
JSS Journal of Statistical Software
August 2013, Volume 54, Issue 6. http://www.jstatsoft.org/

Sustainable, Extensible Documentation Generation

Using inlinedocs

Toby Dylan Hocking
INRIA Paris

Thomas Wutzler
MPI-BGC Jena

Keith Ponting
Aurix Ltd.

Philippe Grosjean
University of Mons

Abstract

This article presents inlinedocs, an R package for generating documentation from com-
ments. The concept of structured, interwoven code and documentation has existed for
many years, but existing systems that implement this for the R programming language
do not tightly integrate with R code, leading to several drawbacks. This article attempts
to address these issues and presents 2 contributions for documentation generation for the
R community. First, we propose a new syntax for inline documentation of R code within
comments adjacent to the relevant code, which allows for highly readable and maintain-
able code and documentation. Second, we propose an extensible system for parsing these
comments, which allows the syntax to be easily augmented.

Keywords: R, Rd, documentation, documentation generation, literate programming.

1. Introduction

In this article, we present inlinedocs, an R package which allows R documentation to be
written in comments. The standard way to distribute R code is in a package along with Rd
files that document the code (R Core Team 2013). There are several existing methods for
documenting a package by writing R comments, which are later processed and converted into
standard Rd files. We first review these efforts, emphasizing the key issues that justify the
introduction of a new package like inlinedocs.

http://www.jstatsoft.org/

2 Sustainable, Extensible Documentation Generation Using inlinedocs

1.1. Existing documentation generation systems for R

For report generation and literate programming, the mature Sweave (Leisch 2003) format
allows integration of R code and results within LATEX documents (Lamport 1986). However,
the goal of inlinedocs is different. It aims for integration of documentation inside of R code
files, to generate Rd files using R code and markup in R comments. Thus for inlinedocs we
need to extract the documentation specified in R code, and the Sweave system can not be
easily applied to this parsing task.

The package.skeleton function that ships with base R is intended to ease the generation
of Rd files from R code. After specifying some input R code files or objects to use for the
package, it produces some minimal documentation that must be completed using a text editor.
Although package.skeleton is sufficient for creating small packages that are published once
and forgotten, it offers little help for continued maintenance of packages for which Rd files
are frequently updated.

The other existing approaches, Rdoc (Bengtsson 2010) and roxygen (Danenberg 2011), at-
tempt to address this sustainability problem using Rd generation from comments in R code.
The documentation is thus written closer to the code it documents, which is easier to main-
tain. These packages are a step toward seamless integration of code and documentation, but
they have three major drawbacks:

1. They only use comments to generate documentation, ignoring the information already
defined in the code. This is particularly problematic for documenting function argu-
ments, which requires the repetition of the argument names in the function definition
and the documentation. This repetition is a possible source of disagreement between
code and documentation if both are not simultaneously updated.

2. The documentation for an object appears in comments above its definition. These
comment blocks can grow to be quite large, and thus they tend to be far away from the
relevant code.

3. Examples are defined either in comments or in supplementary R code files. Examples
in comments are not easy to test and debug with the R interpreter, and supplementary
R code files reintroduce the separation of code and documentation that these tools are
supposed to eliminate.

There are many tools that accomplish documentation alongside code in other programming
languages. Notable examples include docstrings in Lisp and Python, Javadoc for Java, and
Doxygen, which supports several languages (Wikipedia 2013). These systems use large com-
ments in headers, and do not support R. In contrast, inlinedocs is designed for R packages,
uses smaller comments alongside the code, and exploits the code structure to reduce the need
to repeat information in the documentation.

1.2. Documentation using inline comments

The inlinedocs package addresses the aforementioned issues by proposing a new syntax for
inline documentation of R packages. Using inlinedocs, one writes documentation in comments
right next to the relevant code, and examples in the ex attribute of the relevant object. By

Journal of Statistical Software 3

design, inlinedocs exploits the structure of the R code so that only minimal documentation
comments are required, reducing duplication and simplifying code maintenance.

The remainder of the article is organized as follows. In Section 2, we discuss the details of
the inlinedocs syntax for writing documentation in R comments. In Section 3, we discuss the
design and implementation of inlinedocs, and explain how the syntax can be extended. In
Section 4, we conclude and offer some ideas for future improvements. Finally, in Appendix A,
we show a concrete application by porting the base apply function to inlinedocs.

2. inlinedocs syntax for inline documentation of R packages

The main idea of inlinedocs is to document an R object using ### and ##<< comments
directly adjacent to its source code. Furthermore, inlinedocs allows documentation wherever
it is most relevant in the code using ##section << comments. These special comment strings
are designed to work well with the default behavior of common editing environments, such
as Emacs with the Emacs Speaks Statistics (Rossini, Heiberger, Sparapani, Maechler, and
Hornik 2004) add-on package:

� ### is aligned to the left margin, providing maximum space for comment text.

