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The human brainstem, which comprises a multitude of axonal nerve fibers and nuclei,
plays an important functional role in the human brain. Depicting its anatomy non-invasively
with high spatial resolution may thus in turn help to better relate normal and pathological
anatomical variations to medical conditions as well as neurological and peripheral functions.
We explored the potential of high-resolution magnetic resonance imaging (MRI) at 7 T for
depicting the intricate anatomy of the human brainstem in vivo by acquiring and generat-
ing images with multiple contrasts:T 2-weighted images, quantitative maps of longitudinal
relaxation rate (R1 maps) and effective transverse relaxation rate (R2

∗ maps), magnetic
susceptibility maps, and direction-encoded track-density images. Images and quantitative
maps were compared with histological stains and anatomical atlases to identify nerve
nuclei and nerve fibers. Among the investigated contrasts, susceptibility maps displayed
the largest number of brainstem structures. Contrary to R1 maps andT 2-weighted images,
which showed rather homogeneous contrast, R2

∗ maps, magnetic susceptibility maps, and
track-density images clearly displayed a multitude of smaller and larger fiber bundles. Sev-
eral brainstem nuclei were identifiable in sections covering the pons and medulla oblongata,
including the spinal trigeminal nucleus and the reticulotegmental nucleus on magnetic
susceptibility maps as well as the inferior olive on R1, R2

∗, and susceptibility maps. The
substantia nigra and red nuclei were visible in all contrasts. In conclusion, high-resolution,
multi-contrast MR imaging at 7T is a versatile tool to non-invasively assess the individual
anatomy and tissue composition of the human brainstem.

Keywords: brainstem, quantitative susceptibility mapping, effective transverse relaxation, longitudinal relaxation,
diffusion tensor imaging, track-density imaging, brain, anatomy

INTRODUCTION
The brainstem is the primary relay center for afferent and effer-
ent connections between the cerebral cortex, the cerebellum, and
the spinal cord (Sutin and Carpenter, 1976). It plays an important
role in the regulation of vital functions (e.g., respiratory func-
tion, cardio-vascular function, nausea) and coordinates motor
control signals sent from the brain to the body. Anatomically,
the human brainstem consists of three connected parts, medulla
oblongata, pons, and midbrain, and is composed of a multitude
of axonal nerve fibers as well as cranial and non-cranial nerve
nuclei. Due to the spatial concentration of important neural struc-
tures in this relatively small brain region, pathological variations
or lesions in the brainstem can introduce severe and multiple neu-
rological effects (Donaldson et al., 2006). The brainstem is also
known to be involved in a number of degenerative diseases, such as

Abbreviations: DTI, diffusion tensor imaging; GRE, gradient recalled echo; QSM,
quantitative susceptibility mapping; ppb, parts per billion; R∗2 , effective transverse
relaxation rate; SHARP, sophisticated harmonic artifact reduction for phase data;
TDI, track-density imaging.

Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease
(Urban and Caplan, 2011). Hence, detailed non-invasive depiction
of its morphology and anatomy may help to better relate normal
and pathological anatomical variations to medical conditions as
well as neurological and peripheral functions.

Magnetic resonance imaging (MRI) at ultrahigh magnetic field
strength (B0≥ 7 T) is a powerful means to assess non-invasively
normal and abnormal brain tissue with high spatial resolution
(Li et al., 2006; Duyn et al., 2007; Deistung et al., 2008; Tram-
pel et al., 2011; Moser et al., 2012; Turner, 2012, 2013; Eichner
et al., 2013; Marques and Gruetter, 2013). MRI provides a variety
of qualitative and quantitative tissue contrasts, mainly reflecting
nuclear relaxation (T 1,T 2, and T ∗2 , or equivalently R1, R2, and R∗2 ),
diffusion, and magnetic susceptibility. In contrast-sensitized MR
images (e.g., T 1-weighted, T 2-weighted, or T ∗2 -weighted images),
however, the measured signal is an intricate function of pro-
ton density, longitudinal (T 1) and transverse relaxation (T 2) and
depends on the applied MRI sequence parameters. Thus, it may be
difficult to interpret the underlying tissue composition and struc-
ture based on the intensity of these images. Quantitative MRI
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Deistung et al. MRI of the human brainstem

techniques, on the other hand, provide information that is intrin-
sically more tissue specific and consequently less dependent on the
chosen scan parameters. Hence, quantification of different phys-
ical tissue properties by using quantitative MRI techniques also
increases intra- and inter-individual comparability and enables
objective measurements of disease related brain changes (Tofts,
2003).

The most common approach of quantitative MRI is relaxom-
etry, i.e., mapping of the longitudinal (R1) and/or transverse (R2,
R
′

2, R∗2 ) relaxation rates. In the brain these relaxation rates are
influenced predominantly by both myelin (Koenig, 1991; Bender
and Klose, 2010; Langkammer et al., 2012a; Lee et al., 2012) and
tissue iron (Ogg and Steen, 1998; Langkammer et al., 2010). An
additional, recently introduced novel quantitative MR method that
is unique in its sensitivity to both tissue constituents is quantitative
susceptibility mapping (QSM) (Schweser et al., 2011; Reichen-
bach, 2012). QSM is a post-processing method that uses the phase
signal of complex-valued gradient (recalled) echo (GRE) data to
produce maps of tissue magnetic susceptibility. Quantification of
brain tissue iron content (Wharton et al., 2010; Schweser et al.,
2011; Bilgic et al., 2012; Langkammer et al., 2012b; Zheng et al.,
2013) and blood oxygenation in vivo (Haacke et al., 2010) as well
as assessment of brain myelination (Liu et al., 2011; Li et al.,
2012a,b) has recently been reported by applying QSM. Excellent
anatomical delineation of cortical and deep gray matter structures
and substructures has been demonstrated with QSM (Schweser
et al., 2011, 2012; Deistung et al., 2013a), particularly in concert
with relaxation rate mapping (Sigalovsky et al., 2006; Fukunaga
et al., 2010; Geyer et al., 2011; Lebel et al., 2012; Deistung et al.,
2013a), thus rendering this combined approach highly promis-
ing for improved delineation of the anatomical structure of the
brainstem.

