
Tails of plane wave spacetimes: Wave-wave scattering in general relativity

Abraham I. Harte
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

Am Mühlenberg 1, 14476 Golm, Germany∗

One of the most important characteristics of light in flat spacetime is that it satisfies Huygens’
principle: Initial data for the vacuum Maxwell equations evolves sharply along null (and not time-
like) geodesics. In flat spacetime, there are no tails which linger behind expanding wavefronts. Tails
generically do exist, however, if the background spacetime is curved. The only non-flat vacuum
geometries where electromagnetic fields satisfy Huygens’ principle are known to be those associated
with gravitational plane waves. This paper investigates whether perturbations to the plane wave
geometry itself also propagate without tails. First-order perturbations to all locally-constructed
curvature scalars are indeed found to satisfy Huygens’ principles. Despite this, gravitational tails
do exist. Locally, they can only perturb one plane wave spacetime into another plane wave space-
time. A weak localized beam of gravitational radiation passing through an arbitrarily-strong plane
wave therefore leaves behind only a slight perturbation to the waveform of the background plane
wave. The planar symmetry of that wave cannot be disturbed by any linear tail. These results are
obtained by first deriving the retarded Green function for Lorenz-gauge metric perturbations and
then analyzing its consequences for generic initial-value problems.

PACS numbers: 04.30.Nk, 04.30.-w, 04.25.-g

I. INTRODUCTION

In flat spacetime and in the absence of intervening mat-
ter, electromagnetic fields do not develop tails. Light
propagates without dispersion and bursts of radiation
which are initially sharp remain sharp as they evolve.
More precisely, the electromagnetic field Fab(x) at an
event x depends on current densities and initial data only
on, and not inside, the past null cone of x. This is re-
ferred to as Huygens’ principle.

It is fundamental to our everyday lives that light and
sound as we tend to experience them satisfy at least ap-
proximate versions of Huygens’ principle. If this were not
true, moving objects would appear to blur together and
spoken language would be impractical. There are, how-
ever, many wave phenomena for which Huygens’ princi-
ple does fail. A pebble falling into a pond, for example,
produces water waves which persist at any fixed location
long after the initial wavefront has passed. Whether or
not Huygens’ principle is valid for any particular system
may be interpreted as a property of the initial-value prob-
lem associated with the particular differential equations
used to describe that system. From this point of view,
only a handful of reasonable wave equations satisfy Huy-
gens’ principle exactly. The vast majority of possibilities
develop tails.

In the context of general relativity, it is of particular
interest to understand how the curvature of spacetime is
related to the presence of tails. The vacuum Maxwell
equations provide a particularly well-studied example.
Restricting to four-dimensional background spacetimes
satisfying the vacuum Einstein equation Rab = 0, Huy-
gens’ principle holds if and only if the geometry is either
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flat or is associated with a plane-symmetric gravitational
wave [1, 2]. Slightly more can be said by noting that
Maxwell’s equations are conformally invariant. Electro-
magnetic waves therefore propagate tail-free on all (not
necessarily vacuum) metrics which are conformal either
to flat spacetime or to a plane wave. If any further pos-
sibilities exist, they are highly constrained by the results
reviewed in [1, 3, 4].

It is clear that plane wave spacetimes play a privileged
role in the theory of electromagnetic fields. This is not,
it should be emphasized, a peculiarity of Maxwell’s equa-
tions. The massless Klein-Gordon equation also satisfies
Huygens’ principle in flat and plane wave spacetimes [5],
but essentially no others [6]. Massless spin- 1

2 fields prop-
agate tail-free on plane wave backgrounds as well [3, 7].

This paper explores whether perturbations to the plane
wave spacetimes themselves satisfy a version of Huygens’
principle. In physical terms, does a localized packet of
gravitational waves passing through a background plane
wave leave behind a “wake?” The answer is that such a
wake does exist, although its form is remarkably simple.

There are many motivations of studying plane wave
spacetimes. Their most obvious application is as ex-
act models of gravitational radiation in general relativ-
ity. Separate from this, plane wave spacetimes also have
a number of unusual mathematical properties. Their
relevance for (non-gravitational) wave tails has already
been mentioned. Additionally, Penrose has shown [8]
that plane waves arise as universal limits of all space-
times in the vicinity of null geodesics. This might im-
ply that certain aspects of “ultra-relativistic physics” in
generic curved spacetimes can be understood using ef-
fective plane wave backgrounds. Ideas of this type have
already been applied to understand properties of clas-
sical [9] and quantum [10] fields propagating on curved
backgrounds. The Penrose limit and other features of
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plane wave spacetimes have also produced applications
in string theory and related topics [11, 12].