� ##<< is aligned with the start of adjacent code lines, so that comments using this form
in the middle of a function do not obscure the code structure.

The following sections illustrate common usage of inlinedocs comments through fermat, an
example package inspired by the roxygen vignette (Danenberg 2011). The examples were
processed and checked for validity using inlinedocs version 2013.9.3. For brevity, only the
most frequently used inlinedocs features will be discussed, and the reader is directed to the
inlinedocs web site for complete documentation: http://inlinedocs.R-Forge.R-project.
org/.

2.1. Documenting function arguments and return values

The following example demonstrates the minimal documentation a package author should
provide for every function. Note that the location of white space, brackets, default arguments
and commas is quite flexible.

fermat.test <- function

Test an integer for primality using Fermat's Little Theorem.

(n ##<< The integer to test.

){

a <- floor(runif(1, min = 1, max = n))

a^n %% n == a

Whether the integer passes the Fermat test for a randomized

\eqn{0 < a < n}.

}

The comments correspond to the following sections of the fermat.test.Rd file:

� ### comments following the line of function form the description section.

http://inlinedocs.R-Forge.R-project.org/
http://inlinedocs.R-Forge.R-project.org/

4 Sustainable, Extensible Documentation Generation Using inlinedocs

� For each argument, an item is created in the arguments section using a ##<< comment
on the same line.

� ### comments at the end of the function form the value section.

By default, name, alias and title Rd sections are set to the function name, so this minimal
level of documentation is enough to make a working package that passes R CMD check with
no errors or warnings.

2.2. Inline titles, arguments, and other sections

The following example shows some optional inlinedocs comments that allow detailed and
flexible specification of Rd files.

is.pseudoprime <- function # Check an integer for pseudo-primality.

A number is pseudo-prime if it is probably prime, the basis of

which is the probabalistic Fermat test; if it passes two such

tests, the chances are better than 3 out of 4 that \eqn{n} is

prime.

##references<< Abelson, Hal; Jerry Sussman, and Julie

##Sussman. Structure and Interpretation of Computer

##Programs. Cambridge: MIT Press, 1984.

(n, ##<< Integer to test for pseudoprimality.

times

Number of Fermat tests to perform. More tests are more likely to

give accurate results.

){

if(times == 0) TRUE

##seealso<< \code{\link{fermat.test}}

else if(fermat.test(n)) is.pseudoprime(n, times - 1)

else FALSE

logical TRUE if n is probably prime.

}

On the first line, the # comment specifies the title. On the lines after an argument, ###

comments specify its documentation. This is a useful alternative to inline ##<< comments for
longer, multi-line documentation of function arguments.

A ##section<< comment can be used anywhere within a function, for any documentation
section except examples, which is handled in a special manner as shown below in section 2.3.
In each comment, arbitrary Rd may be written, as shown in the ##seealso<< section above.
Each ##section<< may occur several times in the documentation for a single object. Such
multiple occurrences are normally concatenated as separate paragraphs, but special processing
is applied to match the intended use of the following documentation sections:

� title sections are concatenated into a single line.

� description sections should be brief, so are concatenated into a single paragraph.

� alias contents are split to give one alias per line of text.

Journal of Statistical Software 5

� keyword contents are split at white space, each generating a separate \keyword entry.

The ### and ##<< documentation styles may be freely mixed. In general, ### or # lines are
processed first, followed by any corresponding ##<< or ##section<< comments. Section 3 will
explain in more detail how comments are processed.

2.3. Examples and named lists

The following code demonstrates inline documentation of named lists, and the preferred
method of writing examples:

try.several.times <- structure(function

Test an integer for primality using different numbers of tests.

(n, ##<< integer to test for primality.

times ##<< vector of number of tests to try.

){

is.prime <- sapply(times, function(t) is.pseudoprime(n, t))

##value<< data.frame with columns:

data.frame(times, ##<< number of Fermat tests.

is.prime, ##<< TRUE if probably prime

n) ##<< Integer tested.

##end<<

},ex=function(){

try.several.times(6, 1:5)

try.several.times(5, 1:5)

})

On the final lines of the function definition, a ##value<< comment allows documentation
of lists or data frames using the names defined in the code. The entries are documented
using ##<< in the same way as function arguments, and this even works for nested lists. The
##end<< comment closes the return value documentation block.

The examples are written using structure to put them in the ex attribute as the body of
a function without arguments. This method for documenting examples was motivated by
the desire to express examples in R code rather than in R comments, to keep the examples
close to the object definition, and to avoid repetition of the object name. When examples
are in R code, they are easily transferred to the R interpreter, and thus are easy to debug.
Furthermore, when examples are written close to the object definition, it is easy to keep
examples up to date and informative.

