gives rise to

− 〈Tνη(y)ν̄β̇(x)〉σ̄µ,α̇β〈Tνγ(x)ν̄ρ̇(y)〉σ̄ν,γ̇δ

∝ −tr[ p · σσ̄µk · σσ̄ν ] = − 1
2 tr[ /pγ

µ/kγν ] . (C8)

The second contraction possible only for Majorana
fermions is the contraction of the field with itself. It
gives rise to

− 〈T ν̄β̇(x)ν̄ρ̇(y)〉σµ

γβ̇
〈Tνη(y)νγ(x)〉σ̄ν,ρ̇η

∝ −mimjtr[σ
µσ̄ν ] = − 1

2mimjtr[γ
µγν ] , (C9)

where we have used the identity

χ̄β̇ σ̄
µ,β̇γχγ = −χγσµ

γβ̇
χ̄β̇ . (C10)

Collecting the two contributions and taking the traces of
the Dirac matrices we find that (C7) is proportional to:

−2 ( pµkν + pνk − (pk) gµν +mimjg
µν) . (C11)

The contribution to the self-energy of the W boson is
proportional to

〈

T
[

ν̄β̇(x)σ̄
µ,β̇γeLγ(x)ēLρ̇(y)σ̄

ν,ρ̇ηνη(y)
]〉

. (C12)

Because of the Dirac nature of the charged leptons only
one, namely the ‘kinetic’ contraction is possible in this
case. It results in an expression identical to (C8).

Appendix D: Metropolis Algorithm

In this work we minimize the χ2 function in a multidi-
mensional parameter space. Due to the existence of strict
constraints on the observables, the gradient minimization
methods are not efficient for finding global minima. In-
stead a statistical method is applied. In the first step we
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perform a random scan in the nine dimensional param-
eter space. The scan parameters are the three complex
angles of the arbitrary orthogonal matrix in Eq. (20) and
the three masses of the sterile neutrinos. The masses are
chosen on a logarithmic scale to cover most efficiently a
broad mass range.
If a point of the parameter space chosen in this way

satisfies the µ → eγ and 0νββ constraints, a second step
is performed. In the second step we calculate the full χ2

and perform a local minimization. For this purpose we
utilize the Metropolis algorithm which is usually taken
to simulate phase transitions in the Ising model. First a
fictive parameter (which we call temperature T ) is intro-
duced. Then parameters of the potential good-fit point
are changed randomly by a small amount. The χ2

new is
computed for the new point and the Boltzmann function
B(T ,∆χ2) with the χ2 difference is evaluated:

B(T ,∆χ2) = exp

(

−|χ2
old − χ2

new|
T

)

. (D1)

Furthermore, following the equal probability distribu-
tion, a random variable 0 < x < 1 is generated. If
χ2
new < χ2

old or B(T ,∆χ2) > x the new point is cho-
sen as the new starting point. If B(T ,∆χ2) < x the
new point is discarded. This process is repeated at a
temperature T1 until a quasi-equilibrium is reached and
no large changes in χ2 occur. Then the temperature is
decreased to T2 < T1 and the process is repeated until
the quasi-equilibrium is reached at the new temperature.
This iterations continue until the effective temperature
is zero.

This method proves to be more efficient than a gradi-
ent method for finding global minima in the considered
case since the system is highly constrained and thus the
parameter space has a very non-trivial topology. Using
the finite effective temperature approach we are able to
scan a larger part of the parameter space before the sys-
tem settles in a minimum when the temperature drops
to zero. Therefore, with a higher probability, the found
minimum is the global one.
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