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Richard Bach





Abstract

Lectori benevolo salutem.

Lat.: To the kind reader, greeting.

One of the general problems of modern high energy physics is a problem of comparing ex-
perimental data, measurements of observables in high energy collisions, to theory, which is rep-
resented by Monte Carlo simulations.

This work is dedicated to further development of the tuning methodology and implemen-
tation of software tools for tuning of the PYTHIA Monte Carlo event generator for the LHCb
experiment. The aim of this thesis is to create a fast analytical model of the Monte Carlo event
generator and then fitting the model to the experimental data, recorded by the LHCb detec-
tor, considering statistical and computational uncertainties and estimating the best values for
the tuned parameters, by simultaneous tuning of a group of phenomenological parameters in
many-dimensional parameter-space. The fitting algorithm is interfaced to the LHCb software
framework, which models the response of the LHCb detector. Typically, the tunings are done
to the measurements which are corrected for detector effects. These corrections depend on the
model which is input into the detector simulation, and the proposed approach allows to avoid
this dependence.

This tuning methodology and the developed software tools were tested on a small subset of
kinematical parameters, which describe the gross fraction of the hadronic final states in high
energy pp-collisions.

Zusammenfassung

Eines der allgemeinen Probleme der modernen Hochenergiephysik besteht darin experi-
mentelle Daten, also Messungen von Observablen in Hochenergie-Kollisionen, mit Ergebnissen
der Theorie zu vergleichen, die aus Monte Carlo Simulationen hervorgehen.

Die vorliegende Arbeit widmet sich der Weiterentwicklung der Tuning-Methodik und dem
Implementieren von Softwarewerkzeugen zum Tunen des PYTHIA Monte Carlo Event Genera-
tors für das LHCb-Experiment. Das Ziel ist ein schnelles analytisches Modell des Monte Carlo
Event Generators zu erstellen und dann dieses Modell an die vom LHCb Detektor aufgenomme-
nen Daten anzupassen, dabei statistische wie numerische Fehler zu berücksichtigen, und die
besten Schätzwerte für die zu tunenden Parameter durch ein simultanes Tuning einer Gruppe von
phänomenologischen Parameter im vieldimensionalen Parameterraum zu erhalten. Der Anpas-
sungsalgorithmus hat eine Schnittstelle zum LHCb-Software-Framework, welches das Ansprechen
des Detektors modelliert. Üblicherweise werden für die Tunings Messungen verwendet, die auf
Detektoreffekte korrigiert sind. Diese Korrekturen sind aber abhängig von den in den Detektor-
simulationen verwendeten Modellen, was der vorgeschlagene Ansatz umgeht.

Diese Tuningmethode und die entwickelten Softwarewerkzeuge wurden mit einer kleinen
Anzahl von kinematischen Parametern getestet, welche den größten Teil der hadronischen
Endzustände von Hochenergie-Kollisionen beschreibt.
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Chapter 1

Introduction

Usus efficacissimus rerum omnium magister. . .
Lat.: Custom is the best master of all things. . .

– Pliny, Naturalis Historiae

1.1 CERN

The rapid development of fundamental science in the 20th century made it global and inter-
national: today many countries around the world join forces and resources to solve scientific
problems which form the base of the scientific and technical progress. Indeed, current studies
require high material costs which are hard to upkeep even by the most economically developed
countries. The complexity of these scientific problems requires a focus of intellectual potential
of many scientists, which was made possible by the rapid development of the information envi-
ronment at the end of the last century. Foremost, all of this refers to the world of high-energy
physics, which nowadays requires enormous technological effort. And one of such modern focal
points of the state of the art technology and intelligence – is CERN.

CERN (European Organization for Nuclear Research) – is the world’s largest center for
physics research and a unique experimental ground in the field of elementary particle physics.
It is located west of Geneva, on the Franco–Swiss border and at the foot of the Jura mountain
range, where the geologic and seismic conditions are suitable for a large particle accelerator
construction.

The proposal to establish CERN was first sounded by the French physicist, Nobel laureate
Louis de Broglie in 1949 at the European Conference on Culture in Lausanne. He proposed the
creation of an international organization for fundamental research of such a scale, which wouldn’t
be feasible by a single national institution alone. He was supported by European governments and
in 1954 the European Centre for Nuclear Research was born. The initial number of 12 countries
which signed the Convention on CERN’s membership, today has grown up to 20 member states.
About 7000 scientists from approximately 500 research centers and universities in 80 different
countries from around the world use CERN as the experimental grounds.

1
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Figure 1.1: Aerial view of CERN [1].

Since it’s foundation, CERN hosted many experiments and among the most famous achieve-
ments are the following ones:

1968: The invention of the multi-wire proportional and drift chambers.

1973: The experimental observation of the weak neutral currents at the Gargamelle bubble
chamber, shortly after their theoretical prediction.

1983: The discovery of the weak bosons W and Z, which was an important milestone for
the confirmation of the Standard Model.

1989: The determination of the number of light neutrino families at LEP.

1990: Birth of the World Wide Web.

1995: The first synthesis of atoms of antimatter (antihydrogen), which were produced in
collisions of antiprotons and xenon atoms.

1999: The discovery of the phenomenon of direct CP violation (NA48 experiment).

2012: Discovery at LHC of a boson with mass around 125 GeV, which is consistent with
long-sought Higgs boson.

1.1.1 The LHC

LHC, the Large Hadron Collider, is the particle accelerator with which physicists are able to
penetrate as deeply into the matter as never before. Its construction was proposed in 1984
and it was planned that it would operate at a significantly increased, in respect to all previous
accelerators, center-of-mass energy of

p
s = 14 TeV.

The name “Large” comes from the the fact that it is the largest and most complicated machine
ever built by humanity. In order to save on building costs, the collider was installed in the 27 km
underground tunnel at a depth of about 100 meters, which hosted the LEP accelerator before.
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Figure 1.2: Schematic view of the LHC underground structure [1].

The “Hadron” part reflects the fact that the colliding particles are hadrons, i.e. protons and
heavy nuclei. Unlike it’s predecessor, the LEP project, which accelerated electrons and positrons,
LHC chose to work with proton beams. The reason for that was the aim to reach the maximum
possible energy in a given accelerator ring, and the motion of charged particles in a circular
orbit is accompanied by energy losses, due to the synchrotron radiation. One can estimate
how much higher these losses are during acceleration of electrons in the same ring taking into
account that the electron mass is almost 2000 times smaller than the proton’s mass, knowing
that the intensity of such radiation is inversely proportional to the fourth power of the mass of
the accelerated particle.

Finally, the “Collider” part of the name points out that it has two beams of particles cir-
culating in opposite directions, which then intersect in special points for particles collisions. In
comparison to fixed target experiments, the benefit of such a construction is the higher energy
in the center of mass of the colliding particles.

The purpose of the experiments conducted at the LHC is to shed light on fundamental
questions, such as, “What does matter consists of and where does it come from?”, “Why is the
observable universe dominated by matter?”, “What are the forces acting between elementary
particles and combine them into complex objects that surround us?”, “What is the origin of our
universe and what are the laws that determine its development?”. Or if to be a bit more specific,
to prove, or disprove, the existence of the Higgs boson, super-symmetric particles and search for
any manifestation of new physics.

The LHC is indeed a very complex machine. Inside it, the two beams of protons circulate with
opposite directions and their speed is close to the speed of light in vacuum. To keep the beam
of these energetic particles on a circular track, the accelerator requires magnetic fields which
are stronger than at any other accelerator. The technology for generating such magnetic fields,
by means of superconducting magnets, has been used before, but there was never an attempt
to construct a superconducting apparatus of such a great scale. There are more than 1200
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superconducting dipole magnets which are placed along the ring and deflect the particle beams.
The maximum value of the magnetic field created by these magnets reaches up to around 8 Tesla.
There is yet another category of superconducting magnets: about 400 quadrupole magnets help
to optimally focus the two beams along the accelerator ring and in the four collision points where
the main experiments take place. All of these superconducting magnets operate at a temperature
as low as 1.9 K and to cool them down to such a low temperature, nearly 96 tons of superfluid
helium circle through the accelerator’s ring.

Figure 1.3: Diagram showing the cross-section of an LHC dipole magnet [1].

Since the LHC accelerates two beams of particles which move in opposite directions, in reality
it consists of two accelerators in one, and before the beams are injected into the main ring, they
are accelerated in several sequentially connected machines. Initially, protons reach the energy
of 50 MeV in the linear accelerator (LINAC), from which they are rerouted into the Proton
Synchrotron Booster (PBS), where they acquire an energy of 1 GeV. Afterwards they travel to
the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) in which they are boosted
to energies of 26 GeV and 450 GeV respectively. And only after all these intermediate steps the
beams of protons reach the main ring of the LHC, where they are accelerated to the much higher
energy of 4 TeV per beam, which was achieved in spring of 2012.

1.1.2 The four main experiments at the LHC

The beams in the LHC are not only the most energetic in the world, but also the most intensive.
Each collision produces up to thousands of particles and it is a very challenging task to track
down all of them. To record all the interactions and to help to understand all the processes
which take place in them, four large detectors have been constructed at CERN: ATLAS, CMS,
ALICE and LHCb.
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The first two experiments, ATLAS (A Toroidal LHC ApparatuS) [2] and CMS (Compact
Muon Solenoid) [3] are two general purpose experiments. They have similar physics programs
and are very large international collaborations. Both of the experiments are ‘general purpose’
detectors and their main aim is discovery of the Higgs boson and super-symmetry particles, but
they are also capable of solving other physics problems.

Figure 1.4: Layout of the accelerators [1].

Figure 1.5: ATLAS detector [1].
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Figure 1.6: CMS detector [1].

The main goal which is pursued by the ALICE (A Large Ion Collider Experiment) [4] collab-
oration are the studies of quark-gluon plasma (QGP) physics in collisions of heavy ions, a state
of matter which, theoretically, existed in the first moments after the birth of our universe.

Figure 1.7: ALICE detector [1].

Finally, the LHCb (Large Hadron Collider beauty) detector is designed for B-physics studies,
in particular the measurement of CP violation and the study of rare decays. It is described in
more details in the next section.
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The physics goals which are pursued by the collaborations of these four main LHC experi-
ments do of course overlap, but the results will be achieved in different ways, which in turn helps
to cross check them.

Besides these four large detectors there are also three smaller ones:

LHCf (Large Hadron Collider forward) consists of two detectors which are placed at 140
meters distance on both sides of ATLAS [5]. The LHCf collaboration studies forward
particles created at the ATLAS interaction point to obtain a better understanding of cosmic
ray interactions on the atmosphere.

TOTEM (Total Elastic and Diffractive cross-section) also studies the forward particles and
focuses on the elastic scattering over a large range of momentum transfer and cross-sections
of diffractive processes [6].

MoEDAL (Monopole and Exotics Detector at the LHC) is located in the same cavern as
LHCb and focuses on the search for new physics beyond the Standard Model, in particular,
the experiment aims to directly search for Magnetic Monopoles (Dyons) and other highly
ionizing Stable (or pseudo-stable) Massive Particles (SMPs) at the LHC.

1.1.3 LHC’s luminosity

Each of these detectors are situated in one of the four caverns along the LHC ring, where the
accelerated beams of particles could cross and interact with each other. In these beams, particles
are not distributed evenly along all the circumference, but are grouped in bunches. Each beam
may consist of up to 2808 bunches with each of them containing around 1011 protons. Accelerated,
they travel the full circle of the LHC ring in under 0.0001 seconds, making more than 10000
turns per second. Bunches stay in fixed positions with respect to each other so they always move
synchronously along the accelerator’s ring and collide in a specific order in the four nodal points.

One of the important parameters which characterize a collider is its luminosity, which is a
measure of how many particles interact during a collision: the higher the luminosity, the more
particles interact in the bunches of the colliding beams. Luminosity is defined as:

L = f · n
1

n
2

4⇡�
x

�
y

.

This formula accounts for the information on the numbers of particles, n
1

and n
2

, in the
bunches of proton beams, the bunch profile (the area of the overlap between the two beams),
the crossing rate f , the standard deviations of the particle densities in the bunches in the x and
y directions �

x

, �
y

, presuming that the distributions are Gaussian.
The designed maximal luminosity for the LHC is L

max

= 1034 cm�2s�1 at 25 ns bunch
crossings, and the total number of inelastic collisions N

pp

for a time period t is equal to:

N
pp

= �
inel

Z

t

Ldt,

where �
inel

= 80 mb is the inelastic cross-section which is expected for proton-proton collision at
a centre-of-mass energy

p
s = 14 TeV.

The number of proton–proton interactions per single crossing of two bunches is estimated by
the Poissonian distribution:

P(µ, n) =
µn

n!
e�µ,
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Figure 1.8: Probability for 0, 1, 2, 3, 4 inelastic collisions per bunch crossing versus the luminosity
(left). The number of bb̄ events per second with 0, 1, 2, 3, 4 pile-up (right) [7].

where µ defines the average number of inelastic interactions per bunch crossing and is directly-
proportional to the cross-section of inelastic interactions �pp

inel

. Probabilities for n = 0, 1, 2, 3, 4 of
proton-proton interactions as a function of luminosity for �pp

inel

|p
s=14TeV

= 80 mb are presented
in Fig. 1.8.

Events with a single proton-proton interaction per bunch crossing are the most convenient,
clean and simple from the point of analysis. Though the portion of such events is maximal
at luminosity L ' 4 ⇥ 1032 cm�2s�1 (see Fig. 1.8), at such luminosity the number of events
with n >= 2 is very high. On the other hand, higher luminosity means more interactions per
event and a bigger chance to see a rare decay, but at the same time creating higher load on the
readout, reconstruction system, and making the final analysis more complex. All this means that
an optimal value of L varies for different experiments and goals. Currently, LHC is running at
50 ns between bunch crossings and the luminosity for LHCb is L = 4⇥ 1032 cm�2s�1.

1.1.4 b-quarks at the LHC

At the LHC, in proton-proton interactions, at the energy of
p
s = 14 TeV, the beauty quarks are

produced mostly in bb̄ pairs. The dominant mechanism is gluon-gluon scattering in which a pair
of virtual gluons fuse and form a quark � antiquark pair. The cross-sections for the processes
with a single beauty quark production is very small. Table (1.1) demonstrates the estimated
cross-sections for the LHC [8].

cross-section Value
Total �

tot

= 100 mb
Inelastic �

inel

= 80 mb
cc̄ �

cc̄

= 3.5 mb
bb̄ �

b

¯

b

= 0.5 mb

Table 1.1: The estimated cross-sections at
p
s = 14 TeV [8].
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Figure 1.9 illustrates the angular distribution of the b and b̄ quarks from a pp ! bb̄X process
in one event obtained with the PYTHIA [9] simulation application. Since in most cases, the two
colliding virtual gluons significantly differ in their momenta, as a result, the produced quarks are
strongly boosted in either direction of the beams, so they predominantly propagate in a narrow
cone in forward or backward direction. This distribution determines the basic geometry of the
LHCb detector.

Figure 1.9: The angular distribution of the produced b-hadrons obtained with the PYTHIA
simulation program [1].

1.2 The LHCb detector

The LHCb spectrometer, described in [10], is a large detector, optimized for studying B-meson
decay, the decay of particles which contain a b-quark. This is indicated by the letter “b” in the
name of the experiment, which means “Large Hadron Collider beauty” experiment.

One of the most interesting parts in studying B-mesons is that they exhibit a very important,
but so far not fully studied phenomenon of CP-symmetry violation. The interesting fact behind
this phenomenon is that its violation leads to slight differences in decays of particles and an-
tiparticles, which directly relates to the origin of our universe and to the answer to the question
“Why is it that in our universe matter dominates over antimatter?”.

Amusingly, all of this is reflected on the experiment’s logo: the symmetrically mirrored image
is perturbed by a red line, which crosses the mirrored “Cp” part of the detector’s name, hinting
at CP violation.

Figure 1.10: The logo of the LHCb detector, hinting on the main goal of the experiment – the
study of CP-symmetry violation [1].
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1.2.1 Setup of the LHCb experiment

In contrast to the large ATLAS and CMS detectors, which are general purpose detectors and
feature barrel shapes, surrounding the interaction point of the colliding particles, the LHCb
detector is a single-arm spectrometer and has the form of a cone with its tip exactly in the point
of the colliding beams. It tracks particles, which propagate within the specific angular range
with respect to the beam axis and its angular geometrical acceptance is approximately from 10
to 300 mrad in the bending plane of the magnetic field of its dipol magnet, and from 10 to 250
mrad in the perpendicular plane. The length of the LHCb detector is 21 meters and its mass is
around 5600 tonnes.

The detector consists of multiple layers and its sequence is more or less canonical, however
since it has a very specific objective (the study of B-mesons) its components are optimized for
this specific task.

The overall layout is presented in Fig. 1.11. The vacuum pipe of the LHC accelerator traverses
the detector and the accelerated particles collide in the left part of the apparatus inside the vertex
locator, VELO. The collision products which happen to propagate within the detector’s angular
coverage travel further on to the right through one of the two Cherenkov detectors, RICH1,
through the magnetic field of the large magnet which deflects trajectories of charged particles,
then on their way they pass the three tracking stations, the second Cherenkov detector RICH2,
arriving at the calorimeters and finally at the muon chambers.

Figure 1.11: The LHCb detector layout, from left to right: the vertex locator (VELO), RICH1
& RICH2 – the two Ring Imaging Cherenkov detectors, the dipol magnet, TT, T1, T2, T3 – the
four tracking stations, SPD/PS – the Scintillator-Pad Detector and PreShower, ECAL & HCAL
– the Electromagnetic and Hadronic CALorimeters, M1-M5 – the Muon stations [11].
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The subdetectors, the components of the LHCb detector which are described further on, can
be divided into the following two categories:

• Tracing detectors: Vertex Locator (VELO), Tracker Turicensis (TT), Inner Tracer (IT),
Outer Tracker (OT).

• Particle Identification detectors (PIDs): the two Cherenkov detectors (RICH1,
RICH2), Scintillating Pad Detector (SPD), PreShower (PS), Electromagnetic CALorimeter
(ECAL), Hadronic CALorimeter (HCAL) and the muon stations (M1-M5).

Figure 1.11 shows the layout of the subdetectors in the LHCb machine in the y ��z plane,
where the z-axis on the image is the axis of the particle beams, and the y-axis is perpendicular
to the bending plane.

When the charged particles travel through the dipol magnet, their trajectories are bent by
the magnetic field, which allows to measure their momentum [12]. The main component of the
magnetic field B

y

is shown as a function of z in the Fig. 1.12 below.

Figure 1.12: The main component of the magnetic field strenght B
y

along the z-axis [11].

1.2.2 VELO

Of all the subdetectors of LHCb the VELO (VErtex LOcator [13]) detector is the one located
closest to the point of collisions of the beams. It consists of two halves which are positioned
symmetrically around the beam pipe and are retracted during injection, usually 30 mm, to keep
the detector in the “opened” state during particle injections into the LHC, or closer to the beam
at 7 mm for the “closed” state during data recording. Each VELO half contains 21 stations which
are positioned along the beam pipe and at the same time perpendicular to the beam axis, and
carry silicon modules with double-sensors which measure r and � coordinates. The advantage
of such a geometry is that the r � z measurement allows a fast measurement of the impact
parameter d

0

with respect to the primary vertex. The trigger system uses this approach to select
only those tracks from the r� z projection which have a large impact parameter, to reconstruct
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them in two dimensions. The impact parameter resolution �
d

0

is a very important characteristic
of the detector and for the VELO, �

d

0

has been estimated for three momentum ranges which
have been arbitrarily selected to separate particles with low, medium and high momentum [14]:

• The low momentum range (p < 5 GeV): �
d

0

= 8.5± 0.2 µm

• The medium momentum range (8 GeV < p < 15 GeV): �
d

0

= 7.8± 0.2 µm

• The high momentum range (p > 18 GeV): �
d

0

= 8.6± 0.2 µm

Figure 1.13: VELO detector crossection (view from above) and half-disc sensors [11].

There are also two half-disc stations which are placed in the backward part of the VELO
detector and feature only r-sensors. They act as a part of the L0 trigger by allowing quick
identification of collisions with several proton-proton interactions: since the magnetic field in the
detector is weak, it is possible to use fast track-reconstruction algorithms in the trigger system,
assuming that the tracks are not bent. The stations are grouped in two clusters: the inner
one, which is closer to the interaction point and has a smaller pitch between the stations, thus
increasing the density of the silicon modules, and the outer one with wider stations positioning.
The cross-section of the VELO detector and it’s half-disc sensors are shown on the Fig. 1.13.

1.2.3 Tracker Turicensis

The Tracker Turicensis (TT) [15] is the next tracking detector. It is positioned in front of the
large dipol magnet, right after the first Cherenkov detector (RICH1). The detector is housed
in a single large box which provides electrical and thermal insulation. It is constructed using
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500µm thick sensors with a pitch of 183µm and 512 strips. The detector consists of four layers
with the strips oriented in stereo views, x � u and v � x, corresponding to angles with the
vertical y axis of 0�, 5�, �5� and 0�. The stereo views allow a reconstruction of tracks in three
dimensions. The layout for four planes is shown in Fig. 1.14. The silicon sensors are bonded
together to form readout sectors of up to four sensor. In the figure the granularity of the readout
is indicated with different shading, the highest around the beam pipe. The inner readout sectors
are connected with up to 56 cm long cables to the respective front-end readout chips located
outside the acceptance in the upper and lower parts of the detector.

The low integrated magnetic field between the VELO and the Tracker Turicensis makes it
possible to assign a rough momentum estimate to the tracks. The TT also estimates momentum
of slow particles, which are bent out of the LHCb acceptance before they reach the tracking
stations on the other side of the dipol magnet, and for those particles which reach them, the TT
improves their momentum estimate.

Figure 1.14: The Tracker Turicensis stations [15].

1.2.4 T stations

While the high-precision silicon Vertex Locator detector is used to determine the impact parame-
ters of charged particle tracks and directions of their momenta, the task of measuring parameters
of the charged particles rests with the three tracking stations T1-T3, which are positioned right
behind the dipol magnet. Each of the stations is divided into two parts: Inner Tracker (IT) and
Outer Tracker (OT).
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The Inner Tracker [16] is constructed similar to the Tracker Turicensis, with each IT station
consisting of four boxes of silicon sensors. The boxes are grouped around the beam pipe in a
shape of a cross (Fig. 1.15). Each station box contains four layers in a topology similar to that
in the TT.

Figure 1.15: The layout of one of the layers of the Inner Tracker with the silicon sensores in the
cross-shaped configuration, positioned around the beam pipe [16].

The Outer Tracker (OT) [17] stations cover a much larger region, beyond the acceptance of
the Inner Tracker. Similar to the IT and the TT, each Outer Tracker station has four detection
layers built of blocks of modules. As depicted in Fig. 1.16, there are two types of modules: eight
shorter ones, named S1-S3, which fill up the area above and below the IT, and longer modules
(L), seven of which are adjacent to each side of the IT station, covering the rest of the acceptance
area of the OT.

Figure 1.16: Layout of one of the Outer Tracker stations (front view), with the four modules of
the Inner Tracker station pictured in the center.
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Each module is composed of two rows of straw-tubes – cylindrical drift cells of 5 mm diameter
(Fig. 1.17) with a drift-time of less than 50 ns, filled with a mixture of Argon and CO

2

gases.
In total, there are 96 and 168 short and long modules and about 55000 single-straw channels in
the Outer Tracker.

Figure 1.17: The cross-section of the Outer Tracker module with 128 single-straw channels [7].

To give an understanding of the performance of the tracking system, Fig. 1.19 presents the
momentum and impact parameter resolutions of reconstructed long tracks. In the LHCb track
classification, long tracks are those which have hits in most of the tracking detectors: in VELO
and T stations, which make them the best kind of tracks for analysis. Different types of tracks are
presented in Fig. 1.18. The second type of tracks usually used for analysis are the downstream
tracks, which have no hits in the VELO but are registered in TT and T stations. Other kinds of
tracks are often used for technical purposes. Such as for example T tracks are used for alignment
and VELO tracks are used in vertexing.

The momentum resolution is plotted in Fig. 1.19 as a function of the track momentum. It
varies from �p/p = 0.35% for low momentum tracks to �p/p = 0.55% for tracks with higher mo-
mentum. The impact parameter resolution is plotted as a function of inverse transverse momen-
tum (1/p

T

) of the track and its linear dependence can be parametrized as �
IP

= 14µm+35µm/p
T

with p
T

in GeV/c. The lower plots in the figure provide comparison to the momentum spectrum
for B decay tracks and the 1/p

T

spectrum of B decay particles in the detector acceptance.

1.2.5 RICH detectors

The Ring Imaging Cherenkov detectors (RICH) [18] are designed for separation of K±, ⇡±-
mesons, and protons in a wide momentum range from about 3 GeV/c up to 100 GeV/c. This
momentum interval includes kaons from cascade decays of charm-particles, which are used for
beauty-particles flavor tagging, and charged hadrons from multi-particle decays of B-mesons.
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Figure 1.18: LHCb track types [11].

Figure 1.19: Resolution on the reconstructed track parameters at the production vertex of the
track: (a) momentum resolution as a function of track momentum, (b) impact parameter res-
olution, calculated as the sum of the errors in the three projections added in quadrature, as a
function of 1/p

T

. The p and 1/p
T

spectra of B decay particles in the detector acceptance are
shown in the lower part of the corresponding plots for comparison [11].
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Particle identification in the LHCb detector is done by two such Cherenkov detectors
(Fig. 1.20): RICH1, positioned behind the Vertex Locator, and RICH2, mounted between the
last T station and the calorimeters.

The principle of the RICH detectors is based on measuring the velocity of the traversing
charged particles. In the RICH detectors, the traversing charged particles travel in a medium,
in which their velocities are greater than the speed of light in that medium, and emit Cherenkov
photons in a cone in the direction of their flight. Those photons are redirected to photomultipliers
via a system of mirrors and thus the particle’s velocity is found by measuring the emission angle
of Cherenkov photons with respect to the particle’s trajectory. Fig. 1.21 presents an example of
a typical simulated event as it is seen in the RICH1 and RICH2 detection planes.

Figure 1.20: The vertical cross-section of the RICH1 detector (left) and the horizontal cross-
section of the RICH2 detector (right) [7].

The RICH1 is filled with C
4

F
10

gas and uses silica aerogel, a solid and light material which is
only two times more dense than air. Aerogel’s refraction coefficient is between 1.01 to 1.10, which
allows precise measurements of velocities in the range of 0.95 to 0.99 of the speed of light, i.e. to
well identify particles with low energy of a few GeV. The gas’ refraction coefficient is ⇡ 1.001,
which is better suited for measuring velocities of particles with higher energies, from dozens to
a hundred GeV.

For the RICH system, the average efficiency for kaon identification for momenta between
2 and 100 GeV/c is ✏(K ! K) ⇠ 95%, with a corresponding average pion misidentification
rate ✏(⇡ ! K) ⇠ 5%. Around 30 GeV/c the identification probability is ⇠ 97% and the
misidentification probability ⇠ 5% [18].
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Figure 1.21: A typical simulated event in the detection planes of RICH1 (left) and RICH2
(right). The horizontal (vertical) line separates the two detection planes in RICH1 (RICH2).
Superimposed are the reconstructed rings for tracks which extend from the VELO up to the last
T station (solid) and all other tracks (dashed) [7].

1.2.6 LHCb’s magnet

LHCb’s large dipol magnet, which weights around 1600 tons and creates a magnetic field of about
4 Tm, is positioned between the Tracker Turicensis and the T stations. Its curved form, similar
to a shark’s open jaw, was chosen to achieve a more homogeneously distributed magnetic field
on its sides. The opening angle of the magnet follows the polar angular coverage of the detector,
which is from 10 to 300 milliradians (mrad) in the horizontal and 250 mrad in the vertical plane.
The purpose of the magnet is to measure the momenta of the charged particles: as their tracks
are deflected by the magnetic field, with help of the tracking detectors it is possible to estimate
the particle’s momentum with good precision.

Figure 1.22 shows the magnet’s coil, which was constructed from 15 separate mono-layer
pancakes. Each pancake was wound from a single length conductor of about 290 m length,
extruded from pure aluminium in an annealed state, and feature channels for water cooling.

1.2.7 Calorimeters

The LHCb calorimeter system consists of several detectors: Scintillating Pad Detector, Pre-
Shower detector, Electromagnetic Calorimeter and Hadronic Calorimeter [19]. The two main
parts are the electromagnetic and hadronic calorimeters. The ECAL measures the electromag-
netic showers of electrons and photons, and the HCAL is responsible for measuring the hadronic
showers of pions, kaons and protons. The SPD and PS are positioned in front of the ECAL and
act as additional detection layers, which provide information on the longitudinal evolution of the
electromagnetic showers, improving the particle identification of the ECAL.

The functioning principles of the calorimeters are similar. All the particles which traverse the
LHCb detector, except for the muons and neutrinos, are absorbed in the calorimeters. When the
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Figure 1.22: Frontal image of the LHCb’s dipol magnet [1].

particles interact with the bulk matter of the calorimeters, they produce cascades of secondary
particles, which excite atoms in the scintillating material, forcing them to emit scintillating light
as they return to their ground state. This amount of scintillating light is proportional to the
initial particle’s energy.

The resolution of the measured energy E by the ECAL is given by

�(E)

E
=

10%p
E

� 1%,

and the resulting resolution for the HCAL can be estimated as

�(E)

E
=

(65± 5)%p
E

� (9± 2)%,

where E is in GeV and � is the quadratic sum.

1.2.8 Muon system

Detecting muons is very important for LHCb because B-decays of high interest, such as B0

d

!
J/ (µ+µ�)K0

s

and B0

s

! J/ (µ+µ�)�, contain a muon pair in their final states.
Since the muons are the only charged particles which traverse the whole of the LHCb detector,

there is a separate system dedicated to detecting them – the muon detector. It consists of five
stations, four of which, M2-M4, are located right behind the HCAL and are separated by thick
iron plates, which act as filters for the hadronic background, and the first station M1 is placed
in front of the SPD/PS system [20]. These muon stations are instrumented with Multi Wire
Proportional Chambers (MWPCs) and in total there are about 1500 MWPCs, with a total
active surface of 435 m2.