An alternative is to use attr(try.several.times, "ex") <- function(){code } later in
the code. However, we prefer using structure since it keeps the examples near the object
definition, and avoids repetition of the object name.

The simplicity of adding examples and generating a package using inlinedocs also allows for
routine regression testing of functions with very little extra work. Even for small collections
of functions, one can use R CMD check to run the examples and optionally check the output
with reference output.

6 Sustainable, Extensible Documentation Generation Using inlinedocs

2.4. Documenting classes and methods

S3 methods may be defined using plain R, or using setConstructorS3 and setMethodS3

from the R.oo package (Bengtsson 2003). The inlinedocs package detects S3 methods using
utils::getKnownS3generics and utils::findGeneric, and updates the generated docu-
mentation automatically. S4 class declarations using the setClass function are also sup-
ported. The following example is from the source of inlinedocs:

setClass("DocLink", # Link documentation among related functions

The \code{DocLink} class provides the basis for hooking together

documentation of related classes/functions/objects. The aim is that

documentation sections missing from the child are inherited from

the parent class.

representation(name = "character", ##<< name of object

created = "character", ##<< how created

parent = "character", ##<< parent class or NA

code = "character", ##<< actual source lines

description = "character") ##<< preceding description

)

The inheritance referred to in this example is designed to avoid the need for repetitive docu-
mentation when defining a class hierarchy. The argument descriptions and other documenta-
tion sections default to those defined in the parent class. At present it only functions when all
the definitions are within a single source file and this “documentation inheritance” is strictly
linear within the file.

2.5. package.skeleton.dx for generating Rd files

The main function that the inlinedocs package provides is package.skeleton.dx, which
generates Rd files for a package, and should be run before R CMD build. For example,
package.skeleton.dx("fermat") processes R code found in fermat/R, and generates Rd
files in fermat/man for each object in the package. Documentation is generated even for
objects that are not exported. The generated Rd files should be treated as object files, since
any edits will be overwritten the next time the Rd files are generated.

Package authors with existing Rd files will have to convert them to inlinedocs comments
manually. However, for new adopters of inlinedocs, it is possible to mix static Rd files and
inlinedocs in the same package. For example, the following code specifies that file1.Rd and
file2.Rd are static Rd files and so should not be generated by inlinedocs:

my.parsers <- c(default.parsers, list(do.not.generate("file1", "file2")))

package.skeleton.dx(parsers = my.parsers)

By design, inlinedocs is incapable of generating Rd files that document multiple objects, but
package authors may write these Rd files manually using this mechanism.

More generally, the parsers argument to package.skeleton.dx should be a list of parser
functions. Next, in Section 3, we explain how to write parser functions.

Journal of Statistical Software 7

3. inlinedocs system of extensible documentation generators

The previous section explains how to write inline documentation in R code using the standard
inlinedocs syntax, then process it to generate Rd files using package.skeleton.dx. For most
users of inlinedocs this should be sufficient for everyday use.

For users who wish to extend the syntax of inlinedocs, here we explain the internal organization
of the inlinedocs package. The two central concepts are parser functions and documentation
lists. Parser functions are used to extract documentation from R code, which is then stored
in a documentation list before writing Rd files.

3.1. Documentation lists store the structured content of Rd files

A documentation list is a list of lists that describes all of the documentation to write to the
Rd files. The elements of the outer list correspond to Rd files in the package, and the elements
of the inner list correspond to tags in an Rd file. For example, consider the code in Figure 1
and its corresponding documentation list.

Parser functions examine the lines of code on the left that define the functions, and return
the documentation list of tags shown on the right. This list describes the tags in the Rd files
that will be written for these functions. The names of the outer list specify the Rd file, and
the names of the inner list specify the Rd tag.

To store parsed documentation, another intermediate representation that we considered in-
stead of the documentation list was the "Rd" object, as described by Murdoch and Urbanek
(2009). It is a recursive structure of lists and character strings, which is similar to the docu-
mentation list format of inlinedocs. However, we chose the documentation list format since
it allows rapid development of parser functions which are straightforward to read, write, and
modify.

R code Documentation list

give.me.a.break <- function

Create some line breaks.

(times=1,

The number of line breaks.

collapse=""

String to paste in between.

){

paste(rep("\n",times),

collapse=collapse)

Character vector of length 1.

}

give.me.five <- function

(times=1 ##<< the number of fives

){

rep(5,times)

a vector of fives

}

List of 2

$ give.me.a.break:List of 5

..$ description : chr "Create some line breaks."

..$ item{times} : chr "The number of line breaks."

..$ item{collapse}: chr "String to paste in between."

..$ value : chr "Character vector of length 1."