Regardless of motivation, we consider linear metric
perturbations on vacuum plane wave backgrounds in four
spacetime dimensions. The few existing results on Huy-
gens’ principles in linearized general relativity cannot be
used to immediately answer whether gravitational tails
exist on plane wave backgrounds. Waylen [13] considered
the linearized Einstein equation on general backgrounds
and in Lorenz gauge. He then asked whether the trace
gab(x)hab(x) of the first-order metric perturbation hab at
a point x depended on initial data lying inside the past
null cone of x. This was always found to occur unless
the background spacetime is either flat or a plane wave.
Later, Noonan [14] and Wünsch [15] separated asked –
again in Lorenz gauge – whether any part of hab(x) de-
pended on initial data inside the past null cone of x.
They found that this always occurred unless the back-
ground was flat.

None of these results settle the issue. Even if a metric
perturbation develops a tail in Lorenz gauge, it might
not do so in another gauge. This is precisely what occurs
for electromagnetic fields on plane wave backgrounds. In
that case, the vector potential in Lorenz gauge develops
a tail (as it does in all curved spacetimes [16]). Such tails
can, however, be removed by appropriate gauge transfor-
mations [17]. The electromagnetic field Fab = 2∇[aAb]
satisfies Huygens’ principle even thoughAa typically does
not.

The problem of gauge is significantly more subtle for
metric perturbations. This is both because the class of
possible gauge transformations is larger than in electro-
magnetism and also because it is less clear which ob-
servables should be considered. The metric at a single
point is not very interesting, for example. One might in-
stead consider perturbations to curvature scalars such as
RabcdRabcd. These scalars vanish on the background, so
their first-order perturbations are gauge-invariant. It is
shown here that all such perturbations satisfy Huygens’
principles: Every locally-constructed polynomial in the
curvature and its derivatives propagates tail-free on plane
wave backgrounds. Despite this, there is a sense in which
gravitational tails – unlike their scalar or electromagnetic
counterparts – do exist. Locally, these can only per-
turb one plane wave spacetime into another plane wave
spacetime. Even initial data with no symmetries whatso-
ever produces tails which retain the full1 five-dimensional
space of Killing fields associated with the background.
The waveform associated with that background may be
perturbed, however. This is found to depend on only a
single component of the initial metric perturbation.

Our results are derived by first considering the general
problem of first-order perturbations on plane wave back-
grounds. We derive the retarded Green function for met-

1 Some plane wave spacetimes admit a sixth Killing field. This is
not necessarily preserved by tails.

ric perturbations in Lorenz gauge and then use a Kirch-
hoff integral to write an arbitrary metric perturbation
in terms of Cauchy data and any sources which may be
present. The tail of the resulting Green function is used
to derive various properties satisfied by the “tail portion
of the metric” in Lorenz gauge. Lastly, an explicit gauge
transformation is constructed which transforms the per-
turbed metric into the canonical form for a plane wave
spacetime.

Sec. II briefly reviews some properties of plane wave
spacetimes needed for the later development. Sec. III
then illustrates how simple test fields propagate on plane
wave backgrounds by deriving Green functions for scalar
and electromagnetic fields. While the main conclusions
of this section have appeared elsewhere in various forms,
they are re-derived here more succinctly and to allow
for a more direct comparison to the gravitational case.
The methods reviewed in Sec. III are applied in new
ways in Sec. IV to derive a Green function for metric
perturbations on plane wave backgrounds. This Green
function has a tail which is interpreted in Sec. V.

3 + 1 dimensions are assumed throughout this paper.
The signature is taken to be +2 and the sign of the Rie-
mann tensor is defined such that Rabc

dωd = 2∇[a∇b]ωc
for any ωa. Latin letters a, b, . . . from the beginning of the
alphabet are used to denote abstract indices. The letters
i, j, . . . instead refer to coordinates xi (i = 1, 2) which are
transverse to the direction of propagation associated with
the background plane wave. The coordinates xi are not
to be confused with spacetime points denoted by x, y, . . .
(without indices).

II. PLANE WAVE SPACETIMES

Various aspects of plane wave spacetimes have been
reviewed in [9, 18–20]. For our purposes, these are most
naturally introduced as special cases of the plane-fronted
waves with parallel rays (pp-waves). Although the con-
cept is more general, we focus only on pp-waves which
are solutions to the vacuum Einstein equation Rab = 0 in
4 spacetime dimensions. It is then sufficient to consider
a simply connected regionM which admits a vector field
`a that is everywhere null, non-vanishing, and covariantly
constant [18]:

`a`a = ∇b`a = 0. (1)

The integral curves of `a are interpreted as the rays of the
gravitational wave. These are free of expansion, shear,
and twist. There is a sense in all such rays remain parallel
to one another and are orthogonal to a family of planar
wavefronts. It follows from the simple-connectedness of
M and ∇[a`b] = 0 that a scalar field u exists such that

`a = −∇au. (2)

u describes the phase of the gravitational wave. Hyper-
surfaces of constant u are null and are referred to as wave
surfaces.
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Any vacuum spacetime which admits a constant null
vector field `a also admits a non-vanishing and covari-
antly constant null 2-form fab = f[ab] [18]. fab and its

dual f∗ab = εab
cdfcd/2 (which is also null and constant)

describe the plane of polarization associated with the
gravitational wave. This is always transverse to the direc-
tion of propagation in the sense that fab`

b = f∗ab`
b = 0.