The information of the muons with a high enough transverse momentum is used in the Level-0
trigger and based on its decision potentially interesting events are recorded for further analysis.
Evidence of these interesting events with B-mesons decays will never surface clearly. Fig. 1.23
illustrates an example of a modeled B0

s

! J/ (µ+µ�)� decay, in which traces of the decay are
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lost among the hadrons, produced in the same primary proton-proton interaction. However, the
detected muons (the blue tracks on the image) signal that the event could be a good candidate
for the particular analysis and trigger it for recording.

Figure 1.23: Modeled proton-proton collision event which among other decay products has a
B

s

-meson produced and decayed [1].

1.2.9 LHCb Trigger

The analog front-end system of the LHCb detector delivers data to the trigger system at a rate
of up to 40 MHz. Even with modern cutting edge storage technologies, recording all this data
would be quite a challenging task, not to mention – a very costly one, plus, a necessity not only
to record, but also to fully reconstruct all these events at such a high input rate, would require
serious investment into additional readout electronics and a powerful computational farm. The
amount of recorded data can be significantly reduced since only a small fraction of the events is
interesting from the perspective of the experiment. The production cross-section of b-quarks at
the LHC energy is about ⇠ 0.5 mb, which is a small fraction of the total cross-section of inelastic
interactions of estimated 80 mb (see Tab. 1.1). The LHCb trigger system allows to effectively
separate the pp ! (bb̄)X events from the rest of the inelastic interactions.

For the reason that there is not enough time to fully reconstruct all the data, the events,
which are considered to be better candidates for further analysis, are selected in several successive
stages. These stages, or levels, increase in complexity of criteria which the events have to pass:
initially, rather loose cuts are imposed on just a few available reconstructed variables, in order
to reduce the obvious background events, and later more sophisticated cuts are introduced to
distinguish signal-like background from the real B events. Because of this staged design, the
LHCb trigger consists of three separate subsections:

Level-0 (L0): the hardware level trigger, which reduces the readout rate from up to
40 MHz to below 1.1 MHz with a fixed latency of 4 µs.

HLT1: the software level trigger, which uses the data selected by L0 as the input and
further reduces the data rate to ⇠ 43 kHz with about 1 ms processing time.
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HLT2: the software level trigger, which uses the full event information and in 2011 had
an output rate of 3 kHz with around 10 ms processing time [21].

The L0 itself consists of three trigger subsystems: the calorimeter, muon and pile-up triggers,
and one additional decision unit, which collects information from the three trigger subsystems
and makes the final L0 decision. The calorimeter trigger takes as input information the hadron,
electron and photon clusters with the highest transverse energy E

T

in calorimeters. The muon
trigger requires data from the muon stations and looks for muon tracks which have a high p

T

.
The pile-up system consists of the two most upstream VELO stations, described in Sec. 1.2.2.
The purpose of the system is to tag those bunch crossings which have multiple collisions. In
the end, information from these subsystems are collected by the decision unit, which determines
whether to accept or discard the event.

The Level-1 is one of the two software triggers which utilizes a computational farm (installed
with consumer-level CPUs), shared with the HLT2 trigger. In the case when the L0 trigger
accepts an event, the event data is passed from the subdetectors to the HLT1 trigger, which
may buffer up to around 58000 events and in contrast with the L0 HLT1 has a variable latency.
The HLT1 decision depends on several sources which account information provided by the L0,
the Vertex Locator and the tracking subdetectors. This increased verbosity impacts the event
data size footprint: if in the case of the L0 an event is described by a data structure of 5 kB,
on HLT1 level the size grows up to 50 kB [7]. The algorithm behind the trigger also becomes
more complex: the HLT1 aims to search for tracks of B decay which have a large transverse
momentum combined with a high impact parameter.

The final stage of the trigger system is the HLT2, which is used at the last step of the data
acquisition and decreases the event flow, down to 3.5 kHz, but it uses feedback from all of the
LHCb subdetectors, thus the size of the events during this stage increases to 100 kB. The HLT2
uses information from the tracking stations to re-evaluate the decision carried out by the HLT1
trigger and during this step the event rate is already reduced by a factor of two without significant
loss of signal events. In the next steps HLT2 requires even more reconstructed information such
as a full 3D reconstruction of tracks registered by the VELO, their extrapolation to find hits
in the Tracker Turicensis and the tracking stations, and information on the particle identity for
those tracks which are considered as electron or muon candidates. In general, the procedure
executed by the HLT2 trigger could be characterized as a common offline analysis with rather
loose constraints on the events parameters.
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Chapter 2

CP Violation and LHCb

De rerum natura.

Lat.: On the nature of things.

– Titus Lucretius Carus

This chapter presents a brief introduction into B-physics, the understanding of which is cru-
cial for such experiments as LHCb. Section 2.1 presents a short explanation of the Standard
Model, followed by Sec. 2.2 which describes the Cabibbo-Kobayashi-Maskawa matrix, CP viola-
tion and the unitarity triangles. Finally, Sec. 2.3 further discusses CP violation and possibilities
for new physics at the LHCb.

2.1 The Standard Model

2.1.1 Theories in particle physics

The vast variety of physical phenomena, which arise in collisions of particles, are determined
by only the following four types of interactions: electromagnetic, strong, weak and gravitational
(Tab. 2.1). The most important in particle physics are the first three.

To describe the processes which occur in the world of particles, scientists use the relativistic
quantum theory or quantum field theory. In this theory, the interactions are described in terms
of exchange of quanta (bosons), which are associated with a particular type of interaction. The
most well-known variant of this theory is used for the description of electromagnetic interactions
and is called quantum electrodynamics (QED). QED is the most advanced of all physics theories.
It provides record accurate predictions (to the scale of 10�9 to 10�10) and so far there has been
no sign of any facts which would be in conflict with it.

The weak interaction involves the exchange of intermediate bosons W±, Z; it is responsible
for the slow decay of particles. At present, there has been developed a theory which unified the
electromagnetic and weak interactions into one, it is the electroweak theory. Glashow, Salam
and Weinberg were awarded the Nobel prize in 1979 for its creation.

23
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Another theory, called quantum chromodynamics (QCD) was proposed for the description
of strong interactions. Strong interactions involve the exchange of gluons, i.e. color. QCD is the
theory of color fields, in which the coupling strength is proportional to the colors of quarks (color
charges) and equals to zero for colorless states.

In this way, electroweak theory and quantum chromodynamics together describe strong,
electromagnetic and weak interactions of quarks and leptons, and form the Standard Model
(SM).

The types of interactions are characterized by the coupling constant ↵
i

(Tab. 2.1), which is
a quantitative characteristic of the interaction strength acting between particles.

Interac-
tion

Involved
particles

Quantum
field

(gauge
bosons)

Mass
(mc2)
[GeV]

Relative
strenght

Interaction
radius
[m]

Characteristic
time of

interaction
[s]

Strong hadrons g
(8 gluons) 0 ↵s ⇡ 1 ⇡ 10�15 10�21 � 10�23

Electro-
magnetic

charged
particles

�
(photon) 0 ↵e ⇡ 1/137 1 ⇠ 10�18

Weak leptons
and quarks

W±

Z
80
91

↵w ⇡ 10�6 ⇡ 10�18 ⇠ 10�10

Gravita-
tional

all
particles

graviton
(hypothetical) 0 ↵g ⇡ 10�38 1 N/A

Table 2.1: Types and properties of the fundamental interactions

2.1.2 Systematics of particles

According to the summary tables of the Particle Data Group (PDG) Review of Particle Physics
journal [22], there are about 500 known particles, but in fact all of this variety can be composed
of only twelve fermions: six quarks and six leptons, which take part in different interactions and
exchange the four bosons (photon �, gluon g, W and Z). These 12 fermions, which have spin
of 1/2, are naturally divided into three groups, which are usually referred to as generations. In
each generation there are 2 quarks and 2 leptons (Tab. 2.2 and 2.3).

Generation I electron (e) electron neutrino (⌫e)
Generation II muon (µ) muon neutrino (⌫µ)
Generation III tau (⌧) tau neutrino (⌫⌧ )

Table 2.2: Leptons

There are in total six quarks, i.e. six different flavors. Their names, electric charges and
approximate masses are presented in Tab. 2.3. Some of the main properties of quarks are:

• Quarks have fractional electric charge values, ±2

3
e or ±1

3
e (where e is the elementary

electric charge).

• The strong interaction between quarks is due to an exchange of gluons (in total there are
8 gluon states).

• The potential energy of two quarks (color force) increases with distance between them.
This phenomenon leads to color confinement (often simply confinement), the phenomenon
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that isolated quarks (or any color charged particles) can not be directly observed. When
there is a large distance between two quarks, their interaction energy is large enough, such
that new quark-antiquark pairs can be produced, which leads to the formation of new
bound quark states.

Quark type Charge Mass [MeV/c2] Generation Name
(flavor) e

u +2/3 1.7� 3.1 I up
d �1/3 4.1� 5.7 down
c +2/3 1290+50

�110

II charm
s �1/3 100+30

�20

strange
t +2/3 172900± 600± 900 III top
b �1/3 4190+180

�60

bottom

Table 2.3: Quarks

Modern physics considers quarks and leptons point objects, meaning they have no structure.
They are called the fundamental fermions and quarks are the building blocks of the hadron
particles.

The four bosons (�, g, W , Z) have spin 1 and are also considered to be structureless, funda-
mental particles. They are called fundamental or gauge bosons and are quanta of fundamental
fields. Thus our world can be reduced to fundamental fermions which interact by means of gauge
bosons.

Another class of particles, which are significantly larger in size (⇡ 10�13 cm), are called
hadrons and consist of quarks. There are two types of hadrons:

Baryons are built of three quarks (q
i

q
j

q
k

), not necessarily different in flavor. Baryons have a
special characteristic called baryon quantum number (or charge) B = 1, and half-integer
spin, which makes them fermions.

Mesons consist of a quark and an antiquark (q
i

q̄
j

), their baryon charge is nil (B = 0) and their
spin is integer, so mesons are bosons.

In this manner, protons consist of two u-quarks and one d-quark: p = uud, neutrons have
two d-quarks and a single u-quark: n = udd, ⇡-mesons ⇡+ = ud̄ and ⇡� = ūd, and the most
important for the LHCb experiment: B0

d

= db̄ and B0

s

= sb̄.

2.1.3 Symmetry

The CPT theorem is a fundamental result of quantum field theory. The meaning of the theorem
can be reduced to the following statement: our world and the world, which is created from our
world via charge conjugation (C), parity transformation (P ) and time reversal (T ), are equivalent.
In other words, our world and its mirror reflection, in which all particles are replaced with
their respective antiparticle-counterparts and directions of movement inverted, have identical
laws. According to this theorem, any conceivable Hamiltonian is invariant under the CPT
transformation.

CP violation and the CPT theorem together lead to an interesting dilemma: either there is
no T invariance (which should be violated if the CPT theorem is correct), or the CPT theorem
is wrong.

The decay of neutral kaons is not the only known process in which CP violation is observed.
The research of B0-mesons showed that in case of decays of these B-mesons, CP violation is also



Chapter 2: CP Violation and LHCb 26

present. Explaining the reason of the baryon asymmetry in our universe and CP violation are
fundamental challenges of modern physics and one of the main goals of the LHCb experiment.

The next section of this chapter describes CP violation in the Standard Model and the CKM
matrix in more detail, and since B-mesons are well suited for CP violation measurements, their
decays are used as an example for explaining the CP violation phenomenon.

2.2 The Cabibbo-Kobayashi-Maskawa matrix and CP violation

The mixing of quarks in weak interactions is the source of CP violation. If (d0, s0, b0) and (d, s, b)
are the flavor and mass eigenstates, they are related by the Cabibbo-Kabayashi-Maskawa (CKM)
mixing matrix V

CKM

[23], according to
0

@
d0

s0

b0

1

A = V
CKM

0

@
d
s
b

1

A

with a 3⇥ 3 unitary matrix

V
CKM

=

0

@
V
ud

V
us

V
ub

V
cd

V
cs

V
cb

V
td

V
ts

V
tb

1

A . (2.1)

The squared values of the matrix elements V
ij

, i = u, c, t, j = d, s, b correspond to the relative
probability of transition of one of the quarks into another, i.e. |V

us

|2 is the relative probability
for an u $ s transition in weak charged quark interactions.

In the general case this matrix is complex. The CKM matrix can be parameterized with the
help of tree angles and one phase, which is the unique source of CP violation in the Standard
Model. There are several different parameterization variants of the CKM matrix. The most
widely used is the parameterization, proposed by Lincoln Wolfenstein [24]. In his approach,
Wolfenstein introduced the four parameters �, A, ⇢, ⌘ [22]:

� =
|V

us

|p|V
ud

|2 + |V
us

|2 , A�2 = �

����
V
cb

V
us

���� ,

V ⇤
ub

= A�3(⇢+ i⌘) =
A�3(⇢̄+ i⌘̄)

p
1�A2�4p

1� �2[1�A2�4(⇢̄+ i⌘̄)]
, (2.2)

where
⇢̄+ i⌘̄ = �(V

ud

V ⇤
ub

)/(V
cd

V ⇤
cb

), (2.3)

and
⇢̄ = ⇢(1� �2/2 + · · · ), ⌘̄ = ⌘(1� �2/2 + · · · ).

The Wolfenstein parametrization expands each element of the CKM matrix as a power series
in the parameter �, which is � = |V

us

| = 0.2229± 0.0022 [22]. By neglecting terms proportional
to �n (n > 5), the Cabibbo-Kabayashi-Maskawa matrix can be written in the following way:

V
CKM

=

0

@
V
ud

V
us

V
ub

V
cd

V
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V
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V
td

V
ts

V
tb

1

A =
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2

A�4[1� 2(⇢+ i⌘)] 1� 1

2

A2�4

1

CCCCA
+O(�6). (2.4)

The elements of the CKM matrix and the Wolfenstein parameters are related the following
way (up to O(�5)):

V
us

= �, V
cb

= A�2, V
ub

= A�3(⇢� i⌘), V
td

= A�3(1� ⇢̄� i⌘̄),

ImV
cd

= �A2�5⌘, ImV
ts

= �A�4⌘.
(2.5)

2.2.1 The unitarity triangles

The unitarity condition V †V = I of the Cabibbo-Kabayashi-Maskawa matrix means that rows
and columns of the matrix are mutually orthogonal:

X

i=u,c,t

V
ij

V ⇤
ik

= �
jk

j, k = d, s, b and
X

j=d,s,b

V
ij

V ⇤
nj

= �
in

i, n = u, c, t

Each of the six conditions, which are zero, are the sum of three complex numbers and can
be geometrically presented in the complex plane as a triangle.

Let us review the following three relations:
P

i

V
ij

V ⇤
ik

= 0 for rows i = u, c, t, columns
j, k = d, s, b, j 6= k [25, 26]:
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= 0, (2.6)
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= 0, (2.7)
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= 0, (2.8)

and three relations
P

j

V
ij

V ⇤
nj

= 0 for columns j = d, s, b, rows i, n = u, c, t, i 6= n
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= 0, (2.9)

V
cd
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+V
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V ⇤
ts| {z }

O(�

2

)

+V
cb

V ⇤
tb| {z }

O(�

2

)

= 0.

Based on current estimates [22] of the absolute values of the elements |V
ij

| of the Cabibbo-
Kabayashi-Maskawa matrix, it is known, that the two triangles (2.7) and (2.9) have sides of a
comparable length. The rest of the triangles have one of the sides significantly shorter than the
lengths of the other two.
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Figure 2.1 illustrates that the two triangles a) and b), which correspond to (2.6) and (2.8),
almost collapse to a line. The third triangle c) is of a special interest, i.e. the relation (2.7) with
j = d and k = b (db–“Unitary Triangle”).

Figure 2.1: The three unitarity triangles (a) V
ud

V ⇤
us

+ V
cd

V ⇤
cs

+ V
td

V ⇤
ts

= 0 (2.6), (b) V
us

V ⇤
ub

+
V
cs

V ⇤
cb

+ V
ts

V ⇤
tb

= 0 (2.8), (c) V
ud

V ⇤
ub

+ V
cd

V ⇤
cb

+ V
td

V ⇤
tb

= 0 (2.7) drawn to a common scale [27].

The unitary triangles (2.7) and (2.9) coincide up to O(�3), have corresponding interior angles
and can be independently measured. Keeping O(�5) terms, we have [26]

V
cd

V ⇤
cb

= �A�3 +O(�7)

and V
cd

V ⇤
cb

is real with high accuracy, i.e. |V
cd

V ⇤
cb

| = A�3. Given this, the first unitary triangle
can be obtained by dividing (2.7) by the well known V

cd

V ⇤
cb

V
ud

V ⇤
ub

V
cd

V ⇤
cb

+ 1 +
V
td

V ⇤
tb

V
cd

V ⇤
cb

= 0.

Hence it follows, that the triangle side of the length 1 lies on the real axis. The form of the
first unitary triangle is unchanged and the corners of this rescaled triangle are exactly (0, 0),
(1, 0), (⇢̄, ⌘̄), where ⇢̄ = ⇢(1� �2/2) and ⌘̄ = ⌘(1� �2/2) satisfy Eq. (2.3) (see Fig. 2.2).

Figure 2.2: The rescaled unitarity triangle in the complex plane [22].
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The lengths of the two sides of the triangle are

R
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td
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They can be depicted as circles around the vertices (0, 0) and (1, 0) in the (⇢̄, ⌘̄) plane, as
illustrated in Fig. 2.3.

The angles of the unitarity triangle are denoted as ↵,�, �. In terms of the CKM matrix,
these angles are expressed in the following way
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,

and the sum of the unitarity triangle angles must be equal to ↵+ � + � = ⇡.
The unitarity triangle angles can be extracted from special decay channels (see Table 2.4).

For example, the value of sin 2� has been measured by BABAR [28] and BELLE [29] in the
decay channel B0 ! J/ K0

s

. In this case the asymmetry a
CP

(t) [30] is

a
CP

(t) =
�
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0!J/ K

0

s
(t)� �

¯

B

0!J/ K

0

s
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�
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0

s
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¯
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0!J/ K

0

s
(t)

= � sin(2�) sin(�m
d

t),

where the �s are the decay widths. The �m
d

, which determines the oscillation frequency between
the B0 and B̄0 mesons, is their mass difference. Thus, with known �m

d

the measurement of the
asymmetry a

CP

(t) gives sin 2�, where � is the angle of the unitarity triangle. The world average
is sin 2� = 0.673± 0.023 [22].

All unitarity triangles have the same area that is equal to J/2, where J = Im[V
ud

V
cs

V ⇤
us

V ⇤
cd

] is
the Jarlskog invariant, which can also be expressed via other combinations of the matrix elements
V
CKM

(see, e.g., [31]).
In the Wolfenstein parameterization J ' �6A2⌘. The small quantity |J | ⇠ O(�6) sets the

scale of CP -violation in the Standard Model. J can be viewed as the CP violation parameter,
as if CP is violated, J is different from zero.

The precise determination of the CKM matrix elements is important because they are a part
of the fundamental parameters of the Standard Model, which describe the weak interactions.
Therefore, to be able to verify the predictions of the Standard Model, it is necessary to measure
the angles and sides of the unitary triangles with a high accuracy. A new effect could be observed
in measurements of the CP violating decays of B-mesons, and it is these studies that are the
main goal of the LHCb experiment.
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2.3 CP violation, New Physics and LHCb

It is now believed that the Standard Model, being the effective theory in the region of low energies,
is a part of a more general, fundamental theory at higher energies. The LHC experiments aim at
verifying the Standard Model predictions and at searching for New Physics (new particles, new
symmetries) in the TeV region. New Physics could explain the matter-antimatter asymmetry
of the universe. The LHCb experiment is designed specially for precise measurements of CP
violation and research of rare B decays, and to test whether the CKM model is a suitable way
to describe the experimental results.

Figure 2.3 illustrates the great progress, made in the past years, in the measurements of the
parameters of the CKM matrix.

Figure 2.3: EPS 2001 on the left vs. EPS 2011 on the right [22].

The different colored bands show the experimental accuracy of different experiments and
overlap in a small range with ⇢̄, ⌘̄ = (0.14, 0.34). A non-zero value of ⌘ can only be obtained if
CP violation exists. It is obvious that this small overlap is far from zero (⌘̄ 6= 0), i.e. CP -violation
is an experimentally proved fact.

The angles of the unitarity triangle can be extracted in the following ways:

• indirectly by measuring the lengths of the unitarity triangle sides;

• directly from the CP asymmetries in different final states of B-meson decays.

The theory and methods for measuring the angles of the unitarity triangles are well described
in the literature [26, 27, 30]. Tab. 2.4 illustrates the different decays, from which the angles or
their combinations could be defined at the LHCb experiment.

Here, the strategy is to perform a large number of measurements, results of which determine
the values and phases of the elements of the CKM matrix. As was discussed previously in Sec. 2.2,
in the case of Wolfenstein parametrization the elements of the CKM matrix are described by the
set of parameters �, A, ⇢̄, ⌘̄ and the unitarity triangle gives a very clear geometrical representation
of the structure of the Cabibbo-Kobayashi-Maskawa matrix. Thus, in the (⇢̄, ⌘̄) plane, the
different curves, obtained from different experiments (and various decays), should intersect in a
single point (Fig. 2.3), and any inconsistency of the obtained results can be considered as a sign
for New Physics.
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Parameter Decay Mode

1 � + �
(= ⇡ � ↵)

from B0

d and B̄0

d ! ⇡+⇡�

2 � from B0

d and B̄0

d ! J/ Ks

3
�

from B0

d ! D̄0K⇤0, D0K⇤0, D
1

K⇤0 and
B̄0

d ! D̄0K̄⇤0, D0K̄⇤0, D
1

K̄⇤0

Table 2.4: Decay Modes for measuring different CKM angles

Appearance of New Physics in the B-meson system can occur in the following ways [27]:

• the values of quantity in the SM, obtained from two different measurements, give incom-
patible results;

• the sum of the extracted angles is equal to ↵ + � + � = ⇡, but they are inconsistent with
the measured triangle sides;

• the asymmetries are larger than predicted by the SM;

• the expected rare decays have enhanced rates or suppressed;

• mixing in B- or D-meson decays differ significantly from SM predictions.
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Chapter 3

QCD

“Information gained in experiments should be revised
into theoretical conclusions. ... Ideally, this is just

one formula posing the whole tree of physics.
But this ideal is still far away.”

– Lev Okun. “Physics of elementary particles”. Moscow: Nauka, 1988

This chapter presents a brief summary on Quantum Chromodynamics. A short introduction
is followed by Section 3.1 which explains the quark structure of hadrons, and in Section 3.2
experiments and the quark parton model are described. Section 3.3 introduces the concept of
color, and sections 3.4 and 3.5 are dedicated to the QCD Lagrangian and the running coupling,
respectively. Section 3.6 describes interactions and processes which take place in a proton-proton
scattering, and

Quantum chromodynamics (QCD) is a theory of interactions of quarks and gluons – the main
components of strong interacting particles (hadrons).

Prior to Chadwick’s discovery of the neutron in 1932, the proton was the only strongly
interacting particle. Heisenberg and Ivanenko proposed the idea that atomic nuclei consist of
protons and neutrons, but the theory of electromagnetic and gravitational forces could not explain
the fact that protons and neutrons are held inside atomic nuclei. In 1935, Yukawa proposed that
protons and neutrons interact through the exchange of an unknown strongly interacting particle
- a pion. The nuclear (nucleon-nucleon) forces are much stronger than electromagnetic and
gravitational forces, and are short-ranged. After that, pions were discovered in cosmic rays and
in the processes of strong interactions of hadrons and nuclei at high energies where they are
produced in large quantities.

In the 50’s began an intensive theoretical work on the processes of multiple production of
particles at high energies due to strong interactions. QCD emerged in the early 70’s as a result
of the synthesis of non-Abelian gauge fields theory (Yang, Mills 1954), parton model of deep
inelastic interactions (Gell-Mann, Zweig, 1964), and the idea of the color of quarks.

33
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Currently, the main theory for the description of strong interactions is quantum chromody-
namics. In QCD strong interactions of hadrons are treated as color interactions between quarks
and gluons. A detailed description of experimental results usually requires phenomenological
assumptions in addition to the pure theory, in order to account for non-perturbative effects. Nu-
merous analytical, computational, Monte Carlo simulations (which were based on ideas of QCD)
were made to describe the experimental data of e+e�, ep, pp(pp̄) interactions at high energies,
and they proved very successful.

3.1 Quark structure of hadrons

Hadrons are particles that participate in strong interactions. The introduction of the quark
model allowed “to restore order” in this large family of particles (there are about 450 of them).
There are two types of hadrons: baryons and mesons.

The quark model was proposed by Gell-Mann and Zweig in 1964. The sensationalism of the
idea lies in fractional electric charge and baryon charge attributed to the quarks. Currently there
are six known quarks, which are strongly interacting fermions with spin 1/2 and, by convention,
have positive parity. Antiquarks have negative parity. Table 3.1 gives the additive quantum
numbers for the three generations of quarks.

Property Quark d u s c b t

B – baryon number
1

3

1

3

1

3

1

3

1

3

1

3

J – spin
1

2

1

2

1

2

1

2

1

2

1

2

Q – electric charge �1

3
e +

2

3
e �1

3
e +

2

3
e �1

3
e +

2

3
e

I – isospin
1

2

1

2
0 0 0 0

I
3

– isospin z-component �1

2

1

2
0 0 0 0

s – strangeness 0 0 �1 0 0 0
c – charm 0 0 0 +1 0 0
b – bottom 0 0 0 0 �1 0
t – top 0 0 0 0 0 +1

Table 3.1: Additive quantum numbers of the quarks (for all quarks Jp = 1/2+ and baryon
number B = 1/3)

The existence of quarks was demonstrated experimentally, but they were never detected in
a free state. For all the quarks, their baryon number (or charge) B is equal to 1/3. Each of the
six quarks has its own flavor, which is identical to its name u, d, s, c, b, t. The flavors for s, c, b, t
are set by special additive numbers: strangeness (s) of s-quarks, charm (c) of c-quarks, quantum
numbers bottom or beauty (b) and top or truth (t) of b- and t-quarks respectively. These quantum
numbers are presented in Table 3.1 (it was agreed to consider the signs of flavors to coincide
with the signs of the electric charges of the quarks).

Thus, for any hadron these quantum numbers are determined from its quark structure. Quan-
tum numbers s, c, b, t divide hadrons into light hadrons (p, n,⇡, ...), strange particles (K,⇤,⌃, ...),
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charm (D,⇤
c

,⌃
c

, ...) and bottom- or beauty-particles (B,⇤
b

,⌅
b

, ...). The t-quark, having a life
time of ⌧ ⇡ 10�25s, decays before forming a bound state. In the transition from a particle to
an antiparticle signs of all additive quantum numbers (which mean different types of charges)
are reversed. As it was already mentioned, the quark baryon charge is +1/3 (�1/3 in case of
antiquarks), it is also an additive and a conserved quantum number. Hadrons consisting of three
quarks have baryon charge B = 1/3 + 1/3 + 1/3 = +1 and are called baryons (B = �1 for
antibaryons). Mesons and antimesons, which consist of a pair of a quark and an antiquark, have
B = (+1/3) + (�1/3) = 0.

The Gell-Mann-Nishijima formula links the hadron’s electrical charge Q (in units of the
elementary charge e), its third projection of isospin I

3

, and baryon charge B

Q = I
3

+
Y

2
(3.1)

where Y = B + s is hypercharge (or Y = B + s+ c+ b+ t called generalized hypercharge).
In order to identify the “aromatic” properties of the lightest quarks u and d, the isospin

quantum number (I) is used, which is a characteristic of the isospin symmetry of strong inter-
action. Isospin space is a three-dimensional space. u and d quarks have identical isospin I, but
different isospin projections I

3

on the 3-axis of the isospin space (the names of the quarks up
and down specify the isospin direction). Isospin plays an important role in the classification
of hadrons. The particles which have the same I and different projections I

3

, but otherwise
the same quantum numbers, form isospin multiplets. The number of particles n in an isospin
multiplet is determined by the number of projections I

3

, i.e. n = 2I + 1.
In this manner, proton and neutron, which consist of u and d quarks, have isospin I = 1/2,

but differ by the sign of their I
3

projections, and form an isospin doublet:

p ⌘ uud (I = 1/2, I
3

= +1/2),

n ⌘ udd (I = 1/2, I
3

= �1/2),

i.e. they can be considered as two different states of a single particle – the nucleon.
⇡-mesons form an isospin triplet with I = 1:

⇡+ ⌘ ud̄ (I = 1, I
3

= +1),
⇡0 ⌘ uū or dd̄ (I = 1, I

3

= 0),
⇡� ⌘ ūd (I = 1, I

3

= �1).

Grouping of hadrons into isospin multiplets reflects the symmetry of the strong interactions,
relative to the transformations (rotations) in isospin space.

Experience has shown that hadrons form wider unions of particles than isospin multiplets.
Group theory, which is the basis for the description of symmetries, is used to study the symmetry
of hadrons with respect to the replacement of their quarks with different ones.

As a simple example, let us consider hadrons which consist of the three lightest quarks u, d, s.
The task is to study the symmetry of hadrons which include only three “building blocks”. Such
symmetries can be, e.g., the so called SU(3) symmetries. The SU(3) group (Special Unitary
Group: detU = 1, UU † = I) is formed by transformations which convert states into each other,
constructed of three elements. Hadrons are grouped into multiplets on the base of the symmetry
of flavors u, d, s, which are usually called SU(3)-multiplets. This symmetry implies the equality
of the masses of u, d and s quarks and equality in pair interactions, such as uu, ud, us, dd, ss
of quarks and antiquarks. Let us see which quark-antiquark (meson) and three-quark (baryon)



Chapter 3: QCD 36

combinations are possible. Mesons consist of q
i

q̄
j

, where i, j = u, d, s and in total 32 = 9
combinations of the three quarks and antiquarks are possible, which are presented in Table 3.2.

ū d̄ s̄

u uū ud̄ us̄
d dū dd̄ ds̄
s sū sd̄ ss̄

Table 3.2: Quark-antiquark pair combinations.