..$ title : chr "give me a break"

$ give.me.five :List of 3

..$ value : chr "a vector of fives"

..$ item{times}: chr "the number of fives"

..$ title : chr "give me five"

Figure 1: Example for R code and its corresponding documentation list.

8 Sustainable, Extensible Documentation Generation Using inlinedocs

Argument Description

code Character vector of all lines of R code in the package.
env Environment in which the lines of code are evaluated.
objs List of all R objects defined in the package.
docs Documentation list from previous parser functions.
desc 1-row matrix of DESCRIPTION metadata, as read by read.dcf.

Table 1: Arguments that are passed to every parser function.

3.2. Structure of a parser function and forall/forfun

The job of a parser function is to return a documentation list for a package. To do this, a
parser function requires knowledge of what is defined in the package, so the arguments in
Table 1 are supplied by inlinedocs.

The R code files in the package are concatenated into code and then parsed into objs, and
the DESCRIPTION metadata is available as desc. These arguments allow complete flexibility
in the construction of parser functions that take apart the package and extract meaningful
documentation lists. In addition, the docs argument allows for checking of what previous
parser functions have already extracted.

In principle, one could write a single monolithic parser function that extracts all tags for all
Rd files for the package, then returns the entire documentation list. However, in practice, this
results in one unwieldly parser function that does many things and is hard to maintain. A
simpler strategy is to write several smaller parser functions, each of which produces an inner
documentation list for a specific Rd file, such as the following:

title.from.firstline <- function (src, ...) {

first <- src[1]

if (grepl("#", first)) {

list(title = gsub("[^#]*#\\s*(.*)", "\\1", first, perl = TRUE))

} else list()

}

This function takes src, a character vector of R code lines that define a function, and looks
for a comment on the first line. If there is a comment, title.from.firstline returns the
comment as the title in an inner documentation list. This a very simple and readable way to
define a parser function.

But how does this parser function get access to the src argument, the source code of an
individual function? We introduce the forall and forfun functions, which transform an
object-specific parser function such as title.from.firstline to a parser function that can
work on an entire package. These functions examine the objs and docs arguments, and call
the object-specific parser function on each object in turn. The forfun function applies to
every function in the package, whereas the forall function applies to every documentation
object in the package.

Thus, when using a parser function such as forfun(title.from.firstline), the additional
arguments in Table 2 can be used in the definition of title.from.firstline, in addition to
the arguments in Table 1 that are passed to every parser function.

Journal of Statistical Software 9

Argument Description

o The R object.
name The name of the object.
src The source code lines that define the object.
doc The inner documentation list already constructed for this object.

Table 2: Arguments passed to each parser function, when used with forall or forfun.

This design choice of inlinedocs allows the development of modular parser functions. For
example, there is one parser function for ### comments, another for ##<< comments, another
for adding the author tag using the Author line of the DESCRIPTION file, etc. Each of these
parser functions is relatively small and thus easy to maintain.

3.3. Extending the syntax with custom parser functions

The parsers argument to package.skeleton.dx specifies the list of parser functions used
to create the Documentation List. The parser functions will be called in sequence, and their
results will be combined to form the final documentation list that will be used to write Rd
files. Thus, the inlinedocs syntax can be extended by simply writing new parser functions. To
illustrate how inlinedocs may be extended using this mechanism, consider this parser function,
which extracts documentation from single-# comments:

simple <- function (src, ...) {# a simple parser function

#item{src} character vector of R source code.

noquotes <- gsub("([\"'`]).*\\1", "", src)

comments <- grep("#", noquotes, value = TRUE)

doc.pattern <- "[^#]*#([^]*) (.*)"

tags <- gsub(doc.pattern, "\\1", comments)

docs <- as.list(gsub(doc.pattern, "\\2", comments))

names(docs) <- tags

#value all the tags with a single pound sign.

docs[tags != ""]

}

We can then define a list of custom parser functions as follows:

simple.parsers <- list(forfun(title.from.firstline), forfun(simple))

These custom parser functions can be used to extract the following documentation list from
the definition above of simple:

List of 1

$ simple:List of 3

..$ title : chr "a simple parser function"

..$ item{src}: chr "character vector of R source code."

..$ value : chr "all the tags with a single pound sign."

In conclusion, a new syntax for inline documentation can be quickly specified using parser
functions, and then inlinedocs takes care of the details of converting the documentation list
to Rd files.

10 Sustainable, Extensible Documentation Generation Using inlinedocs

4. Conclusions and future work

We have presented inlinedocs, which is both a new syntax for inline documentation of R
packages, and an extensible system for parsing this syntax and generating Rd files. It has
been in development since 2009 on R-Forge (Theußl and Zeileis 2009) at http://inlinedocs.
R-Forge.R-project.org/, has seen several releases on CRAN at http://CRAN.R-project.
org/package=inlinedocs, and has been used to generate documentation for itself and several
other R packages. In practice, we have found that inlinedocs significantly reduces the amount
of time it takes to create a package that passes R CMD check. In addition, inlinedocs facilitates
rapid package updates since the documentation is written in comments right next to the
relevant code.

