A Kinetic Safety Gate Controlling the Delivery of Unnatural Amino Acids to the Ribosome

Joerg Mittelstaet, Andrey L Konevega, Marina V Rodnina

SUPPLEMENTARY FIGURES AND TABLES

 $\textbf{Figure S1.} \ Schematic \ of the \ sequence \ of \ events \ and \ tRNA \ selection \ steps \ during \ mRNA \ decoding \ in \ the \ A \ site \ of \ the \ ribosome.$

Figure S2. Evaluation of K_d and k_{off} values. (a-d) Examples of concentration dependences of the fluorescence change upon binding of EF-Tu (wt or mutants, as indicated) to BOP-Lys-tRNA^{Lys}. (e) Chase of BOP-Lys-tRNA^{Lys} (0.05 μ M) from EF-Tu-GTP by the addition of excess unlabeled aatRNA (40 μ M). (f) Chase of Lys-tRNA^{Lys}(Flu) (0.05 μ M) from EF-Tu-GTP by excess unlabeled aa-tRNA (40 μ M).

Figure S3. Time courses of GTP hydrolysis (a) and peptide bond formation (b,c,d) with wt and mutant EF-Tu. (a) GTP hydrolysis upon binding of the ternary complex EF-Tu–[γ- 32 P]GTP–BOP-Lys-tRNA^{Lys} (0.1 μM) to initiation complexes with a cognate AAA codon in the A site (0.3 μM). BOP-Lys-tRNA^{Lys} was present in large excess (1 μM) to ensure complex formation also for the EF-Tu mutant forming the weakest complex. Thin lines represent single and double-exponential fits resulting in rates of 7.2 ± 1.2 s⁻¹ (rapid phase) for EF-Tu(wt) (•), 6.8 ± 0.2 s⁻¹ for EF-Tu(E215A) (•), 6.8 ± 0.7 s⁻¹ for EF-Tu(D216A) (•), and 5.7 ± 0.4 s⁻¹ (rapid phase) for EF-Tu(E215A/D216A) (•). (b) Peptide bond formation with BOP-Lys-tRNA^{Lys}. The complex of EF-Tu–GTP (4 μM) and BOP-Lys-tRNA^{Lys} (0.1 μM) was rapidly mixed with initiation complexes (0.3 μM). Thin lines represent single-exponential fits resulting in rates of 1.7 ± 0.1 s⁻¹ for EF-Tu(wt) (•), 0.36 ± 0.03 s⁻¹ for EF-Tu(E215A) (•), 1.6 ± 0.1 s⁻¹ for EF-Tu(D216A) (•), and 0.07 ± 0.01 s⁻¹ for EF-Tu(E215A/D216A) (•). (c) Peptide bond formation with Lys-tRNA^{Lys}. The complex of EF-Tu–GTP (4 μM) and Lys-tRNA^{Lys} (0.1 μM) was rapidly mixed with initiation complexes (0.3 μM). Single-exponential fits resulted in rates of 2.4 ± 0.1 s⁻¹ for EF-Tu(wt) (•), 1.1 ± 0.1 s⁻¹ for EF-Tu(E215A) (•), 2.4 ± 0.2 s⁻¹ for EF-Tu(D216A) (•), and 1.1 ± 0.1 s⁻¹ for EF-Tu(E215A/D216A) (•). (d) Peptide bond formation with Lys-tRNA^{Lys} (Flu) (0.1 μM) in presence of high (4 μM) and low (0.2 μM) concentration of EF-Tu(wt)–GTP upon mixing with initiation complexes (0.3 μM). The rates are 1.9 ± 0.1 s⁻¹ and 2.2 ± 0.2 s⁻¹, at 4 μM and 0.2 μM EF-Tu, respectively.