Nerve fibers and their complex network are usually imaged
and analyzed by exploiting the translational molecular diffusion
of protons. So far, most studies have applied diffusion tensor
imaging (DTI) (Basser and Pierpaoli, 1996) for anatomical imag-
ing of the brainstem (Stieltjes et al., 2001; Nagae-Poetscher et al.,
2004; Salamon et al., 2005). DTI, however, is commonly limited
by the relatively coarse spatial resolution available, which makes
detailed analysis of smaller fiber tracts difficult, and often fails
in regions of crossing fibers (Jones et al., 2013). One recently
suggested approach to overcome this limitation is track-density
imaging (TDI), which combines high angular resolution diffusion
imaging (HARDI) with fiber tracking information to delineate
structures beyond the image resolution of the acquired diffusion-
weighted data (Calamante et al., 2010). TDI has been already
applied successfully to delineate fiber pathways in the cerebrum
and cerebellum, and the substructure of the thalamus (Calamante
et al., 2010, 2013).

The present study explores the potential of these high-
resolution MRI approaches to resolve non-invasively the intricate
anatomy of the human brainstem at 7 T in vivo. To this end, T 2-
weighted images, quantitative R1, R∗2 , and magnetic susceptibility
maps as well as track-density images were compared with respect
to their ability of depicting nerve nuclei and nerve fibers. Further-
more, R1, R∗2 , and magnetic susceptibility values are presented for
selected anatomical regions. It is shown that the combination of

multiple image contrasts provides a distinctly improved portrayal
of the morphology of the brainstem.

MATERIALS AND METHODS
DATA ACQUISITION
The study was approved by the internal Institutional Review Board
of the Max Planck Institute in Leipzig and written informed con-
sent was obtained from all participating subjects. A total of six
healthy volunteers (four male and two female; 27.7± 3 years) were
examined on a 7 T human whole body MRI system (Siemens
Healthcare, Erlangen, Germany) using a 24-channel head array
coil (NOVA Medical Inc., Wilmington, MA, USA). Two dielectric
pads containing deuterated water (99%, Sigma Aldrich GmbH,
Germany) enriched with calcium titanate (Alfa Aesar GmbH and
Co KG, Karlsruhe, Germany) were placed on the left and right side
of the subjects’ head to increase both field strength and homo-
geneity of the transmit radio frequency field, B+1 , in the area of the
brainstem (Teeuwisse et al., 2012).

Coronal T 2-weighted images were acquired using a two-
dimensional gradient-echo and spin-echo (GRASE) sequence
(Feinberg and Oshio, 1991; Oshio and Feinberg, 1991) with echo
time (TE)= 35 ms, repetition time (TR)= 10,000 ms, bandwidth
(BW)= 343 Hz/px, acquisition matrix= 384× 384 and in-plane
resolution of 0.53 mm× 0.53 mm. Thirty-five images were col-
lected with a slice thickness of 0.6 mm and a gap between two
adjacent slices of 0.3 mm. For each TR interval there were three
180°-refocusing pulses, and between each 180°-pulse there were
three gradient recalled echoes, resulting in an effective echo train
length of nine and an acquisition time (TA) of 7:22 min:s. The
GRASE sequence was applied to account for the high specific
absorption rate (SAR) that substantially restricts T 2-weighted
imaging with turbo-spin-echo sequences at ultra-high magnetic
fields.

High-resolution R1-mapping was performed based on the
data acquired with the MP2RAGE sequence (Marques et al.,
2010),a magnetization-prepared rapid gradient-echo (MP-RAGE)
sequence with two different inversion times (TI). The acquisition
parameters of the coronal MP2RAGE scan included TI1= 900 ms,
TI2= 2750 ms, TE= 3.7 ms, TR= 5000 ms, BW= 240 Hz/px,
acquisition matrix= 320× 260× 240, voxel size= 0.6 mm×
0.6 mm× 0.6 mm, and TA= 17:40 min:s. Magnetization prepara-
tion was achieved with a tailored radiofrequency pulse to take into
account the heterogeneity of the radiofrequency transmit field
(Hurley et al., 2010).

Coronal, multi-echo, three-dimensional gradient-echo imag-
ing was carried out to compute quantitative R∗2 and suscepti-
bility maps. To this end, three echoes with monopolar read-
out were recorded (TE1= 11 ms, TE2= 21 ms, and TE3= 31 ms),
TR= 43 ms, flip angle (FA)= 12.5°, BW= 149 Hz/px, acqui-
sition matrix= 448× 364× 104, and voxel size= 0.43 mm×
0.43 mm× 0.43 mm. Data were collected with 75% and 87.5%
partial Fourier along phase and slice encoding direction, respec-
tively, resulting in an acquisition time of 17:48 min:s. Choosing
a readout BW of 149 Hz/px yielded single-echo images with a
rather high signal-to-noise ratio (SNR), however, at the expense
of a rather long inter-echo distance. The signal decay was sampled
with three echoes only to keep acquisition time below 20 min.
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Deistung et al. MRI of the human brainstem

Finally, diffusion-weighted imaging (DWI) data were acquired
in sagittal orientation with two-dimensional, single-shot, spin-
echo echo-planar imaging (EPI), 60 diffusion encoding direc-
tions each with a b-value of 1000 s/mm2 and seven vol-
umes with a b-value of 50 s/mm2, TE= 64 ms, TR= 10,000 ms,
BW= 1050 Hz/px, 86 contiguous slices with an acquisition
matrix of 170× 170,voxel size= 1.2 mm× 1.2 mm× 1.2 mm,and
TA= 14:20 min:s. To reduce geometric distortions partial paral-
lel under sampling [GRAPPA (Griswold et al., 2002)] with an
acceleration factor of 3 and 45 reference lines was applied in the
phase-encoding direction.