For quality assurance, we currently have implemented unit tests for documentation lists, which
assure that parser functions work as described. We also have unit tests which ensure that the
generated Rd passes R CMD check without errors or warnings.

A potential criticism of inlinedocs is that excessive inline comments may obscure the meaning
of code. Indeed, this is a design choice, and can be seen as a bug, but we prefer to see it as a
feature: the documentation is always near the object definition, for quick reference.

Currently, the inlinedocs package relies on the srcref attribute of a function to access its
definition. For S4 classes, we use parse on the source files. In the future, we would like to
develop parser functions that use this approach to extract documentation for S4 methods and
reference classes, which are currently unsupported in inlinedocs.

For the future, we would like to make use of Rd manipulation tools such as parse_Rd, as
described by Murdoch (2010). For package authors who want to convert Rd files to inlinedocs
comments, we may be able to use parse_Rd to develop a converter that takes R source code
and Rd, then outputs R code with documentation in comments.

Also, it would be advantageous to have functions for converting documentation lists to and
from Rd objects. For example, after converting an inner documentation list to an Rd object,
we could use its print method to write the Rd file. This could be simpler than the current
system of starting from the Rd files from package.skeleton and then doing find and replace.
Furthermore, a converter from Rd objects to documentation lists would permit unit tests for
the content of the Rd generated by inlinedocs.

Finally, we thank a reviewer for an idea for integrating inlinedocs into the R CMD build

process. Currently, the package.skeleton.dx function must be run by the package author
before each R CMD build. Documentation generation could be integrated into the package
building process if package authors could write a .onBuild function that would be run prior to
each package build. Packages that use inlinedocs could include a call to package.skeleton.dx

in the .onBuild function for automatic documentation generation prior to each package build.

References

Bengtsson H (2003). “The R.oo package – Object-Oriented Programming with References
Using Standard R Code.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria.
ISSN 1609-395X.

http://inlinedocs.R-Forge.R-project.org/
http://inlinedocs.R-Forge.R-project.org/
http://CRAN.R-project.org/package=inlinedocs
http://CRAN.R-project.org/package=inlinedocs

Journal of Statistical Software 11

Bengtsson H (2010). “Aroma Project Developers’ Corner.” URL http://www.

aroma-project.org/developers.

Danenberg P (2011). “roxygen Vignette.”Version 2011-12-23, URL http://CRAN.R-project.

org/package=roxygen.

Lamport L (1986). LATEX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts.

Leisch F (2003). “Sweave, Part II: Package Vignettes.” R News, 3(2), 21–24. URL http:

//CRAN.R-project.org/doc/Rnews/.

Murdoch D (2010). Parsing Rd Files. URL http://developer.R-project.org/parseRd.

pdf.

Murdoch D, Urbanek S (2009). “The New R Help System.” The R Journal,
1(2), 60–65. URL http://journal.R-project.org/archive/2009-2/RJournal_2009-2_

Murdoch+Urbanek.pdf.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rossini AJ, Heiberger RM, Sparapani RA, Maechler M, Hornik K (2004). “Emacs Speaks
Statistics: A Multiplatform, Multipackage Development Environment for Statistical Anal-
ysis.” Journal of Computational and Graphical Statistics, 13(1), 247–261.

Theußl S, Zeileis A (2009). “Collaborative Software Development Using R-Forge.” The R
Journal, 1(1), 9–14. URL http://journal.R-project.org/2009-1/RJournal_2009-1_

Theussl+Zeileis.pdf.

Wikipedia (2013). “Comparison of Documentation Generators — Wikipedia, The Free
Encyclopedia.” URL http://en.wikipedia.org/wiki/Comparison_of_documentation_

generators.

http://www.aroma-project.org/developers
http://www.aroma-project.org/developers
http://CRAN.R-project.org/package=roxygen
http://CRAN.R-project.org/package=roxygen
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://developer.R-project.org/parseRd.pdf
http://developer.R-project.org/parseRd.pdf
http://journal.R-project.org/archive/2009-2/RJournal_2009-2_Murdoch+Urbanek.pdf
http://journal.R-project.org/archive/2009-2/RJournal_2009-2_Murdoch+Urbanek.pdf
http://www.R-project.org/
http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://en.wikipedia.org/wiki/Comparison_of_documentation_generators
http://en.wikipedia.org/wiki/Comparison_of_documentation_generators

12 Sustainable, Extensible Documentation Generation Using inlinedocs

A. The base function apply converted to inlinedocs

In this appendix, we show a concrete application by converting the source and documentation
of the base function apply to inlinedocs.