An explicit metric for pp-wave spacetimes may be con-
structed using a phase coordinate u which satisfies (2),
an affine parameter v defined by

`a =
∂

∂v
, (3)

and two more scalar fields xi (i = 1, 2) related to fab via

fab = `[a∇b]x1, f∗ab = −`[a∇b]x2. (4)

These choices result in the so-called Brinkmann metric

ds2 = −2dudv +H(u, xk)du2 + (dx1)2 + (dx2)2 (5)

for general pp-wave spacetimes. The vacuum Einstein
equation constrains the wave profile H to satisfy

∇2H(u, xi) = 0, (6)

where ∇2 = ∂2
x1 + ∂2

x2 is usual Laplace operator in two
dimensions. H is otherwise arbitrary.

The Brinkmann coordinates (u, v, xi) have a number of
useful properties. Unlike coordinate systems which are
more closely related to typical perturbative discussions
of gravitational radiation in transverse-traceless gauge,
Brinkmann coordinates do not develop coordinate singu-
larities. Brinkmann coordinates are also harmonic and
place the metric into the Kerr-Schild form

gab = ηab +H`a`b. (7)

Here, ηab is flat and `a = gab`
b = ηab`

b. The vector field
`a is null with respect to both ηab and gab. Viewing H`a`b
as an arbitrarily-large perturbation on the “background”
ηab, (6) implies that this perturbation satisfies the lin-
earized as well as the fully nonlinear Einstein equations
(which is true for all Kerr-Schild metrics [21]). Indeed,
pp-waves obey exact linear superposition and other prop-
erties typically associated with waves in linear theories.
This linearity is typically not apparent in other coordi-
nate systems.

In general, pp-waves admit only one Killing vector.
Recall, however, that electromagnetic plane waves in flat
spacetime are preserved by a five-dimensional space of
Killing vector fields. Gravitational plane waves may
therefore be defined as those pp-waves which admit at
least five linearly independent Killing fields [22]. This
can be shown to imply that for a plane wave spacetime,
H(u, xi) can be at most quadratic in the two transverse
coordinates xi. A coordinate transformation may always
be used to eliminate all terms in H(u, xi) which are either
independent of or linear in xi. Plane wave spacetimes

may therefore be described by a symmetric 2× 2 matrix
Hij(u) satisfying

H(u, xk) = Hij(u)xixj . (8)

Einstein’s equation (6) then reduces to the trivial alge-
braic constraint that Hij be trace-free. This leaves two
free functions of u corresponding to waveforms2 associ-
ated with the two polarization states of the gravitational
wave.

It can be convenient to replace the real matrix Hij(u)
by a single complex function H(u) via

H = H11 + iH12. (9)

Similarly complexifying the transverse coordinates using

ξ =
1√
2

(x1 + ix2), (10)

the pp-wave line element (5) with a plane wave-type pro-
file (8) is then equivalent to

ds2 = 2
(
−dudv + <

[
H(u)ξ̄2

]
du2 + dξdξ̄

)
. (11)

Here, overbars denote complex conjugates and < returns
the real component of its argument. Both the real and
complex representations of plane wave spacetimes are
used interchangeably below.

The complex waveform H constitutes a nearly gauge-
invariant way to describe a vacuum plane wave space-
time. To see this, first note that vector fields `a satis-
fying (1) are unique up to an overall constant. Phases
u satisfying (2) may therefore be altered only by con-
stant affine transformations. ξ and ξ̄ can vary by ro-
tations in the complex plane, but also by more subtle
u-dependent “translations” which affect v as well. All
coordinate transformations that preserve the form of the
Brinkmann metric (11) are known [18]. Applying them
results in each plane wave spacetime being describable
by a 3-parameter family of possible waveforms:

H(u)→ a2H(au− b)eic. (12)

Here, a 6= 0, b, and c are arbitrary real constants. These
cannot change the overall “shape” of a non-constant
waveform. Note, however, that the overall magnitude
of a particular H is not invariant. There is no intrinsic
notion for the amplitude of a gravitational plane wave
unless additional structure is introduced (such as a pre-
ferred observer).