This leads to nine “flavor” combinations which correspond to nine types of mesons. Meson
groups, united by the same spin value J , parity p and are located in the same mass region, are
examples of SU(3) multiplets. The lightest meson group splits into two nonets: with Jp = 0�

(pseudoscalar mesons) and with Jp = 1� (vector mesons). Considering that for mesons B = 0,
from the Gell-Mann-Nishijima (3.1) formula it follows that out of Q, I

3

and s (or Y ) only two
quantities remain independent and all the mesons of the nonet can be obtained from any other of
these states by changing only the I

3

and s (or Y ) values. Therefore, it is convenient to represent
these multiplets on the plane with I

3

and s (or Y ) axis.
The quark structure of the lightest meson/antimesons nonet with Jp = 0� is illustrated in

Fig. 3.1:
⇡+,⇡0,⇡�, ⌘, ⌘0,K+,K0,K�, K̄0.

All meson multiplets contain both particles and antiparticles. Particles and antiparticles in
Fig. 3.1 are arranged symmetrically about the center of the figure (c = I

3

= 0). For example,
antiparticle K̄0 = d̄s is obtained from particle K0 = ds̄ by replacing its quarks with corresponding
antiquarks: d ! d̄, s̄ ! s.

Figure 3.1: Quark structure of the lightest meson nonet.

The nonet can be split into two isodoublets (I = 1/2): K0, K+, and K�, K̄0, one isotriplet
(I = 1): ⇡�, ⇡0, ⇡+ and two isosinglets (I = 0): ⌘ and ⌘0. There are three particles at the heart
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of the figure (S = 0 and I
3

= 0), since out of u, d, s quarks and their antiquarks it is possible to
combine three pairs uū, dd̄, ss̄ with I

3

= 0.
The quark structure of a baryon can be written as q

i

q
j

q
k

, where the subscript corresponds to
the quark’s flavor i, j, k = u, d, s. All the combinations form several SU(3) multiplets, which can
be classified according to the symmetry under permutations of the quarks. Thus all the baryons
which are composed of the three u, d, s quarks are grouped into a single decuplet, two octets,
and one singlet. The octets differ by spin and parity of particles which form these octets. For
example, the baryon octet with spin Jp = 1/2+

p, n,⇤,⌃+,⌃0,⌃�,⌅0,⌅�

is located in the mass region of 938� 1321 MeV. Another octet groups baryons with Jp = 3/2�

and their masses lie in the region of 1520� 1820 MeV. Characteristics of the baryon octet with
spin Jp = 1/2+, together with their quark composition, are presented in Table 3.3.

Baryon Quark composition mc2 [MeV] s(Y ) I
3

I
n uud 938 0(+1) +1/2 1/2
p udd 940 0(+1) �1/2 1/2
⌃+ uus 1189 �1(0) +1 1
⌃0 uds 1193 �1(0) 0 1
⌃� dds 1197 �1(0) �1 1
⇤ uds 1116 �1(0) 0 0
⌅0 uss 1315 �2(�1) +1/2 1/2
⌅� dss 1321 �2(�1) �1/2 1/2

Table 3.3: The lightest baryons octet (Jp = 1/2+)

Table 3.3 also presents strangeness s, hypercharge Y = B+s, isospin I and isospin projection
I
3

of the baryons. The isospin values of baryons are obtained by vector addition of isospins of
quarks, and the isospin projection is calculated by algebraic addition. Baryons have strangeness
which is caused by the presence of s quarks in their structure. Strangeness is determined as an
algebraic sum of strangenesses of quarks which form the baryon.

The quark structure of the light baryon octet (with spin Jp = 1/2+) is illustrated in Fig. 3.2:
It can be seen that the particles of the octet, lying on the horizontals, form the following

isospin multiplets: one isosinglet ⇤ (I = 0), two isodoublets n, p and ⌅0,⌅� (I = 1/2), and
one isotriplet ⌃�,⌃0,⌃+ (I = 1). Inside the isomultiplets, particles differ only by their isospin
projection and have similar properties with respect to the strong interaction. Their difference in
masses, which reflects a high degree of isospin symmetry in strong interactions, is only on the
percent level and is electromagnetic of nature. On the other hand, the difference in the masses
of particles of different isomultiplets (vertically) is significant (6� 40%).

The baryon octet (Jp = 1/2+) is formed of three light quarks u, d, s and out of these seven
different combinations one (uds) corresponds to two different particles – ⌃0 and ⇤. The difference
is that ⌃0 has isospin I = 1 and its projection I

3

= 0, i.e. this particle is a part of the isotriplet
⌃+,⌃0,⌃�. Whereas ⇤ is an isosinglet, i.e. a particle with I = 0 and I

3

= 0.
The baryon decuplet with Jp = 3/2+ is formed in a similar way and is composed of the

following particles:
�++,�+,�0,��,⌃+⇤,⌃0⇤,⌃�⇤,⌅0⇤,⌅�⇤,⌦�.
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Figure 3.2: Quark structure of the lightest baryon octet.

The decuplet is presented in Fig. 3.3. In comparison to the baryon octet JP = 1/2+, the
baryon decuplet JP = 3/2+ has member particles which are composed of quarks of only one
flavor: ddd, uuu, sss.

Figure 3.3: Baryon decuplet.

Experimental studies of the baryons of the decuplet show that the resulting orbital angular
momentum of quarks of these particles is L = 0 and their spins are parallel ("""). Thus the total
momentum of the particles of the decuplet is J = 3/2, and parity of the particles is P = +1.
Thus we obtain for the spin and parity of the particles of the decuplet JP = 3/2+.
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The top row of the Fig. 3.3 is formed by the particles with strangeness s = 0. These particles
are the four possible triple combinations of the two quarks u and d. They differ by their isospin
projection I

3

and form the isospin quartet (I = 3/2). The next row (s = �1) consists of the
three combinations of the two quarks, either u or d, and a single s quark, which form the isospin
triplet (I = 1). The particles of the next row have two s-quarks (s = �2) in their composition:
dss and uss, and form the isodublet (I = 1/2). The ⌦� particle of the bottom row consists of
three s-quarks and forms the isosinglet with isospin I = 0.

Comparison of Fig. 3.3 and Fig. 3.2 shows that there are particles in the decuplet, which
fully consist of quarks of the same flavor: ddd, uuu, sss (this is explained in Section 3.4). The
rest of the quark combinations repeat combinations of the octet Jp = 1/2+, but in the decuplet
they have Jp = 3/2+.

Figure 3.3 clearly demonstrates the remarkable symmetry. It is seen that in the horizontal
direction from left to right, d quarks are replaced by u quarks (I spin symmetry). In the vertical
direction, from top to bottom, along the left edge d quarks are substituted by s quarks and along
the right edge the situation is vice versa - u quarks are exchanged for s quarks (the so-called U
spin and V spin symmetry). Consequently, we can construct the known particles in a systematic
way.

3.2 Experiments and the quark parton model

Classic experiments on the structure of the nucleon have been performed in 1964 at the Stanford
National Laboratory (SLAC, USA). Experiments on the elastic scattering of electrons on protons
e+ p ! e+ p showed that protons and neutrons are not point-like objects but have an extended
structure. Further study of the internal structure of the proton was made in experiments on deep
inelastic scattering of electrons on protons. The difference between elastic and inelastic collisions
is that there are no new particles produced in elastic scattering and the energy of the electron
after scattering remains the same (only the direction of emission of the electron changes). Energy
carried away by new particles can be determined from the electron energy after interaction, E0.

Figure 3.4: Kinematics of deep inelastic electron-nucleon scattering.

In Fig. 3.4 a high energy electron with initial energy E is scattered off a nucleon, which is at
rest in the lab-system. The l and l0 are the four-momenta of the incoming and outgoing electron
and ✓ is the scattering angle of the electron. The electron transfers four-momentum q = l � l0
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to the nucleon, and at large values of q2 multiple hadron production takes place. We shall not
concretize the resulting hadronic system, which makes this an inclusive interaction, i.e. the result
of the interactions includes everything possible. Here p is the four-momentum of the nucleon
with mass M

h

, p0 is the four-momentum of the hadronic system with the invariant mass W .
The process depicted in Fig. 3.4 is called deep (Q2 � M2

h

) inelastic (W 2 � M2

h

) scattering
(DIS). The mass of the initial and scattered electron can be neglected, and the nucleon filled
circle represents the internal structure of the nucleon that can be expressed in terms of structure
functions.

Usually in such an experiment one measures the angle of deflection of the electron ✓, energy
E0 and momentum l0 of the electron after its interaction with the nucleon. These data are
sufficient to calculate the degree of excitation of the nucleon after collision with the electron,
using the laws of conservation of energy and momentum, and the following formulas:

⌫ = E � E0 =
q · p
M

h

which describes the energy transfer from the electron to the hadronic system in the hadron’s rest
frame,

Q2 = �q2 = �(l � l0)2 = �(p0 � p)2 = 2p · p0 � p2 � p02

which defines the squared momentum transfer Q2 carried by the virtual photon,

W 2 = (p+ q)2

which corresponds to the squared mass of the hadronic system recoiling against the scattered
electron.

From here, it follows that

Q2 = 2M
h

(E +M
h

� E0)�M2

h

�W 2 = 2M
h

⌫ +M2

h

�W 2  2M
h

⌫,

where in the case of elastic scattering M2

h

= W 2.
The Bjorken-variable x

B

(0  x
B

 1) is an experimental observable, which reflects the
deviation from elastic scattering

x
B

=
Q2

2M
h

⌫
. (3.2)

For further understanding, one would need the fact that the double differential cross section
with respect to Q2, ⌫ is derived from the cross section for elastic scattering of an electron with
a spin-1/2 fermion of mass M

h

and charge e
q

and is equal to [32]

d2�

dQ2d⌫
=

4⇡↵2

em

e2
q

Q4

E0

E

⇢
cos2

✓

2
+

Q2

2M2

h

sin2
✓

2

�
�

✓
⌫ � Q2

2M
h

◆
. (3.3)

In the case when the nucleon is considered to have some internal structure, one can assume
that in such case the double differential cross section will be similar to (3.3):

d2�

dQ2d⌫
=

4⇡↵2

em

e2
q

Q4

E0

E

⇢
W

2

(Q2, ⌫) cos2
✓

2
+ 2W

1

(Q2, ⌫) sin2
✓

2

�
, (3.4)

introducing structure functions W
1,2

(Q2, ⌫) which define the structure of the nucleon.
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Hence, by comparing (3.3) and (3.4), the structure functions for the elastic scattering of
pointlike particles can be written as:

W el

1

(Q2, ⌫) = e2
q

Q2

4M2

h

�

✓
⌫ � Q2

2M
h

◆
, W el

2

(Q2, ⌫) = e2
q

�

✓
⌫ � Q2

2M
h

◆
. (3.5)

Figure 3.5 illustrates the double differential cross section, depending on q2 and W = E0 for
an electron-proton scattering.

Figure 3.5: Double differential cross section �/�
Mott

of an inelastic process, depending on q2 and
different energies W = E0 [33].

It is seen, that with the increase of W from 2 GeV to 3.5 GeV the dependence of the cross
section on q2 is weak in comparison to elastic scattering. This indicates that the electron is
interacting with the pointlike objects contained inside the proton. Such analysis proved the
existence of pointlike entities inside protons, which were called partons. Further study of the
properties of partons (spin of which was found to be equal to J = 1/2) identified them as quarks,
which were introduced by Gell-Mann and Zweig in order to explain the structure of hadrons.

In 1969, Feynman proposed the parton model , in which an extended nucleon consists of
loosely coupled point particles (partons), on which the high-energy electron scatter incoherently,
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i.e. the electron elastically scatters on one of these particles, without affecting the others. Every
nucleon participates in an inelastic interaction by a single parton i, which carries a fraction x

i

of
the nucleon’s four-momentum p, with a probability density f

i

(x
i

). The function f
i

(x) is called
the parton distribution function (PDF), and f

i

(x)dx defines the probability for x
i

to fall into the
interval [x, x + dx]. Hence one can write down the structure functions W

1

, W
2

as a sum of the
elastic structure functions in (3.5) with weight f

i

.
In the case when an electron scatters on a parton with momentum x

i

p and after the interaction
the parton has the same mass as in the beginning of the reaction, we have (x

i

p)2 = (x
i

p + q)2,
thus Q2 = 2x

i

M
h

⌫. By replacing M
h

by x
i

M
h

, summing and integrating one has the following

W
1

(Q2, ⌫) =
X

i

Z
1

0

dx
i

f
i

(x
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)e2
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Q2

4x2
i

M2

h

�
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◆
=
X

i
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)
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h

, (3.6)

W
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X

i

Z
1

0

dx
i

f
i
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)e2
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�
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⌫ � Q2
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◆
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X
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)
x
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⌫
, (3.7)

where the Bjorken-variable x
B

is from (3.2), i.e. x
B

can be considered as the four-momentum
fraction x carried by the parton.

Thus we can redefine the structure functions for deep inelastic scattering of a charged unpo-
larized lepton on an unpolarized nucleon, in the form of

F
1

(x) = M
h

W
1

=
1

2

X

i

e2
i

f
i

(x) (3.8)

F
2

(x) = ⌫W
2

=
X

i

e2
i

xf
i

(x). (3.9)

It is seen that F
1

(x,Q2) = F
1

(x) (the parton density), F
2

(x,Q2) = F
2

(x) (the momentum
density) and the cross section depends only on x.

The independence of the dimensionless functions F
1

(x) and F
2

(x) of Q2 means they are
independent of the momentum transfer (scale invariance).

This phenomenon of scaling invariance of structure functions is called Bjorken scaling. In the
base of Bjorken scaling lies the statement that the structure functions F

i

scale, i.e. F
i

(x,Q2) !
F
i

(x) in the Bjorken limit, Q2 and ⌫ ! 1 with x fixed and F
i

are functions of x only. Dimen-
sionless structure functions are independent of any mass scale.

A demonstration of the fact that F
2

(Q2) doesn’t depend on Q2 for fixed x
B

= 0.25 in Fig. 3.6
is the experimental observation of scaling and confirmation of the existence of partons.

Above we assumed that partons are spin-1/2 particles. From (3.8) and (3.9) automatically
follows the following relation for F

1

and F
2

(the Callan-Gross relation)

2xF
1

(x) = F
2

(x),

which is confirmed experimentally and proves that partons are spin-1/2 fermions.
Bjorken scaling claims that the structure of, for example, a proton is the same from the point

of an electromagnetic probe (electron), regardless of how hard it hits the proton.
Figure 3.7 presents the proton structure functions F

2

, in dependence of q2, for different values
of x.
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Figure 3.6: Value of ⌫W
2

(Q2) = F
2

(Q2) for fixed x
B

= 0.25 (MIT-SLAC Collab, 1970).

Figure 3.7: Proton structure function F p

2

measured in electromagnetic scattering of electorns
and muons for x > 0.00003, Q2 = �q2. It is seen that for the values of x from 0.008 to 0.35, F

2

have only a weak dependence on Q2 [22].
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No dependence of the distributions of q2 for x > 0.02 indicates the point-like nature of
objects on which scattering occurs. The structure functions for partons inside nucleons (F

1

,
F
2

) were estimated in numerous experiments on deep inelastic scattering of leptons on nucleons
(ep, µp, ⌫p). It is now believed that baryons consist of three quarks and mesons consist of a quark
and an antiquark. The fine structure of hadrons appears only at very high momentum transfer
at distances r ⇠ ~/q < 10�14 cm. For small momentum transfer q, the lepton interacts not
with an individual quark, but with a set of quark-antiquark pairs and gluons, which surround
the pointlike quark, which is called valence quark. The quark-antiquark pairs which surround a
valence quark are called sea quarks.

As a result of detailed measurements and comparison experiments on the scattering of elec-
trons on various hadron targets, it was possible to separate the contribution of different sorts
of partons and to determine their electric charges. It turned out that they coincide with the
charges of quarks, namely 2/3 and �1/3.

The identification of charged partons with quarks leads to the quark-parton model. In analogy
with partons (3.8), (3.9), the distribution functions of quarks and anti-quarks were introduced to
describe their distribution in the nucleon: f

q

(x) ⌘ q(x), f
q̄

(x) ⌘ q̄(x) (where q and q̄ correspond
to a quark and an anti-quark respectively). In this notation, the expression (3.9) for the structur
function F

2

(x) takes the following form:

F
2

(x) = x
X

q

e2
q

(q(x) + q̄(x)), (3.10)

where e2
q

is the squared quark charge of type q.
The study of electron-nucleon scattering and neutrino-nucleon scattering made it possible

to determine the fraction of the four-momentum of the quarks and anti-quarks in full nucleon
momentum, when the latter is moving at high speed. Contribution of quarks and anti-quarks in
the nucleon momentum is expressed in terms of the distribution function as follows:

X

q

Z
1

0

dxx[q(x) + q̄(x)] = 1� ✏,

which takes into account the contribution of valence quarks and sea quarks. If we assume that the
quarks and antiquarks are the only candidate for the role of partons, then ✏ must equal to zero.
However, experiments on probing nucleons with electrons which were performed in SLAC in the
end of 1960-s (and later experiments on probing nucleons with neutrinos in CERN) estimated
the value of ✏ to be close to 0.5. These results show that around 50% of the momentum is carried
by partons which are not involved in neither electromagnetic, nor weak interactions. In QCD,
the role of such constituents of the nucleon could naturally be claimed by gluons – carriers of
the strong interaction between quarks.

From (3.10) one can write down the structure functions F
2

for electron-proton scattering,
taking into account the quark charges from Table 3.1:

F ep

2

(x) = x


4

9
(u+ ū) +

1

9
(d+ d̄)

�
, (3.11)

where
u = u

p

(x) d = d
p

(x) ū = ū
p

(x) d̄ = d̄
p

(x)

are the quark density functions in the proton, which characterize the density of quarks for a
given x.



45 3.3 Color

Figure 3.8 illustrates a set of functions xf
i

(x) for distributions of quarks, antiquarks and
gluons in a proton. It is seen that u and d-quarks carry a significant fraction of the proton’s
momentum with higher probability, while antiquarks and gluons have smaller x. Each hadron
has its own set of parton distribution functions.

Figure 3.8: Behavior of the structure functions from the Q2 evolution [22].

3.3 Color

With the evolution of the quark model [34], the diversity of hundreds of different hadrons was
reduced to six pointlike particles – quarks, but in its turn this introduced new problems. One
of such problems arises in the analysis of the quark composition of the baryon decuplet. The
�� = ddd, �++ = uuu, ⌦� = sss particles, which are arranged in the vertices of the “triangle”
of the decuplet, are essentially the combinations of three identical quarks with the same quantum
states, i.e. their full wave function are symmetric although they are fermions. This violation of
the Pauli principle was eliminated by the introduction of an additional degree of freedom for
quarks, the new quantum number which was called color, and the postulate that all the hadrons
which are observed in nature are colorless. This color in reality is just an abstract property
which has three values, analogized to the three primary colors of red (r), green (g) and blue
(b). The introduction of color allows one to put three quarks of the same flavor in the same
quantum-mechanical state inside a hadron. The Pauli principle is not violated, assuming that
the wavefunctions are antisymmetric in this new degree of freedom (antisymmetric in color).
Then, for example, �++ can be represented as a combination of three u-quarks in different color
states: �++ = u

r

u
g

u
b

. Antiquarks have anticolors (r̄, ḡ, b̄). Each of the three possible states of
color-anticolor rr̄, gḡ, bb̄ is considered colorless (in fact, color-suppressed), and the combination
of rr̄+ gḡ+ bb̄, which does not change under rotations in the color space, is color singlet (white).
A qq combination with any conjunction of colors of two quarks rr, rg, bg,... will be colored



Chapter 3: QCD 46

and therefore can not occur in nature by the postulate that only colorless bound quark states
are observable in nature. This is called confinement. This excludes the possibility to observe
separate, unbound quarks, since they are not colorless. In hadrons, quarks of different colors
form a colorless combination, i.e. hadrons are color singlets with respect to rotations in the color
space. With such a rotation a cyclic change of colors takes place, which mathematically means
that there is a color SU(3)-symmetry.

Thus, mesons and baryons are SU(3)-singlets:

|mesoni
flavor�color

=
1p
3

3X

↵=1

(q↵
i

q̄↵̄
k

),

|baryoni
flavor�color

=
1p
6

3X

↵,�,�=1

("
↵,�,�

· q↵
i

q�
k

q�
j

),

where each color index ↵,�, � takes values 1, 2, 3 (or r, g, b), and "
↵,�,�

is an asymmetric tensor

"
123

= "
231

= "
312

= 1, "
213

= "
132

= "
321

= �1.

For example, the wavefunction of a ⇡�-meson, taking into account flavor and color, is

|⇡�i =
p
1/3(d

r

ū
r̄

+ d
g

ū
ḡ

+ d
b

ū
¯

b

).

Color is a natural candidate to act as the charge responsible for strong interactions, which
is the exchange of a massless electrically neutral particle with spin 1, negative parity and zero
isospin – gluon. In hadrons, this particle “glues” quarks together. A quark of a specific color may
keep its color or it can change it while emitting or absorbing a gluon, while not violating the
color (or color charge) conservation law. From here it follows, that every gluon carries a pair of
color charges – colored and anticolored.

One can construct 9 pairwise combinations in a matrix:

r̄ ḡ b̄

r rr̄ rḡ rb̄
g gr̄ gḡ gb̄
b br̄ bḡ bb̄

Table 3.4: Color combinations.

It can be seen that the 6 non-diagonal combinations are colored and 3 diagonal have sup-
pressed color. Because of the color charge conservation, the 6 non-diagonal colored pairs do not
mix with each other, and the diagonal pairs mix (conservation of color charge does not prevent
transitions rr̄ $ gḡ $ bb̄). As a result of these transitions, there are three linear combinations
whose form can be obtained from the symmetry and the requirement of orthonormality of gluon
states:

1p
2
(rr̄ � gḡ),

1p
6
(rr̄ + gḡ � 2bb̄),

1p
3
(rr̄ + gḡ + bb̄).

The latter combination is fully symmetric with respect to colors, i.e. it has no color charge (white,
an absolutely colorless combination) and can not play the role of a gluon which participates in
strong interaction (transporting color from one quark to another). Thus, only 8 gluons remain.
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3.4 The QCD Lagrangian

Quantum Chromodynamics is a gauge theory of strong interactions of colored quarks and glu-
ons, which at its base has the postulate that the color SU(3) is a local gauge symmetry. This
requirement of local invariance leads to the conclusion of existence of the gluon fields octet.

The action S is an important quantity for the description of interactions. For fields, the
action is defined as

S =

Z
L(x)d4x,

where L is a Lagrangian or Lagrange function density in x(ct,~r). The action contains all the
dynamics of fields and particle interactions. All systems comply to the variational principle of
Fermat: �S = 0. The equations of motion are obtained from S and L. Therefore it is said
that the construction of the theory of elementary particles is reduced to finding the fundamental
Lagrangian, which describes the physical world, and to solving the equations of motion arising
from it.

The general form of the QCD Lagrangian [32,35] (~ = c = 1) is

L
QCD

= �1

4
F a

µ⌫

F aµ⌫ +
X

q

q̄
i

(i�µD
µ

�m
q

)
ij

q
j

, (3.12)

where repeated indices are summed over.
The form of the QCD Lagrangian is dictated by the requirement of invariance under local

gauge transformations of the non-abelian group SU(N
c

), N
c

= 3:

q(x) ! U(x)q(x), q̄(x) ! q̄(x)U †(x),

where 3⇥ 3 U(x) = exp{i✓
a

(x)T
a

} transformations are unitary and unimodular

UU † = 1, U †
ji

= U⇤
ij

, detU = 1,

✓
a

(x) are parameters which depend on the coordinates of the world point x, T
a

= �
a

/2 and �
a

are the Gell-Mann matrices (3.14).
The requirement of invariance is accomplished [32,35] by the introduction of N2

c

�1 = 32�1 =
8 gauge fields Aa

µ

(x) (a = 1, 2, · · · , 8), by replacing the derivative @µ by the covariant derivative
D

µ

(3.13) and the Aa

µ

field transforms as [32]

A
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µ
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i

g
s

[@
µ

U(x)]U †(x).

In Eq. (3.12) the �µ are the Dirac �-matrices, the field strength tensor F a

µ⌫

and the covariant
derivative D

µ

are
F a
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,

where g
s

is the QCD coupling constant. The fundamental parameters of the QCD Lagrangian
are the coupling g

s

(or ↵
s

= g

2

s
4⇡

) and the quark masses m
q

.
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The gauge fields of strong interactions Aa

µ

are called gluons, and fields q
i

are the quark fields
of flavor i (q

i

: u, d, s, c, b, · · · ), fabc are the structure constants, T a
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/2 correspond to eight
3⇥ 3 matrices and are the generators of the SU(3) group,
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The structure constants of the SU(3) group fabc = f
abc

are real, antisymmetric in their indices
and are defined by the commutation relations

[T a, T b] = ifabcT c.

For SU(3) the non-vanishing components of fabc have the following values
8
<
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f
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The term �1

4
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F aµ⌫ contains members of the from
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s
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⌫

Ac

�
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s
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⌫

Ac

�
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�

,

which correspond to the interactions between gluons. They arise due to the nonlinear terms in
F a

µ⌫

. As a result, QCD Feynman diagrams include gluons-only vertices (3-gluon and 4-gluon
vertices), therefore it can be concluded that gluons have nonlinear self-interaction because they
have color charge.

Figure 3.9 presents an easy to understand graphical representation of the QCD La-
grangian [32]. Here the gluon colors are indexed by a, b, c, d, e = 1, · · · , 8 and the quark colors
by i, j = 1, 2, 3.

It is seen in the first part of the Lagrangian that the field strength tensor (3.12) is the source
of gluons (a free field term and two interaction terms with gluons, which couple to gluons).

The second part of the Lagrangian, a sum over all quark flavors, is a fermionic part (a free
field term and a term of the quark-gluon coupling). From this scheme it is seen, for example,
that the four-gluon coupling between gluons of color states a, b, c, d is proportional to g2

s

fabef cde,
but the coupling between two quarks of colors i, j to a gluon of color state a is proportional to
g
s

T a

ij

.
Neither quarks nor gluons are observed as free particles, but the observed hadrons (color
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Figure 3.9: Scheme of the QCD Lagrangian [32].

singlet states) consist of quarks, antiquarks and gluons.

3.5 The running coupling

QCD is the current theory which describes the interaction of hadrons at short distances, and
is based on the quark color model. It assumes that quarks interact by exchanging gluons, and
the strength of the interaction is determined by the effective coupling constant ↵

s

(effective
charge), which depends on the square value of the transferred four-momentum Q2 and is called
the running coupling of strong interaction.

As it was previously discussed in Section 3.4, the requirement of gauge invariance in QCD
introduced self-interaction of gluons. This in turn leads to an important property of QCD, called
asymptotic freedom, i.e. with the increase of the transferred value of Q2, the effective constant
of strong interaction ↵

s

grows smaller, logarithmically in leading order [32]:

↵
s

(Q2) ⌘ g2
s

(Q2)

4⇡
=

1

�
0

ln(Q2/⇤2

QCD

)
, (3.15)

where �
0

= 11 � 2/3n
f

, n
f

– is the number of quark flavors. The ⇤
QCD

constant plays a
fundamental role in QCD. ⇤

QCD

is a scale parameter of QCD – an energy scale at which non-
perturbative effects become important (↵

s

grows large with the decrease of Q2). The value
of ⇤

QCD

is extracted from experimental data and it is O(200) MeV or ⇤
QCD

⇠ 1/R
0

, where
R

0

⇠ 10�13 cm is a typical hadron size.
It is seen that at Q2 ! 1, the coupling constant grows smaller ↵

s

(Q2) ! 0 and quarks stop
interacting: the effective color charge vanishes as the colored object is closer approached, i.e. the
object becomes asymptotically free (noninteracting). This phenomenon is a very important
property of QCD. It helps to naturally explain the structure of hadrons, so that the predictions
of the quark-parton model are valid in the asymptotic limit.

For example, the coupling constant becomes of the order of ↵
s

⇡ 0.1 for momentum transfers
in the range of 100 GeV - TeV [22]. Thus, the decrease of ↵

s

(Q2) with increasing Q2 makes it
possible to use perturbation theory for large enough values of Q2. In this case QCD changes
into free particles theory, up to logarithmic corrections which can be calculated perturbatively.
By performing an expansion in a small parameter ↵

s

of relations which describe the evolution
of functions dependent on Q2, it is possible to compare the predictions of the evolution to the
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experimental data. Thus, the property of asymptotic freedom allows the use of perturbation
theory to describe high-energy processes, and for example multi-particle production processes.
When the value of Q2 approaches ⇤

QCD

, ↵
s

increases and becomes infinite. As already described
in Section 3.3, this phenomenon is called confinement and means that quarks cannot be found in
a free state outside of hadrons: quarks and gluons cannot escape the region of strong interaction
and be observed as single physical objects, which was proved experimentally - so far there is no
evidence for free quarks in nature.

Growth of the coupling constant and the confinement phenomenon do not allow to obtain
in QCD theoretical predictions for low-energy processes and to describe properties of hadrons.
In this region, the perturbation theory does not work. Magnitudes and effects which cannot be
described by the perturbation theory are called nonperturbative. There are ways to account for
them semi-phenomenologically, or alternatively, lattice gauge theory can be used for calculating
them.

The main experimental confirmations of QCD are related to its perturbative predictions.
In particular, an important test of QCD is the match of ↵

s

(Q2) in the perturbative region
against formulas (3.15). The reduction of the coupling strength with increasing energy has been
confirmed experimentally and is illustrated in Fig. 3.10.

Figure 3.10: Summary of measurements of ↵
s

as a function of the respective energy scale Q [22].

As follows from (3.15), calculations in QCD are divided into two main modes. One of them
is in effect in the region of large Q2 and short distances (perturbative), and the second one – in
the region of small values of Q2 and long distances (nonperturbative).

Thus, the asymptotic freedom makes it possible to use the perturbation theory through the
separation of contribution of short and long distances into hadronic processes (the so-called
factorization).

For example, due to the running coupling in processes with Q � ⇤
QCD

(⇤
QCD

⇠ 1/R
0

),
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in the parton model it is possible to consider hadrons as objects which consist of almost free
partons – (anti)quarks and gluons, which are characterized by parton density functions (p.d.f.s).

3.6 Proton-proton scattering

The high-energy pp collisions which are studied at the LHC, are a special case of hadron-hadron
scattering. They are characterized by a variety of reactions and can be divided into two main
classes:

1. those which involve soft interactions, which are described by small momentum transfer (long-
distance reactions) and in which hadrons interact with each other as whole, integral objects.
The cross sections of these reactions are usually large and change slowly with the centre of
mass (C.o.M). energy. Phenomenological approaches are used to describe these reactions
(the total, elastic, single/double diffractive cross sections).