A.1. Source and inline documentation

We use the following source code and comments to define the apply function and its docu-
mentation.

Characters that are special in Rd do not need to be escaped in inlinedocs, such as % in the
documentation of the FUN argument.

apply <- structure(function # Apply Functions Over Array Margins

Returns a vector or array or list of values obtained by applying a

function to margins of an array or matrix.

(X, ##<< an array, including a matrix.

MARGIN,

a vector giving the subscripts which the function will be applied

over. E.g., for a matrix \code{1} indicates rows, \code{2}

indicates columns, \code{c(1, 2)} indicates rows and

columns. Where \code{X} has named dimnames, it can be a character

vector selecting dimension names.

FUN,

the function to be applied: see \sQuote{Details}. In the case of

functions like \code{+}, \code{%*%}, etc., the function name

must be backquoted or quoted.

... ##<< optional arguments to \code{FUN}.

){

##keyword<< iteration array

##details<< \code{FUN} is found by a call to \code{\link{match.fun}}

and typically is either a function or a symbol (e.g. a backquoted

name) or a character string specifying a function to be searched

for from the environment of the call to \code{apply}.

FUN <- match.fun(FUN)

##details<< If \code{X} is not an array but an object of a class

with a non-null \code{\link{dim}} value (such as a data frame),

\code{apply} attempts to coerce it to an array via

\code{as.matrix} if it is two-dimensional (e.g., a data frame) or

via \code{as.array}.

dl <- length(dim(X))

if(!dl) stop("dim(X) must have a positive length")

if(is.object(X))

X <- if(dl == 2L) as.matrix(X) else as.array(X)

Body of function contains no inline docs and is omitted for brevity.

return(ans)

If each call to \code{FUN} returns a vector of length \code{n},

then \code{apply} returns an array of dimension \code{c(n,

dim(X)[MARGIN])} if \code{n > 1}. If \code{n} equals \code{1},

Journal of Statistical Software 13

\code{apply} returns a vector if \code{MARGIN} has length 1 and an

array of dimension \code{dim(X)[MARGIN]} otherwise. If \code{n}

is \code{0}, the result has length 0 but not necessarily the

\sQuote{correct} dimension.

###

If the calls to \code{FUN} return vectors of different lengths,

\code{apply} returns a list of length \code{prod(dim(X)[MARGIN])}

with \code{dim} set to \code{MARGIN} if this has length greater

than one.

###

In all cases the result is coerced by \code{\link{as.vector}} to

one of the basic vector types before the dimensions are set, so

that (for example) factor results will be coerced to a character

array.

},ex=function(){

Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix

apply(x, 2, sort)

##- function with extra args:

cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))

apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(1:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seq_len(max(x)))

zseq ## a 2 x 3 matrix

typeof(zseq) ## list

dim(zseq) ## 2 3

zseq[1,]

apply(z, 3, function(x) seq_len(max(x)))

a list without a dim attribute

})

14 Sustainable, Extensible Documentation Generation Using inlinedocs

A.2. Documentation list

Running the inlinedocs default parser functions on the source code results in the following
documentation list, which summarizes the extracted documentation.

Again, note in item{FUN} that % is not escaped in the documentation list. It is the job of
inlinedocs to convert this documentation list to valid Rd, so the parser function programmer
does not need to worry about escaping special characters.

$apply

$apply$description

[1] "Returns a vector or array or list of values obtained by applying a"

[2] "function to margins of an array or matrix."

$apply$`item{MARGIN}`

[1] "a vector giving the subscripts which the function will be applied"

[2] "over. E.g., for a matrix \\code{1} indicates rows, \\code{2}"

[3] "indicates columns, \\code{c(1, 2)} indicates rows and"

[4] "columns. Where \\code{X} has named dimnames, it can be a character"

[5] "vector selecting dimension names."

$apply$`item{FUN}`

[1] "the function to be applied: see \\sQuote{Details}. In the case of"

[2] "functions like \\code{+}, \\code{%*%}, etc., the function name"

[3] "must be backquoted or quoted."

$apply$value

[1] "If each call to \\code{FUN} returns a vector of length \\code{n},"

[2] "then \\code{apply} returns an array of dimension \\code{c(n,"

[3] "dim(X)[MARGIN])} if \\code{n > 1}. If \\code{n} equals \\code{1},"

[4] "\\code{apply} returns a vector if \\code{MARGIN} has length 1 and an"

[5] "array of dimension \\code{dim(X)[MARGIN]} otherwise. If \\code{n}"

[6] "is \\code{0}, the result has length 0 but not necessarily the"

[7] "\\sQuote{correct} dimension."