Without any such structure, it is difficult to find any
local scalar invariants in plane wave spacetimes. All poly-
nomials in the curvature and its derivatives vanish, for

2 This notion of waveform is different from the one typically used in
perturbative descriptions of gravitational radiation. Hij directly
describes the local curvature Rabc

d [see (16)]. The waveforms
associated with perturbation theory in transverse-traceless gauge
must instead be differentiated twice in order to recover Rabc

d.
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example. A nontrivial invariant may nevertheless be con-
structed from a particular H using [18, 23]

I(u) =
[∂u lnH(u)]2

|H(u)|
. (13)

This is unique up to affine transformations of its argu-
ment. It is not, however, a reasonable measure of am-
plitude: I = 0 when H is nonzero constant even though
this case is physically nontrivial.

Local physics in a curved spacetime is largely deter-
mined by the Riemann tensor Rabc

d. For plane waves,
the only independent coordinate components of the cur-
vature are determined by

Ruiuj = −Hij . (14)

It can be convenient to re-express this equation in terms
of a complex null tetrad (`a, na,ma, m̄a). Let `a be de-
fined by (3) and

na =
∂

∂u
+ <(Hξ̄2)

∂

∂v
, ma =

∂

∂ξ̄
. (15)

All scalar products of these vector fields vanish except for
`ana = −1 and mam̄a = 1. The associated Weyl scalars
vanish except for

Ψ4 = Cabcdn
am̄bncm̄d = −H̄. (16)

Derivatives of the tetrad are

∇anb = 2`a<(H̄ξmb), ∇amb = Hξ̄`a`b, (17)

from which it follows that all divergences and
d’Alembertians of the tetrad components must vanish
(e.g., ∇ana = 0 and �na = ∇b∇bna = 0).

Geodesics and associated bitensors

Geodesics in plane wave spacetimes fall into one of two
classes. The simpler (and less interesting) case comprises
those geodesics which remain confined to a single hyper-
surface of constant u. The only causal geodesics with this
property are the null integral curves of `a; the rays of the
gravitational wave. More interesting are the geodesics
which pass through wave surfaces. Recalling that `a is
Killing, the u coordinate may be used as an affine param-
eter for all such geodesics. All timelike and almost all null
geodesics are in this class. Their transverse coordinates
ξ, ξ̄ satisfy

ξ̈ = Hξ̄, (18)

where overdots denote derivatives with respect to u. So-
lutions to this equation directly determine almost all in-
teresting properties of plane wave spacetimes. They de-
scribe not only the behaviors of individual geodesics, but
also geodesic deviation, parallel transport, distances be-
tween finitely-separated points, and so on.

Relations of this type have previously been formulated
using the real form

ẍi = Hijx
j (19)

of (18) [9]. This equation is linear, so its solutions depend
linearly on initial conditions. Specifying these conditions
at a phase u′, there exist 2× 2 real matrices Aij and Bij
such that

xi(u) = Aij(u, u
′)xj(u′) +Bij(u, u

′)ẋj(u′). (20)

The two propagators here satisfy

∂2
uAij(u, u

′) = Hik(u)Akj(u, u
′) (21a)

∂2
uBij(u, u

′) = Hik(u)Bkj(u, u
′) (21b)

together with

[Aij ] = [∂uBij ] = δij , [∂uAij ] = [Bij ] = 0. (22)

Brackets are used in these last equations to denote the
coincidence limit limu→u′ . Knowledge of the waveform
Hij (or equivalently H) is sufficient to compute Aij and
Bij everywhere. Detailed properties of these matrices are
discussed in [9, 20].

Eq. (19) is analogous to the equations which describe
Newtonian masses coupled by springs with time-varying
stiffnesses. That Hij is trace-free implies that some of
these stiffnesses must be negative. In cases where Hij

is periodic, (19) is a form of Hill’s equation. This arises
in many areas of physics and engineering, and is known
to have a rich phenomenology [24]. No particular form
for Hij is assumed here, however (other than a sufficient
degree of regularity).

It is intuitively clear that solutions to oscillator-like
equations tend to eventually pass through zero. Fixing
some u′, there generically exist some values of U 6= u′

such that detBij(U, u
′) = 0. This means that in (20),

the initial transverse velocity ẋi(u′) of a geodesic may
be varied in the null space of Bij(U, u

′) without affecting
the final transverse position xi(U). The initial and final
v coordinates of such a family of geodesics may also be
arranged to coincide. Two points in a plane wave space-
time can therefore be connected by an infinite number
of geodesics when detBij = 0. This clearly signals the
boundary of a normal neighborhood. It is also closely re-
lated to the largest domains on which initial data may be
used to uniquely determine the future (since plane wave
spacetimes are not globally hyperbolic [25]). For sim-
plicity, this paper restricts attention to regions which are
sufficiently small that detBij(u, u

′) 6= 0 for all relevant
phases u 6= u′. Any pair of points is then connected by
exactly one geodesic, there are no conjugate points, and
initial-value problems associated with standard equations
are well-posed.