2. interactions which involve hard scattering, have large momentum transfer (short-distance
reactions) and thus can probe the internal structure of the interacting hadrons. In this
case, perturbative QCD is applied to describe these reactions (the high transverse energy
jet, heavy quark and high mass lepton pair production).

General properties of hadron-hadron total cross sections. Figure 3.11 presents the
general behavior of the total cross sections in hadron-hadron collisions as a function of the C.o.M.
energy.

It can be seen that the total cross sections of hadron interactions slowly decrease with increas-
ing energy (with minimum around

p
s ⇠ 20 GeV) and start to increase at energies of a few tens of

GeV. A resonance structure is evident with
p
s  3 GeV. Above the resonance the total hadron-

hadron cross section is proportional to the product of the number of (anti)quarks in the colliding
particles. Therefore, e.g. the cross section of the meson-baryon interaction is about 2/3 of the
cross section of baryon-baryon interaction: �

tot

(⇡�p) ⇡ �
tot

(K�p) ⇡ 2/3⇥ [�
tot

(pp) ⇡ �
tot

(pp̄)].
With further increase of energy, total cross sections also increase. Experiments show that the in-
crease in cross sections is universal for hadronic interactions. This indicates that at high energies
new additional mechanisms of interaction appear.

Soft proton-proton scattering. Proton-proton scattering can be divided into elastic
scattering, diffractive scattering and inelastic scattering.

Elastic scattering corresponds to the process in which the participating particles slightly
deviate from their initial trajectories after the interaction, i.e. p+ p ! p+ p. Elastic scattering
is characterized by space-like momentum transfer t = (p

in

� p
out

)2 < 0.
The t-range can be separated into the following regions in which either electromagnetic or

strong forces dominate:
|t| < 0.001 GeV2 – the well understood Coulomb region;
0.001 < |t| < 0.01 GeV2 – the interference region;
0.01 < |t| < 0.15 GeV2 – the diffraction region.

The differential cross section has the following typical behavior as a function of |t|: the strong
peak at |t| < 0.01 GeV2 decreases to a minimum at |t| ⇠ 1.4 GeV2, which is followed by the wide
peak at |t| ⇠ 2 GeV2. At |t| > 2 GeV2 the decrease of the differential cross section is described
as t�n (the diffractive region), where n = 10 for baryon-baryon scattering. All this is well seen
in Fig. 3.12 which demonstrates the t-dependence of pp and pp̄ scattering.



Chapter 3: QCD 52

Figure 3.11: Measured cross sections in hadron-hadron collisions as a function of the C.o.M.
energy [32].

In the diffractive region the differential cross section is approximated by [32]

d�
el

dt
/
⇢

eAt+Bt

2 |t| < 0.4 GeV2

t�n |t| > 3.0 GeV2

(3.16)

The next important class of interactions are reactions which involve diffractive dissociation
processes, in which, during elastic scattering, one of the colliding protons becomes excited without
the change of the internal state of the second proton, or both of the interacting protons excitate
(single or double diffractive dissociation). These processes produce relatively few particles, be-
cause they come from the decays of the excited protons but not from the initial interaction, thus
their production consumes a small fraction of the energy.

Phenomenologically, diffractive dissociation processes include such inelastic and multiple pro-
cesses which involve protons, characterized by the following properties:

1. differential cross sections are strongly extended forward, the main part of the process is



53 3.6 Proton-proton scattering

Figure 3.12: Measured differential cross section in pp̄ and pp collisions as a function of the
momentum transfer t for various C.o.M. energies [32].

associated with a small momentum transfer;

2. cross sections are almost independent of energy, increasing at very high energies (> 100
GeV in the lab frame) proportionally to ln(s/s

0

), where
p
s is the energy in the center of

mass frame, and s
0

is a constant of energy squared;

3. there is a large rapidity gap between the groups of produced particles;

4. cross sections involving particles and antiparticles are equal;

5. t-channel processes, dominated by Pomeron exchange.

Sketches of diffractive scattering processes are presented on of Fig. 3.13 (zig-zag lines mark
Pomeron exchanges which are dominant at high energies). The left diagram corresponds to
the single diffractive dissociation process with only one excited vertex. The double diffractive
dissociation is represented by the middle diagram, which corresponds to the reaction when exci-
tation occurs in both interaction vertices. The central diffractive process with double Pomeron
exchange p + p ! p + p +X (where X stands for a number of produced hadrons) is presented
on the right diagram of Fig. 3.13. Description of this type of processes is possible with the help
of the exchange of two Pomerons at higher energies than for the processes shown in the left
diagram.

The following predictions of the cross sections for pp collisions were made for the LHC running
with

p
s = 14 TeV [32] �

tot

⇡ 105 mb, �
el

⇡ 25 mb, �
SD

⇡ 15 mb, �
DD

⇡ 10 mb. The central
diffraction cross section is estimated to be a few per cent of the total dissociation cross section.
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Figure 3.13: From left to right: single diffractive dissociation (SD), double diffractive dissociation
(DD) and central diffractiv (CD) events.

Hard proton-proton scattering. The rare hard events are of a particular interest for
the LHCb experiment. They can be classified as the events that contain large momentum scale
and short-distance scale, and work with quark and gluon constituents in describing pp (hadron-
hadron) interactions.

Figure 3.14: Schematic diagram for the production of final state particles c and d in a hard
collision of hadrons h

1

and h
2

.

In perturbative QCD, a factorization theorem is applied for a description of a differential
cross section of an arbitrary hard process in a collision of two particles. For example, for the
collision of hadrons h

1

and h
2

, which produce particles c and d (see Fig. 3.14) the expression for
the cross section can be written as

d�
h

1

h

2

!cd

=

Z
1

0

dx
1

dx
2

X

a,b

f
a/h

1

(x
1

, µ2

F

)f
b/h

2

(x
2

, µ2

F

)d�̂
ab!cd

(µ2

F

, µ2

R

). (3.17)

Here the partons a, b 2 {q, q̄, g} are from the hadrons h
1

, h
2

;

f
a/h

1

, f
b/h

1

are the distributions of partons a, b in hadrons h
1

, h
2

(are the same p.d.f.s as in
DIS);
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the parton momenta are pµ
a

= x
1

pµ
h

1

, pµ
b

= x
2

pµ
h

2

, where x
1

, x
2

correspond to the fractions of
the momenta of partons a, b;

µ
F

is the factorization scale (hard interaction scale) parameter. The p.d.f.s depend on the
factorization scale parameter µ

F

, which is chosen and fixed and, is usually O(µ
R

). This
parameter specifies the energy scale that separates (factorizes) physics at long distances
and which can not be quantitatively represented in QCD;

d�̂
ab!cd

is a differential cross section of the hard subprocess ab ! cd, which can be calculated
in QCD perturbation theory in the form of a series in powers of the running coupling and
depends on the renormalization scale µ

R

for QCD running coupling.

The summation is done over all partonic subprocesses which contribute to the production of
particles c and d.

Contributions of 2 ! 2 processes into the hard subprocess cross section are the leading
ones (O(↵2

s

), O(↵
s

↵
em

)). For example, the processes qq̄ ! QQ̄, gg ! QQ̄ and qg ! q�,
qq̄ ! g� contribute to the production of a pair of heavy quarks (Q) and to the prompt photon
(�) production respectively. To take into account the higher orders in the perturbative expansion
�̂, it is necessary to consider 2 ! 3 and more complex processes, in which singularities appear
when the partons become collinear. This is the region of the factorization of singularities. The
appearance of jets associated with each of the outgoing partons is a consequence of the near
collinear radiation.

There are many ad hoc parameters in the QCD inspired models which need to be determined
from the data. Chapter 4 provides some insight into how this is modeled in PYTHIA.



Chapter 3: QCD 56



Chapter 4

Monte Carlo simulation

Utere et abutere.
Lat.: Use and abuse.

This chapter describes the LHCb software framework and its applications, which were used
in the Monte Carlo tuning process. Section 4.1 begins this chapter with a short explanation on
how the discussed theory is implemented in Monte Carlo events generators. Section 4.2 discusses
the PYTHIA event generator and its process of event simulation, followed by Section 4.3 which
briefly introduces detector simulation. Section 4.4 concludes this chapter with an overview of
the LHCb software framework.

4.1 Using the Monte Carlo event generator

The software used at LHCb relies on the PYTHIA Monte Carlo event generator [9] to simulate
hadronic events which occur in pp collisions. Since the description of simulated events is based
on QCD, theoretically a generator requires only 7 free parameters: the strength of the coupling
↵
s

and the six quark masses. However, in reality Monte Carlo event generators have many
miscellaneous parameters and options due to the use of perturbative approximations and non-
perturbative models (the wide range of hard subprocesses, models for soft physics, the well
developed Lund string model [9] for the hadronization scheme and so on).

The values of many of these parameters are defined by tuning the Monte Carlo generators to
the experimental data. Usually a �2(p

1

, p
2

, · · · , p
n

) function is calculated and the result of its
minimization is considered the best set of parameter values within their corresponding one-sigma
errors (for more details see Chapter 4).

The necessity to generate large samples of data, the multidimensionality of the parameter
space, the large number of distributions which are used as comparison criteria, accounting of
uncertainties and the problem of stability of numerical minimization - all of these problems
make tuning procedures a complicated task, transforming it into art.

There are different tuning approaches, but usually the process is split into several stages
and the initial tuning is done with a subset of ’major’ parameters, e.g. ⇤

QCD

, the principle

57
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hadronization model parameters, shower model parameters, etc. Then with the values of these
parameters fixed, the next tuning iteration is done for the next subset of parameters, and so on.

4.2 Event generation and PYTHIA

During the event generation phase, the Gauss application is used to simulate processes which
take place during and right after the proton-proton collisions. In fact, to simulate the collisions
it relies on the external event generators, such as: PYTHIA 6/8, HIJING, SHERPA, HER-
WIG/HERWIG++. Currently PYTHIA 6.4 is still used as the default one though the LHCb
software framework is migrating to PYTHIA 8.

PYTHIA is a general purpose event generator which contains theory and models for a number
of physics aspects, such as hard and soft interactions, multiple interactions, parton distributions,
initial and final state parton showers, fragmentation (the Lund model) and decays. For descrip-
tion of these physics aspects, PYTHIA uses various models with phenomenological parameters.
These parameters are included in the default parameter set of the Monte Carlo event generator.

The PYTHIA program work flow is divided in the three steps:

First step, definition of the studied process(es);

Second step, generation of the initial state showers and beam fragments;

Third step, generation of the final state showers, fragmentation (Lund model) and decays.

The PYTHIA event generator can simulate many physics aspects which are described by
different models, some of which contain phenomenological parameters that control their behavior.
These parameters are included in the default parameter set in PYTHIA and their values are
usually determined from experimental data.

Figure 4.1: Scheme of a pp collision with modeled stages of the initial state radiation (ISR), the
hard scattering process, the parton shower and the hadronisation [7].
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The physics in the Monte Carlo event generator simulation can be divided into two parts: the
perturbative and non-perturbative regimes which are separated by a hadronization scale Q

0

⇠ 1
GeV. The perturbative regime is limited by the hard scattering region and is characterized
by the large momentum transfers Q2 � ⇤2. The non-perturbative models are used for the
description of physics at low scale, i.e. for the simulation of the hadronic final-state. These
phenomenological models contain parameters which must be tuned to experimental data. The
parton model provides a factorized form for QCD physics description, with separation of the
low and high scale physics. The parton shower evolves the partons from the hard scales (hard
subprocess) down to the hadronization scale where hadronization models can be applied.

A typical pp event simulation can be divided into the following steps, which are time ordered:

• Two beams of particles (protons), moving in the opposite directions, collide, creating a
hard interaction. Particles in the beams are characterized by structure functions, which
describe partonic structure.

• An initial state parton shower is created as a sequence of branchings by the shower initiator
partons from each of the beams.

• One incoming parton from each of the showers enters the hard process, where then a
number of outgoing partons are produced. The outgoing partons may also branch, to build
up final state showers.

• Due to confinement the outgoing colored quarks and gluons cannot leave the interaction
region but instead they must fragment to the colorless hadrons (fragmentation). The
process of transition of colored partons into colorless hadrons is called fragmentation (or
hadronization).

• And the last step is a decay of the produced unstable hadrons.

The major parameters of the perturbative QCD treatment are ⇤ (or ↵
s

) and the shower
cut-off Q

0

, the a and b parameters of the Lund symmetric fragmentation function, and the
width of the transverse momentum distribution �. Further we shall consider how some of the
parameterizations and models which depend on these parameters are realized in PYTHIA.

The total hadron-hadron cross-section.
PYTHIA uses the Donnachie and Landshoff [36] parameterization to calculate the total

hadronic cross-section �ab
tot

in hadron-hadron interaction ab ! anything and is the sum of two
terms (Pomeron and Reggeon):

�ab
tot

(s) = Xabs✏ + Y abs�⌘ = Xabs✏ + Y ab

1

s⌘
. (4.1)

Here s = E2

cm

, the powers ✏ = 0.0808 and ⌘ = 0.4525 are expected to be universal, (the data
indicate that they vary very slowly with s, so they are almost constants), the coefficients Xab

and Y ab are specific for each initial state, where at high energies Xab = X āb, i.e. the Pomeron
term is expected to be the same for the particle and antiparticle. From (4.1) it is seen that the
total hadronic cross-section increases with an increase of s, herewith the first term dominates.
For example, the parameterization (4.1) for pp looks like [36] (see Fig. 4.2)

�pp
tot

(s) = 21.70s0.0808 + 56.08s�0.4525

and for p̄p
�p̄p
tot

(s) = 21.70s0.0808 + 98.39s�0.4525.
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Figure 4.2: Data for total cross-sections with fits of type (4.1) [36].

Parameterizations not provided by [36] are calculated as

�ab
tot

(s) = �ab
el

(s) + �ab
sd(Xb)

(s) + �ab
sd(aX)

(s) + �ab
dd

(s) + �ab
nd

(s). (4.2)

Here 0el0 is the elastic process: ab ! ab; 0sd(Xb)0 is the single diffractive dissociation: ab !
X + gap + b, with X denoting anything but the original beam particle and ’gap’ is a rapidity
region devoid of observed activity; 0sd(aX)0 is the single diffractive dissociation: ab ! a+gap+X;
0dd(X

1

X
2

)’ is the double diffractive dissociation: ab ! X
1

+ gap+X
2

; 0nd0 is the inelastic non-
diffractive scattering: everything else (�ab

nd

⇢ �ab
hard

). The central diffraction ab ! a+ gap+X +
gap+ b processes are usually neglected. The elastic, diffractive cross-sections are computed with
the help of Regge theory [9].

The factorization formula for QCD cross-section. The cross-section for a scattering
subprocess ab ! n at hadron colliders is calculated with the formula

�
ab!n

=
X

ab

Z
dx

i

Z
dx

j

fh

1

a

(x
a

, Q2)fh

2

b

(x
b

, Q2)�̂
ab!n

,

where fh

a

(x
a

, Q2) is the parton distribution function (PDF) that describes the probability to
find a parton a inside a beam particle h, with parton a carrying a fraction x

a

of the total h
momentum, Q is the hard interaction scale.

Parton distribution functions contain nonperturbative information (dependence of x on a
fixed scale Q), but their dependence on the Q scale can be predicted for large values of Q using
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations (DGLAP [32].

The cross-section for the hard partonic process is �̂
ab!n

(scattering cross-section of partons
a and b), which in QCD is calculated as a series in powers of the running coupling ↵

s

(Q2).
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One of the main sources of information on the parton distribution functions are the deep
inelastic lepton-nucleon scattering processes. A set of PDFs is incorporated in a software package,
in which the values of the PDFs are presented on a grid of (x,Q) values and are interpolated to
any point in the space of the variables.

The parton showers. The structure of initial- and final-state showers is given in terms of
branchings 1 ! 2 or a ! bc, where the mother a decays into two daughters b, c. The following
branchings are included in PYTHIA: q ! qg, q ! q�, g ! gg, g ! qq̄, l ! l�. The branching
kinematics is given in terms of Q2 and z variables: Q2 is related to the mass or transverse
momentum scale of the branching, z gives the sharing of the a energy and momentum between
the daughters (b takes a fraction z and c takes the remaining 1� z of the a energy). The formed
partons b and c can in turn branch, and so on.

Each process is described by a splitting kernel P
a!bc

(z) which is interpreted as the proba-
bility for the parton a to branch into b, c and which is calculated in PYTHIA by the formula,
corresponding to each process [9]. The branching rate is proportional to

R
P
a!bc

(z)dz.
A “virtuality scale” Q2, which characterizes each parton, gives a sense of time ordering to

the cascade. Each parton initiates a virtual cascade, branching into a number of partons. The
evolution variable Q2 is associated with the m2 of the branching parton. The final-state showers
are time-like (i.e. partons have m2 = E2 � p2 � 0). Starting from some Q2

max

, the parton
shower evolution is based on calculating the Sudakov form factor [22], �(Q

max

, Q
1

), which is
computed for each parton and corresponds to the probability that the parton does not split into
other partons a ! bc between the hard scale Q

max

and some smaller scale Q
1

. The value Q
1

is
determined from the expression r = �(Q

max

, Q
1

), in which r is a random number in the interval
[0, 1]. This selected Q2

1

value defines the mass of the branching parton and the z value, which
is determined from the splitting kernel, represents the division of the parton energy between its
daughters. Each daughter may evolve downwards, i.e. the process is repeated in order to obtain
the scale Q

2

of the next emission, and so on. The shower evolution is cut off at some lower scale
Q

0

= Q
shower cut�o↵

, usually around 1 GeV for QCD branchings that separates the perturbative
and non-perturbative part of the simulation. In PYTHIA the shower cut-off parameter is one of
many which are usually tuned to data.

As a next step, the Monte Carlo generator hadronizes the simulated partonic configuration,
according to its hadronization model. PYTHIA uses the Lund model, which is described later in
this chapter. Historically, PYTHIA handles the evolution of the initial-state showers itself and
uses the JETSET packages for final-state showers [9].

The incoming charged particles can radiate before entering the hard subprocess, which results
in obtaining a non-vanishing transverse momentum and the virtuality of such particles becoming
negative (space-like). The initial-state showers are space-like, i.e. in the sequence of branchings
a ! bc, obtained in the result of evolution of the process from the shower initiator to the hard
interaction, particles a, b have m2 = E2�p2 < 0. In this case, the evolution variable Q2 = �m2,
which characterizes the evolution of the space-like ’main branch’, increases along the shower
towards the hard subprocess, i.e. Q2

b

> Q2

a

. Each branching a ! bc produces a space-like parent
parton b and a time-like daughter parton c (it does not participate in the hard scattering),
which continue to evolve according to the backward initial-state and forward final-state shower
algorithms.

In PYTHIA, the process with the initial-state radiation is implemented by the ’backwards
evolution’ scheme, when the hard scattering event is selected as the first step and then the parton
shower is reconstructed. The reconstruction is a ’backwards in time’ step by step motion which
starts from the Q2

max

scale to the cut-off scale Q2

0

, back to the shower initiator (i.e. for a given
parton b, the parton a which branched into b is defined). This scheme is possible if the evolved
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parton distributions are used for the choice of the hard scattering, because the functions f
i

(x,Q2)
contain the inclusive effects of initial-state radiation. The evolution in the Monte Carlo program
is done in terms of a sequence of decreasing the space-like Q2 and increasing the momentum
fractions x.

Confinement, hadronization and the Lund string model. The mechanism of confine-
ment is used to explain the negative results of experiments, designed to register single, unbound
quarks. It is a model which describes the behavior of quarks inside hadrons.

The interaction between a pair of quarks is described by a potential of the following form

V (r) ⇡ �↵s

~c
r

+ r. (4.3)

In this formula, the first term, dominating at short distances (< 0.2 fm), is similar to the
Coulomb’s potential, and the second term, which plays the major role at distances r ⇠ 10�13 cm
= 1 fm. Here,  is the energy density per unit length of a color flux tube formed by gluon
self-interaction between two colored partons (experimentally,  ⇡ 1 GeV/fm).

The string fragmentation is a very popular model which is used in the PYTHIA Monte Carlo
event generation application. The program uses the phenomenological Lund string model, in
which the confinement is realized by stretching strings between the outgoing q and q̄ partons,
which move apart from each other. A one-dimensional string is represented as an axis of a color
cylindrically symmetric flux tube, formed by gluon self-interaction. The tube is considered to be
uniform along its length with the string tension  ⇡ 1 GeV/fm, which leads to the confinement
mechanism with a linearly rising potential (the short distance Coulomb term in (4.3) is neglected).
Since the q and q̄ move in the opposite directions, stretching the string, the potential energy stored
in the string increases. When the energy has grown sufficiently, the string breaks up by creating
a new pair q

1

q̄
1

from the vacuum. As a result, the system splits into two color-singlet systems
qq̄

1

and q
1

q̄. In the Lund string model, this break-up process proceeds as long as the invariant
mass of the string pieces exceeds the on-shell mass of a hadron. Hence, each produced hadron
corresponds to a small piece of the string with a quark and an antiquark at its ends. Thus, the
fragmentation process is described in terms of branchings (“string ) hadron + string remainder”
and so on) and may be calculated iteratively.

The Lund model uses the idea of quantum tunneling in order to create a quark-antiquark
pair q

i

q̄
i

, which move apart along the z axis. The field energy between the quark-antiquark pair
can be transformed into the sum m? of the two transverse masses (the transverse mass squared
m2

?q

= m2

q

+ p2?q

). The tunneling mechanism is assumed to give a transverse momentum p?
for each new created pair q

i

q̄
i

. The transverse momentum p? is locally compensated between q
i

and q̄
i

(since the string is assumed to have no transverse excitations), and is given a Gaussian
distribution in p

x

and p
y

separately. The p? of a produced meson (hadron) q
i�1

q̄
i

is obtained as
the vector sum of the p?’s of the q

i�1

and q̄
i

.
For each breakup vertex the q

i

q̄
i

pairs are created according to the tunneling probability,
leading to a Gaussian suppression
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where m
q

is the mass of the produced quark flavor, p2?q

= p2
x

+p2
y

, p?q

is the transverse momentum
imparted by the breakup process (the q̄ has the same mass and opposite p?), and  ⇡ 1 GeV/fm
is the string tension.
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With p2? and m2 fixed, the final step is to select the fraction z of the quark’s longitudinal
momentum that is carried by the created meson or hadron. The fragmentation function f(z)
is the probability that a given z is picked. PYTHIA uses the following expression for the Lund
symmetric string fragmentation function [9, 22]

f(z) / z�1(1� z)a exp

✓
�b(m2

h

+ p2?h

)

z

◆
. (4.4)

This function has two phenomenological free parameters a, b, which need to be consistent to
lead the fragmentation into accordance with the experimental data. In PYTHIA, the parameters
PARJ(41) and PARJ(42) correspond to a, b, and their default values are set to PARJ(41)= 0.3
and PARJ(42)= 0.58 GeV�2.

Figure 4.3: Example of a string configuration in a pp collision.(a) Graph of the process, with
brackets denoting the final colour singlet subsystems. (b) Corresponding momentum space pic-
ture, with dashed lines denoting the strings [37].

It is assumed, that baryons can be produced in a similar way (though this is still a poorly
studied area). A diquark is considered as a color anti-triplet, behaving like an ordinary antiquark,
and the string can break by producing a quark-antiquark or a diquark-antidiquark pair. Thus, an
event can contain several separate strings. Fig. 4.3 presents an example of a string configuration
for a proton-proton collision. Representing a remnant of the proton as a ud diquark and a u
quark (or uu and d) leads to three strings ud�b, u� b̄ and ud�u. Also, because of the symmetry,
we can expect that the b quark could couple with the ud diquark of the other proton.

The next step is the assignment of a spin S and an internal orbital angular momentum L
to the produced quarks from which the hadron multiplets are formed. This sector contains the
largest amount of free parameters [9] which are determined from data.

The production mechanism of heavy quark pairs (bb̄, cc̄) in proton-proton collisions in
PYTHIA is influenced by the three following processes:

• Pair creation by quark-antiquark annihilation (qq̄ ! bb̄) and gluon fusion (gg ! bb̄).

• Flavor excitation. This case is described as bq ! bq or bg ! bg, when a virtual b quark
from one beam proton is put on mass shell by scattering with a parton from the other
beam proton.

• Gluon splitting. In this case the bb̄ pair is created when a g ! bb̄ branching takes place in
the initial- or final-state shower, instead of the hard scattering.
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it is possible to influence the simulation process by changing the generator’s parameters.
These three processes give contributions to the total cross-section as shown in Table 4.1.

Production process 2 TeV 7 TeV 14 TeV
1. Pair creation 2.7 15.0 34.3
2. Flavour excitation 7.7 44.7 104.6
3. Gluon splitting 1.5 19.4 71.2
Total 11.9 79.1 210.1

Table 4.1: Results for B production cross-sections (µb) for b-quarks simulated with PYTHIA
6.4 (p

T

> 10 GeV/c, |⌘| < 2.5) [38].

After a pair of protons collided, the produced B mesons are emitted in the forward or back-
ward cones, in the directions of the colliding particle beams. The boost of the bb̄ pairs comes
from the difference of momenta of the partons which are involved in the scattering process: since
each of the partons carries a fraction of the total proton momentum, combinations with higher
momentum ratio become possible with the growth of the centre-of-mass energy, resulting in a
large boost of the bb̄ pair in the detector frame towards higher

p
s values.

PYTHIA also simulates multiple parton interactions: the other partons of the two colliding
protons may cause additional (softer) parton-parton interactions and such underlying events
contribute to the observed particle multiplicity.

The final stage of the event simulation is the hadronization of the colored quarks and gluons
to mesons and baryons.

Decay simulation. Many particles produced by fragmentation are unstable and decay.
The new B physics experiments require a reasonable description of the decay of heavy mesons.
The LHCb software framework relies on the EvtGen particle decay simulation package for the
simulation of physics processes, related to decays of B mesons. The package uses a set of tables
where branching ratios and decay modes are stored, and correctly simulates the angle and time-
dependent distributions in sequential B decays using the actual decay amplitudes [39].

4.3 Detector simulation

After an event has been generated, it is necessary to model the propagation of the produced
particles through the detector. In the case of the LHCb detector this modeling handles the
following three major physical processes:

• Propagation of particles through matter and simulation of secondary interactions.

• Bending of the charged particles in magnetic field of the detector’s magnet.

• Decay of the remaining unstable particles.

• Simulation of detector response.

These tasks are implemented by a set of algorithms, incorporated in the GEANT software
package [40], execution of which is controlled by the GAUSS application. The algorithms of
GEANT describe a large number of physical processes and cover a wide energy range of many
types of particles. The output of the GEANT simulation are sets of hits which represent the
interactions of particles with the sensitive parts of the detector. This output is then used by the
BOOLE application during the digitization phase.
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GEANT also simulates the propagation of charged particles in the magnetic field. In the
most simple case in a uniform magnetic field in vacuum, the trajectories of charged particles are
represented by helixes, but in the case of LHCb, the magnetic field is not uniform and GEANT
uses the Runge-Kutta [41] method to properly describe the particles’ movement. Figure 4.4
illustrates a GEANT simulation event with Monte Carlo particles propagating the LHCb tracking
system. It is clearly visible that the trajectories of the particles are bent in the region of the
LHCb magnet and the cross-shaped markers represent hits in the sensitive material of the tracking
detectors.

Figure 4.4: GEANT graphical representation of the trajectories of charged particles in the LHCb
tracking system [1].

Another important aspect of GEANT operation is the modeling of propagation of particles
through material of the detector and their energy loss. When particles traverse through matter,
they interact with its atoms. Most of these interactions are electromagnetic and affect only the
charged particles. GEANT is able to simulate different phenomena, depending on how close
the given particle passes the atom of the matter it is traversing, such as atomic ionization and
excitation, interaction of the particle with an individual electron of the atom, Coulomb scattering
and multiple scattering, nuclear interaction.

4.4 Overview of the LHCb software

The LHCb software framework is used to work with the data collected by the detector and
to simulate the detector’s response. The main part of the object oriented framework, called
GAUDI [42], was developed in C++, though some of the applications on which it relies were
coded in Fortran and the most recent interfaces are developed in Python. GAUDI provides
basic functionality, such as data access and analysis, computational job steering, logging, etc.
Separate applications, which form the framework, are responsible for specific tasks, such as event
generation and visualization, simulation of the detector response, data reconstruction, physics
analysis. Below in Fig. 4.5 is a brief description of these tasks and applications which provide
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the respective functionality, organized in the sequence as they are executed in the process of
modeling of the LHCb detector.

Figure 4.5: The main LHCb applications: Gauss (simulation), Boole (digitization), Brunel (re-
construction) and DaVinci (physics analysis) [43].

Simulation is the first step in which events are generated. It is handled by the GAUSS
application [44] which delegates the simulation of the pp interactions to the external Monte
Carlo generator program PYTHIA [9]. PYTHIA output consists of the products of the
collision which are represented by their four-momentum vectors and space points of pro-
duction. The decay of the B hadrons is controlled by a separate application – EvtGen [45].
The collected output of the generation phase is then handled by the GEANT4 toolkit [40],
which simulates the evolution of the particles in the detector: propagation of charged par-
ticles in the magnetic field, interaction with material inside the detector, decay of unstable
particles, etc.

Digitization is the next major phase in the process, and is used to simulate the response
of the detector electronics. The BOOLE application [46] has dedicated algorithms which
describe each subdetector response and is responsible for digitizing the hits of the particles
in the sensitive material of the detector, presenting them as electrical signals.

Trigger is the intermediate step between the digitization and the offline reconstruction
(though, in the Monte Carlo tuning studies this step could be executed after the recon-
struction phase). This is done by the MOORE program [47]. In Fig. 4.5, the process would
sit anywhere past the digitization process and prior to the execution of actual physics anal-
ysis.

Reconstruction is the final step in preparation of the data for analysis, which is executed
by the BRUNEL program [48]. Its main tasks are the track reconstruction and particle
identification.
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Physics analysis: the main tool for the LHCb scientific community is the DaVinci ap-
plication [49] which allows to execute event selection algorithms. It uses the reconstructed
information to compose particles from tracks and particle identification objects, search
and fit vertices, combine the appropriate particles to select specific decays, apply cuts on
different variables such as mass life time of a particle.