In addition, a field-map was acquired with a 2D double-
echo gradient-echo sequence to correct residual geometric
distortions of the diffusion-weighted images caused by sus-
ceptibility differences between air-bone and air-tissue inter-
faces. The field-map was recorded with TE1= 6 ms, TE2= 7 ms,
TR= 1000 ms, FA= 50°, 51 contiguous slices, matrix= 102× 102,
voxel size= 2 mm× 2 mm× 2 mm, and TA= 3:22 min:s.

DATA PROCESSING
Relaxometry
Maps of the longitudinal relaxation times were calculated directly
at the MRI scanner by applying the MP2RAGE reconstruction
framework provided by the manufacturer. The relaxation times
were subsequently converted to relaxation rates according to the
relation R1= 1/T 1 to facilitate better depiction of anatomical
structures.

Maps of the effective transverse relaxation rate, R∗2 , were
obtained using the power method (McGibney and Smith, 1993;
Miller and Joseph, 1993), i.e., the squared magnitude signal decay,
S(Er , TE)2, of the 3D multi-echo GRE scan was used for the
regression (McGibney and Smith, 1993; Miller and Joseph, 1993):

S(Er , TE)2
= S0(Er)

2
· exp

(
−2 · TE · R∗2 (Er)

)
, (1)

where S0(Er) is the signal intensity at TE = 0 and Er is the position
vector. This approach reduces contamination of Rician noise to
the fit and provides more accurate relaxation rates than fitting a
mono-exponential model to the magnitude signal decay S(Er , TE)

(van der Weerd et al., 2000).

Quantitative susceptibility mapping
Single-channel GRE magnitude images were combined using the
sum-of-squares method (Roemer et al., 1990), whereas single-
channel GRE phase images were combined by taking into account
the channel-dependent phase offset, which was estimated from
the single-channel images at different echo times by voxel-wise
linear fitting of the phase evolution (Robinson et al., 2011). Phase
aliasing in the combined GRE phase data was resolved using a
3D Laplacian-based phase unwrapping algorithm (Schofield and
Zhu, 2003) and phase images of different echo times were then
combined in a CNR-optimized manner according to (Wu et al.,
2012). Background phase contributions were eliminated with
sophisticated harmonic artifact reduction for phase data (SHARP)
(Schweser et al., 2011) (regularization parameter: 0.05) combin-
ing 10 different spherical kernels with varying radii ranging from
0.43 to 4.3 mm (Li et al., 2011). Susceptibility mapping was per-
formed using homogeneity enabled incremental dipole inversion

(HEIDI), which incorporates a priori information extracted from
the complex GRE signal to address the ill-posed nature of QSM
(Schweser et al., 2012). Since the calculated susceptibility values
represent relative rather than absolute values (Schweser et al.,
2011), susceptibility differences were specified with respect to a
homogenous region of normal appearing white matter (NAWM,
semioval center).

Track-density imaging
Geometric distortion of diffusion-weighted images was corrected
using FUGUE (FSL toolbox, FMRIB, Oxford, England) based on
the additionally acquired field-map. The unwarped DWI data were
then processed using the MRtrix software package (Brain Research
Institute, Melbourne, VIC, Australia) to produce track-density
images as proposed in Calamante et al. (2010). Processing steps
performed with MRtrix included the calculation of tensor data
as well as fractional anisotropy maps, estimation of the response
function, spherical deconvolution, probabilistic tractography and
track-density mapping. Only voxels with fractional anisotropy,
derived from the tensor model, that exceeded a threshold of 0.7
were taken into account for estimating the coefficients of the
response function based on DWI data (Tournier et al., 2004). These
coefficients and a maximum harmonic order of eight were used for
constrained spherical deconvolution of DWI data (Tournier et al.,
2007). This approach allowed modeling of multiple fiber popula-
tions within an imaging voxel, thereby overcoming the well-known
limitation of the diffusion tensor model in regions with cross-
ing fibers. Probabilistic streamline tracking was carried out using
the second order integration over fiber orientation distributions
(iFOD2) algorithm (Tournier et al., 2010) by seeding randomly
throughout the predefined mask covering the whole brainstem and
using the following relevant parameters: step size= 0.1 mm, num-
ber of fibers= 800,000, minimum curvature radius= 0.4 mm and
a maximum number of 2000 trials for each point. In order to gen-
erate the track-density images, a virtual regularly spaced grid was
superposed with a resolution of 0.43 mm× 0.43 mm× 0.43 mm
on the tractography results and the total number of fiber tracks
present in each grid element was calculated. Hereby, the super-
resolution property is achieved by utilizing the additional infor-
mation provided by modeling the fiber tracking results (Calamante
et al., 2010). The track-density images were calculated on a virtual
isotropic resolution of 0.43 mm to facilitate comparison with the
R∗2 and susceptibility maps. Finally, the track-density images were
direction-encoded by assigning each grid element an RGB color
that represents the local fiber orientation as given by averaging the
colors of all the fiber tracking (streamline) segments contained
within each grid element.