Various geometric objects important for the construc-
tion of Green functions may be found explicitly in terms
of Aij and Bij (see, e.g., [9, 10]). Synge’s function
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σ(x, x′) = σ(x′, x), which returns one-half of the squared
geodesic distance between the points x and x′, is

σ =
1

2
(u− u′)[−2(v − v′) + (∂uBB−1)ijx

ixj

+ (B−1A)ijx
′ix′j − 2(B−1)ijx

′ixj ]. (23)

Here (B−1)ij denotes the matrix inverse of Bij . By as-
sumption, (u−u′)[B−1(u, u′)]ij exists in all regions which
are of interest here. σ(x, x′) is positive, negative, or
zero if its arguments are spacelike-, timelike-, or null-
separated.

Another important bitensor is the “scalarized” van
Vleck determinant ∆(x, x′) = ∆(x′, x). In plane wave
spacetimes,

∆(x, x′) =
(u− u′)2

detBij(u, u′)
. (24)

Holding x′ fixed, this is related to the expansion of the
congruence of geodesics passing through x′ [26]. ∆ de-
pends only on the phase coordinates of its arguments in
plane wave spacetimes.

The last important bitensor needed here is the paral-
lel propagator gaa′(x, x

′) = ga′
a(x′, x). Contracting this

with any vector at x′ returns that same vector parallel-
propagated to x along the unique geodesic which passes
through both x and x′. Coordinate components of gaa′
have been computed in [9]. Re-expressed in terms of the
null tetrad (15),

gaa′ = −`a
[
na′ + ζζ̄`a′ − 2<(ζ̄ma′)

]
− na`a′

+ 2<
[
ma(m̄a′ − ζ̄`a′)

]
. (25)

The complex function ζ(x, x′) appearing here may be
found by first considering a geodesic y(τ) which passes
through two given points x and x′. Using (20) with the
boundary conditions yi(u) = xi and yi(u′) = x′i, the
transverse components of such a geodesic satisfy

yi(τ) = [B(τ, u′)B−1(u, u′)]ij [x
j −Ajk(u, u′)x′k]

+Aij(τ, u
′)x′j . (26)

Then ζ is given by

ζ =
1√
2

{[
ẏ1(u)− ẏ1(u′)

]
+ i
[
ẏ2(u)− ẏ2(u′)

]}
. (27)

This is independent of v, v′ and linear in xi, x′i (or equiv-
alently ξ, ξ̄). It also antisymmetric in its arguments:
ζ(x, x′) = −ζ(x′, x). The bitensors σ, ∆, gaa′ are all
trivial to compute once Aij and Bij are known. These
latter matrices in turn depend only on the waveform Hij .

III. SCALAR AND ELECTROMAGNETIC
FIELDS

Before considering metric perturbations propagating
on a plane wave background, it is instructive to first re-
view the behavior of scalar and electromagnetic fields in

this context. As outlined above, we restrict attention
only to regions which are sufficiently small that all initial
value problems are well-posed and exactly one geodesic
passes through any two distinct points.

Consider a massless scalar field ψ propagating on a
plane wave background. Supposing the existence of a
charge density ρ, this satisfies

�ψ = ∇a∇aψ = −4πρ. (28)

It is convenient to introduce a retarded Green function
G(x, x′). Let

�G(x, x′) = −4πδ(x, x′), (29)

and demand that G(x, x′) vanish when x is not in the
causal future of x′. Given an appropriate spacelike hy-
persurface Σ on which to impose initial data, arbitrary
solutions to (28) in the future of Σ may be be written in
terms of the Kirchhoff integral

ψ(x) =

∫
D+(Σ)

ρ(x′)G(x, x′)dV ′

+
1

4π

∫
Σ

[
ψ(x′)∇c

′
G(x, x′)−G(x, x′)∇c

′
ψ(x′)

]
dSc′ .

(30)

Here, D+(Σ) denotes the future domain of dependence of
Σ. Tails exist when perturbations to the source or initial
data can travel along timelike as well as null geodesics.
It follows from (30) that this occurs when the support
of G includes regions where its arguments are timelike-
separated. If no such regions exist, G is said to be tail-free
and ψ satisfies Huygens’ principle.

It has long been known that the retarded Green func-
tion associated with (28) in a plane wave background is
tail-free [5]. In full, it is

G(x, x′) = ∆1/2(x, x′)δ−(σ(x, x′)). (31)

δ−(σ) = δ(σ)Θ(x > x′) and Θ(x > x′) is a distribution
which is equal to one if x is in the future of x′ and vanishes
otherwise. σ denotes Synge’s world function and ∆ the
van Vleck determinant. These two-point scalars are ex-
plicitly given by (23) and (24) in plane wave spacetimes.
Noting that ∆flat = 1 everywhere in flat spacetime, the
form of (31) is identical to that of the retarded Green
function Gflat = δ−(σflat) associated with a flat back-
ground. Both solutions are concentrated only on light
cones (where σ = 0 or σflat = 0). The only qualitative
difference between the flat and plane wave Green func-
tions is that ∆ is not constant in the plane wave case.
This is essentially a geometric optics effect related to the
focusing of null geodesics by the spacetime curvature.