Visualization of the events in the detector can be done with the PANORAMIX appli-
cation [50]. It translates the information on the events and detector geometry into the
graphical overview of the event, which helps in understanding of the data and the detector
behavior.
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Chapter 5

Mathematical methods

Aut viam inveniam, aut faciam.

Lat.: I’ll either find a way or make one.

This chapter defines the problem of this work (Section 5.1) and discusses methods which were
used to solve it and which were implemented in the Lagrange application. Section 5.2 gives an
overview of the tuning methods, followed by Section 5.3 which explains the parametrized response
function. Section 5.4 describes the fitting of the response function, and Section 5.5 discusses the
fitting algorithm. Sections 5.6 and 5.7 describe the �2 function and its minimization, respectively.
Finally, Section 5.8 discusses the sources of tuning uncertainties.

5.1 Brief introduction into the problem

One of the most common problems of particle physics is the necessity of comparisons between ex-
perimental data (i.e. measurements of final state observables, produced in collisions) and theory,
represented by Monte Carlo simulations.

Physics models contain miscellaneous parameters, which are essential for the description of
physical processes, and as was discussed in the previous chapter, some phenomenological models
contain parameters which must be tuned to data [51] (see tables of parameters in [9,51,52]). This
leads to the fact that Monte Carlo event generators contain a number of free parameters, which
have to be tuned to best describe the experimental data. Thus, in order to obtain the Monte
Carlo event generator predictions, which would agree with the experimental data, it is necessary
to simultaneously tune many phenomenological parameters in a high-dimensional space, and the
real challenge behind this task is the requirement to perform it with affordable computing time
costs.

Unfortunately, the MC generator is not a single analytic formula and the minimization of
the fit function with many parameters requires multiple runs of the generator with large data

69
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samples (high number of events per run). Even though the single collision events in particle
physics are independent of the other events in the same data sample, meaning the procedure of
event generation is trivially parallelized, such a task, depending on the number of simultaneously
tuned parameters and the size of data samples, could require many days or even months.

All of this made it essential to find a new and faster way of solving the problem, which
naturally lead to the idea of the bin-wise interpolation of the Monte Carlo event generator
response (also known as the DELPHI approach), which was implemented in 1995 as a Fortran
application [53,54], and as a more modern example - the Professor tool package [52,55], developed
in Python. The core idea of the approach is in creating an analytical model of the Monte Carlo
event generator for fitting to the experimental data.

This work presents a certain extension and improvement of the described technique, further
developed and implemented in the application Lagrange, which together with its helper-programs
and the LHCb framework (refer to the Chapter 4) forms a single system for tuning model
parameters of the Monte Carlo event generators to experimental data. The Lagrange application
is based on parameterizing the response of Monte Carlo generator by a polynomial; it was
developed in C++ with the use of ROOT, the object oriented framework for data analysis.

Some of the key features of the Lagrange application include:

• Actively developed interpolation idea:
1. interpolation by a polynomial of the 2nd or 3rd order,
2. computation of the unknown polynomial coefficients by two different numerical imple-
mentations, using the method of least-squares,
3. guaranteed estimation of computational errors,
4. estimation of statistical errors via covariance matrices,
5. ability to emphasize or to exclude individual bins or distributions by assigning weights,
6. simultaneous use of multiple distributions, which serve as the comparison criteria;

• integration of the application into the LHCb software framework.

The Lagrange application and its helper programs are tools for systematic tuning of event
generator parameters, and in this work they have been applied for optimization of the PYTHIA
6.4 event generator, with respect to experimental data, collected by the LHCb detector. The
results are described in Chapter 8 of this thesis.

The sections below describe in detail the parameterization of the “cost functions” (the bin
values in the Monte Carlo generator histograms).

5.2 The tuning method

The long history of efforts [53, 54] to create an automated and systematic approach of tuning
generator parameters to data led to the idea of parameterizing the generator behavior, and
eventually to the introduction of the parameterization-based tune [51, 52].

The essence of the method is the following. The true fit function is expected to be compli-
cated, not analytic and a very “computationally expensive function” of an unknown form, for
technical reasons consisting of large sets of bins b in histograms of many distributions. In order
for the problem to be solved, the behavior of the cost function is simulated by inexpensive ones.
The true fit function is represented by a set of functions f

b

(~p) and every function f
b

(~p) (a poly-
nomial) is fitted to the Monte Carlo generator response MC

b

(~p) of each bin b – to the changes in
the n-dimensional parameter vector ~p = (p

1

, p
2

, . . . p
n

). After that, the only thing remaining is
to define a goodness of fit function between the generated and the experimental (reference) data
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and to minimize it. The result of the minimization is the predicted set of optimal parameters
~p
best

.
The further development of the parameterization-based optimization method was imple-

mented in the Lagrange application and is described onwards in detail:
1 Choice of the parameterization function;

2 The algorithm of fitting the parameterization function to the MC generator response;

3 Goodness of fit function;

4 Minimization.

5.3 The parameterized response function

As was noted in the previous section, it is possible to fit a polynomial to the MC generator
response MC

b

in each observable bin b in every distribution, with a variable n parameter vector
~p = (p

1

, p
2

, . . . , p
n

), i.e. to define the function f
b

(~p) that simulates the real MC generator response
MC

b

(~p) of each observable bin b in the n-dimensional parameter space.
Recall that an n-dimensional Taylor series [56] is
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Hence, an n-dimensional second-order polynomial, that is usually used to account for lowest-
order is
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with ~p
0

chosen as the center of the hypercube of chosen parameter values. The elements of
the vector ~p are determined at random positions from the volume of the parameter hypercube,
taking into account the range of values of the parameters [~p

min

, ~p
max

]. Here, the choice of ~p
0

is
irrelevant [55]: the result of a shift of the central point is simply a redefinition of the polynomial
coefficients, but the function remains the same.

The minimal number of independent coefficients �(b)
ij

in the double sum is calculated on the
basis of the combinatorics theorem, which proves that the total number of different combinations
when choosing m elements out of n, permutations without repetition, is equal to Cm

n+m�1

. Thus,
in the case of the 2nd order polynomial (m = 2)
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If necessary, it is possible to use a 3rd order polynomial
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In this case, the minimal number of the coefficients �(b)
ijk

in the triple sum with m = 3 equals
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If we know the coefficients ↵(b)
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, we can use the formula (5.1) or (5.2) to compute
the events MC
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(~p) = n
b

(~p) ⇡ f
b

(~p). The number of unknown polynomial coefficients in formulas
(5.1), (5.2) for n parameters is equal to

N
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6| {z }
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rd

order only

. (5.3)

Table 5.1 presents the values of N
min

, depending on the number of parameters n for polyno-
mials of 2nd and 3rd order.

n (pi) N
min

(2nd order) N
min

(3rd order)
1 3 4
2 6 10
3 10 20
4 15 35
5 21 56
6 28 84
7 36 120
8 45 165
9 55 220
10 66 286

Table 5.1: Values N
min

, depending on the number of parameters n, for polynomials of 2nd and
3rd order.
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Taking all of this into consideration, it is possible to derive a general formula for the number
of independent coefficients N

min

, depending on the number of parameters n and the order of the
polynomial m
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5.4 Fitting the response function

In order to use the parameterized response function f
b

(5.1) in the place of the Monte Carlo
generator, it is necessary to calculate the unknown coefficients of the polynomial for each bin b.
For that, we initially define the hypercube in the n-dimensional parameter space, i.e. for each
parameter we define the boundaries in which it may vary, so that every parameter p

i

has lower
and upper limits p

imin

, p
imax

(this interval contains reasonable values). Here, it is necessary to
understand that the parameter range of values should not be too large, in order to have smaller
parameter space volume and to create confidence that the approximation (5.1) or (5.2) gives a
good fit to the real Monte Carlo generator response.

The next step is to define the system of linear equations, using the formula (5.1) or (5.2)
with N sets of randomly chosen values of n parameters p

1

, p
2

, . . . , p
n

(N points in the parameter
hypercube [~p

min

, ~p
max

]), determining n
b

(~p) as N initial runs of the Monte Carlo generator.
In the case when N = N

min

(the number of the initial runs is the same as the number of
the unknown coefficients), the system of equations forms a square matrix which can be solved
in the standard way (gaussian elimination), and we have the “exact” fit of the polynomial to
the generator response. However, in this case there is a systematic uncertainty involved, since
the real Monte Carlo response is not an exact polynomial. Also it is necessary to consider the
existence of statistical errors of the MC generator.

In the case when the number of initial runs is larger than the number of the unknown coeffi-
cients (N > N

min

), the system of equations becomes overdetermined, with a non-square matrix.
There are several well known ways to solve such a system and one of them is pseudoinverse [57,58],
which gives a least-squares best fit to the oversampled generator points. Hence, with pseudoin-
verse the overdetermined system is usually solved by two methods (see Section 6.1 in Chapter 6):
via solving a so-called normal system, or via singular value decomposition (SVD).

The first method, solving via the normal system, is considered the fastest (computationally
lighter), but less precise, thus it is better to keep track of computational errors. The method
of guaranteed estimation of accuracy of computation of the coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

and �
(b)

ijk

(when the system is solved via a normal system) is described in detail in Section 6.1 of Chapter 6.
The errors of coefficients permit to estimate the accuracy of computing the approximated Monte
Carlo generator response f

b

(~p) by Formulas (5.1) or (5.2).
Similarly, the estimation of statistical errors for the coefficients and for the parameterized

response function f
b

(~p) is discussed in Section 6.3 of Chapter 6.
The calculated coefficients ↵(b)
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, �
(b)

ij
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ijk

allow to compute the approximated Monte
Carlo generator response (the parameterized response function) MC

b

(~p) = n
b

(~p) ⇡ f
b

(~p) by the
formula, allowing to describe the parameter hyperspace analytically. Hence, it is possible to
say that the parameterization (5.1), (5.2) gives us a fast, analytical Monte Carlo “pseudo-
generator” .
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5.5 The fitting algorithm

1. Define a hypercube.
The first step is to define the boundaries of a hypercube in the n-dimensional parameter
space, i.e. based on physics reasons, from previous experiments, and theoretical predic-
tions, to define the boundaries for each of the tuned parameters [p

imin

, p
imax

], while at the
same time trying to retain the size of the hypercube, to get a good fit of the parabolic
approximation to the real Monte Carlo generator response (see Tab. 5.2).

Parameter minimum value maximum value
p
1

p
1min

p
1max

p
2

p
2min

p
2max

...
...

...
pn pnmin

pnmax

Table 5.2: Definition of the range of values of the parameters.

After the boundaries [~p
min

, ~p
max

] have been set, the next step is to define the center ~p
0

of
the parameter hypercube

~p
0

= ~p
min

+ (~p
max

� ~p
min

)/2

2. Choice of values of the tuned parameters.

In this step, it is necessary to generate N parameter vectors

~p(set i) = (p
1

, p
2

, . . . , p
n

)T
set i

, i = 1, 2, . . . , N

in the parameter hypercube (see Fig. 5.2), on the condition that N � N
min

(see Tab. 5.3):
N points in the n-dimensional parameter space.
The question is how to choose the values for every set of ~p(set i). It is technically impossible
to sample the parameter space in every its point, so it is a common approach to choose a
finite number of sampling points, such that the computational time would be acceptable.
Since the form of the approximated true function is not known, it is a poor choice to base
one’s perameterization on a sampling along a straight line. The conventional strategy is to
select the coordinates of the points such that they cover the sampled space uniformly. For
that one usually uses a pseudorandom number generator, the algorithm of which produces
sequences which are uniformly distributed. In addition to this conventional approach,
the Lagrange application also allows one to use the Sobol quasi-random sequence to set
the sampling points. Fig. 5.1 presents the comparison of coverage of a 2D space with a
pseudorandom number generator and the Sobol sequence. It is seen that in the case of the
Sobol sequence the space is covered more homogeneously.

set 1 set 2 · · · set N
p
1

(set 1) p
1

(set 2) · · · p
1

(set N)
p
2

(set 1) p
2

(set 2) · · · p
2

(set 1)
...

... · · · ...
pn(set 1) pn(set 2) · · · pn(set N)

Table 5.3: N sets of random values of n tuned parameters.
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Figure 5.1: 2D space covered with 256 points from a pseudorandom number generator (a))
compared with the first 256 points from the Sobol sequence (b)). The red markers correspond to
the first ten points, the blue ones are the points from 11 to 100, and green are from 101 to 256.

Figure 5.2: N parameter points in the 3-dimensional space.

3. The Monte Carlo generator runs.
Execute the Monte Carlo generator at each sampled point, fill the histograms of distribu-
tions for K bins (see Fig. 5.3)

MC
b

(~p(set i)) = n
b

(~p(set i)), b = 1, 2 . . . ,K, i = 1, 2, . . . , N

and construct the matrix V (N,K)

V =

0

BBBBB@

bin1 bin2 · · · binK
n
1

(set1) n
2

(set1) · · · n
K

(set1)
n
1

(set2) n
2

(set2) · · · n
K

(set2)
...

...
...

...
n
1

(setN) n
2

(setN) · · · n
K

(setN)

1

CCCCCA
,

each row of which corresponds to the histogram of the Monte Carlo generator run for the
specific vector of parameters. Also, estimate the statistical errors for the numbers of events
n
b

, generated in each bin b.
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Figure 5.3: The Monte Carlo generator histograms for N points in the n-dimensional space.

4. Computation of the unknown polynomial coefficients in Formula (5.1).
Fit the polynomial (5.1) to the N sampled points in the hypercube for each bin b.

In order to compute the unknown polynomial coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

, the following sys-
tem of N linear equations is constructed: Equation (5.1) is used to relate the data for bin b
to each of the randomly chosen parameter vectors ~p(set i), using column b from the matrix
V

n
b

(~p(set 1)) = ↵
(b)

0

+

nX

i=1

�
(b)

i

· p0
i

(set 1) +

nX

i=1

nX

j=i

�
(b)

ij

· p0
i

(set 1) · p0
j

(set 1)

n
b

(~p(set 2)) = ↵
(b)

0

+
nX

i=1

�
(b)

i

· p0
i

(set 2) +
nX

i=1

nX

j=i

�
(b)

ij

· p0
i

(set 2) · p0
j

(set 2) (5.4)

...
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n
b

(~p(set N)) = ↵
(b)

0

+
nX

i=1

�
(b)

i

· p0
i

(set N) +
nX

i=1

nX

j=i

�
(b)

ij

· p0
i

(set N) · p0
j

(set N)

where ~p0 = ~p� ~p
0

.
In case of a square matrix, the solution of the system is simple and straightforward, whereas
in the case of the non-square matrix the system is solved by using the pseudoinverse with
the help of the least-squares method, which determines the best polynomial coefficients for
each bin b.
The use of covariance matrices allows for an estimation of statistical errors of coefficients
and events f

b

computed by the formula (5.1), and in the case of use of pseudoinversion,
computational errors are also estimated.

5. Estimation of the optimal parameter vector ~p
best

.
Having the estimated parameterization and the experimental data, it is now possible to fit
the tuned parameters p

1

, p
2

, . . . , p
n

.
The numerical minimization of the �2 function

�2(~p) =
X

bins

(polynomial(~p)� data)2

error2
= min =) ~p

best

(5.5)

gives the vector of the tuned parameters ~p
best

= (p
1

, p
2

, . . . p
n

)T
best

, i.e. the predicted optimal
set of the parameters.

6. Comparison of the prediction with the experimental data.
It is essential to test the new estimated set of the values of the tuned parameters to under-
stand whether the prediction makes sense and properly tunes the Monte Carlo generator
to better represent the experimental data. For that it is necessary to generate Monte Carlo
events with the new estimated parameter values ~p

best

and to compare the result to the
experimental data, taking into account the estimated errors.

7. Checking the parameterization: line-scans in the parameter space.
A line-scan in parameter hyperspace is a form of a sanity test. It allows one to compare
the performance of the estimated formula with the response of the Monte Carlo generator
and to check for the abnormal behavior of the former one.
In this case, the strategy is to sample the parameters from a straight line within the
parameter hyperspace, estimating f

b

(~p) by the formula (5.1) and comparing the result to
the corresponding Monte Carlo generator run n

b

(~p), followed by the computation of the
parameterized �2 function and its comparison with the �2 function of the Monte Carlo
generator response.
The Lagrange application implements two different line-scan tests. The first one allows to
probe the area around the estimated minimum ~p

best

of the approximated function. The new
limits for the parameters are defined as pi

best

± pi
best

�, where � is a user-defined value. and
the scan is then conducted along the diagonal of this redefined hypercube (see Fig. 5.4).
The second method scans along a hyper-line, which is constructed to pass via the two
points, defined by the default ~p

default

and minimized ~p
best

vectors of parameters. In this
case, ~p

A

= ~p
default

serves as a starting point of the line-scan, the end point ~p
B

is calculated
as ~p

B

= 2~p
best

� ~p
A

, and the coordinates of sampling points in between are calculated as
(~p

B

� ~p
A

)/M , where M is the number of steps along the line.
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Figure 5.4: A line-scan in the parameter hyperspace.

The algorithm described above could be in short represented by the following scheme:

Definition of the parameter hypercube

+

Sampling the hypercube by constructing parameter vectors
with randomly chosen values of the tuned parameters,
triggering the Monte Carlo generator and saving the results

+

Estimation of the unknown polynomial coefficients,
using the results of the Monte Carlo generator runs

+

Numerical minimization of the �2 function:
determination of the best parameter vector ~p

best

+

Likelihood profiling of the parameters for correct estimation of errors on their values

+

Sanity tests: comparison of the new Monte Carlo data, simulated
with the estimated best parameter values, to the experimental data
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5.6 The �2 function

After estimating the parameterization of the Monte Carlo generator response for each bin b, it
is necessary to choose a goodness of fit function, compute and minimize it.

The �2 function (5.5) is usually used for this purpose and we can rewrite this expression
taking into consideration (5.1) and introducing weights w

b

for each bin b

�2(~p) =
KX

b=1

w
b

(f̃
b

(~p)�R
b

)2

�2

b

(5.6)

Here, K corresponds to the total number of bins, f̃
b

(~p) is the value computed by Formula
(5.1) for bin b, R

b

is the experimental value for bin b, the total error �2

b

is the sum in quadrature
of the experimental errors, the computing and statistical errors of the simulation.

The use of weights w
b

permits us:
• to emphasise individual observations or certain distributions;
• to emphasise individual bins of an observation;
• to exclude individual bins or certain distributions from the minimization.

The best set of values of the tuned parameters is determined via the minimization of the
�2 function (5.6). For example, in the most simple case with only one tuned parameter p and
a compared distribution, represented by a histogram with a single bin b, we have the situation
illustrated in Fig. 5.5.

Figure 5.5: Simplified single-dimension, single-bin example, using N points for a fit.

f
b

(p) = ↵
(b)

0

+ �(b)p+ �(b)p2 =) �2(p) =
X

b

✓
f
b

(p)�R
b

�
b

◆
2

= min =) p
best
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Herewith, the estimated values ~p
best

= (p
1

, p
2

, · · · p
n

)
best

are called the least squares solutions,
which are obtained by solving the system of n equations

@�2(~p)

@~p
= 0

The variable �2 (5.6) coincides with the �2 probability distribution with N
df

degrees of
freedom.

In the given case, the number of degrees of freedom N
df

is defined by the total number of
bins K, the number of the tuned parameters n and the number of bins with zero weights (and
all other bins with weights equal to one):

N
df

= K � n�N
w=0

In general, the estimated ~p
best

= (p
1

, p
2

, · · · p
n

)T
best

vectors are correlated [59,60]. The covari-
ance matrix C

~p

best

is defined as follows

C
~p

best

= 2H�1,

where
H

ij

=

✓
@2�2

@p
i

@p
j

◆
|
~p=~p

best

are the elements of the symmetrical matrix of second derivatives (the Hesse matrix) of the
minimized �2 function.

The square roots of the values of the main diagonal of the covariance matrix C
~p

best

are the
errors for the estimated parameters values.

�p
i

=
p
c
ii

.

5.7 Minimization

The final step of the fitting algorithm is the minimization of the parameterized �2 function (5.6).
The choice of the minimization algorithm is important because the parameterized �2 function is
a very complex function, therefore numerical minimization is usually used. In the case of this
work, the well known application Minuit [61] was used for the purpose of numerical minimization
of the �2 function (5.6).

In order to avoid being stuck in a non-global minimum, multiple starting points are used as
the input for the Minuit program during the minimization procedure.

The result of the numerical minimization is the vector of best values of the tuned parameters
~p
best

= (p
1

, p
2

, . . . , p
n

)T
best

, i.e. the predicted optimal set of parameters values with errors taken
into account.

The Minuit application also estimates the uncertainties �p
i

of the optimal parameters values
p
i

, by computing the parameter points (the contour in the parameter space) in which the �2

exceeds the value of the (�2)
min

in the minimum by one unit

�2(~p) = �2(~p
best

) + 1 = (�2)
min

+ 1

which corresponds to a ±1 standard deviation �
~p

best

(68 % Confidence Level estimate) for a truly
�2-distributed test statistic.
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The computation of confidence intervals of theory parameters is one of the most important
problems in experimental physics. The method used widely in high-energy physics is the extrac-
tion of confidence intervals by finding the points where the �2 ln likelihood function increases
by a factor defined by the required confidence level (’lnL+ 1

2

’ method) [62].
The profile likelihood method (described in Chapter 8), is used for determining the asym-

metric parameter errors and their comparison to the uncertainties, estimated by Minuit. In this
method the many-dimensional likelihood function is reduced to a function that only depends on
the parameter of interest [63].

5.8 Analysis of sources of tuning uncertainties

An important feature of the fitting algorithm is that it makes a qualitative estimate of the tune’s
robustness. Let us consider the various sources of uncertainties in order to understand which of
them are computationally controllable and which are unquantifiable. The principal sources of
tuning errors are:

1. Reference data (experimental data collected by the detector) uncertainties.

2. Statistical errors of the parameterization result, which depend on the simulated data size
(number of events per simulated data sample).

3. Computational errors, arising from the accuracy of the interpolation of events in every bin b
by the polynomial (related to the number of initial sampling points N).

4. Computational errors of the parameterization result.

5. Choice of the Goodness of Fit function (in this particular case, the �2 function).

6. Computational errors, which arise from the numerical minimization of the GoF (e.g., errors
of the Minuit minimizer).

7. Systematic errors, which arise from the approximation of the event generator to the true fit
function f(~p), by the set of functions f

b

(~p).

These sources of uncertainties can be estimated qualitatively or even quantitatively. For
example, the contribution of the uncertainties from source 4 can be reduced by increasing the
number of sampling points N in the parameter hyperspace, such that it would exceed the number
of the unknown polynomial coefficients N > N

(n)

min

.
Statistical uncertainties, which depend on the strategy of choosing the initial sampling points

N in the parameter hyperspace, from which the parameterization is calculated, are a part of
sources 3 and 7. Influence of these errors are estimated by repeating the tuning procedure using
different algorithms of selecting initial sampling points in the parameter hypercube. Contribu-
tions of these errors could be reduced by rerunning the Monte Carlo generator multiple times for
each initial sampling point, or simply increase the total number of simulated events per generated
data sample. They can also be probed by overconstraining the fit.

Evidently, the influence of statistical uncertainties of source 3 grows smaller with increasing
number of generated events in the simulated data samples.

The uncertainties of sources 1, 2, 4 and 6, which can be estimated numerically, are accounted
for in the tuning procedure of the Lagrange tuning application.
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Chapter 6

Computation of the parameterization

‘If this were only cleared away’,

they said,‘it would be grand!’

by Lewis Carroll
“Through The Looking-Glass

And What Alice Found There”

This chapter focuses on a detailed discussion of the parameterization mechanisms. Section 6.1
describes the computation of the polynomial coefficients via a system of linear equations, followed
by Section 6.2, which presents the method of calculating the Monte Carlo generator response
f
b

by Equation (5.1). Concluding this chapter, Section 6.3 describes the estimation of the
computational and statistical errors.

6.1 Solving the system

This chapter contains a detailed description of the core method for the linear system solution
and errors estimation.

6.1.1 N parameter sets, one bin b

This simplified example considers the case, when the system with n parameters is solved for a
single bin b.

The following notations are used: n is the number of parameters (p
1

, p
2

, . . . , p
n

), N
min

is the
number of unknown polynomial coefficients for n parameters (5.3) and N � N

min

is the number
of parameter sets (see Tab. 5.1).

To determine the unknown polynomial coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

for bin b, it is necessary to
find the solution of the system (5.4) with N sets of the randomly chosen values of n parameters
p
1

, p
2

, . . . , p
n

.

83
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It is possible to convert (5.4) to matrix form:

0

BBBBB@

column1 column2 · · · columnN
min

1 p0
1

(set1) · · · p0
n

p0
n

(set1)
1 p0

1

(set2) · · · p0
n

p0
n

(set2)
...

...
...

...
1 p0

1

(setN) · · · p0
n

p0
n

(setN)

1

CCCCCA

0

BBBBBB@

binb

↵
(b)

0

�
(b)

1

...
�
(b)

nn

1

CCCCCCA
=

0

BBBBB@

binb
n
b

(set1)
n
b

(set2)
...

n
b

(setN)

1

CCCCCA
, (6.1)

or
PC

b

= V
b

.

Here, P stands for the matrix of size (N,N
min

), V
b

corresponds to the right hand side vector
of size N , and C

b

is the vector of unknown polynomial coefficients of size N
min

.
The components of vector V

b

are the Monte Carlo generator response n
b

in bin b for randomly
chosen sets of parameter vector ~p:

~p =

0

BBB@

p
1

p
2

...
p
n

1

CCCA

and ~p 0 = ~p� ~p
0

.
1. If N = N

min

, P is a square matrix of size P (N
min

, N
min

).
In this case, the solution of the system for bin b is the vector of coefficients C

b

, which can be
written as

C
b

= P�1V
b

2. If N > N
min

, P is a non-square matrix of size P (N,N
min

) and the system PC
b

= V
b

is
overdetermined.

In general, for such a case there is no exact solution, and it is only possible to obtain an
approximate solution C

b

with a minimal residual PC
b

� V
b

= r.
This is a linear least squares problem, and its solution is a vector C

b

, which minimizes

kPC
b

� V
b

k = krk, (6.2)

where k · k is the Euclidean norm. Data approximation is one of traditional applications of the
least squares method. The solution is based on the following definition from Ref. [57].

Definition 1 Let us consider a matrix P , which is a matrix of size n⇥m, with n � m. If P is
a matrix of full rank, with P = V ⌃UT its singular value decomposition (SVD), then the matrix

P+ = (P TP )�1P T = U⌃�1V T (6.3)

is called the pseudoinverse (Moore-Penrose) matrix for P . If n < m then P+ = P T (PP T )�1.

Definition 2 We say that the matrix A of size n ⇥ m is of a full rank, if its rank rank(A) is
equal to N

0

= min{n,m}.

It is safe to assume, that matrix P is a full rank matrix, because all its rows are linearly
independent, since they are formed of the randomly chosen values of parameters.

The rank of the matrix P is equal to rank(P ) = N
0

= min{N,N
min

} = N
min

, in our case
this is the number of columns of the matrix, since the number of rows is N � N

min

.
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The pseudoinverse matrix makes it possible to write the solution of the full rank overdeter-
mined least squares problem (6.2), with

C
b

= P+V
b

.

There are two different ways of calculating P+ with Eq. (6.3), and both of them, well known
and widely used, have been implemented in the Lagrange application (for more information on
the application see Chapter 7). The first one is the method of reduction of this system to “a
normal system of equations” with a square matrix. It is based on Theorem 1 from Ref. [64].

Consider the system Ax = b, where the matrix A has the size n⇥m and n > m, and b is the
vector of size n.

Theorem 1 Among all of the vectors x, which minimize

kAx� bk2 = krk2,

the vector x, which has the least possible norm, is the unique vector, that satisfies the equation

ATAx = AT b.

This means, that by solving the system PC
b

= V
b

via the normal system, we automatically
obtain the solution with a minimal residual. To do this, the system of equations with the non-
square matrix P

PC
b

= V
b

is multiplied by the transposed matrix P T from the left, and the obtained system is the “normal
system” of the linear equations with the square matrix

P TP C
b

= P TV
b

(6.4)

or
DC

b

= h
b

,

where C
b

is the vector of unknown coefficients, h
b

= P TV
b

is the right hand side vector, and
D = P TP is the square matrix of the normal system.

From here, if the inverse matrix (P TP )�1 exists, the solution of the system is found in the
following way:

C
b

= D�1h
b

= (P TP )�1P TV
b

= P+V
b

,

where the pseudoinverse matrix is equal to

P+ = (P TP )�1P T .

This method of solving the system is fast and computationally light because with N >
N

min

the computational cost of calculating the solution is approximately N2

min

· N floating-
point operations. But at the same time it is the least precise method, because of the matrix
multiplication [57]. It is preferably used in the case where the condition number of the matrix is
not large, providing a level of precision approximately the same as with SV D. Since the method
of normal system of equations is a fast and less precise way of solving an overdetermined system,
it becomes preferable when the matrix P is a well-posed matrix.
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The condition number matters, because (according to Theorem 2 (vide infra in Subsec. 6.3.1))
the solution accuracy is determined by the condition number of the square matrix D = P TP ,
which is twice larger than the condition number of the matrix P

cond(P TP ) = cond(P T ) · cond(P ) = cond2(P ),

and solving a system with a large condition number with conventional tools (i.e. gaussian elimi-
nation) may prove problematic.

Consequently, in the case when this method is used, it is necessary to take into account the
condition number of the matrix and the computational errors. Specifically for this purpose, the
Lagrange application provides an option for the guaranteed estimation of precision of the system
solution.

The second method for solving overdetermined systems, implemented in the Lagrange pro-
gram, is best suited for the case of an ill-posed matrix P , i.e. for matrices with a large condition
number.

Theoretically, this method is more computationally heavy and depending on the size of the
matrices in question, could take significantly more time to process. It is used if the singular value
decomposition of the matrix P is known: P = V

s

⌃UT

s

.
In Eq. (6.3), the square matrix V

s

of size (N,N) and the square matrix U
s

of size (N
min

, N
min

)
are orthogonal matrixes, i.e. V �1

s

= V T

s

, U�1

s

= UT

s

, the matrix ⌃ of size (N
min

, N
min

) is a
diagonal matrix ⌃ = diag(�

1

,�
2

, ...�
N

min

), which has the positive singular values �
1

,�
2

, ...�
N

min

on the diagonal. Usually �
1

= �
max

is the maximum singular value, �
N

min

= �
min

is the minimal
singular number.