DATA ANALYSIS
All MRI contrasts were converted into an identical space for visual
inspection. To this end, the R1 maps, track-density images and
T 2-weighted images were linearly transformed into the space of
the susceptibility maps based on orientation information encoded
in the DICOM images. The susceptibility maps were chosen as
target to maintain the high spatial resolution of the susceptibility
and R∗2 maps. Manual reformatting of quantitative susceptibility
maps in multi-planar orientations was performed with Freeview
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Deistung et al. MRI of the human brainstem

of the Freesurfer software library1 and the resulting rigid transfor-
mation matrix was applied to the previously registered MR image
contrasts and to the R∗2 maps. The MR images were averaged across
three adjacent slices for signal-to-noise improvement, resulting in
an effective slice thickness of 1.3 mm.

For qualitative comparison horizontal histological sections
obtained from a 36-year-old male stained for myelin and for
cells were consulted. These histological images were courtesy
of the Brain Biodiversity Bank of the Michigan State Univer-
sity2,3 with support from the US National Science Foundation. An
experienced neuroanatomist (UB; experience more than 15 years)
assessed the MR images and identified anatomical structures and
substructures if they coincided with a histoarchitectonic atlas
(Bergman et al., 1989; Naidich et al., 2009; Paxinos et al., 2012)
and if they were identifiable with respect to the surrounding tis-
sue. For this qualitative analysis the window and level settings of
the MR images were adjusted freely.

For quantitative characterization the contrast-to-noise ratio
(CNR) of selected brain structures [red nucleus, substantia nigra,
central tegmental tract, superior colliculus, inferior colliculus,
reticulotegmental nucleus, middle cerebellar peduncle (MCP),
superior cerebellar peduncle (SCP), and transverse pontine fibers]
was determined across the different MR image contrasts (R1, R∗2 ,
susceptibility, and T 2-weighted contrast) according to:

CNRcy =

∣∣∣∣Scy − Scys

σ

∣∣∣∣ · ηc. (2)

CNRcy denotes the CNR for MR image contrast c and anatomic
region y. Mean image intensities measured in a volume-of-interest
(VOI) of the investigated structure y and its surrounding tissue
are denoted by Scy and Scys, respectively. The standard deviation
of the signal intensities measured in a VOI of normal appearing
white matter (semioval center) was used as an estimate of noise,
σ. To account for variations in spatial resolution of the differ-
ent investigated contrasts, the CNR was normalized to a voxel
volume of 1 mm× 1 mm× 1 mm as suggested in (Nölte et al.,
2012). To this end, the normalization factor ηc is introduced
in Eq. 2, which is defined as the ratio between 1 mm3 and the
acquired voxel volume of image contrast c. CNR was not deter-
mined on diffusion-weighted data because of their incompletely
compensated geometric distortions.

To calculate the CNR and to measure both the relaxation rates
and magnetic susceptibility, VOIs were identified based on mag-
netic susceptibility, R1, and R∗2 maps in the coordinate space of
the susceptibility maps for each subject in both hemispheres. The
VOIs were then transferred to the space of the R1 maps and the T 2-
weighted data, respectively, by employing orientation information
encoded in the DICOM images and nearest-neighbor interpola-
tion. Mean values and standard deviation of CNR and of the quan-
titative tissue parameters (R1, R∗2 , and magnetic susceptibility)
were then computed across hemispheres and subjects.

1http://surfer.nmr.mgh.harvard.edu/
2http://www.brains.rad.msu.edu
3http://brainmuseum.org

RESULTS
All qualitative findings presented in this study were consistent
across all subjects unless otherwise specified.

Figure 1 presents representative MR images and correspond-
ing histological sections of the midbrain. The red nuclei and
the substantia nigra were most strikingly discernible on the R∗2
(Figure 1B) and susceptibility maps (Figure 1C) as well as
on the direction-encoded track-density (Figure 1D) and T 2-
weighted images (Figure 1E), but were barely visible on the R1

map (Figure 1A). This qualitative finding was also supported
by the CNR measurements presented in Figure 2. On the track-
density image (Figure 1D) both nuclei showed lower anisotropy
as reflected in the reduced color saturation (arrows b and d).
Different fiber bundles traversing the crus cerebri [corticobulbar
fibers (arrow c1), corticospinal fibers (arrow c2), and corticopon-
tine fibers (arrow c3)] could be identified on the track-density
images. In the midbrain, interestingly, the central tegmental tract
(arrow f) and the medial lemniscus (arrow e, five of six subjects)
were only identifiable reliably on susceptibility maps, whereas the
mammillary body (Figure 1; arrow a) was discernible on all MR
image contrasts except the track-density images. The superior
(not shown) and inferior colliculi (Figure 1; arrow g) were dis-
tinguishable across all subjects only on the R1 maps. Both of these
structures could be assessed on the other MRI contrasts in at least
four of six subjects (superior colliculus on susceptibility maps in
six of six subjects). The superior colliculus and inferior collicu-
lus presented highest CNR on susceptibility maps and R∗2 maps,
respectively (Figure 2). Anatomic regions with low magnetic sus-
ceptibility (Figure 1C; arrows c, e, f), such as the hypointense
rim around the red nuclei coincided with regions of high myelin
content (Figure 1G; arrows c1–3, e, f) and had no unique imag-
ing correlate on any of the other MR images. The histological
stains (Figures 1G,H) showed increased myelin and decreased cell
density in the red nucleus compared to the substantia nigra.