In generic (not necessarily plane wave) spacetimes, the
first term in (31) remains as-is. It describes the propaga-
tion of disturbances along null geodesics. A second term
may also arise, however:

G = ∆1/2δ−(σ) + VΘ−(−σ). (32)
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V is relevant for timelike-separated points, and is there-
fore referred to as the tail of G. If V 6= 0, disturbances
propagate in timelike as well as null directions. The ef-
fects of localized perturbations may then persist long af-
ter they’re first observed. Mathematically, it is straight-
forward to show that tails do not occur for massless scalar
fields on plane wave backgrounds. Substituting (32) into
(29) shows that in any spacetime,

�V = 0 (33)

everywhere and

σa∇aV +
1

2
(�σ − 2)V =

1

2
�∆1/2 (34)

when σ = 0. The self-adjointness of (28) also implies
that V (x, x′) = V (x′, x). Fixing x′ and noting that
σa(x, x′) = ∇aσ(x, x′) is tangent to the geodesic con-
necting x′ to x, Eq. (34) acts like an ordinary differential
equation along each null geodesic which passes through
x′. Integrating it provides characteristic initial data that
can be used to solve (33) and obtain V everywhere. In a
plane wave background, recall from (24) that ∆1/2(x, x′)
is a scalar field depending only on the phase coordinates
u, u′ of its arguments. Any scalar of this type has van-
ishing D’Alembertian, so �∆1/2 = 0. The initial data
for V therefore vanishes and the unique solution to (33)
is V = 0. This recovers (31).

Tails typically do appear if the field equation (28) is
modified in some way. Consider the addition of a mass
term

(�− µ2)ψµ = −4πρ. (35)

Solutions to this equation develop tails even in flat space-
time. Remarkably, the form of the tail in plane wave
backgrounds is exactly the same as in the flat case. Us-
ing J1 to denote a Bessel function of the first kind, the
associated retarded Green function is

Gµ = ∆1/2
[
δ−(σ)− µ2

(
J1(
√
−2σµ2)√
−2σµ2

)
Θ−(−σ)

]
.

(36)

Initially sharp perturbations to a massive scalar field do
not appear sharp to timelike observers. Consider holding
the second argument of Gµ(x, x′) fixed and extending x
as far as possible into the future before encountering a
u = U wave surface where detBij(U, u

′) = 0. Excluding
degenerate cases where Bij(U, u

′) vanishes entirely, it is

shown in [9] that σ → −∞ and (∆/|σ|)1/2 is finite for
almost all approaches to such a hypersurface. The tail
appearing in (36) therefore tends to zero almost every-
where in this limit.

Of more direct physical interest is the behavior of an
electromagnetic field Fab. This is known to propagate
without tails in plane wave backgrounds [17]. Unlike in
the scalar case, gauge is an important ingredient here.

Green functions for vector potentials Aa in commonly-
used gauges do develop tails in plane wave backgrounds.
These can nevertheless be removed by appropriate gauge
transformations Aa → Aa+∇aχ, and are therefore phys-
ically irrelevant.

Consider a vector potential Aa in Lorenz gauge. Intro-
ducing an electromagnetic current Ja, Maxwell’s equa-
tions are equivalent to

�Aa = −4πJa, ∇aAa = 0 (37)

in vacuum spacetimes. The Hadamard ansatz for an as-
sociated retarded Green function is

Ga
a′ = Ua

a′δ−(σ) + Va
a′Θ−(−σ). (38)

This must be a solution to

�Ga
a′ = −4πga

a′δ (39)

in a vacuum spacetime. As in the scalar case, the first
(“direct”) term in Ga

a′ has the same form in any space-
time [26]:

Ua
a′ = ∆1/2ga

a′ . (40)

ga
a′ is the parallel propagator and ∆ is again the van

Vleck determinant. The appearance of ga
a′ here may

be interpreted as a reason why polarizations associated
with electromagnetic waves are parallel-propagated in
the limit of geometric optics. In plane wave backgrounds,
ga
a′ is explicitly given by (25).
The self-adjointness of the wave equation implies that

the tail is symmetric in its arguments:

Vaa′(x, x
′) = Va′a(x, x′). (41)