The condition number of the non-square matrix P is equal to

cond(P ) =
�
max

�
min

.

The solution of the system in this case is found by substituting the SVD of matrix P into
the system of Eq. (6.3)

P = V
s

⌃UT

s

) PC
b

= V
b

(V
s

⌃UT

s

) · C
b

= V
b

and multiplying the equation on the left by the inverse matrix (V
s

⌃UT

s

)�1

(V
s

⌃UT

s

)�1(V
s

⌃UT

s

) · C
b

= (V
s

⌃UT

s

)�1V
b

considering, that (V
s

⌃UT

s

)�1(V
s

⌃UT

s

) = I, it follows that

C
b

= (V
s

⌃UT

s

)�1V
b

= P+V
b

.

This method of solving the system is exact and does not introduce increased errors, since
the multiplication of orthogonal matrixes does not worsen the matrix condition number, but in
this case the time needed to solve the system may increase by several factors (with N > N

min

the computational cost of finding the least square problem solution using SVD is approximately
4N2

min

· N floating-point operations [57]). It is implemented in the Lagrange application for
solving systems with large condition numbers in particular, with a large condition number, and
does not require an estimation of computational errors.

The SVD method is widely used in physics and mathematics, but Godunov S. K. from the
Sobolev Institute of Mathematics of Siberian Branch of Russian Academy of Science (Akadem-
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gorodok, Novosibirsk) [65] claims that solving matrix systems of equations via SVD is not really
applicable, because in spite of the fact that singular values are uniquely determined via the
matrix of the system, for the matrices V

s

and U
s

transformations might be unstable.
This means, for example, that solving one and the same system via SVD on different com-

puters may produce different V
s

and U
s

matrices and therefore results might differ.
Given this, the two methods implemented in the Lagrange application are applied not only

due to their differences in speed and precision, but also for the ability to control the result of the
system solution.

6.1.2 The case of N parameter sets and K bins

In the most general case, where the number of tuned parameters is n and the number of bins
b = 1, 2, . . .K, the system has the following form

PC = V, (6.5)

with the matrix P of size (N,N
min

)

P =
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and at the right hand side, the matrix V of size (N,K):

V =
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Each row of the matrix V is a histogram or a set of multiple histograms (with the length of K
bins), and represent the Monte Carlo generator response of each observable bin b (b = 1, 2, . . . ,K)
for a randomly chosen parameter vector ~p
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The solution of the system PC = V is the matrix of coefficients C of size (N
min

,K)

C =
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where the b-th column C
b

of matrix C is the estimated set of coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

for bin b
(b = 1, 2, . . . ,K), in the formula (5.1).
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The system PC = V is solved in the same way as is described in the previous section of this
chapter.

6.2 Computation of the MC generator response

6.2.1 Simplified example of a single parameter set and bin b

After estimating the coefficients ↵(b)
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ij

, it is possible to simulate the Monte Carlo gener-
ator response MC
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parameters p
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where ~p 0 = ~p� ~p
0

.
It is possible to regard the computation by Equation (6.6), as a scalar product of two vectors.
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contains independent computed polynomial coefficients for bin b (the b-th
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6.2.2 General example of M parameter sets and K bins

To make a scan along a straight line in the parameter hyperspace, it is necessary to define M sets
of parameter vectors ~p (which simply correspond to M points on the line). In this case, having
defined M sets of n tuned parameters, the calculations of f

b

(~p) for a bin b would be performed
the following way
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and in general, for K bins:
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or
BC = F, (6.7)

where each row of F corresponds to a single histogram, and approximates the MC generator
response MC

b

(~p) = n
b

(~p) ⇡ f
b

(~p) for each observable bin b (b = 1, 2, . . . ,K) for the chosen
parameter vector ~p:
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During numerical minimization of the �2 function by Minuit, it is sufficient to calculate the
response f

b

(~p) for a single set of the tuned parameters, and in this case the formula (6.7) is
reduced to the multiplication of a row from matrix B by matrix C

✓
column1 column2 · · · columnN

min

1 p0
1

(set 1) · · · p0
n

p0
n

(set 1)

◆

0

BBBBBB@

bin1 bin2 · · · binK

↵
(1)

0

↵
(2)

0

· · · ↵
(K)

0

�
(1)

1

�
(2)

1

· · · �
(K)

1

...
...

...
...

�
(1)

nn

�
(2)

nn

· · · �
(K)

nn

1

CCCCCCA

=

✓
bin1 bin2 · · · binK

f
1

(set 1) f
2

(set 1) · · · f
K

(set 1)

◆
(6.8)

6.3 Analysis of computational errors

Any algorithm, is bound to have computational errors which are the sums of the rounding errors
(machine epsilon), arising from every arithmetical operation on a computer, and the errors of
the algorithm itself. The estimation of the rounding errors is based on the parameter "

1

, which
depends on the machine precision, effectively corresponding to the minimal nonzero number,
represented by the computer. This is the case of single-precision, "

1

⇡ 10�8, and "
1

⇡ 10�16 for
double-precision.

At present, most calculations are carried out on personal computers with the help of popular
software frameworks for computations, which implement standard, well known methods. Al-



Chapter 6: Computation of the parameterization 90

though all computations are made approximate due to rounding errors in performing elementary
arithmetical operations, users rely on the results obtained and ignore the real error on the result,
considering that a double-precision for number representation (i.e. the reliable accuracy of any
arithmetical operation being of order 10�16) is sufficient enough for obtaining a reliable result.
Sometimes such faith leads to numerical paradoxes.

Let us consider one such paradox arising in a numerical computation of a spectral problem

Av = �v.

The numerical experiment was made with one of the program packages containing methods for
matrix spectrum computation using a relative accuracy of 10�16 [66].

For the integer square matrix C of order 7⇥ 7

C =
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the eigenvalues were computed using MATLAB. The following result was obtained:
Approximate spectrum of matrix C:

�
1

(C) = 6.624,
�
2,3

(C) = 4.065± 4.381i,
�
4,5

(C) = �1.472± 5.449i,
�
6,7

(C) = �5.906± 2.371i.

Then, using the orthogonal matrix P (P�1 = P T )

P =

0
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0 0 0 0 0 0 1
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1

CCCCCCCCA

the following matrices D and F were obtained

D = P�1CP, F = P�1DP = P�1(P�1CP )P.

It is readily seen that matrices D and F are obtained from matrix C by rearranging the whole-
number rows and columns. In this case in computing D and F via C, there are no roundoff
errors.

For matrices D and F , eigenvalues were computed using the same standard program. The
eigenvalues of matrices D and F should coincide with the eigenvalues of matrix C. However, the
following results were obtained
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Approximate spectrum of matrix D:
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Approximate spectrum of matrix F :
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Actually, all eigenvalues of matrices C,D, F are real integer numbers. This follows from the
fact that matrix C itself

C = L�1RL

is obtained using matrix L
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from the upper triangular matrix R

R =
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1
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Consequently, the spectrum of matrix C must coincide with the spectrum of matrix R, which
consists of the main diagonal numbers.

Exact spectrum of matrix C:
�
1

(C) = 0,
�
2,3

(C) = ±1,
�
4,5

(C) = ±2,
�
6,7

(C) = ±4.

Comparing the computed spectra of matrices C, D, F and the exact spectrum of matrix C,
creates the following question: “What does the standard program compute?”. It is not surpris-
ing that one will obtain a different set of eigenvalues by repeating these calculations on one’s
own computer. The discrepancy in the results of computations is not caused by the defects of
the computational algorithm or the application, but is connected to the errors in performing
arithmetical operations and to the construction of this example. It is a delusion to hope for
the improvement of computational results by using more modern program packages. It should
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be realized, that no matter how irreproachable the standard computational application may be,
the arithmetical operations performed in the process of its work are necessarily accompanied by
roundoff errors, and the value of these errors depend on the word size used for number represen-
tation. Although matrices C, D, F are precisely known, it is impossible to avoid arithmetical
errors when computing their eigenvalues. The exact eigenvalues of matrix C were obtained in
this example by increasing computational precision to the order of 10�22, but this is not always
possible and rather expensive.

This example demonstrates that it is not such a bad idea to consider computational errors
and be able to estimate them when having to deal with computations of matrices.

Our aim is to estimate the computational errors, which arise in calculations with Eq. (5.1).
It is obvious that these errors depend on how precise the polynomial coefficients have been
estimated, or in other words, on the precision of the solution of the system of equations (6.1).

As was explained in the previous chapter, the precision of solving this system depends on the
chosen method, and there are two different methods implemented in the Lagrange application:

a) a faster but less precise method, which uses a standard approach (gaussian elimination), and
requires an estimate of computational errors;

b) a slower, computationally heavier method of solving the system via singular value decom-
position, which is considered precise and thus doesn’t require estimating computational
errors.

The following sections describe in detail the algorithm of estimation of computational errors
for systems, which are solved via the first method.

6.3.1 Guaranteed precision estimation of the system solution

Perturbation theory. System with a square matrix.

The following theorem is usually used to estimate computational errors when the solved system
has a square matrix.

Let us consider the system of equations Ax = f , where A is a square, nonsingular matrix.
Assume that the matrix A and the right hand side vector f are perturbed: eA = A + 4A
ef = f + 4f , where perturbations 4A, 4f are very small. The following theorem gives the
answer to the question of how large the perturbation 4x of the solution can be [57,65].

Theorem 2 Given the system
Ax = f (6.9)

and the perturbed system
(A+4A)(x+4x) = f +4f,

where A and 4A are square matrixes of order N ⇥ N , f and 4f are vectors of size N , and
parameters ↵ and ' set limits on the perturbations,

k4Ak
kAk  ↵,

k4fk
kfk  '

are sufficiently small, and also
↵ · cond(A) < 1.
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Then the relative error k4xk/kxk, which arises due to perturbations 4A and 4f of the matrix,
satisfies the following inequality

k4xk
kxk 

✓k4Ak
kAk +

k4fk
kfk

◆
cond(A)

1� k4Ak
kAk · cond(A)

 (↵+ ')
cond(A)

1� ↵ · cond(A)
, (6.10)

where cond(A) = kAk · kA�1k is the condition number of the system matrix (6.9) and k · k is the
operator matrix norm.

The operator norm (or simply a norm) of a matrix A of a matrix A of order N ⇥M is defined
as [57, 65]

kAk = max
x 6=0

kAxk
kxk (6.11)

and has the following properties:

1) kAk � 0, and kAk = 0 only when A = 0;
2) k↵Ak = |↵| · kAk, ↵� a scalar;
3) kA+Bk  kAk+ kBk;
4) kABk  kAk · kBk.

Norms are used for estimating errors in matrix computations, therefore it is essential to know
how to compute them. Usually, to estimate the norm of the matrix one uses such numerical
characteristics that are readily calculated immediately via its elements and are the equivalent
matrix norms.

For example, the Euclidean (or Frobenius) norm of a N ⇥ M–matrix A is easily calculated
with the explicit formula

kAk
F

=

vuut
NX

i=1

MX

j=1

|a
ij

|2

and it is known [65] that
kAk  kAk

F

. (6.12)

The system condition number cond(A) characterizes how sensitive the solution is to the per-
turbation of the input data. From the definition it follows that cond(A) � 1 and cond(A) ) 1
for singular matrixes. Note that cond(A) is an important criterion of difficulty in solving a linear
system. If cond(A) is large, then A and the system are said to be ill-conditioned, and the smaller
is cond(A), the better the system is conditioned.

The error estimation of the system’s approximate solution is divided into two problems:

1) analysis of the rounding errors, which arise from every arithmetical operation at each step
of solving the system. It is done to show that the approximate result x̃ of the solution of
the system Ax = f is the exact solution of the perturbed system (A + �A)x̃ = f + �f
with small perturbations �A and �f . This, so-called backward analysis of errors, makes
it possible to calculate �A and �f .
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2) after �A and �f have been calculated, the next step is to estimate the error of solving
k4xk
kxk , by applying the perturbation theory (for example, Theorem 2).

To solve a system with a square matrix, the Lagrange application relies on the conventional
method, provided by the ROOT framework, i.e. by means of gaussian elimination or its modifi-
cations. Taking this into account, it is not possible to implement a detailed backward analysis
of errors to calculate �A and �f , and to estimate (6.10). For that reason, this work uses a
different method in constructing the perturbation theory for the problem Ax = f .

Let us consider the system Ax = f , for which it is necessary to estimate the error of its
solution x = A�1f , and x̃ is an arbitrary vector. Then it is possible to estimate the difference
x̃� x = x̃� A�1f in the following way. We shall call vector r = Ax̃� f the residual of vector
x̃, and r is equal to zero when x̃ = x, therefore

r = Ax̃� f or r + f = Ax̃

By multiplying the equality by A�1 on the left, we arrive at the following equation:

A�1 · (r + f) = A�1 ·A · x̃

Taking into account A�1A = I (from the definition of an inverse matrix), then

A�1r +A�1f = x̃.

Substituting x̃ into x̃� x = x̃�A�1f

�x = x̃� x = x̃�A�1f = A�1r +A�1f �A�1f = A�1r

The estimation of the error norm then given by

k�xk = kA�1 · rk  kA�1k · krk. (6.13)

Here we used the fact that the norm of the product of two mattices A, B is less or equals to the
product of their norms kAk, kBk:

kABk  kAk · kBk.

This simple estimation is attractive from the practical point of view, since it is easily cal-
culated when the approximate solution x̃ is known. Moreover, there is no need to estimate
perturbations �A and �f , which are required for the calculation of the estimate (6.10) of the
solution error, according to Theorem 2.

In order to determine if the system is a well-posed or an ill-posed one, and to choose a more
appropriate method of solving it, the Lagrange application calculates the condition number of
the system in question, and conveniently uses it in the estimation (6.13)

k�xk  kA�1k · krk =
kAk · kA�1k · krk

kAk = cond(A)
krk
kAk , (6.14)

where the residual vector is equal to r = Ax̃�f 6= 0, and cond(A) = kAk ·kA�1k is the condition
number of matrix A.
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The case of N parameter sets and a single bin b

In this simple example, to calculate the unknown coefficients in formula (5.1) for bin b, it is
necessary to solve the system of equations (6.1) with N sets of randomly chosen values of n
parameters p
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= V
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. (6.15)

1. Let us first consider the case, where N = N
min

and P is a square matrix of size
N

min

⇥N
min

.
Solving the system with the square matrix

PC
b

= V
b

by a standard method actually yields an approximate solution C̃
b

. To determine the error of the
system solution via Formula (6.14) gives

k�C
b

k  cond(P )
kr(b)

sq

k
kPk . (6.16)

Hence it is necessary to calculate the following quantities

cond(P ), kr(b)
sq

k, kPk.

According to the definition, given in Theorem 2 and Formula 6.12, the condition number of the
square matrix P is equal to

cond(P ) = kPk · kP�1k  kPk
F

· kP�1k
F

, (6.17)

where the Euclidean norm of a matrix is defined in the following way
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here, a
ij

and b
ij

are elements of matrices P and P�1 respectively. Equality in Equation (6.17)
gives a maximum estimate for the condition number.

The residual vector r(b)
sq

of size N = N
min

for bin b is determined by substituting the acquired
solution C̃

b

into the initial system of equations PC
b

= V
b

in place of the exact solution C
b

:

r(b)
sq

= PC̃
b

� V
b

6= 0.
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To avoid zero values when calculating the norm which could appear from the process of
squaring the elements of the residual vector, we proceed the following way. Among the elements
of the residual vector we choose the maximal element modulo r

(b)

sq

max

such that

|r(b)
sq

(i)|  r(b)
sq

max

.

and replace all the elements of the residual vector with that maximal one (the increase of error
in this case would be negligible in view of smallness of the values of the elements of the residual
vector). Then the norm of the residual vector is equal to
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q
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Substituting the calculated values into Formula (6.16) gives us the absolute error of the
solution of the system
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The absolute error of the solution k�C
b

k makes it possible to determine computational errors
for every coefficient in Formula (5.1) for bin b.
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is the guaranteed maximal error of the vector-column calculation.
From here it is possible to estimate the value of the maximal element of the vector of errors of
�C

b
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This means that every element of the vector of the approximate solution C̃
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is estimated with
a guaranteed maximal error:
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One can see from these formulas that we can now determine ⇠
(b)

sq

, which corresponds to the
computational errors of coefficients ↵(b)
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in the case of a square system.
2. Let us now consider the case when N > N

min

and P a non-square matrix of
size (N,N

min

).
The elements of the unknown coefficients vector C

b

are determined by solving the normal
system of equations. In order to do that, the following system (composed for a single bin b)

PC
b

= V
b

is multiplied on the left by the transpose matrix P T

P TPC
b

= P TV
b

(6.20)

and we obtain the normal system of equations with the square matrix P TP of size (N
min

, N
min

).
Using the matrices D = P TP and h

b

= P TV
b

, the system can be written as

DC
b

= h
b

.

To solve the normal system we use standard methods provided by the ROOT framework, and
estimate the solution errors with Formula (6.14), which in this case has the following form

k�C
b

k  cond(D)

p
N

min

r
(b)

rec

max

kDk
F

=
p

N
min

⇠(b)
rec

, (6.21)

where

⇠(b)
rec

= cond(D)
r
(b)

rec

max

kDk
F

. (6.22)

Here, the maximum estimate of the condition number of the square matrix D = P TP is equal
to

cond(D) = kDk
F

· kD�1k
F

,

and |r(b)
i

|  r
(b)

rec

max

is the maximal modulo element of the residual vector.
The residual vector r(b)

rec

of length N
min

is determined by substituting the acquired approximate
solution C̃

b

into the system of equations

r(b)
rec

= DC̃
b

� h
b

6= 0 or r(b)
rec

= P TPC̃
b

� P TV
b

6= 0.
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From here it follows, that the error of the solution of the normal system with the square
matrix D is proportional to the squared condition number of the non-square matrix P from the
initial non-square system PC

b

= V
b

, considering (6.3.1)

cond(D) = cond(P TP ) = cond(P T ) · cond(P ) = cond2(P ).

Because of this, such a method of solving a non-square system is said to be fast but imprecise
and requires careful consideration of errors.

The case of N parameter sets and K bins

In this case, by solving the system (6.5)

PC = V (6.23)

we obtain the approximate solution, represented by the matrix of coefficients C̃

C̃ =

0

BBBB@

↵̃
(1)

0

↵̃
(2)

0

· · · ↵̃
(K)

0

�̃
(1)

1

�̃
(2)

1

· · · �̃
(K)

1

...
...

...
...

�̃
(1)

nn

�̃
(2)

nn

· · · �̃
(K)

nn

1

CCCCA
,

where the b-th column C̃
b

of matrix C̃ are the polynomial coefficients, estimated with errors
↵̃, �̃, �̃ for bin b (b = 1, 2, . . . ,K) in Formula (5.1).

In the previous section we estimated the error of the approximate solution C̃
b

for a single bin
b as

PC̃
b

= V
b

.

We determined that each column of coefficients C̃
b

from the matrix C̃ is calculated with the
guaranteed maximal error ⇠(b):

C̃
b

= C
b

+�C
b

=

0

BBBB@

↵
(b)

0

�
(b)

1

...
�
(b)

nn

1

CCCCA
+

0

BBB@

⇠(b)

⇠(b)

...
⇠(b)

1

CCCA
=

0

BBBB@

↵
(b)

0

+ ⇠(b)

�
(b)

1

+ ⇠(b)

...
�
(b)

nn

+ ⇠(b)

1

CCCCA
=

0

BBBB@

↵̃
(b)

0

�̃
(b)

1

...
�̃
(b)

nn

1

CCCCA
.

Thus, solving the system (6.23) we obtain the approximate solution

C̃ =

0

BBBBBB@

bin1 bin2 · · · binK

↵̃
(1)

0

↵̃
(2)

0

· · · ↵̃
(K)

0

�̃
(1)

1

�̃
(2)

1

· · · �̃
(K)

1

...
...

...
...

�̃
(1)

nn

�̃
(2)

nn

· · · �̃
(K)

nn

1

CCCCCCA
=



99 6.3 Analysis of computational errors

=

0

BBBBBB@

bin1 bin2 · · · binK

↵
(1)

0

↵
(2)

0

· · · ↵
(K)

0

�
(1)

1

�
(2)

1

· · · �
(K)

1

...
...

...
...

�
(1)

nn

�
(2)

nn

· · · �
(K)

nn

1

CCCCCCA
+

0

BBBBB@

bin1 bin2 · · · binK

⇠(1) ⇠(2) · · · ⇠(K)

⇠(1) ⇠(2) · · · ⇠(K)

...
...

...
...

⇠(1) ⇠(2) · · · ⇠(K)

1

CCCCCA
= C +�C

cal

,

where the matrix of computational errors of the system solution �C
cal

has the following form

�C
cal

=

0

BBBBB@

bin1 bin2 · · · binK

⇠(1) ⇠(2) · · · ⇠(K)

⇠(1) ⇠(2) · · · ⇠(K)

...
...

...
...

⇠(1) ⇠(2) · · · ⇠(K)

1

CCCCCA
. (6.24)

And ⇠(b) is equal to
⇠(b) = ⇠

(b)

sq

(6.19), if N = N
min

;
⇠(b) = ⇠

(b)

rec

(6.22), if N > N
min

.
Therefore, having estimated the coefficients for Formula (5.1) by solving the system (6.23)

with matrix P of size (N,N
min

) we are now able to calculate the number of events f
b

(~p) in every
bin b, using Formula (5.1) for any given set of n parameters p

1

, p
2

, ...p
n

.

6.3.2 Guaranteed estimation of errors of parameterization f
b

(~p)

Using the estimated matrix of coefficients C̃, it is now possible to simulate the Monte Carlo
generator response MC

b

(~p) = n
b

(~p) ⇡ f
b

(~p) by using Formula (5.1) for each bin b and a chosen
set of n parameters p

1

, p
2

, . . . , p
n

MC
b

(~p) = n
b

(~p) ⇡ f
b

(~p) = ↵
(b)

0

· 1 +
nX

i=1

�
(b)

i

p0
i

+

nX

i=1

nX

j=i

�
(b)

ij

p0
i

p0
j

. (6.25)

Case for one parameter set and one bin b

We can now substitute the polynomial coefficients ↵̃(b)

0

, �̃
(b)

1

, . . . �̃
(b)

nn

, estimated together with their
errors ⇠(b), into Formula (6.25), and determine the error of the calculated expectation f

b

(~p).
It is clear that by using Formula (6.6), instead of the exact value f

b

(~p) we obtain a perturbed
value f̃

b

(~p) with an error �
(b)

fbcal

(~p)

f̃
b

(~p) = f
b

(~p) +�
(b)

fbcal

(~p).

By substituting the estimated coefficients with their respective errors into Formula (6.25) we
can determine the error for calculating the number of events f

b

(p) in bin b

f̃
b

(~p) = ↵̃
(b)

0

· 1 +
nX

i=1

�̃
(b)

i

p0
i

+
nX

i=1

nX

j=i

�̃
(b)

ij

p0
i

p0
j

=

= (↵
(b)

0

+ ⇠(b)) · 1 +
nX

i=1

(�
(b)

i

+ ⇠(b))p0
i

+
nX

i=1

nX

j=i

(�
(b)

ij

+ ⇠(b))p0
i

p0
j

=
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= f
b

(~p) + ⇠(b) · (1 +
nX

i=1

p0
i

+
nX

i=1

nX

j=i

p0
i

p0
j

) = f
b

(~p) +�
(b)

fbcal

(~p).

The computational error f̃
b

(~p) is equal to

�
(b)

fbcal

(~p) = ⇠(b) · (1 +
nX

i=1

p0
i

+
nX

i=1

nX

j=i

p0
i

p0
j

), (6.26)

where
⇠(b) = ⇠

(b)

sq

(6.19), if N = N
min

;
⇠(b) = ⇠

(b)

rec

(6.22), if N > N
min

.
This is the guaranteed maximal computational error of the calculation of the expected bin

contents f̃
b

(~p) in bin b by Formula (6.25). This error also takes into account the error ⇠(b) of
solving the system PC

b

= V
b

for bin b.
For convenience of calculations, the Lagrange application saves all the computational errors

�
(b)

fbcal

(set i) into a separate matrix �F
cal

�F
cal

= �
cal

=

0

BBBB@

�
(1)

fbcal

(set1) �
(2)

fbcal

(set1) · · · �
(K)

fbcal

(set1)

�
(1)

fbcal

(set2) �
(2)

fbcal

(set2) · · · �
(K)

fbcal
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...

...
...

...
�

(1)

fbcal

(setM) �
(2)

fbcal

(setM) · · · �
(K)

fbcal

(setM)

1

CCCCA
(6.27)

In the process of numerical minimization of the �2 by Minuit, the response f
b

(~p) is calculated
by Formula (6.25) for K bins and a single set of parameters. In the case of a single set, it is the
multiplication of a single row of matrix B by matrix C̃ (6.8)

✓
column1 column2 · · · columnN

min

1 p0
1

(set 1) · · · p0
n

p0
n

(set 1)

◆

0

BBBBBB@

bin1 bin2 · · · binK

↵̃
(1)

0

↵̃
(2)

0

· · · ↵̃
(K)

0

�̃
(1)

1

�̃
(2)

1

· · · �̃
(K)

1

...
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�̃
(1)

nn

�̃
(2)
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· · · �̃
(K)

nn

1

CCCCCCA
=

=

✓
bin1 bin2 · · · binK

f̃
1

(set 1) f̃
2

(set 1) · · · f̃
K

(set 1)

◆
,

and the result is a histogram, estimated with errors taken into account
 

bin1 bin2 · · · binK

�
(1)

fbcal

(set 1) �
(2)

fbcal

(set 1) · · · �
(K)

fbcal

(set 1)

!
.

6.3.3 Summary

The Lagrange application has two different methods for solving the system of equations PC = V :
via a normal system, and via SVD. When the first method is used, the guaranteed computational
errors of the solution are estimated by formulas (6.19) or (6.22), depending on whether matrix
P is a square or a non-square matrix. These errors are taken into account in the calculation of
the approximated Monte Carlo generator response f

b

(~p) by Formulas (5.1) or (5.2).
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The error of calculating f̃
b

(~p) by Formula (5.1) (for the 2nd-order polynomial) is equal to (6.26)

�
(b)

fbcal

(~p) = ⇠(b) · (1 +
nX

i=1

p0
i

+

nX

i=1

nX

j=i

p0
i

p0
j

) (6.28)

and with Formula (5.2) for the 3rd-order polynomial

�
(b)

fbcal

(~p) = ⇠(b) · (1 +
nX

i=1

p0
i

+
nX

i=1

nX

j=i

p0
i

p0
j

+
nX

i=1

nX

j=i

nX

k=j

p0
i

p0
j

p0
k

), (6.29)

where
n is the number of parameters p

1

, p
2

, . . . , p
n

;
N

min

is the number of unknown polynomial coefficients (5.3) in the system;
N is the number of parameter sets in the system, where N � N

min

(see 5.1);

if N = N
min

then

⇠(b) = ⇠(b)
sq

= cond(P )
r
(b)

sq

max

kPk
F

, (6.30)

cond(P ) = kPk
F

· kP�1k
F

,

kPk
F

=

vuut
N

minX

i=1

N

minX

j=1

(a
ij

)2, kP�1k
F

=

vuut
N

minX

i=1

N

minX

j=1

(b
ij

)2,

here a
ij

and b
ij

are the elements of the square matrices P and P�1;

r
(b)

sq

max

is the maximal modulo element of the residual vector r
(b)

sq

= PC̃
b

� V
b

for bin b.

if N > N
min

then

⇠(b) = ⇠(b)
rec

= cond(D)
r
(b)

req

max

kDk
F

, D = P TP, (6.31)

cond(D) = kDk
F

· kD�1k
F

,

kDk
F

=

vuut
N

minX

i=1

N

minX

j=1

(s
ij

)2, kD�1k
F

=

vuut
N

minX

i=1

N

minX

j=1

(d
ij

)2,

here s
ij

and d
ij

are the elements of the square matrices D and D�1;

r
(b)

req

max

is the maximal modulo element of the residual vector r
(b)

rec

= DC̃
b

� h
b

for bin b.

In the case when the second method (SVD) is used to find the solution of the system of
equations, we assume that the computational errors of the solution are equal to zero ⇠(b) = 0 and
�F

cal

= 0, since the error in this case (for double-precision calculations) is of order of 10�16.
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6.4 Analysis of statistical erros

6.4.1 Propagation of errors

In the overdetermined system (5.4)
PC

b

= V
b

the statistical uncertainties of the generator propagate from the right side of the equation

V
b

=

0

BBB@

n
b

(set1)
n
b

(set2)
...

n
b

(setN)

1

CCCA

into the solution

C
b

=

0

BBBB@

↵
(b)

0

�
(b)

1

...
�
(b)

nn

1

CCCCA
.

The elements of matrix P consist of a fixed set of parameters, i.e. constant numbers, thus V
b

is
a linear function of the unknown coefficients of the polynomial ↵(b)

0

,�
(b)

i

, �
(b)

ij

. This allows to use
the linear case of the theory of error propagation [60].

Unweighted case

Let us consider the overdetermined system

PC
b

= V
b

. (6.32)

In this case, there is no exact solution, therefore we seek the solution with the minimal residual

PC
b

� V
b

= r =

0

BBB@

r
1

r
2

...
r
n

1

CCCA
6= 0

i.e. among all of the possible solutions, we seek the solution C
b

with the minimal length d of the
residual vector r

d = ||r|| =
vuut

nX

i=1

r2
i

)
nX

i=1

r2
i

= min.

The least-squares method minimizes the sum of squared residuals, i.e. the following expression
is minimized

nX

i=1

r2
i

= rT · r = (PC
b

� V
b

)T · (PC
b

� V
b

) = min. (6.33)

This is done by calculating the solution of the system PC
b

= V
b

via the pseudoinverse matrix

C
b

= P+V
b

) C
b

= MV
b

, where M = P+ (6.34)
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where, as follows from Definition 1, the pseudoinverse matrix is found as

P+ = (P TP )�1P T = (V ⌃UT )�1.

