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Abstract Dynamic Nuclear Polarization solid-state NMR

holds the potential to enable a dramatic increase in sensi-

tivity by exploiting the large magnetic moment of the

electron. However, applications to biological solids are

hampered in uniformly isotopically enriched biomacro-

molecules due to line broadening which yields a limited

spectral resolution at cryogenic temperatures. We show

here that high magnetic fields allow to overcome the

broadening of resonance lines often experienced at liquid

nitrogen temperatures. For a fibril sample of the Alzhei-

mer’s disease b-amyloid peptide, we find similar line

widths at low temperature and at room temperature. The

presented results open new perspectives for structural

investigations in the solid-state.

Keywords Dynamic nuclear polarization (DNP) � Magic

angle spinning (MAS) � Solid-state � NMR high magnetic

fields � Alzheimer’s b-amyloid fibrils

Within the last decade, MAS (magic angle spinning) solid-

state NMR evolved into a powerful technique which allows to

determine the structure and dynamics of uniformly isotopi-

cally enriched, non-soluble biological macromolecules

(Castellani et al. 2002; Wasmer et al. 2008). However, low

sensitivity limits many solid-state NMR applications. NMR

signal intensities can be enhanced by up to a factor of 660 by

making use of dynamic nuclear polarization (DNP) (Maly

et al. 2008; Barnes et al. 2009). DNP enhancement is achieved

by microwave (MW) irradiation inducing a transfer of

polarization from unpaired electrons to the nuclei (Hovav

et al. 2011). This signal enhancement allows to investigate

systems of biological interest which are not accessible

otherwise (Reggie et al. 2011; Renault et al. 2011; Sergeyev

et al. 2011; Jacso et al. 2012). Cryogenic temperatures are a

pre-requisite for DNP. Low temperatures, on the other hand,

yield considerable line broadening in many cases, which is

due to suppression of conformational averaging as a result of

freezing, or due to non-uniform ordering of water molecules at

the glass transition temperature (Ngai et al. 2008; Doster

2010). This line broadening is the major limitation for a wide-

spread application of DNP solid-state NMR for the investi-

gation of biological systems. Despite large efforts in

improving DNP solid-state NMR, including hardware design
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(Griffin and Prisner 2010; Rosay et al. 2010) and progress in

theory (Hovav et al. 2010; Hovav et al. 2011; Hu et al. 2011), it

remains unclear if this technique is suitable to study uniformly

isotopically enriched protein samples. We present here field

dependent spectra of an uniformly isotopically enriched fibril

sample of the Alzheimer’s disease amyloid peptide Ab. We

find that resolution significantly improves at higher external

magnetic fields, indicating that conformational heterogeneity

is not dominating the achieveable resolution.

Aggregation of monomeric amyloid–b peptides (Ab)

into soluble oligomers and insoluble fibrils is one of the

major pathological hallmarks of Alzheimer’s disease (AD)

(Hardy and Selkoe 2002; Walsh et al. 2002). In fact, fibrils

formed by the Ab peptides (36-43 residues) are the primary

components of the plaques found in human brains affected

by Alzheimer’s disease (Cummings and Cotman 1995). Ab
fibrils are considered a difficult system for solid-state NMR

as it is assumed that they can adopt a large variety of

different polymorphous forms which in turn might result in

line broadening (Fandrich et al. 2009). Fibrils employed in

this study are uniformly isotopically enriched and grown

using a seeding protocol (Lopez del Amo et al. 2012). An

electron microscopic (EM) image of the fibrils obtained by

this procedure is shown in Fig. 1a. Figure 1b shows a 1D

CPMAS 13C spectra obtained at room temperature, at 96 K

and at 96 K with microwave irradiation. A gain in intensity

of around fourfold is observed by lowering the temperature

only, due to a more favourable Boltzmann distribution.

With DNP, a total signal enhancement of a factor of 20 was

obtained. In principle, signal enhancements of e & 660 are

possible. Typically, enhancements in biological systems

are smaller (Mak-Jurkauskas et al. 2008; Bajaj et al.

2009a), in agreement with the values observed here. Partial

sample deuteration can yield significantly larger enhance-

ments on the order of e = 120–140 (Akbey et al. 2010).

In the NCO and NCA experiments recorded for Ab fibrils

(Fig. 1b), most of the backbone resonances are overlapped

due to the intrinsic low resolution at 9.4 T. However, well

resolved resonances are observed for sidechains. This is

especially obvious for the histidine spectral region

(Fig. 1c). Here, two spin systems can be identified (labeled

as 1 and 2) which are presumably due to His13 and His14 in

Aß40. The 13C/15N line widths of the resolved Cd1-Ne1

correlation peak amounts to 140 Hz in the 15N dimension,

and *150 Hz in the 13C dimension. These values are very

similar to the line width which is observed at room tem-

perature (Lopez del Amo et al. 2012). This indicates that

structural heterogeneity of the sample is not dominating the

achievable resolution at 100 K, but rather the inherent lack

of resolution at low magnetic fields (9.4 T).