Substituting (38) into (39) also shows that

�Va
a′ = 0 (42)

everywhere and

σb∇bVaa
′
+

1

2
(�σ − 2)Va

a′ =
1

2
�Ua

a′ (43)

when σ = 0. Eq. (43) provides characteristic initial data
for (42). Unlike in the massless scalar case, this data is
not trivial. It may be found by first noting that the van
Vleck determinant satisfies the transport equation [26]

σa∇a∆1/2 +
1

2
(�σ − 4)∆1/2 = 0. (44)

Factoring this out of the tail by defining Wa
a′ =

∆−1/2Va
a′ , (43) reduces to

σb∇bWa
a′ +Wa

a′ =
1

2
�ga

a′ . (45)



7

The main advantage of (45) over (43) is that the left-
hand side of (45) is a total derivative. Consider a null
geodesic y(u) such that y(u′) = x′. Then,

D

dτ

[
(τ − u′)Wa

a′(y(τ), x′)
]

=
1

2
�ga

a′(y(τ), x′) (46)

on a plane wave background. Initial data for the tail
is entirely determined by the degree to which parallel-
transported vectors satisfy the vector wave equation.

Directly computing the right-hand side of (46) using
(25) and properties of the null tetrad (`a, na,ma, m̄a) de-
scribed in Sec. II,

�ga
a′ = −∇2(ζζ̄)`a`

a′ . (47)

Recalling that ζ is linear in the transverse coordinates
xi, x′i and is independent of v, v′, ∇2(ζζ̄) can depend
only on the phase coordinates u, u′. The initial data for
Va

a′ is therefore

Va
a′(x, x′) = −∆1/2(x, x′)Z(u, u′)`a`

a′ , (48)

where

(u− u′)Z(u, u′) =
1

2

u∫
u′

dτ∇2(ζζ̄)|(y(τ),x′). (49)

The reciprocity relation (41) implies that Z(u, u′) =
Z(u′, u).

Eq. (48) arose as the solution to (43). As such, it is a
priori valid only when its arguments are null-separated.
Note, however, that (48) is a solution to the bulk wave
equation (42) everywhere. No additional work is required
to extend the tail into the interiors of null cones. The
complete retarded Green function for Lorenz-gauge vec-
tor potentials in plane wave backgrounds is

Ga
a′ = ∆1/2[ga

a′δ−(σ)− Z`a`a
′
Θ−(−σ)]. (50)

A general vector potential in Lorenz gauge may be de-
rived from this Green function using the Kirchhoff inte-
gral

Aa =

∫
D+(Σ)

Gb
a′Ja′dV

′

+
1

4π

∫
Σ

(
Aa′∇c

′
Ga

a′ −Gaa
′
∇c

′
Aa′)dSc′ . (51)

This produces solutions to the wave equation �Aa =
−4πJa in terms of the current Ja and initial data pre-
scribed on Σ. It does not enforce the gauge condition,
however. Electromagnetic fields Fab = 2∇[aAb] deter-
mined by (51) are true solutions to Maxwell’s equations
only if the initial data is chosen appropriately and the
current is everywhere conserved.

It is evident from (50) and (51) that perturbations in
Aa generically propagate along timelike as well as null

geodesics. The same cannot be said for perturbations to
Fab. This can be shown by applying an exterior deriva-
tive to (51) in order to obtain a Kirchhoff formula for

Fab. The relevant propagator is clearly Gab
a′ = ∇[aGb]

a′ ,
which has no tail:

∇[aVb]
a′Θ−(−σ) = 0. (52)

Fab therefore satisfies Huygens’ principle on plane wave
backgrounds, as claimed.

IV. GRAVITATIONAL PERTURBATIONS

At least within normal neighborhoods, both scalar and
electromagnetic test fields on plane wave backgrounds
behave essentially as they do in flat spacetime: Pulses of
radiation which are initially sharp remain sharp as they
propagate. We now consider perturbations to the plane
wave metric itself.

Metric perturbations on plane wave spacetimes have
previously been considered in several contexts. The
theory of colliding plane waves is particularly well-
developed, containing many exact solutions to the fully
nonlinear Einstein equation [27]. Yurtsever has also dis-
cussed colliding waves which are planar only over large
but finite regions [28, 29].

These results do not allow for localized perturbations
and are therefore inadequate to discuss the presence of
tails. Linear perturbations of plane wave spacetimes
which are not plane-symmetric have been derived be-
fore [30, 31], although not in a form which appears to
be useful for our purposes. The approach taken here is
to instead describe perturbations of plane wave space-
times in terms of a Green function associated with the
linearized Einstein equation.

As is usual in general relativistic perturbation theory,
we consider a 1-parameter family of metrics

ĝab(ε) = gab + εhab +O(ε2) (53)

which tend smoothly to a vacuum plane wave background
gab as ε→ 0+. Only first order perturbations are consid-
ered here. Carets are used to denote quantities associated
with the full (background + perturbation) spacetime. All
indices are raised and lowered using the background met-
ric gab.