Hence, from (6.34) it follows that the covariance matrix of the solution equals to [60]

D(C
b

) = M ·D(V
b

) ·MT

or
D(C

b

) = P+ ·D(V
b

) · (P+)T .

Consequently, when the solution of the system is found via the normal system of equations, the
covariance matrix of the solution is found as

D(C
b

) = [(P TP )�1P T ] ·D(V
b

) · [(P TP )�1P T ]T

and similarly in the case of solving the system via SVD

D(C
b

) = (V ⌃UT )�1 ·D(V
b

) · [(V ⌃UT )�1]T .

Weighted case

Similarly to the previous case, we solve the following system

PC
b

= V
b

and if the covariance matrix of the right hand side, D(V
b

), is known, then it is possible to
calculate its inverse, D�1(V

b

), which is the weights matrix, and then, in accordance with the
least-squares method, the minimum of the following expressions is found

rT ·D�1(V
b

) · r = (PC
b

� V
b

)T ·D�1(V
b

) · (PC
b

� V
b

) = min. (6.35)

In order to understand how the statistical errors of the generator propagate into the estimated
polynomial coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

, we shall consider the events n
b

(set i) (the Monte Carlo
generator response) in bin b for the i-th set of n parameters, as a result of independent numerical
experiments.

We shall assume that the total number of generated events is sufficiently large, so that
every bin b has enough events n

b

(set i) and the distribution of the individual events n
b

(set i)
can be approximated by a Gaussian distribution with standard deviation �

b

=
p

n
b

(set i) =
4n

b

(set i) [59].
Then it is possible to write down the square covariance matrix D(V

b

) of size (N,N) of the
right hand side vector V

b

as

D(V
b

) =

0

BBB@

�2
b1

0
�2
b2

. . .
0 �2

bN

1

CCCA
=

0

BBB@

n
b

(set1) 0
n
b

(set2)
. . .

0 n
b

(setN)

1

CCCA
.

Covariances are equal to zero cov(n
b

(set i), n
b

(set j)) = 0, and the dispersions on the main
diagonal are �2

b

= n
b

(set i).
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Hence, the matrix of weights D�1(V
b

) of the right hand side vector V
b

is equal to

D�1(V
b

) =

0

BBBB@

1

�

2

b1
0

1

�

2

b2

. . .
0 1

�

2

bN

1

CCCCA
=

0

BBBB@

1

nb(set1)
0

1

nb(set2)

. . .
0 1

nb(setN)

1

CCCCA
, (6.36)

which follows from the definition of the inverse matrix D(V
b

) ·D�1(V
b

) = I.
The expression (6.35) can be simplified by the Cholesky decomposition for a positive-definite

symmetric matrix of weights, which can be represented as a product

D�1(V
b

) = HT

b

·H
b

, (6.37)

where H
b

is the upper triangular matrix of size (N,N), with positive elements on its diagonals.
From (6.37) it follows that matrix H

b

equals to

D�1(V
b

) = H2

b

) H
b

=
p
D�1(V

b

) (6.38)

that is

H
b

=
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BBB@

1

�b1
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1
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. . .
0 1
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1
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0
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1p
nb(set1)
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1p
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. . .
0 1p

nb(setN)

1

CCCCCA
. (6.39)

Let us introduce the following notation

P 0 = H
b

P, V 0
b

= H
b

V
b

(6.40)

and by substituting D�1(V
b

) = HT

b

·H
b

into expression (6.35), we obtain its simplified form

(PC
b

� V
b

)T ·D�1(V
b

) · (PC
b

� V
b

) = (PC
b

� V
b

)T ·HT

b

H
b

· (PC
b

� V
b

) =

= (H
b

PC
b

�H
b

V
b

)T · (H
b

PC
b

�H
b

V
b

) = (P 0C
b

� V 0
b

)T · (P 0C
b

� V 0
b

) =

= (P 0C
b

� V 0
b

)2 = min. (6.41)

Thus, on the basis of the least-squares method, solving the system PC
b

= V
b

with weights is
reduced to the minimization of expression (6.41), i.e. is reduced to finding solution of the primed
system P 0C

b

= V 0
b

.
The method of solving the obtained equation (6.41) is described in detail in [57, 59, 60], and

the solution can be expressed in the following form

C
b

= P 0 + · V 0
b

(6.42)

where P 0 + is the pseudoinverse matrix of matrix P 0, and according to Definition 1 it is equal to

P 0 + = (P 0 T · P 0)�1P 0 T = (V ⌃UT )�1

Hence, the system P 0C
b

= V 0
b

can be solved in the two ways described further.
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1. The first method. Solution via the normal system.
In this case, the system

PC
b

= V
b

is multiplied on the left by H
b

H
b

P · C
b

= H
b

· V
b

and by noting P 0 = H
b

P , V 0
b

= H
b

V
b

, we obtain the following system, the solution of which we
want to find

P 0C
b

= V 0
b

. (6.43)

By multiplying this system on the left by P 0 T , we obtain the normal system

P 0 TP 0 · C
b

= P 0 T · V 0
b

or
D · C

b

= P 0 T · V 0
b

where D = P 0 TP 0 is the square matrix of the normal system.
Hence, the approximate solution is equal to

C
b

= D�1P 0 T · V 0
b

= (P 0 TP 0)�1P 0 T · V 0
b

.

Substituting the notations (6.40) P 0 = H
b

P , V 0
b

= H
b

V
b

and taking into account that
D�1(V

b

) = HT

b

·H
b

and P 0 T = (H
b

· P )T = P T ·HT

b

, we get the following

C
b

= (P 0 TP 0)�1P 0 T · V 0
b

= (P T ·HT

b

H
b| {z } ·P )�1P T ·HT

b

H
b| {z } ·Vb

=

= (P T ·D�1(V
b

) · P )�1

| {z }
D

�1

P T ·D�1(V
b

) · V
b

= D�1 · P T ·D�1(V
b

)| {z }
M

·V
b

or
C
b

= M · V
b

(6.44)

where
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The covariance matrix of solution C
b

is equal to the inverse matrix of the normal system of
equations [59,60]
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i.e. the diagonal elements of matrix D�1 are the dispersions �2
i

of the elements of the vector-
column C
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, and the errors (standard deviations) are equal to 4C
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The covariance matrix of the solution C
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(6.44) can be written as [60]
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where the last expression can be reduced to the form of (6.45) [60].
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2. The second method. Solving the overdetermined system of equations via SVD.
In this case we are looking for the solution of the primed system (6.43)

P 0C
b

= V 0
b

and if the singular value decomposition of matrix P 0 is known

P 0 = (H
b

P ) = V ⌃UT

we can substitute it into the system in the place of P 0, obtaining the following expression
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Hence, it is possible to calculate the covariance matrix for the solution vector C
b

as
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6.4.2 Statistical errors matrix of the system solution

We have found the solution of the overdetermined system of linear equations

PC = V (6.48)

where matrix C = (C
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, C
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, ...C
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, ...C
K

), the matrix of polynomial coefficients, of size (N
min

, N
min

),
consists of vector-columns C

b

and represents the solution of the system, and matrix V =
(V

1

, V
2

, ..., V
b

, ...V
K

) the right hand side matrix of size (N,K), consists of vector-columns V
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.
We have discussed the two methods of solving system (6.48), via the normal system of

equations and via SVD, and in both cases, for each column of the estimated solution C
b
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we have calculated the covariance matrix D(C
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) (6.45) or (6.47).



107 6.4 Analysis of statistical erros
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and the off-diagonal matrix elements are denoted by asterisks.
Consequently, the statistical errors of the Monte Carlo generator propagate into every element

of C
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, and the estimates for standard deviation are equal to the square root of the diagonal
elements of the covariance matrix D(C
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Hence, the matrix of statistical errors �C
stat

of size (N
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,K), which consolidates the statistical
errors, propagating into the solution of system PC = V because of the uncertainties of the Monte
Carlo generator, can be expressed in the following form
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6.4.3 Statistical errors of parameterization

The obtained solution C = (C
1

, C
2

, ..., C
b

, ..., C
K

) is used for simulating the response of the
Monte Carlo generator f

b

, using formula (5.1), and its errors matrix D(C
b

) is used to estimate
the statistical errors f

b

(~p).
In the case of the line-scan in the parametrical hypercube (M parameter sets, K bins), matrix

B, constructed from the parameter vectors, is multiplied by matrix C, the matrix of polynomial
coefficients, to obtain the matrix of resulting histograms F (6.7)

BC = F
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and in order to estimate statistical errors for each f
b

, we calculate the matrix of statistical errors
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.
For each column b we can write down the following expression
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In this case, the statistical error of column C
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propagates into F
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, according to the rule of error
propagation [60], which is expressed in matrix form for each bin b in the form of the covariance
matrix for F
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and these values correspond to the column b of the matrix of statistical errors of the events of
the calculated histograms, �F
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Thereby, in the case of solving the overdetermined system PC = V , the errors of the solution,
which arise from the statistical uncertainties of the Monte Carlo generator, propagate into the
system solution C, and further into events f

b

, calculated by the formula (5.1), and are estimated
and consolidated in the matrix of statistical errors �F
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Both cases of calculation of the statistical errors (with and without weights) are implemented
in the Lagrange application.

6.4.4 Properties of estimates, obtained by the least-squares method

The estimates of results, obtained by the least-squares method, have important properties, which
do not depend on the type of errors distribution (either errors are distributed according to the
normal distribution, or their distribution is unknown) [59, 60]:

• The estimate is unbiased, i.e. it is safe to assume that the estimated values of the polynomial
coefficients ↵(b)
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are close to the true values, when a large number of events
is generated.

• The least-squares method estimate has minimal dispersion (according to the Gauss-Markov
theorem), i.e.
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6.4.5 Summary

While calculating �2 by formula (5.6), it is necessary to account for statistical and computational
errors of f
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In order to do that, we calculate �2
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Chapter 7

Developed tools

Unusquisque sua noverit ire via.
Lat.: Each and every man should know to go the way of his own.

This chapter presents a brief overview of the developed application package, describing its
components, their architecture and main features. The package consists of three separate pro-
grams, the main of which is the tuning application Lagrange, which implements methods de-
scribed previously in Chapters 5 and 6. Complementing the main tuning program are the two
“helper” components: the analysis and job manager applications, which are all described in
sections below.

7.1 Tuning cycle

The main tuning procedure consists of a number of iterations, in each of which the tuning
application, with the help of LHCb software framework, generates a new sample of Monte Carlo
data, which is compared to a sample of experimental data, recorded by the LHCb detector. The
number of these iterations depends on the total number of parameters being tuned in the process,
on the order of the polynomial which was chosen to fit the generator response, and on the degree
of over-determination of the fit. Figure 7.1 presents the diagram of the tuning process.

In order to generate a new sample of Monte Carlo data, the tuning application relies on
the JobManager program. The tuning application has no part in the generation process, it only
specifies the desired size of the Monte Carlo data sample (i.e. the required number of events),
and provides a vector of PYTHIA parameters, together with their values, which should be used
during the simulation phase. From here, the JobManager application takes over and controls
the whole sample-generation procedure by setting up the environment for the LHCb software,
managing distribution of computational jobs across the available resources, and monitoring the
execution.

In the final stage of each iteration, JobManager triggers the Analysis application, which runs
over the newly generated data sample and produces a set of histograms of distributions, which
serve as input for the Lagrange tuning application.

111
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Figure 7.1: The diagram of the Lagrange application package tuning process.

7.2 Tuning application

The Lagrange tuning application is a modern tool for event generator tuning, which was devel-
oped using the C++ programming language and employs the ROOT object-oriented multipur-
pose data analysis package.

The program implements two methods of solving a linear system of equations (5.4): via
the normal system of equations or via singular value decomposition. Since the first method is
considered to be faster than the second one, but less precise, computational errors should be
taken into account. The Lagrange application calculates the guaranteed estimation of precision
for the computation of polynomial coefficients ↵(b)

0

,�
(b)

i

, �
(b)

ij

and �
(b)

ijk

when the system is solved
by the first method. The errors of the coefficients allow one to estimate the precision of the
approximated Monte Carlo generator response f

b

(~p) by Eq. (5.1) or (5.2). For both methods,
the tuning application performs an estimate of the respective statistical errors, as described in
Chapter 6.

Main features of the tuning application

A fast, analytical “pseudo-generator”.
The key feature of the Lagrange tuning program is the simulation of the Monte Carlo generator
response by an approximation formula (the applications provides an option to use a 2nd or 3rd

order polynomial) for a given set of parameters, that considerably shortens the time spent for
the investigation of the studied process.
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Estimation of statistical and computational errors.
The Lagrange application provides not only an estimation of statistical errors of the parameter-
ization results, but also computational ones. As is described in Chapter 6, the tuning program
features a method of guaranteed estimation of precision for parameterization result, which is an
important, distinctive feature of the Lagrange tuning package compared to similar software.

Full detector simulation.
One of the most important features of the tuning package is the junction with the LHCb software
framework. This option allows the Lagrange application to recreate the full setup of LHCb
detector (i.e. geometry, settings of triggers, reconstruction options, etc.), and simulate Monte
Carlo data samples with the same conditions that were used to record the experimental data
sample.

Flexibility in parameter hypercube sampling.
In order to parameterize the Monte Carlo generator response, it is necessary to sample the
parameter hypercube, e.g. to choose a set of parameter vectors and their values. The conven-
tional approach is to sample the hypercube uniformly, using a standard pseudorandom number
generator to populate parameter values. In addition to this traditional method, the Lagrange ap-
plication provides an option to use a quasi-random sequence generator, which implements Sobol
quasi-random low-discrepancy sequences algorithm [67] and allows for a much more homogeneous
sampling of multidimensional spaces.

Simultaneous parameterization of multiple distributions.
The tuning program is able to use a set, composed of multiple histograms of different distribu-
tions, in its parameterization process.

Parameterization checks.
The tuning application provides the functionality to validate the parameterization results with
a straight line scan in the parameter space. One such validation can be executed after the
computation of the unknown coefficients of the approximation formula and is done within the
initial boundaries of parameter values, with the scan line passing through the point representing
the default parameter values. The second scan test can be performed within user-defined limits
around the optimal parameter values, determined by minimization. These line scans present
a visual comparison of performance of the analytical pseudo-generator to the response of the
Monte Carlo generator.

Numerical minimization.
The Lagrange application offers an option of numerical minimization of the �2 function of the
estimated Monte Carlo generator response approximation formula, to determine the best values
of the tuned parameters. It is possible to define multiple starting points for the minimiza-
tion process, in order to search for the global minimum. Parameter values, which define these
minimization entrance points, can be either assigned by the standard pseudorandom number
generator, or by the quasi-random sequence generator.

Other features.
The Lagrange application package has many options which give the user a fine-grained control
over the tuning process. They include the assignment of bin-wise weights for histograms, nor-
malization of distributions, control of overdetermination of the fit, weighted or unweighted fit,
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the choice of two methods for solving the main matrix equation: with a normal system or SVD,
parameter likelihood profiling and others. The whole tuning process is logged in detail and thus
can be checked when necessary.

Briefly, the main algorithm of the tuning application may be broken down into the following
steps:

I. Parsing of reference data.

II. Generation of random parameter vectors ~p = (p
1

, p
2

, . . . , p
n

) in the n-dimensional param-
eter hypercube.

III. Calculation of unknown polynomial coefficients in (5.1) or (5.2):

- construction of a system of linear equations,
- solution of the system via the preferred method (SVD or a normal system, with or without

account of weights),
- estimation of computational and statistical errors.

IV. An optional parameterization check by scanning along a straight line in parameter hy-
perspace and comparing the �2 of the parameterization and the Monte Carlo generator
response.

V. Numerical minimization of the approximation �2 and determination of the corresponding
best parameter vector p

best

with the interval of errors.

VI. An optional validation test to compare the response of the Monte Carlo generator to the
approximation in the region of the estimated �2 minimum around the ~p

best

values.

VII. Optional likelihood profiling procedure of the tuned parameters to determine confidence
intervals.

7.3 Helper programs

7.3.1 JobManager

The JobManager application was developed in the Perl language and serves as an interface be-
tween the core tuning application and the process of generating and analyzing Monte Carlo data
samples. It acts as a wrapper around the LHCb software framework and the Analysis appli-
cation, removing the functionality required to interact with them from the Lagrange program,
making the procedure of requesting for a new simulated data sample as transparent is it can
be: specify the parameters with their values and the number of events to generate as the input
information, and collect the resulting histograms as the output, the result of the simulation.

The two main internal tasks of the JobManager application are:

1. Setup of the environment for computational jobs (see Fig. 7.2);

2. Distribution, execution and monitoring of the jobs on the computational cluster (see Fig. 7.3).

When the JobManager is executed, it reads its configuration and prepares the environment
for the computational jobs. The program has information on the resources of the computational
cluster: how many computational nodes it can access, the number of CPUs per node and the



115 7.3 Helper programs

number of physical core, per CPU. Together with the requested total number of events it is
enough to define the total number of jobs and the number of events per job, to be executed
in parallel to make the maximal use of the available resources and to reduce time needed to
complete the simulation.

For every computational job, JobManager creates a separate directory structure and config-
ures every step of the simulation process. As explained in Chapter 4, the complete simulation
cycle in the LHCb software framework consists of the following five steps:

1. Simulation of the events (GAUSS application).

2. Digitization, simulate the response of the detector electronics (BOOLE application).

3. Data reconstruction (BRUNEL application).

4. Application of trigger conditions (MOORE application).

5. Physics analysis (DaVinci application).

Figure 7.2: Environment setup by the JobManager application: creation of directory structures
and configuration files for every step of the simulation process, for each computational node and
job.

For each of the LHCb applications in these steps, the JobManager creates configuration files,
which control all the different options, such as the required version of the program to be used,
detector conditions databases, file paths, etc.

When the environment is ready, the JobManager creates job execution programs, one per
computational node, which launch simulation jobs in parallel on the nodes and monitor their
progress.

Storage space of the MPIK LHCb computational cluster is shared among all of its nodes
via NFS and starting a large number of simulation jobs simultaneously creates a very high load
on the storage system: launching of LHCb software applications involves a large number of
internal files and databases of the framework checked, read and loaded into the host memory.
All of this, done by many simulation jobs at the same time, impacts performance of the storage
system and may slow it down tremendously. In order to avoid this scenario, the JobManager is
able to configure job execution programs to set a certain delay time for the jobs, before they are
launched. This solution reduces the immediate impact on the storage system and greatly reduces
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Figure 7.3: Hierarchy of job control: the JobManager controls job execution programs on every
computational node; job execution programs control simulation jobs on a single computational
node.

the time consumed by every simulation job to load and configure all the required packages of
LHCb framework.

Like any other large software project with a long history and more than one programming
language used in its development, the LHCb software framework is not free of bugs. During the
development of the Lagrange tuning package, it was seen that the GAUSS application, respon-
sible for the first phase of the simulation process, may enter an endless loop while generating an
event, when certain conditions are met, and thus stalling the whole tuning process. To avoid
such situations, the JobManager was upgraded with a mechanism which monitors the state of
simulation jobs and terminates the stalled ones, preventing the whole tuning procedure from
stopping. The data files of the terminated jobs can not be used and the events they have gen-
erated are wasted, but the observed percentage of stalling jobs was at most on the level of 5%.
Additionally, an option was introduced to the JobManager application, allowing to specify an
overhead in generated events per simulation job, to stay on the safe side and deliver the total
requested number of events even if some jobs fail.

After the Monte Carlo data sample is fully ready, the JobManager invokes the Analysis

application, the second helper program of the Lagrange tuning package, which runs over the
simulated events and prepares the requested distributions, ready for the tuning application to
input.

All the steps of the simulation procedure are logged and the JobManager saves the workspaces
of simulation jobs, so that this information can be accessed whenever that is needed.

7.3.2 Analysis application

The Lagrange Analysis application is the second helper program of the tuning software package.
It was developed in C++ and uses the ROOT framework to perform physics analysis of the Monte
Carlo data, generated by LHCb software.

In the last phase of the simulation procedure, the JobManager application executes the
DAVINCI package SDF (Simple Data Format), developed by Markward Britsch from MPIK,
which converts a conventional LHCb framework DST data format to a simpler ROOT file, ex-
cluding information which is not necessary for the present analysis.
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The Analysis program runs its physics analysis algorithm over these SDF Monte Carlo data
files and fills histograms of requested distributions. All the produced histograms are saved both
as C++ code files, so they could be used in ROOT framework, and as images, for fast visual
inspection. A separate output is created for the Lagrange tuning application, in the form of a
plain ASCII file. Depending on the physics analysis programmed in the application, the output
file may have not just one, but a set of histograms.

Together with the resulting histograms, the Analysis application saves into its output the
number of events which passed its physics algorithm, so that the Lagrange tuning program could
perform normalization to the number of generated events in the case when it is requested.

7.4 Validating the solution of the system of equations

In the Lagrange tuning application, the unknown coefficients of the fitting polynomial are defined
by solving the system of linear equations PC = V (6.5). The solution of this system is calculated,
using one of the methods described in the previous chapters. If a user doesn’t enforce the
application to use only the second method, the tuning program estimates the condition number
of the matrix system, prior to choosing the appropriate method of solving it. If the condition
number of the system is larger than a certain predefined threshold, e.g. cond > 1015, the second
method of solving the system is chosen automatically. In the opposite case, the program proceeds
with the method of normal system.

Such a limit, imposed on the condition number of the matrix system, allows one to avoid
potential significant computational uncertainties (see estimations (6.30), (6.31)) of the solution
of the system and of the results, estimated by the approximation formula (5.1) (see estimations
(6.28), (6.29)), i.e. for the Monte Carlo generator response simulations, in the case when the
matrix system was solved via the normal system of equations.

7.5 Parameterization check with a line scan

In order to verify the result of the Monte Carlo generator response approximation, the Lagrange

application uses a line scan test that performs a scan along a straight line in parameter space and
produces a graphical comparison of the parameterization to the Monte Carlo generator response
(see Fig. 7.4).

Figure 7.4: A scan along a straight line in a parameter hyperspace.

Each point on the line in the hypercube represents a certain set of parameters ~p
i

. Scanning
along a line means a simultaneous shift of all the parameters p

i

(within their limits) by a certain
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step value h
i

= (b
i

� a
i

)/M , where M corresponds to the total number of shifts along the line
(M + 1 is the total number of points).

This procedure allows one to test the approximation of the Monte Carlo generator response
in the two following ways: via directly comparing histograms of distributions, which use, as a
source, data simulated by the Monte Carlo generator and histograms, populated by Formula
(5.1) or (5.2), for one and the same set of parameters, and via calculation and comparison of the
�2 for the parameterization and MC generator response in respect to the reference data.

In the first case, for every point on the line (i.e. for every set of parameters used in the line
scan) the Lagrange application uses the Monte Carlo data to produce a set of histograms for
the chosen distribution, and for each histogram it plots a band of uncertainties of 4n

b

(~p) =
±�

b

(~p) = ±pn
b

(~p) (corresponding to 68% percent of the expected events). The produced plots
are then overlaid with histograms, filled by the approximation formula, and the resulting plots
are a perfect check for the consistency between the approximation formula and the Monte Carlo
generator.
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Figure 7.5: An example of the tuning histogram, containing the first 50 bins of the tuning data
vector, which correspond to the pseudo-rapidity distribution (⌘) in the range 2 < ⌘ < 5. The
tuning histogram was normalized to the number of events, accepted by the analysis algorithm.

In the second case, in every point along the scanned line, the Lagrange application calculates
the �2 function in the following two ways:

a) �2(~p) =
KX

b=1

(n
b

(~p)�R
b

)2

�2

b

where n
b

(~p) is the number of events of bin b of the histogram, based on the data simulated by
the Monte Carlo generator for the set of parameters ~p, and R

b

, based on the experimental data
collected by the detector, while �2

b

is given by

�2

b

= (�(b)

exper
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gener
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p
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p
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b
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and

b) �2(~p) =

KX

b=1

(f̃
b

(~p)�R
b

)2

�2

b

where f̃
b

(~p) corresponds to the number of events in bin b, estimated by Formula (5.1) or (5.2)
(approximation of the Monte Carlo generator response), and

�2

b

= (�(b)

exper

)2 + (�
(b)

fbstat

)2 + (�
(b)

fbcal

)2

where
(�(b)
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)2 = (
p
R

b

)2 = R
b

,

�
(b)

fbstat

and �
(b)

fbcal

represent statistical and computational uncertainties, estimated by Formulas
(6.52) and (6.27) respectively.

These �2 functions should have close minima for the same parameter sets.
For example, in the simplest case with only a single tuned parameter, n = 1, we use the scan

along a line limited by the initial and final values of the parameter, or in the case of n = 2, we scan
along the diagonal in the rectangle, a two-dimension parameter space, changing simultaneously
the two tuned parameters p

1

, p
2

by their respective steps h
1

, h
2

.

Figure 7.6: Example of a �2/N
df

comparison plot of approximation (plotted in red) and Monte
Carlo generator (plotted in blue) vs. reference data (default tune Monte Carlo), for a single
parameter tuning (PARJ(21)) with 104 events per generated data sample. The horizontal axis
corresponds to the value of the tuned parameter and the vertical axis - to the �2/N

df

value. The
points on the plot were connected by a simple poly-line for visual comfort.
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For the chosen set of parameter values we can estimate the number of events n
b

(~p) in bin b
by using the polynomial (Formula (5.1) or (5.2))

n
b

(~p) ⇡ f̃
b

(~p) = f
b

(~p) +�
(b)

fb

and alternatively obtain the number from the Monte Carlo generator

ñ
b

(~p) = n
b

(~p) + statistical generator error

After calculating the �2, both results can be plotted as �2 divided by the number of degrees
of freedom and can be compared. The optimal set of parameters values ~p

min

can be obtained by
minimization (see Fig. 7.6).



Chapter 8

Numerical experiments and discussion
of results

Quod erat faciendum (q.e.f.).

Lat.: Which was to be done.

This chapter presents the application of the fitting algorithm, described in Chapter 5. The
algorithm is based on per-bin parameterization of the Monte Carlo generator response to parame-
ter variations in n-dimensional parameter space and numerical optimization of the parameterized
behavior. The presented results were obtained with the Lagrange application package which im-
plements these techniques and tunes model parameters of the PYTHIA 6.4 event generator to
the reference data, collected by LHCb, by interfacing to the LHCb software framework.

8.1 Parameter factorization strategy

Crosschecks between data, recorded by detectors, and theory, represented by Monte Carlo simu-
lation, is a very common yet non-trivial task. Monte Carlo event generators, which are used to
produce the simulated data, use complicated models to provide a full description of the simulated
final states. Typically, these models have a large number of free or weakly constrained parame-
ters, which must be tuned to better mimic the experimental data. It is practically impossible to
tune all these parameters altogether. Even on a large super computer, using high parallelization
techniques, it could take weeks or even months, depending on the number of simultaneously
tuned parameters and the size of the simulated data sample. This already applies to the conven-
tional approach when only the Monte Carlo generator level data is used, and in this work one of
the key points is the use of the detector simulation for every generated event.

Additional computations, such as propagation of tracks in the material of the simulated
detector, signal digitization, full event reconstruction, etc., require significant time to process.
The local computational cluster of the LHCb group at Max Planck Institute for Nuclear Physics
in Heidelberg, had 22 nodes dedicated to the numerical experiments described in this chapter.

121
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Each node consisted of dual Intel R� Xeon R� CPUs with 4 physical cores each, which made an
optimal number of 176 simulation jobs running in parallel on the cluster. Even having a 1:1 ratio
of jobs per core, the GAUSS application on average required ⇡ 1.5 minutes to produce a single
event on each core (most of this time is consumed by GEANT4), and on average it took about
⇡ 1.5 hours to complete the whole cycle of simulating, digitizing and reconstructing a 104 events
data sample. Additional time costs may arise, depending on the total number of computational
jobs per simulated data sample, since every job had a certain short delay time before it was
executed, to reduce the immediate impact on the storage system of the cluster.

Due to the time-consuming event simulation procedure and limited computational resources,
it was decided to limit the size of generated data samples to 104 events. Such size of data
sample allow one to constrain only those parameters, which govern the overall event properties.
Therefore this study focuses on the most basic parameters of the Lund string fragmentation
and parton shower models, which are presented in Tab. 8.1, along with their default values for
PYTHIA (v6.4) – the default Monte Carlo event generator used in the LHCb software framework.

Parameter default value description
PARJ(21) 0.36 �
PARJ(41) 0.3 a
PARJ(42) 0.58 b
PARJ(82) 1 shower cut-off

Table 8.1: The selected fragmentation parameters: Lund string parameters a, b, � and shower
cut-off, and their default values. The parameters were described in detail in Section 4.2 of
Chapter chap:ch4.

To prepare the tuning of the selected four parameters, it is necessary to:

1. select a set of distributions which will act as observables and will form the comparison criteria;

2. check how sensitive the selected distributions are with respect to the shifts of the tuned
parameters in the parameter space;

3. analyze the influence of the number of the initial sampling points on the approximation of
the Monte Carlo generator response;

These questions are discussed in detail in the next sections.

8.2 Comparison criteria

Another important step after selecting the tuned parameters, is the choice of comparison criteria
between the simulated and reference data. The Lagrange tuning application uses as input sets
of histograms which are produced by its analytical helper program. The analytical application
was configured to use the following requirements on the data for the events and tracks selection:

• There must be no more than one primary vertex in the event;

• Only long tracks are used in the analysis (LHCb track types are described in Section 1.2
of Chapter 1);

• �2/N
df

of the reconstructed track must be less than 4;

• The track’s origin must be within a 10 mm distance from the beam and its z coordinate
must be within �250 < z < 250 mm;
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• The track’s momentum must be greater than 2 GeV/c2;

• The track’s pseudorapidity ⌘ must be within 2 < ⌘ < 5.

A sample of data recorded by the LHCb detector in proton-proton collisions at a centre-of-
mass energy of

p
s = 7 TeV in 2010 was used as a reference data set. The data was triggered

by the “MicroBias” trigger and had no prescaling (TCK 0x51710). The following LHCb software
packages were used in the tuning process to produced simulated data samples:

• Gauss v40r0 for simulation;

• Boole v22r1 for digitization;

• Brunel v37r8p5 for data reconstruction;

• Moore v9r1p3 for trigger code application;

• DaVinci v28r2p2 for physics analysis;

These versions of the software packages fully recreate the same detector environment which was
used during the data taking for the simulated data.