MR images of the rostral and the middle part of the pons
are depicted in Figures 3 and 4, respectively. The R∗2 and mag-
netic susceptibility maps clearly displayed fibers traversing the
pons in medial-lateral direction and fibers of the middle cere-
bellar peduncle (MCP) (arrow a in Figure 3) as also indicated
by the myelin stains (Figures 3G and 4G). These fiber structures
were barely visible on the R1 maps [Figures 2 (TPF), 3A, and 4A].
The direction of the transverse pontine fibers could not be reliably
separated from the superior-inferior running corticospinal tract
on the track-density images (Figures 3D and 4D). In contrast, the
susceptibility maps revealed even smaller fiber tracts [e.g., central
tegmental tract (arrow f, two of six subjects), medial longitudinal
fasciculus (arrow e)] and nerve nuclei [reticulotegmental nucleus
(arrow c)] that were indiscernible on R1 and R∗2 maps as well
as on the T 2-weighted images. In the direction-encoded track-
density images larger [e.g., MCP (arrow a), superior cerebellar
peduncle (arrow d), corticospinal tract (arrow h), pontocerebellar
fibers (white solid outline in Figure 3D)] and smaller [e.g., cen-
tral tegmental tract (arrow f)] fiber tracts were clearly identifiable.
The MCP was also discernible on the R1, R∗2 and susceptibility
maps, whereas the superior cerebellar peduncle displayed on the
R1 and the susceptibility maps on all subjects and in two of six
subjects on the R∗2 maps. Both of these structures (MCP, SCP)
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Deistung et al. MRI of the human brainstem

FIGURE 1 | Images of the midbrain. R1, R∗2 , and susceptibility maps as well
as direction-encoded track-density and T 2-weighted images of the same brain
region are presented in axial orientation from (A–E), respectively. Red, blue,
and green in the track-density image represent anisotropy along
medial-lateral, superior-inferior, and anterior-posterior directions, respectively.
Note that the track-density image is slightly distorted compared to the other
image contrasts (A–C,E). The sectional plane of the axial images is indicated
by the dashed line overlaid on the sagittal R1 map shown in (F). Axial

histological sections from a different subject stained for myelin and cells are
illustrated in (G) and (H), respectively. The arrows in the images indicate: (a)
mammillary body, (b) substantia nigra, (c) crus cerebri, (c1) corticobulbar
fibers, (c2) corticospinal fibers, (c3) corticopontine fibers, (d) red nucleus, (e)
medial lemniscus, (f) central tegmental tract, (g) inferior colliculus, and (h)
medial longitudinal fasciculus. [The histological stains (G,H) were adapted
with permission from http://www.brains.rad.msu.edu and
http://brainmuseum.org, supported by the US National Science Foundation.]

FIGURE 2 | Contrast-to-noise ratio (CNR) of selected anatomical regions.
Mean values of CNR across six subjects and both hemispheres were
extracted from R1 (blue bars), R∗2 (red bars), and susceptibility maps (green
bars) as well as T 2-weighted images (black bars). Brain regions include: RN -
red nucleus vs. surrounding tissue, SN - substantia nigra vs. tissue between
red nucleus and substantia nigra, CTT - central tegmental tract vs.

surrounding tissue (without red nucleus), sup col - superior colliculus vs.
adjacent tissue, inf col - inferior colliculus vs. adjacent tissue, RTN -
reticulotegmental nucleus vs. surrounding white matter tissue, MCP - middle
cerebellar peduncle vs. adjacent cerebrospinal fluid, SCP - superior cerebellar
peduncle vs. reticular formation, TPF - transverse pontine fibers vs.
corticospinal tract. The error bars indicate the 95%-confidence interval.

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 710 | 5

http://www.brains.rad.msu.edu
http://brainmuseum.org
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deistung et al. MRI of the human brainstem

FIGURE 3 | Images of the rostral part of the pons. R1, R∗2 , and susceptibility
maps as well as direction-encoded track-density (same color-encoding as in
Figure 1; slightly distorted compared to the other axial image contrasts) and
T 2-weighted images of the same region are presented in axial orientation
from (A–E), respectively. The sectional plane of the axial images is indicated
by the dashed line overlaid on the sagittal R1 map shown in (F). Axial
histological sections from a different subject stained for myelin and cells are

illustrated in (G) and (H), respectively. The arrows in the images indicate:
(a) middle cerebellar peduncle, (b) medial lemniscus, (c) reticulotegmental
nucleus, (d) superior cerebellar peduncle, (e) medial longitudinal fasciculus,
(f) central tegmental tract, and (h) corticospinal tract. The solid white outline in
(D) indicates the pontocerebellar fibers. [The histological stains (G,H) were
adapted with permission from http://www.brains.rad.msu.edu and
http://brainmuseum.org, supported by the US National Science Foundation.]

were also barely visible on T 2-weighted images (MCP in three
subjects, SCP in one subject; Figure 2). The susceptibility maps
showed the highest CNR for nearly all investigated structures
within the pons (Figure 2). Only the CNR value of MCP with
respect to adjacent cerebrospinal fluid were outperformed by the
R∗2 maps. Although pontine veins were only seen on both R∗2 and
susceptibility maps (Figures 4B,C; arrow n), their identification
compared to adjacent tissue structures (e.g., transverse pontine
fibers) was substantially improved on susceptibility maps. The
solid white outline in Figures 4A–D encloses the caudal part of
the pontine reticular nucleus, the facial nucleus, salivatory nucleus
and nucleus abducens. Although R1, R∗2 , and susceptibility maps
displayed heterogeneous signal intensities in this area, discrimina-
tion of these nuclei was not possible. The interruption of the fiber
tracts between the MCP seen on the track-density image (dashed
outline in Figure 4D) is most likely caused by data acquisition
and TDI post-processing issues (incompletely corrected geomet-
ric distortions in the unwarped diffusion-weighted images that
impeded reliable TDI post-processing) because no such interrup-
tion is observed on the susceptibility map (Figure 4C) and on
the histological stains (Figures 4G,H). The T 2-weighted images
(Figures 3E and 4E) displayed rather homogeneously with low

contrast (Figures 2–4), which prevented reliable identification of
any substructures across all subjects.