Figure S4. (a) Accommodation of aa-tRNA (0.1 μM) on the ribosome carrying BOF-Met-tRNA^{fMet} in the P site (0.05 μM) at increasing EF-Tu concentrations. Traces show the decrease of donor (BOF) fluorescence upon binding of BOP-Lys-tRNA^{Lys} at different EF-Tu-GTP concentrations (right to left: 0.2, 0.4, 0.8, 1.6, 2.8, and 4.0 μM). The binding of the ternary complex with unlabeled Lys-tRNA^{Lys} (at 4.0 μM EF-Tu-GTP) is shown for comparison (top-most trace). (b) BOF fluorescence change upon interaction of EF-Tu-BOF-GTP-Lys-tRNA^{Lys} with the ribosome. The dissociation rate of BOF-GDP from EF-Tu(E215A/D216A) as measured upon addition of excess non-labeled GDP¹ was 0.02 s⁻¹, which is identical to the observed rate of fluorescence decrease (0.02 s⁻¹) in the shown time course.

Reference:

(1) Gromadski, K. B.; Wieden, H. J.; Rodnina, M. V. Biochemistry 2002, 41, 162.

Supplementary Table 1. Binding of BOP-Lys-tRNA^{Lys} to EF-Tu-GTP and rate of peptide bond formation on the ribosome

EF-Tu	K _d , μM ^a	k_{on} , μM^{-1} s^{-1} c	k_{off} , $s^{-1 d}$	k _{off(chase)} , s ^{-1 e}	k _{pep,} s ^{-1 f}
wt	0.43 ± 0.02 b	1.0	0.48	0.43	1.7 ± 0.1
wt	0.43 ± 0.05 ^b	1.5ª	0.69 ^a	-	-
D216A	0.16 ± 0.03 b	0.8 ^a	0.69 ^a	0.39	1.6 ± 0.1
E215A	0.02 ± 0.01 ^b	2.8 ^a	0.05 ^a	0.01	0.36 ± 0.03
E215A/D216A	0.004 ± 0.002 b	1.7ª	~0ª	0.004	0.072 ± 0.004

 $^{^{}a}$ K_d values are averages of values determined form the amplitude dependence of the titration (Supplementary Figures 2a-d) and from k_{off}/k_{on} ; in the latter case, the k_{off} value from the chase experiments was taken due to its higher precision.

 $^{^{\}rm b}$ tRNA $^{\rm Lys}$ transcript was used for the titration experiment

 $^{^{\}circ}$ Standard deviation was <2% of k_{on} values.

^d Determined from the Y-axis intercept of linear concentration dependence of k_{app} (Figure 2c). Standard deviation of values was 2-20%.

^e From the tRNA dissociation experiments (Supplementary Figure 2e). Native tRNA^{Lys} was used. Standard deviation of values was <2%.

 $^{^{}f}$ determined with EF-Tu-GTP (4 μ M), BOP-Lys-tRNA^{Lys} (0.1 μ M), and 70S ribosomes with fMet-tRNA^{fMet} in the P site and the AAA codon in A site (0.3 μ M).

Supplementary Table 2. Binding of Lys-tRNA Lys to EF-Tu-GTP and rate of peptide bond formation on the ribosome

EF-Tu	K_d , μM^a	$k_{off(chase)}, s^{-1 a, b}$	k _{pep} , s ^{-1 c}
wt	0.009 ± 0.003	0.013	2.4 ± 0.1
D216A	-	0.0140	2.4 ± 0.2
E215A	-	0.024	1.1 ± 0.1
E215A/D216A	-	0.011	1.1 ± 0.1

^a The K_d value is an average of the K_d determined from the amplitude dependence of the titration and from k_{off}/k_{on} . The k_{on} and k_{off} values for Lys-tRNA^{Lys}(Flu) binding to EF-Tu(wt) determined from the concentration dependence of the k_{app} value (Figure 2c) were 1.27 \pm 0.02 μ M⁻¹s⁻¹ and ~0 s⁻¹, respectively.

^b Standard deviation of values was <2%

 $^{^{\}circ}$ determined with EF-Tu-GTP (4 μ M), Lys-tRNA^{Lys} (0.1 μ M), and 70S ribosomes with fMet-tRNA^{fMet} in the P site and the AAA codon in A site (0.3 μ M).