[8] ""

[9] "If the calls to \\code{FUN} return vectors of different lengths,"

[10] "\\code{apply} returns a list of length \\code{prod(dim(X)[MARGIN])}"

[11] "with \\code{dim} set to \\code{MARGIN} if this has length greater"

[12] "than one."

[13] ""

[14] "In all cases the result is coerced by \\code{\\link{as.vector}} to"

[15] "one of the basic vector types before the dimensions are set, so"

[16] "that (for example) factor results will be coerced to a character"

[17] "array."

$apply$`item{X}`

[1] "an array, including a matrix."

$apply$`item{\dots}`

[1] "optional arguments to \\code{FUN}."

$apply$keyword

[1] "iteration}" "\\keyword{array"

Journal of Statistical Software 15

$apply$details

[1] "\\code{FUN} is found by a call to \\code{\\link{match.fun}}"

[2] "and typically is either a function or a symbol (e.g. a backquoted"

[3] "name) or a character string specifying a function to be searched"

[4] "for from the environment of the call to \\code{apply}."

[5] ""

[6] "If \\code{X} is not an array but an object of a class"

[7] "with a non-null \\code{\\link{dim}} value (such as a data frame),"

[8] "\\code{apply} attempts to coerce it to an array via"

[9] "\\code{as.matrix} if it is two-dimensional (e.g., a data frame) or"

[10] "via \\code{as.array}."

$apply$title

[1] "Apply Functions Over Array Margins"

$apply$examples

[1] ""

[2] "## Compute row and column sums for a matrix:"

[3] "x <- cbind(x1 = 3, x2 = c(4:1, 2:5))"

[4] "dimnames(x)[[1]] <- letters[1:8]"

[5] "apply(x, 2, mean, trim = .2)"

[6] "col.sums <- apply(x, 2, sum)"

[7] "row.sums <- apply(x, 1, sum)"

[8] "rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))"

[9] ""

[10] "stopifnot(apply(x, 2, is.vector))"

[11] ""

[12] "## Sort the columns of a matrix"

[13] "apply(x, 2, sort)"

[14] ""

[15] "##- function with extra args:"

[16] "cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))"

[17] "apply(x,1, cave, c1=\"x1\", c2=c(\"x1\",\"x2\"))"

[18] ""

[19] "ma <- matrix(c(1:4, 1, 6:8), nrow = 2)"

[20] "ma"

[21] "apply(ma, 1, table) #--> a list of length 2"

[22] "apply(ma, 1, stats::quantile)# 5 x n matrix with rownames"

[23] ""

[24] "stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))"

[25] ""

[26] "## Example with different lengths for each call"

[27] "z <- array(1:24, dim=2:4)"

[28] "zseq <- apply(z, 1:2, function(x) seq_len(max(x)))"

[29] "zseq ## a 2 x 3 matrix"

[30] "typeof(zseq) ## list"

[31] "dim(zseq) ## 2 3"

[32] "zseq[1,]"

[33] "apply(z, 3, function(x) seq_len(max(x)))"

[34] "## a list without a dim attribute"

16 Sustainable, Extensible Documentation Generation Using inlinedocs

A.3. Generated Rd

The Rd produced by inlinedocs is shown below. In particular, note that the % characters have
been correctly escaped.

\name{apply}

\alias{apply}

\title{Apply Functions Over Array Margins}

\description{Returns a vector or array or list of values obtained by applying a

function to margins of an array or matrix.}

\usage{apply(X, MARGIN, FUN, ...)}

\arguments{

\item{X}{an array, including a matrix.}

\item{MARGIN}{a vector giving the subscripts which the function will be applied

over. E.g., for a matrix \code{1} indicates rows, \code{2}

indicates columns, \code{c(1, 2)} indicates rows and

columns. Where \code{X} has named dimnames, it can be a character

vector selecting dimension names.}

\item{FUN}{the function to be applied: see \sQuote{Details}. In the case of

functions like \code{+}, \code{\%*\%}, etc., the function name

must be backquoted or quoted.}

\item{\dots}{optional arguments to \code{FUN}.}

}

\details{\code{FUN} is found by a call to \code{\link{match.fun}}

and typically is either a function or a symbol (e.g. a backquoted

name) or a character string specifying a function to be searched

for from the environment of the call to \code{apply}.

If \code{X} is not an array but an object of a class

with a non-null \code{\link{dim}} value (such as a data frame),

\code{apply} attempts to coerce it to an array via

\code{as.matrix} if it is two-dimensional (e.g., a data frame) or

via \code{as.array}.}

\value{If each call to \code{FUN} returns a vector of length \code{n},

then \code{apply} returns an array of dimension \code{c(n,

dim(X)[MARGIN])} if \code{n > 1}. If \code{n} equals \code{1},

\code{apply} returns a vector if \code{MARGIN} has length 1 and an

array of dimension \code{dim(X)[MARGIN]} otherwise. If \code{n}

is \code{0}, the result has length 0 but not necessarily the

\sQuote{correct} dimension.