Figures 5 and 6 display the rostral and middle part of the
medulla oblongata, respectively. The pyramid (arrow a) is located
anterior to the inferior olive and was clearly visible on all contrasts
(four of six subjects on R∗2 maps) except the T 2-weighted images.
It could be well discriminated from the inferior olive (arrow b)
which was also clearly discernible on the R1 (five subjects) and
susceptibility map (four subjects), and less obvious on R∗2 maps
(three subjects). The inferior cerebellar peduncle was clearly vis-
ible on track-density images and was distinguishable on R1, R∗2 ,
and susceptibility maps in four subjects at least. Only the suscepti-
bility maps enabled identification of the spinal trigeminal nucleus
(arrow c in Figure 5; four subjects). Although the histological
stains (Figures 5G,H) suggested the presence of several cranial
nuclei, further nuclei were not visible on the MR images.

Finally, R1, R∗2 , and susceptibility differences are listed in
Table 1 for selected anatomical regions. The differences of the
susceptibility and the R∗2 values between fibers running nearly
parallel (transverse pontine fibers) and nearly perpendicular (cor-
ticospinal tract) to the static magnetic field were (−49± 11) ppb
and (8.9± 6) s−1, respectively.
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Deistung et al. MRI of the human brainstem

FIGURE 4 | Images of the middle part of the pons. R1, R∗2 , and
susceptibility maps as well as track-density (same color-encoding as in
Figure 1; slightly distorted compared to the other axial image contrasts)
and T 2-weighted images of the same region are presented in axial
orientation from (A–E), respectively. The sectional plane of the axial
images is indicated by the dashed line overlaid on the sagittal R1 map
shown in (F). Axial histological sections from a different subject stained for
myelin and cells are illustrated in (G) and (H), respectively. The arrows in
the images indicate: (a) middle cerebellar peduncle, (d) superior cerebellar
peduncle, (e) medial longitudinal fasciculus, (h) corticospinal fibers,

(i) pontocerebellar tract, (j) facial nucleus, (k) salivatory nucleus,
(l) abducens nucleus, (m) solitary nucleus, (n) vein, (o) fiber bundle that
traverses the pons in medial to lateral direction, and (p) fourth ventricle
(cerebrospinal fluid). The solid white outline in (A–D) summarizes the
caudal part of the pontine reticular nucleus, the facial nucleus, salivatory
nucleus, and abducens nucleus.The dashed white outline in (D) indicates a
region between the middle cerebellar peduncle that could not be resolved
withTDI. [The histological stains (G,H) were adapted with permission from
http://www.brains.rad.msu.edu and http://brainmuseum.org, supported by
the US National Science Foundation.]

DISCUSSION
We have investigated the anatomy of the human brainstem in vivo
by applying MR imaging at 7 T with high spatial, isotropic resolu-
tion, and using multiple image contrasts. QSM and TDI have been
applied jointly for the first time to identify anatomical substruc-
tures of the brainstem. Both MR methods directly reflect subtle
variations in tissue composition that were found to be consistent
with histology as demonstrated with corresponding histological
stains selected from a data base. In contrast, longitudinal relaxation
rate mapping and T 2-weighted imaging both performed inferiorly
in their ability to delineate anatomical details (Figure 2).

R∗2 relaxation comprises both intrinsic microscopic transverse
relaxation (R2) and relaxation due to heterogeneous magnetic
susceptibility distributions on a mesoscopic or macroscopic scale
(R′2). In contrast to the R∗2 relaxation rate, which increases with
the concentration of both iron (Langkammer et al., 2010) and
myelin (Lee et al., 2012), magnetic susceptibility shows a different
dependence on the concentration of these substances, i.e., higher
magnetic susceptibility values with increasing iron concentration

(Langkammer et al., 2012b), and lower magnetic susceptibility val-
ues with increasing myelin density (Liu et al., 2011; Schweser et al.,
2011; Li et al., 2012a,b). Hence, image contrast on R∗2 and suscep-
tibility maps appears complementary. The longitudinal relaxation
rate, R1, in turn is heavily influenced by myelin content, but shows
little effect with respect to tissue iron concentration (Bridge and
Clare, 2006).

Both R∗2 maps and susceptibility maps provided detailed depic-
tion of the non-cranial nuclei and nerve fibers in the midbrain in
accordance with recent studies (Schweser et al., 2011; Deistung
et al., 2013a). In particular, the red nuclei and the substantia nigra
were clearly discernible on susceptibility and R∗2 maps because
both structures contain substantially higher iron concentrations
compared to the surrounding brainstem tissue (Morris et al.,
1992). Interestingly, the highly myelinated rim around the red
nuclei, which was clearly seen on the myelin stain and on the
susceptibility map was not visible on the R1 map, potentially
due to the lower spatial resolution of the MP2RAGE acquisition
compared to the gradient-echo acquisition.
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Deistung et al. MRI of the human brainstem

FIGURE 5 | Images of the rostral part of the medulla oblongata. R1,
R∗2 , and susceptibility maps as well as direction-encoded track-density
(same color-encoding as in Figure 1; slightly distorted compared to the
other axial image contrasts) and T 2-weighted images of the same
region are presented in axial orientation from (A–E), respectively. The
sectional plane of the axial images is indicated by the dashed line
overlaid on the sagittal R1 map shown in (F). Axial histological sections
from a different subject stained for myelin and cells are illustrated in

(G) and (H), respectively. The arrows indicate: (a) pyramid, (b) inferior
olive, (c) spinal trigeminal nucleus, (d) inferior cerebellar peduncle,
(e) medial longitudinal fasciculus, (f) medial lemniscus, (h) reticular
formation, (i) accessory cuneate nucleus, (j) solitary nucleus, (k) dorsal
motor nucleus of the vagus nerve, and (l) hypoglossal nucleus. [The
histological stains (G,H) were adapted with permission from
http://www.brains.rad.msu.edu and http://brainmuseum.org, supported
by the US National Science Foundation.]