In order to probe the field dependence of the resonance line

widths at low temperatures, MAS solid-state NMR experi-

ments were acquired at 14.1 T and 20.0 T. Figure 2a shows 2D

13C,13C correlation spectra of Ab40 fibrils that were recorded

at low temperatures (*100 K) at the indicated magnetic field

strengths. Obviously, the spectral resolution is improving at

higher magnetic fields. The significantly overlapped spectrum

recorded at 9.4 T is very well resolved at 20.0 T yielding

linewidths for individual crosspeaks that are on the order of

140–160 Hz. Figure 2b shows a comparison of the Ab fibril

2D-13C,13C correlation spectrum recorded at low tempera-

tures (20.0 T) and the spectrum recorded at room temperature

(21.1 T). Methyl resonances are typically weak at a temper-

ature of 100 K (Bajaj et al. 2009b). The observed temperature

dependent chemical shifts indicate temperature dependent

conformational changes that can potentially be probed by

NMR. In comparison to the room temperature spectrum, the

resolution is only slightly decreased at 100 K. The line width

for the resolved 13Cb serine resonance increases to 160 Hz, in

comparison to 130 Hz at room temperature. Structural het-

erogeneity of the sample is thus not dominating the achievable

resolution. We expect similar results for other amyloidogenic

peptides and proteins. DNP solid-state NMR was applied

recently for the structural characterization of a partially

labelled nanocrystallin and a fibrillar sample of the Sup35

derived peptide GNNQQNY (Debelouchina et al. 2010), as

well as for the study of acid induced fibrils formed by the

PI3 K-SH3 domain (Bayro et al. 2011). These experiments

were carried out at 9.4 T and 100 K, and show that line-

broadening is in general not an issue for measurements at low

temperatures.

We demonstrate here that homogeneously labelled

Alzheimer’s Disease amyloid Ab40 fibrils retain their

spectral resolution at cryogenic temperatures, and are

amenable for assignments and a structural characterization

in case samples are measured at high enough magnetic field

strengths. In the future, signal enhancements of several

orders of magnitude combined with high resolution solid-

state NMR will be extremely valuable for the character-

ization of membrane proteins and amyloid structures in

complex biological systems. In situ studies of Ab peptides

interacting with native membranes for example might

allow to elucidate the mechanism of toxicity involved in

Alzheimer’s Disease. Such experiments were impossible in

the past due to the low sensitivity as a consequence of the

low amount of material that can be packed into an NMR

rotor. High-field DNP might be suitable to overcome such

problems in the future, with high potential for applications

in structural biology research.

Experimental details

The Ab peptide was prepared as described previously

(Dasari et al. 2011). For one Ab fibril sample, approxi-

mately 8 mg of uniformly 13C and 15N labelled Ab40 was
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fibrilized using a seeding protocol: Seeds were obtained

after multiple rounds of sonification and fibril growth in

order to select a single amyloid morphology (Lopez del

Amo et al. 2012). Ab fibrils were doped using 30 mM of

the biradical TOTAPOL (1-(TEMPO-4-oxy)-3-(TEMPO-

4-amino)-propan-2-ol) (Hu et al. 2004). The material was

concentrated by centrifugation and packed into a 3.2 mm

zirconia NMR rotor. All DNP-NMR experiments were

performed using a commercial Bruker DNP spectrometer

operating at a 1H frequency of 400 MHz and microwave

frequency of 263 GHz. Signal enhancement was achieved

in situ, directly within the sample. The microwave power

was generated by a Bruker gyrotron oscillator. High field

low temperature MAS-NMR experiments were acquired at

600 MHz and 850 MHz spectrometers (Bruker

Rheinstetten and Max-Planck-Insitut für Biophysikalische

Chemie Göttingen, respectively). The reference room

temperature spectrum was acquired at 900 MHz (FMP

Berlin). In all cases, spectra were recorded using a triple

resonance, low-temperature, HCN probe employing con-

ventional 3.2 mm zirconia rotors. Cryogenic temperatures

were achieved and controlled with Bruker low-temperature

MAS accessory. All spectra were recorded by setting the

MAS frequency to 10 kHz, and employing a 1H/13C CP

contact time of 1.5 ms. High-power proton decoupling

(xrf = 85 kHz) was applied during acquisition using

SPINAL-64 (Fung et al. 2000). 13C,13C transfers were

achieved using a PDSD sequence, setting the mixing time

to 15 ms. Magnetization was allowed to evolve for 12 ms

in the direct and indirect dimensions, respectively.

Fig. 1 a EM image of the Ab40 fibrils employed in the MAS solid-

state NMR studies. b 1D-13C spectra of Alzheimer’s disease b-

amyloid fibrils obtained under DNP conditions, with and without

microwave irradiation (MW = on, MW = off), and at room temper-

ature. In total, an enhancement factor of 20 is obtained. c 2D 15N,13C

correlation spectrum of b-amyloid fibrils under DNP conditions

(100 K). Side chain resonances of lysine, arginine and histidines are

well resolved. d DNP 2D 15N,13C correlation spectrum of the

histidine side chain region highlighted in b. All spectra were acquired

at a magnetic field strength of 9.4 T
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Fig. 2 a Field dependence of 2D-13C,13C correlation spectra of Ab40

fibrils at low temperatures (100 K). Spectra were acquired and

processed using the same parameters in all cases. In each plot, the

lowest contour was drawn at 20 % of the maximum intensity of the

isoleucine Ca–Cd correlation signals. Spectra plotted at different

contour levels for each field are shown as part of the Supporting Figure 1,

together with 1D traces for selected peaks (Supporting Figure 3).

b Superposition of the Ab fibril 2D-13C,13C correlation spectra recorded

at cryogenic (850 MHz, red) and at room temperature (900 MHz,

black). The resolution is clearly not compromised at low temperature. A

comparison of 2D-13C,13C correlation spectra recorded at cryogenic

temperatures (600 and 850 MHz) is shown in Supporting Figure 3
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