For this test with only four non-flavor hadronization parameters, the following distributions
were selected to be used as the comparison criteria:

• ⌘ (pseudo-rapidity), in the range 2 < ⌘ < 5, presented in Fig. 8.1;
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Figure 8.1: Track pseudorapidity distribution.
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• p
T

vs. ⌘ (pseudorapidity in bins of p
T

), with 0 < p
T

< 3 GeV/c2 and 2 < ⌘ < 5, plotted
separately for positively and negatively charged tracks, presented in Fig. 8.2 through 8.7;
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Figure 8.2: Pseudorapidity distribution for positively charged tracks with 0 < p
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< 1 GeV/c for
2 < ⌘ < 5.
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for 2 < ⌘ < 5.
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• Multiplicities of positively and negatively charged tracks in the the ⌘ regions of 2 < ⌘ < 3,
3 < ⌘ < 4 and 4 < ⌘ < 5, presented below in Fig. 8.8 to 8.13.
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Figure 8.8: Multiplicity of positively charged tracks for 2 < ⌘ < 3.
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Figure 8.9: Multiplicity of negatively charged tracks for 2 < ⌘ < 3.
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Figure 8.10: Multiplicity of positively charged tracks for 3 < ⌘ < 4.
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Figure 8.11: Multiplicity of negatively charged tracks for 3 < ⌘ < 4.



129 8.2 Comparison criteria

Mean    1.556
RMS     1.648

pos n
0 1 2 3 4 5 6 7

)
po

s
 P

(n

0

0.05

0.1

0.15

0.2

0.25

0.3

Mean    1.556
RMS     1.648

 < 5ηPositive charge tracks in 4 < 

Figure 8.12: Multiplicity of positively charged tracks for 4 < ⌘ < 5.
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Figure 8.13: Multiplicity of negatively charged tracks for 4 < ⌘ < 5.
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The distributions presented above are merged into a data vector and used as a criterion in
the tuning application. Fig. 8.14 shows a comparison of such two criteria histograms, built for
the reference data sample (LHCb recorded data) and a sample of Monte Carlo data, simulated
with default settings of the generator.
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Figure 8.14: Comparison plot of criteria histograms for the reference (LCHb recorded) and
default tune Monte Carlo data samples, as they are represented in the tuning application.

8.3 Setup of the tuning application

To prepare the tuning application, it is necessary to define the following options:

1. The total number of tuned parameters n;

2. Define the tuned PYTHIA parameters: their names, starting values and variation limits;

3. Choose the order of the approximation polynomial: 2nd or 3rd order;

4. Define the number of events N
gen

to generate per data sample;

5. Fix the number of the initial sampling points: the default minimal number N
min

is calcu-
lated by Formula (5.3) and could be increased (see Tab. 5.1);

6. Select the method of solving the matrix equation: via SVD or via the normal system of
equations;

7. Choose whether to estimate statistical and computational uncertainties;

8. Define the number of bins K of the comparison histogram;
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It is clear that some of these options strongly influence the computation time of the appli-
cation. The possibility to have a large number of events per generated data sample to increase
statistics is limited by the computation time, which increases even more with the growth of the
number of tuned parameters.

The computation time was very important in the presented numerical experiments since it
was necessary to produce many different variants of tunings to estimate how different factors
influence the result and for debugging purposes. Thus the number of generated events per
data sample was chosen to be N

gen

= 104 as a compromise between statistical precision and
computational time. The analysis of the influence of the order of the approximation polynomial
showed that the choice of the 3rd order polynomial over the 2nd order one has little effect on the
final result, but significantly increases the computation time.

Hence, in the presented numerical experiments the approximation was done with a 2nd order
polynomial, the number of generated events per data sample was chosen to be N

gen

= 104 and
the number of the initial sampling points was set to be N = 2N

min

. The comparison criteria,
which from the point of the tuning application is a set of histograms of the chosen distributions
glued together in one long data vector, was 152 bins long and the system of matrix equations
was solved with the SVD method (in this case, estimation of the coefficients via a normal system
yielded the same result).

8.4 Sensitivity test

It is possible to use the Lagrange tuning application to study the effect of the shift of the tuned
parameters values on the parameterization.

In order to estimate of how sensitive the selected distributions are with respect to the change
of the parameter values, the parameters were varied one at a time. The limits for the parameter
values were set approximately to two times that of the corresponding default value to probe
regions further away from it (Tab. 8.2). A Monte Carlo data sample produced with default LHCb
software settings for PYTHIA was used as a reference. The Monte Carlo generator response
was approximated by a 2nd order polynomial and used oversampling of 2N

min

, where N
min

is
calculated according to Formula (5.3) in Chapter 5.

Parameter default value lower limit upper limit description
PARJ(21) 0.36 0.1 0.62 �
PARJ(41) 0.3 0.1 1 a
PARJ(42) 0.58 0.1 1.5 b
PARJ(82) 1 0.1 2 shower cut-off

Table 8.2: Default values and limits of the tuned parameters during the sensitivity test.

The plots below present the dependencies of �2/N
df

of the approximation and Monte Carlo
generator response vs. reference data, calculated for the shifts in parameter space for single
parameters and groups of parameters. The horizontal axis corresponds to the coordinates of the
scan points along an arbitrary line in the n-dimensional parameter space. For a single parameter
case, the scan is done along the line in a one-dimensional parameter space, confined to the
boundaries of the parameter, and passes through the parameter’s default value.

The test for sensitivity of the observables to shifts of parameters in the parameter space
allows one to understand how much the distributions change when the parameters are varied in
their limits. Naturally, it is best to select observables which are the most sensitive to parameter
changes. If the tuned parameters have no effect on an observable, they can be removed from the
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comparison criteria or replaced with different ones.

8.4.1 Parameter PARJ(21)= �

The PYTHIA parameter PARJ(21) corresponds to the width � in the Gaussian p
x

and p
y

trans-
verse momentum distribution, relative to the color string. It is a free parameter and in the LHCb
software distribution its default value is set to PARJ(21)= 0.36, as stated in Tab. 8.1. Fig. 8.15
presents the result of the scanning procedure for a single parameter PARJ(21) within the limits
defined in Tab. 8.2. The vertical axis corresponds to the reduced �2 value, and the horizontal
axis corresponds to the parameter value. The points on the plot are connected by a spline line
for visual comfort. The reduced �2 for these tests was calculated taking into account statistical
uncertainties of the reference data, ignoring statistical errors of the approximation and Monte
Carlo generator respectively, because of the effects discussed further in Sec. 8.6.

Figure 8.15: �2/N
df

plot of the sensitivity test of parameter PARJ(21): round markers (red
curve) correspond to the response of the approximation formula, square markers (blue curve)
represent the Monte Carlo event generator response.

It can be seen that in the parameter value interval [0.2, 0.5] the approximation (red) agrees
well with the Monte Carlo generator response (blue) and has a minimum in the point with the
parameter default value PARJ(21)= 0.36.

8.4.2 Parameters PARJ(41)= a and PARJ(42)= b

In PYTHIA, the Lund symmetric string fragmentation function (4.4) has two free parameters
a, b (discussed in Sec. 4.2 of Chapter 4) which need to be adjusted to bring the fragmentation
into accordance with the reference data. These parameters are defined as PARJ(41)= a and
PARJ(42)= b and their default values are set to PARJ(41)= 0.3 and PARJ(42)= 0.58 GeV�2.
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Figures 8.16 and 8.17 present the results of separate tunings of these two parameters within
the limits defined in Tab. 8.2.

Figure 8.16: �2/N
df

plot of the sensitivity test of parameter PARJ(41).

Figure 8.17: �2/N
df

plot of the sensitivity test of parameter PARJ(42).
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Figure 8.18: �2/N
df

plot of the sensitivity test of parameter PARJ(82).

In the case of PARJ(41), there is a discrepancy between the approximation and the Monte
Carlo generator in the region of the minimum, which is due to statistical fluctuations, and the
difference is within statistical errors. For PARJ(42) the agreement is better, especially in the
region of the minimum.

8.4.3 Parameter PARJ(82) - shower cut-off

In the PYTHIA parton shower model, the shower evolution is cut off at some lower scale Q
0

=
Q

shower cut�o↵

. This value is defined by parameter PARJ(82)=’shower cut-off’, with its default
value set to PARJ(82)= 1 GeV.

The result for the PARJ(82) test within the limits presented in Tab. 8.2 is shown in Fig. 8.18.
It can be seen that in comparison to the other three tested parameters, PARJ(82) is the least

sensitive one: it remains practically constant across a large part of the scanning interval. The
discrepancy between the approximation and Monte Carlo generator response is within statistical
errors.

8.4.4 Variation of two parameters PARJ(21) and PARJ(42)

The tuning of single parameters showed that parameter PARJ(21) seems to be the most sensitive
out of the four chosen parameters, followed by PARJ(42) and PARJ(41), while PARJ(82) remains
practically constant over the wide part of the variation interval.

Figure 8.19 presents the results of the simultaneous variation of the two more sensitive pa-
rameters PARJ(21) and PARJ(41). Since in this case there are two parameters being varied
simultaneously, the scan is done along a diagonal of a rectangle in the 2D parameter space. The
coordinates of the vertices of the rectangle are defined by the corresponding parameter limiting
value. The main diagonal is divided by a user-defined number of steps, which in this case was
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Figure 8.19: �2/N
df

plot of the sensitivity test of simultaneous tuning of parameters PARJ(21)

and PARJ(42).

Figure 8.20: �2/N
df

plot of the sensitivity test of simultaneous tuning of parameters PARJ(21),
PARJ(42) and PARJ(41).
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equal to 10 and resulted in 11 sampling points. In each point a vector of corresponding parameter
values is formed and for it the responses of the approximation and Monte Carlo generated are
obtained. Thus, for the cases of 2 or more parameters being varied simultaneously, the horizontal
axis on the reduced �2 plots corresponds to the scanning points in the parameter space.

The approximation agrees very well with the Monte Carlo generator in the interval between
points 3 and 10, with a minimum in point 5.

8.4.5 Variation of three parameters PARJ(21), PARJ(42) and PARJ(41)

Figure 8.20 shows the simultaneous tuning of three parameters PARJ(21), PARJ(42) and
PARJ(41). The approximation is best in the interval from point 4 to 10, with a minimum
between points 5 and 6.

8.4.6 Variation of PARJ(21), PARJ(42), PARJ(41) and PARJ(82)

Figure 8.21 presents the result of the simultaneous tuning of all four parameters PARJ(21),
PARJ(42), PARJ(41) and PARJ(82) in the limits defined in Tab. 8.2. Points on the horizontal
axis correspond to points in parameter space.

Figure 8.21: �2/N
df

plot of the sensitivity test of simultaneous tuning of four parameters
PARJ(21), PARJ(42), PARJ(41) and PARJ(82).

The plot shows that the approximation agrees very well with the Monte Carlo generator
response in the region of the minimum, between points 4 and 9.

Summary. Figures 8.15 to 8.17 and 8.19 to 8.21 show that the selected observables are
sensitive to the tuned parameters. Fig. 8.18 proves that the observables weakly depend on
parameter PARJ(82). In general, the studies show that the approximation agrees very well with
the Monte Carlo generator response.
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8.5 Overdetermination influence

The tuning application approximates the number of events n
b

in every bin b of the compared
histograms by a 2nd order polynomial, where the number of the initial anchor points (sampling
points in the parameter space) influences the quality of the approximation. The purpose of the
overdetermination test was to study this effect and select an optimal number of anchor points.

The tunes were done for a single parameter PARJ(21). The generated data samples were 104

events large and a sample of data of the same size, recorded by LHCb detector, was used as a
reference. In the case of one parameter, from the Tab. 5.1 it follows that the number of unknown
coefficients for the 2nd order polynomial equals to N

min

= 3.
Figure 8.22 to 8.26 present dependencies of �2/N

df

of approximation and Monte Carlo gen-
erator response vs. reference data for different numbers of the initial sampling points. Values
on the horizontal axis correspond to the values of parameter PARJ(21), tuned within the limits
defined in Tab. 8.2.

Figure 8.22: �2/N
df

plot of tuning a single parameter PARJ(21) with the number of the initial
sampling points equal to N

min

= 3.
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Figure 8.23: �2/N
df

plot of tuning a single parameter PARJ(21) with the number of the initial
sampling points equal to 2N

min

= 6.

Figure 8.24: �2/N
df

plot of tuning a single parameter PARJ(21) with the number of the initial
sampling points equal to 3N

min

= 9.
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Figure 8.25: �2/N
df

plot of tuning a single parameter PARJ(21) with the number of the initial
sampling points equal to 4N

min

= 12.

Figure 8.26: �2/N
df

plot of tuning a single parameter PARJ(21) with the number of the initial
sampling points equal to 5N

min

= 15.



Chapter 8: Numerical experiments and discussion of results 140

The test shows that the increase in the number of initial sampling points from N
min

to 2N
min

significantly improves the approximation quality. Increasing it further becomes less beneficial
since a relatively smaller improvement in the approximation is accompanied by a significant
increase in computational time. Thus 2N

min

is good compromise between the accuracy of the fit
and the computational time and it is used for the main tuning. This is consistent with similar
studies and the recommendations in reference [51].

8.6 Main tuning

The main tuning was done with the help of the Lagrange application package for the four
parameters PARJ(21), PARJ(41), PARJ(42) and PARJ(82). Their default values and limits are
presented in Tab. 8.2. The approximation was done with a 2nd order polynomial and as it follows
from Tab. 5.1 of Chapter 5, the number of unknown coefficients in this case is N

min

= 15. The
number of initial sampling points was chosen to be N = 2N

min

= 30.

Figure 8.27: �2/N
df

plot of simultaneous tuning of four parameters PARJ(21), PARJ(42),
PARJ(41) and PARJ(82). Red points correspond to the approximation, blue points to the Monte
Carlo generator response. The approximation was done with a 2nd order polynomial and the
number of initial sampling points is equal to 2N

min

= 30. The simulated datasets size is 104

events. The �2 values were calculated taking into account only statistical uncertainties of the
reference data, excluding statistical errors of the approximation and Monte Carlo generator for
the corresponding points.

Figure 8.27 demonstrates the result of an arbitrary scan, conducted after all the coefficients
of the approximation polynomial have been estimated. The scan was done along one of the
diagonals of the hypercube in the parameter space. The plotted dependencies are the �2/N

df

of
the approximation (red points) and Monte Carlo generator response (blue points) vs. reference
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data. The vertical axis corresponds to the �2/N
df

value and the horizontal one represents the
scanning points along the line.

This scan test shows that the parameterization and the Monte Carlo generator response are
in a very good agreement, especially in the region of the minimum. The high �2/N

df

values at
the main minimum are due to the fact that in the process of their calculation only the statistical
uncertainties of the reference data were used, and therefore the errors were underestimated.

Figure 8.28: �2/N
df

plot of simultaneous tuning of four parameters PARJ(21), PARJ(42),
PARJ(41) and PARJ(82). Red points correspond to the approximation, blue points to the Monte
Carlo generator response. The �2 values were calculated taking into account statistical uncer-
tainties, which were estimated the way it was described in Section 6.3 of Chapter 6.

Figure 8.28 presents the results of the same scan test, with account for the statistical uncer-
tainties of the approximation. The decline of the �2/N

df

values for the parameterization, plotted
in red, towards the boundaries is due to the growth of the statistical errors of the approximation.
If in the central region of the minimum the statistical uncertainties of the approximation are
comparable to those of the Monte Carlo generator response, then past point 4 towards the left
boundary and past point 9 towards the right limit the difference starts to grow. This behavior is
explained by the comparably small number of generated events per data sample and the growth
of the errors of the parameterization towards the boundaries of the scanned volume.

The difference between the �2/N
df

values in the region of the minimum is explained by the
difference in statistical uncertainties: the statistical errors of the approximation are smaller due
to the higher statistics. The blue curve corresponds to the MC data set with 104 events, the red
one is the approximation based on a fit to 2⇥N

min

number of anchor points, corresponding to
2⇥N

min

⇥ 104 MC events.
The statistical uncertainties of the approximation make the �2 a badly-behaved function.

Minimization without defining parameter boundaries yields unacceptable results with PARJ(82)

ending up having negative values. In the case of an explicit definition of parameter limits, Minuit
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prefers values outside of the designated boundaries for PARJ(41) and PARJ(82), therefore it was
decided to ignore Monte Carlo statistical errors in the parameterization.

Minimization without accounting for the statistical uncertainties of the approximation results
in a minimum of �2/N

df

= 6.49 for the parameter values presented in Tab. 8.3. It is, however,
a visible improvement over the Monte Carlo with default parameter values, which has �2/N

df

=
12.14.

Parameter default value new value description
PARJ(21) 0.36 0.427 ± 0.003 �
PARJ(41) 0.3 0.229 ± 0.016 a
PARJ(42) 0.58 0.402 ± 0.014 b
PARJ(82) 1 1.735 ± 0.053 shower cut-off

Table 8.3: Default and new values of the tuned parameters, estimated by minimizing the approx-
imation �2 function without consideration of statistical uncertainties of the parameterization.
The symmetrical uncertainties for the values of the minimized parameters are the parabolic errors
determined from the covariance matrix by Minuit.

The validation scan around the minimized parameter values, presented in Fig. 8.29, shows a
good agreement between the approximation and the Monte Carlo generator. The limits for the
parameters values for the scan were set to ±0.4 of the corresponding best value and are presented
in Tab. 8.4. The high �2 value in the minimum is explained by the fact that the statistical errors
of the parameterization were ignored.

Parameter new value lower limit upper limit description
PARJ(21) 0.427 0.36 0.516 �
PARJ(41) 0.229 0.58 0.494 a
PARJ(42) 0.402 0.3 0.44 b
PARJ(82) 1.735 1.0 2.05 shower cut-off

Table 8.4: Parameter boundaries for the validation scan.
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Figure 8.29: �2/N
df

plot for the best tuning validation test of parameters PARJ(21), PARJ(42),
PARJ(41) and PARJ(82). Red points correspond to the approximation, blue points to the Monte
Carlo generator response. Point 6 corresponds to the new parameter values presented in Tab. 8.3.
The scan was done within ±0.4 of the corresponding best value. The �2 values were calculated
taking into account only statistical uncertainties of the reference data.

Figures 8.30 through 8.42 present the comparison of the criteria distributions with the new
tune (red) plotted alongside the default Monte Carlo generator configuration (blue) and the
reference data (black).
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Figure 8.30: Track pseudorapidity distributions, between the reference data (LHCb recorded,
plotted in black), default (blue) and new (red) Monte Carlo tunes.
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Figure 8.31: Pseudorapidity distribution for positively charged tracks with 0 < p
T

< 1 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.
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Figure 8.32: Pseudorapidity distribution for negatively charged tracks with 0 < p
T

< 1 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.
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Figure 8.33: Pseudorapidity distribution for positively charged tracks with 1 < p
T

< 2 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.
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Figure 8.34: Pseudorapidity distribution for negatively charged tracks with 1 < p
T

< 2 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.
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Figure 8.35: Pseudorapidity distribution for positively charged tracks with 2 < p
T

< 3 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.
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Figure 8.36: Pseudorapidity distribution for negatively charged tracks with 2 < p
T

< 3 GeV/c
for 2 < ⌘ < 5. The reference data (LHCb recorded) is plotted in black. Default and new Monte
Carlo tunes are plotted in blue and red respectively.



147 8.6 Main tuning

pos n
0 1 2 3 4 5 6 7

)
po

s
 P

(n

0

0.1

0.2

0.3

0.4

0.5

LHCb data

Default MC

New tune MC

 < 3ηPositive charge tracks in 2 < 

Figure 8.37: Multiplicities of positively charged tracks for 2 < ⌘ < 3. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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Figure 8.38: Multiplicities of negatively charged tracks for 2 < ⌘ < 3. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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Figure 8.39: Multiplicities of positively charged tracks for 3 < ⌘ < 4. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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Figure 8.40: Multiplicities of negatively charged tracks for 3 < ⌘ < 4. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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Figure 8.41: Multiplicities of positively charged tracks for 4 < ⌘ < 5. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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Figure 8.42: Multiplicities of negatively charged tracks for 4 < ⌘ < 5. The reference data (LHCb
recorded) is plotted in black. Default and new Monte Carlo tunes are plotted in blue and red
respectively.
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It appears that for the most of the figures, the default and new Monte Carlo tunes agree well
within the statistical uncertainties and tend to describe the reference data equally good or with
a similar level of discrepancy. However, the Monte Carlo data sample, simulated with the newly
found parameter values, improves the reference data description in the case of the ⌘ distribution
for tracks with 1 < p

T

< 3 GeV/c. This effect is also seen in Fig. 8.43 (in the central part), which
shows the comparison of the tuning histogram for the two Monte Carlo tunes and reference data.
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Figure 8.43: Comparison plot of criteria histograms for the reference data (LCHb recorded) and
two Monte Carlo data samples (default and new tune), as they are represented in the tuning
application.

Table 8.5 presents the �2 values of the comparison criteria for the default and the new Monte
Carlo tunes versus the reference data. It is seen that the improvement of the �2 of the new
Monte Carlo tune mainly comes from the ⌘ distributions of higher-p

T

tracks.
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Distribution bins default MC �2 overflow bin �2 new MC �2 overflow bin �2

⌘ 50 291.24 – 270.89 –

⌘ of n
pos

(0 < p
T

< 1 GeV/c) 5 145.34 – 140.61 –
⌘ of n

neg

(0 < p
T

< 1 GeV/c) 5 75.93 – 151.11 –

⌘ of n
pos

(1 < p
T

< 2 GeV/c) 5 357.05 – 41.71 –
⌘ of n

neg

(1 < p
T

< 2 GeV/c) 5 435.24 – 96.47 –

⌘ of n
pos

(2 < p
T

< 3 GeV/c) 5 142.86 – 61.72 –
⌘ of n

neg

(2 < p
T

< 3 GeV/c) 5 115.52 – 57.56 –

⌘ of n
pos

(p
T

> 3 GeV/c) 5 3.39 – 17.63 –
⌘ of n

neg

(p
T

> 3 GeV/c) 5 26.19 – 3.35 –

n
pos

multiplicity (2 < ⌘ < 3) 8 15.21 0.47 20.8 8.44
n
neg

multiplicity (2 < ⌘ < 3) 8 7.57 2.03 30.35 0.95

n
pos

multiplicity (3 < ⌘ < 4) 8 19.13 3.94 20.87 7.08
n
neg

multiplicity (3 < ⌘ < 4) 8 21.77 0.83 26.13 0.15

n
pos

multiplicity (4 < ⌘ < 5) 8 66.9 2.73 55.82 4.92
n
neg

multiplicity (4 < ⌘ < 5) 8 64.19 0.01 42.34 1.78

Table 8.5: The per-distribution �2 values for the default and new Monte Carlo tunes, compared
to the reference data. The “bins” column states the numbers of the bins in the histograms of
the corresponding distributions, which are the same as on the plots presented before. For the
several distributions for which the tuning application also fits the overflow bin, its contribution
is shown in the “overflow bin �2” column.

The errors on the new parameter values (best tune values) were estimated with the help of
the likelihood-based method, called profile likelihood. The scan interval for each parameter p

i

was defined by the two values pupper
i

= pbest
i

+ �p
i

and plower
i

= pbest
i

� �p
i

(upper and lower
boundaries respectively), for which

min
pj ,j 6=i

�2(~p, p
i

= pupper
i

or plower
i

) = �2

min

+1 ! nominal
+6.49 ! used here

,

and �p
i

= ↵ ⇥ pbest
i

Minuit error

, where pbest
i

Minuit error

is the error on the minimized parameter value
estimated by Minuit, and ↵ is a constant number which was arbitrary set to ↵ = 2.75. Since in
the case of the study the errors were underestimated by ignoring statistical uncertainties of the
approximation, the 68% confidence interval must be adjusted accordingly, by increasing the �2

min

by ��2, which is expected to be ��2 = h �2

N

df

i = 1. From the underestimated errors it follows
that the uncertainty of the fitted parameters is also underestimated. To account for this, ��2

was chosen as ��2 = �2

min

/N
df

= 6.49.
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Figures 8.44 to 8.47 present the results of the profiling procedure for the tuned parameters.
In each point on the separate plot, the profiled parameter had its value fixed and the �2 function
was minimized against the other three free parameters. The minima on the plots match the best
tune values for the corresponding profiled parameters.

Figure 8.44: Profile likelihood �2 plot of parameter PARJ(21). The vertical axis corresponds to
the �2 value, and the horizontal one to the parameter value.

Figure 8.45: Profile likelihood �2 plot of parameter PARJ(41). The vertical axis corresponds to
the �2 value, and the horizontal one to the parameter value.
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Figure 8.46: Profile likelihood �2 plot of parameter PARJ(42). The vertical axis corresponds to
the �2 value, and the horizontal one to the parameter value.

Figure 8.47: Profile likelihood �2 plot of parameter PARJ(82). The vertical axis corresponds to
the �2 value, and the horizontal one to the parameter value.
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The resulting new values and their uncertainties, estimated from the profiling procedure, for
the four tuned parameters are presented in Tab. 8.6.

Parameter default value new value uncertainty description

PARJ(21) 0.36 0.427
+0.009
�0.009

�

PARJ(41) 0.3 0.229
+0.043
�0.039

a

PARJ(42) 0.58 0.402
+0.039
�0.036

b

PARJ(82) 1 1.735
+0.127
�0.144

shower cut-off

Table 8.6: The default values of the parameters, their new tuned values and their uncertainties.
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Conclusions

Manum de tabula!
Lat.: Hand off the board!

Simulations play a very important role in modern physics. Recently, numerical modeling has
become a rapidly growing area of science and the Monte Carlo tuning technics, considered in this
work, have entered a “boom era”. Monte Carlo predictions are used in many fields and have a lot
of applications: from estimating experimental efficiencies and uncertainties to testing theories.
The Monte Carlo tuning helps to achieve a better agreement between simulated and reference
data.

The LHCb software framework models physics processes in the LHCb detector, and makes
it possible to predict results of the experiment. In PYTHIA, Monte Carlo event generator
simulates processes in collisions of protons (hard processes, initial- and final-state radiation,
parton showers, fragmentation, decays). The detector simulation (GEANT) describes particles,
traversing through the detector material (ionization, multiple scattering, nuclear interactions).
But as has been described in this work, many models which describe physics processes, contain
weakly constrained free parameters. In order to obtain Monte Carlo event generator predictions
which will agree with the reference experimental data, it is required to simultaneously tune many
phenomenological parameters in a multidimensional parameter space.

This work focuses on the creation of a fast analytical model of the Monte Carlo event gen-
erator, on the development of mathematical methods and creation of their software application,
followed by its tuning with respect to the data collected by the LHCb detector. Herewith, the
fitting algorithm is integrated with the LHCb detector software model.

The following results were obtained in this work:

I The tuning procedure:

1. Further development of the methodology of parameterization of Monte Carlo generator
behavior:
a) expansion of the interpolation approach: interpolation by a 2nd or 3rd order poly-

nomial,
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b) computation of the unknown polynomial coefficients by two different methods
using the method of least-squares:

– a fast method of solving an overdetermined system via the normal system of
equations, which requires an estimate of computational errors;

– a precise method of solving an overdetermined system of equations via singular
value decomposition of the system matrix, which is more computationally
heavy than the first method;

c) use of per-bin weights (ability to emphasise or to exclude individual bins or dis-
tributions, used as comparison criteria),

d) use of multiple distributions in comparison criteria,
e) implementation in the object-oriented C++ environment (use of ROOT object-

oriented data analysis framework), that is more flexible and extensible.
2. A detailed step by step fitting algorithm is presented, which estimates the parame-

terization coefficients and delivers the optimal, best set of parameter values by using
numerical minimization of the �2 function.

3. A methodology of estimation of uncertainties of the parameterization result is imple-
mented.

4. A tuning application package implemented in C++.
The JobManager application, which is responsible for transparent parallelization of
simulation jobs on a local computational cluster.
The Analytical application, which implements a physics analysis and produces his-
tograms of selected distributions, used as comparison criteria by the main tuning
application.
The main tuning application Lagrange, which implements the fitting algorithm.
The source code of all the applications is well commented.

5. The developed methodology and applications were tested with simple numerical ex-
amples.

6. The Lagrange application implements a method of guaranteed estimation of com-
putational errors, based on the developed methodology, and estimation of statistical
uncertainties of the parameterization result.

7. The tuning application provides a way to test the obtained parameterization by scan-
ning the parameters space along an arbitrary straight line.

8. The estimated best set of parameter values

II The developed application package is a tool for systematic tuning of Monte Carlo event
generator parameters to the experimental data recorded by LHCb detector.
The following four major non-flavor hadronization parameters were selected for the stud-
ies: Lund string parameters a PARJ(41) and b PARJ(42), Gaussian transverse momentum
distributions � PARJ(21) and the shower parameter (shower cut-off) PARJ(82).
Chapter 8 describes in detail:

a) Influence of the number of the initial sampling points on the approximation of the
Monte Carlo generator response;

b) Analysis of the sensitivity of the selected distributions to the shifts of the tuned
parameters in the parameter space;
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c) Analysis of the parameterization;
d) Numerical experiments, likelihood profiling procedure and the results of the main

tuning of the four selected parameters, presented in Table 8.6.

The following conclusions are drawn from the numerical experiments:

• Parameterization of the Monte Carlo generator response gives a robust analytical model,
which allows to make fast predictions of generator distributions;

• The fitting algorithm finds the best set of parameter values which make the Monte Carlo
generator better describe the reference data, and such tuning is very important for any
physics analysis which relies on Monte Carlo data;

• The developed tuning package:

– is a tool which can handle such tuning tasks systematically, it is fully automatized and
once a tuning has been configured - all the procedures such as parallel computational
jobs execution, the main tuning, scan and validation tests, likelihood profiling, etc.
are done in completely automatic manner;

– uses the LHCb software framework to fully recreate the environment in which the
reference data was recorded;

– allows accounting not only for statistical, but also computational uncertainties;
– makes it possible to produce tunings for different purposes (different user-defined

comparison distributions);

• A full tuning of four selected parameters of Pythia 6.4 was done with the help of the
developed software package, using a sample of data recorded by LHCb detector in 2010.

Therefore, the further development and adoption by the LHCb community of the tools,
described in the thesis, can improve the description of the data recorded by the LCHb detector
by the Monte Carlo event generators, and refine the precision of measurements which rely on
them.
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