If the calls to \code{FUN} return vectors of different lengths,

\code{apply} returns a list of length \code{prod(dim(X)[MARGIN])}

with \code{dim} set to \code{MARGIN} if this has length greater

than one.

In all cases the result is coerced by \code{\link{as.vector}} to

one of the basic vector types before the dimensions are set, so

that (for example) factor results will be coerced to a character

array.}

\author{Toby Dylan Hocking}

Journal of Statistical Software 17

\examples{

Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix

apply(x, 2, sort)

##- function with extra args:

cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))

apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(1:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seq_len(max(x)))

zseq ## a 2 x 3 matrix

typeof(zseq) ## list

dim(zseq) ## 2 3

zseq[1,]

apply(z, 3, function(x) seq_len(max(x)))

a list without a dim attribute

}

\keyword{iteration}

\keyword{array}

A.4. Generated PDF

In Figures 2 and 3, we show the generated documentation converted to PDF via
R CMD Rd2pdf.

18 Sustainable, Extensible Documentation Generation Using inlinedocs

R documentation
of ‘man/apply.Rd’

August 15, 2013

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X an array, including a matrix.

MARGIN a vector giving the subscripts which the function will be applied over. E.g.,
for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.

FUN the function to be applied: see ‘Details’. In the case of functions like +, %*%,
etc., the function name must be backquoted or quoted.

... optional arguments to FUN.

Details

FUN is found by a call to match.fun and typically is either a function or a symbol (e.g. a backquoted
name) or a character string specifying a function to be searched for from the environment of the call
to apply.

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

1

Figure 2: Documentation of apply.R as converted to PDF via R CMD Rd2pdf (page 1).

Journal of Statistical Software 19

2 apply

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension c(n,dim(X)[MARGIN])
if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1 and an array of dimension
dim(X)[MARGIN] otherwise. If n is 0, the result has length 0 but not necessarily the ‘correct’ di-
mension.

If the calls to FUN return vectors of different lengths, apply returns a list of length prod(dim(X)[MARGIN])
with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimensions
are set, so that (for example) factor results will be coerced to a character array.

Author(s)

Toby Dylan Hocking

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
apply(x, 2, mean, trim = .2)
col.sums <- apply(x, 2, sum)
row.sums <- apply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call
z <- array(1:24, dim=2:4)
zseq <- apply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix
typeof(zseq) ## list
dim(zseq) ## 2 3
zseq[1,]
apply(z, 3, function(x) seq_len(max(x)))
a list without a dim attribute

Figure 3: Documentation of apply.R as converted to PDF via R CMD Rd2pdf (page 2).

20 Sustainable, Extensible Documentation Generation Using inlinedocs

Affiliation:

Toby Dylan Hocking
INRIA – Sierra Project for Machine Learning Research
23, avenue d’Italie
CS 81321
75214 Paris Cedex 13, France
Telephone: +33/1 39 63 54 99
E-mail: Toby.Hocking@inria.fr
URL: http://cbio.ensmp.fr/~thocking/

Thomas Wutzler
Max Planck Institute for Biogeochemistry
Hans-Knöll-Strasse 10
07745 Jena, Germany
Telephone: +49/3641 576271
E-mail: twutz@bgc-jena.mpg.de

Keith Ponting
Aurix Ltd.
Malvern Hills Science Park
Geraldine Road
Great Malvern
Worcestershire, WR14 3SZ, United Kingdom
E-mail: k.ponting@aurix.com

Philippe Grosjean
Numerical Ecology of Aquatic Systems
University of Mons
20 Place du Parc, 7000 Mons, Belgium
E-mail: Philippe.Grosjean@umons.ac.be

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 54, Issue 6 Submitted: 2011-05-16
August 2013 Accepted: 2013-01-22

mailto:Toby.Hocking@inria.fr
http://cbio.ensmp.fr/~thocking/
mailto:twutz@bgc-jena.mpg.de
mailto:k.ponting@aurix.com
mailto:Philippe.Grosjean@umons.ac.be
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Existing documentation generation systems for R
	Documentation using inline comments

	inlinedocs syntax for inline documentation of R packages
	Documenting function arguments and return values
	Inline titles, arguments, and other sections
	Examples and named lists
	Documenting classes and methods
	package.skeleton.dx for generating Rd files

	inlinedocs system of extensible documentation generators
	Documentation lists store the structured content of Rd files
	Structure of a parser function and forall/forfun
	Extending the syntax with custom parser functions

	Conclusions and future work
	The base function apply converted to inlinedocs
	Source and inline documentation
	Documentation list
	Generated Rd
	Generated PDF