FIGURE 6 | Images of the middle part of the medulla oblongata. R1, R∗2 ,
and susceptibility maps as well as track-density (same color-encoding as in
Figure 1; slightly distorted compared to the other axial image contrasts) and
T 2-weighted images of the same region are presented in axial orientation

from (A–E), respectively. The sectional plane of the axial images is indicated
by the dashed line overlaid on the sagittal R1 map shown in (F). The arrows in
the images indicate: (a) pyramid, (b) inferior olive, and (d) inferior cerebellar
peduncle.

Brainstem nuclei were barely seen on the R1, R∗2 and suscepti-
bility maps sectioning the pons and medulla oblongata; however,
the inferior olive (Figures 5 and 6, arrow b) could be identified and

both the spinal trigeminal nucleus (Figure 5C, arrow c) and the
reticulotegmental nucleus (Figure 3C, arrow c) were discernible
on the susceptibility maps. The inferior olive is the sole source
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Deistung et al. MRI of the human brainstem

Table 1 | Mean values of longitudinal relaxation rate (R1), effective

transverse relaxation rate (R ∗

2 ), and volume magnetic susceptibility

difference (∆χ) with respect to normal appearing white matter over

six subjects and both brain hemispheres for selected anatomical

regions.

Region Structure R1 (s−1) R∗

2 (s−1) ∆χ (ppb)

Midbrain Red nucleus 0.809±0.029 61.3±6 84±8

Substantia nigra 0.759±0.031 69.4±3 82±13

Crus cerebri 0.777±0.029 29.8±3 −27±18

Pons Reticulotegmental

nucleus

0.704±0.043 34.5±3 −6±12

Corticospinal tract 0.684±0.042 27.1±4 25±19

Transverse pontine

fibers

0.723±0.036 36.0±5 −24±19

Pontocerebellar tract 0.693±0.033 38.3±2 −26±16

CSF Cerebrospinal fluid 0.300±0.006 0.9±0.4 −6±11

The values are presented as mean± standard deviation.

of the climbing fibers to the Purkinje cells in the cerebellar cor-
tex and is involved in learning and timing of motor behavior (De
Zeeuw et al., 1998). Lesions in the inferior olive can thus intro-
duce restrictions in performing specialized motor tasks (Martin
et al., 1996). The spinal trigeminal nucleus is the largest of all
cranial nerve nuclei and one of the three paired sensory nuclei
associated with the trigeminal nerve. It receives input from pain,
temperature, and some tactile afferents in the trigeminal nerve
and is involved in migraine headache (Kaube et al., 2002). The
reticulotegmental nucleus of the pons is an important compo-
nent of the oculomotor circuit that regulates horizontal saccades
and smooth pursuit movements of the eyes (Keller and Crandall,
1981; Büttner-Ennever and Horn, 1997). Damage to the reticu-
lotegmental nucleus has been observed in spinocerebellar ataxia
(Rüb et al., 2004) and it most probably contributes to hypometric
horizontal saccades and slowing of smooth pursuits that charac-
teristically develop in patients suffering from Alzheimer’s disease
(Rüb et al., 2001). Therefore, non-invasive assessment of these
nuclei may help to improve diagnosis and understanding of these
diseases.

These nuclei (inferior olive, spinal trigeminal nucleus, retic-
ulotegmental nucleus) were visible on the susceptibility maps
because of their different iron concentration and/or myelin con-
tent with respect to surrounding tissue. A histological study by
Morris et al. (1992), for instance, demonstrated iron accumulation
in the nuclei of the dorsal parts of the brainstem, the pyramids,
the spinal trigeminal nucleus, and the inferior olive (although with
substantially lower iron concentration than in the red nuclei and
substantia nigra) and reported only little or no intrinsic iron reac-
tivity for many other nuclei and tracts of the brainstem (e.g., soli-
tary nucleus, hypoglossal nucleus, raphe pallidus nucleus, cuneate
fasciculus, and gracile fasciculus). Brainstem nuclei have a similar,
relatively low myelin density as seen from the histological myelin
stains. Only the inferior olive (Figure 5G, arrow b) and the spinal
trigeminal nucleus (Figure 5G, arrow c) and reticulotegmental

nucleus [see (Paxinos et al., 2012) and Figure 3C, arrow c] are
embedded in tissue with substantially increased myelin density.

In addition to myelin’s bulk diamagnetic nature, a dependence
of the magnetic susceptibility on the axons’ alignment with respect
to the external magnetic field has been recently reported (Liu,2010;
Li et al., 2012a; Schweser et al., 2012; Wharton and Bowtell, 2012).
Similar direction dependent observations have been made for R∗2
(Bender and Klose, 2010; Denk et al., 2011; Lee et al., 2011; Sati
et al., 2012). We measured differences of the susceptibility and the
R∗2 values between fibers running nearly parallel (transverse pon-
tine fibers) and nearly perpendicular (corticospinal tract) to the
static magnetic field of (−49± 11) ppb and (8.9± 6) s−1, respec-
tively. This susceptibility difference is nearly threefold as large as
the values that have been derived for a hollow cylinder model of
myelin (−18 to −16 ppb) (Li et al., 2012a; Wharton and Bowtell,
2012). In vivo, however, Li et al., 2012a also reported susceptibil-
ity differences between parallel and perpendicular fibers of up to
−40 ppb in individual white matter regions,a value which is almost
the same as reported here. The result for the orientation depen-
dence of R∗2 is in good agreement with the recently reported ex vivo
value of−6.44± 0.15 s−1 at 7 T (Lee et al., 2011). The orientation-
dependent differences of magnetic susceptibility and R∗2 in our
study may be caused by the presence of additional contributors
other than myelin, such as pontine nuclei and neuropil within the
investigated volumes-of-interest. Nevertheless, consistent with the
theory of myelin’s orientation dependency, the contrast between
fibers running in medial-lateral direction (oriented nearly per-
pendicular to the magnetic field; e.g., transverse pontine fibers,
arrow o in Figure 4) and fibers running inferior-superiorly (ori-
ented nearly parallel to the magnetic field; corticospinal tract)
is enhanced on the R∗2 and susceptibility maps. More sophisti-
cated approaches, such as susceptibility tensor imaging (STI) (Liu,
2010; Li et al., 2012a) or multipole susceptibility tensor imaging
(MSTI) (Liu and Li, 2013) may further improve discrimination
between fibers and nuclei of the pons and medulla, particularly in
combination with high spatial resolution.

Direction-encoded TDI enabled discrimination of the direc-
tionality of nerve fibers within the brainstem and yielded comple-
mentary information to the relaxation and susceptibility maps.
The depiction of larger fiber bundles was consistent with the
results of other DTI studies conducted in vivo at lower mag-
netic fields (Nagae-Poetscher et al., 2004; Salamon et al., 2005).
We were, however, unable to resolve unambiguously the trans-
verse pontine fibers, which were clearly visible on the R∗2 and
susceptibility maps (Figure 4). This may be due to the lower base
voxel resolution of 1.2 mm of the DWI data, which was chosen
as a compromise between spatial resolution, SNR, and acquisition
time. To overcome this limitation we interpolated the DWI data
using a super-resolution approach (TDI) to obtain an isotropic
virtual resolution of 0.43 mm. It should be noted, however, that
the TDI technique is not able to fully recover the whole infor-
mation that would be present if the data would be acquired with
such a high spatial resolution (Calamante et al., 2011). Due to the
larger errors in tractography by performing fiber tracking on data
with a lower resolution, the higher resolved track-density images
appeared slightly blurred and lost some fine details; explaining
the difficulties in identifying the transverse pontine fibers in the
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Deistung et al. MRI of the human brainstem

presented track-density images (Figures 3D and 4D). As might be
expected, the level of blurring in the track-density images depends
on the desired virtual resolution (Calamante et al., 2011). Higher
spatial resolution is thus needed to delineate transverse pontine
fibers unambiguously, which requires sophisticated modifications
of the diffusion MRI sequence such as combining zoomed imaging
and parallel imaging (Heidemann et al., 2012; Eichner et al., 2013).
Karampinos et al. (2009) were recently able to resolve transverse
pontine fibers in direction-encoded fractional anisotropy maps
with a resolution of 0.8 mm× 0.8 mm× 3 mm at 3T by apply-
ing a dedicated acquisition scheme (self-navigated, multi-shot,
variable-density, spiral-imaging with outer volume suppression).

One particular problem of brainstem imaging with MRI are the
induced field inhomogeneities caused by nearby air-tissue or bone-
tissue interfaces. In the vicinity of such interfaces significant image
distortions of EPI-based diffusion-weighted images occur and
additional spin dephasing arises in gradient-echo images. Despite
unwarping the diffusion-weighted images based on gradient-echo
field-map information, it was not possible to completely com-
pensate geometric distortions, thus impeding accurate depiction
of ventral fiber structures of the middle pons and medulla oblon-
gata on track-density images. These induced field inhomogeneities
manifest themselves as steep gradients in gradient-echo phase
images and lead to signal reductions in gradient-echo magnitude
images and decreased SNRs, affecting both susceptibility maps
[due to increased phase noise (Gudbjartsson and Patz, 1995)] and
R∗2 maps. In future studies, the impact of spin dephasing due to air-
tissue or bone-tissue interfaces on R∗2 maps may be minimized by
taking into account the macroscopic field inhomogeneity reflected
in the phase images (de Leeuw and Bakker, 2012). R1 maps and T 2-
weighted images, on the other hand, are distinctly more immune
against these field inhomogeneity effects.

The quantitative analysis revealed similar values for the lon-
gitudinal relaxation rates (R1) for nuclei and myelinated fibers
(Table 1), whereas susceptibility and R∗2 values varied more sub-
stantially. This broader spread of R∗2 and susceptibility values

is reflected in the large CNR values (Figure 2) underlining the
good discrimination of nerve fibers on susceptibility maps and
the exquisite delineation of midbrain nuclei on susceptibility and
R∗2 maps. It should, however, be noted that the discrimination of
brain tissue with respect to cerebral spinal fluid (CSF) on suscep-
tibility maps is not as striking as on the R1, R∗2 , and T 2-weighted
images [Table 1; Figure 4 (arrow p)]. Due to the quantitative
nature of R1, R∗2 , and magnetic susceptibility maps, these contrasts
may be combined by projections along support vectors observed
from discriminant analysis or support vector machines to generate
composite images with improved depiction of anatomical features
while providing improved discrimination of CSF (Deistung et al.,
2013b).

In conclusion, maps of magnetic susceptibility displayed the
largest number of brainstem structures, including larger and
smaller fiber pathways as well as several nerve nuclei. Usage of
multiple image contrasts enables a detailed non-invasive view
into tissue structure and composition. Hence, multi-contrast MR
imaging of the brainstem at ultra-high magnetic fields that utilizes
relaxation, diffusion, and magnetic susceptibility information is a
versatile tool to assess anatomy individually in great detail.
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