It is convenient to work in the Lorenz gauge. This
is defined by demanding that the trace-reversed metric
perturbation hTR

ab = hab−gabgcdhcd/2 be divergence-free:

∇bhTR
ab = 0. (54)

Einstein’s equation linearized about gab is then

�hTR
ab + 2Ra

c
b
dhTR
cd = −16πTab, (55)

where Tab denotes the perturbed stress-energy tensor. All
derivative operators are those associated with the back-
ground.
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General solutions to (55) may be constructed us-
ing Green functions. Consider a two-point distribution
Gaba′b′(x, x

′) which is separately symmetric in the indices
ab and a′b′ and which satisfies

�Gab
a′b′ + 2Ra

c
b
dGcd

a′b′ = −4πga
(a′gb

b′)δ. (56)

The Hadamard ansatz for a retarded solution to this
equation is

Gab
a′b′ = Uab

a′b′δ−(σ) + Vab
a′b′Θ−(−σ). (57)

In every spacetime, the first term here is known to be
given by [26]

Uab
a′b′ = ga

(a′gb
b′)∆1/2. (58)

The polarization tensor of a gravitational wave is there-
fore parallel-propagated in the limit of geometric optics.
Its “amplitude” also varies according to the usual focus-
ing factor ∆1/2.

The gravitational tail Vab
a′b′ appearing in (57) does

not have a universal form. It satisfies

�Vab
a′b′ + 2Ra

c
b
dVcd

a′b′ = 0 (59)

everywhere with characteristic initial data determined by

σc∇cVaba
′b′ +

1

2
(�σ − 2)Vab

a′b′ =
1

2
�Uab

a′b

+Rc
a
d
bUab

a′b′ (60)

for all null-separated points x, x′. The self-adjointness of
(55) implies the reciprocity relation

Vaba′b′(x, x
′) = Va′b′ab(x

′, x). (61)

As in the scalar and electromagnetic cases discussed
above, Gab

a′b′ may be used to relate general solutions of
the relaxed Einstein equation (55) to sources and initial
data using the Kirchhoff integral

hTR
ab = 4

∫
D+(Σ)

Gab
a′b′Ta′b′dV

′

+
1

4π

∫
Σ

(
∇c

′
Gab

a′b′hTR
a′b′ −Gaba

′b′∇c
′
hTR
a′b′

)
dSc′ . (62)

Only perturbations which satisfy the gauge condition
(54) are true solutions to the linearized Einstein equa-
tion. As a consequence, ∇aTab = 0 and the initial data
appearing in (62) must satisfy the gauge condition in an
appropriate sense.

One component of Vab
a′b′ may be derived immedi-

ately. Taking the trace of (55) and noting the appro-

priate boundary conditions, the gravitational tail Vab
a′b′

is related to the tail V associated with massless scalar
fields via gabVab

a′b′ = ga
′b′V [26]. But V = 0 in plane

wave backgrounds, so

gabVaba′b′ = Vaba′b′g
a′b′ = 0. (63)

gabhab therefore propagates only along null geodesics in
Lorenz gauge. This is the sense in which Waylen [13] has
claimed that metric perturbations on plane wave back-
grounds satisfy Huygens’ principle. Other components of
hab do not behave so simply. To see this, it is sufficient
to note that regularity of Vab

a′b′ in (60) implies that the
tail has the coincidence limit [26]

[Vabc′d′ ] = Rac′bd′ . (64)

The right-hand side of this equation doesn’t vanish, so
Vab

a′b′ cannot vanish either.
As in the electromagnetic case above, it is convenient

to factor the van Vleck determinant out of the tail by
defining

Wab
a′b′ = ∆−1/2Vab

a′b′ . (65)

Eq. (60) then reduces to

D

dτ

[
(τ − u′)Wab

a′b′
]

=
1

2
�(ga

(a′gb
b′))

+Rca
d
bgc

(a′gd
b′) (66)

along null geodesics passing through x′. The characteris-
tic initial data needed to obtain the tail follows from this
equation by using (25) and contracting with all possible
tetrad components. The resulting calculation is tedious
but straightforward. It results in an expression for Vab

a′b′

which is valid when σ = 0. Whatever is not taken into
account by this data may be parametrized by the addi-
tion of σLab

a′b′ for some smooth Lab
a′b′ . The result of

these computations is that

Vab
a′b′ = ∆1/2<

{
σLab

a′b′ +
(
m̄am̄bY + 4Zm(am̄b)

)
`a

′
`b

′

+ `a`b
[
gc
a′gd

b′
(
Y m̄cm̄d + 4Zm(cm̄d)

)
− Zga

′b′
]

− 2`(amb)`
(a′gc

b′)(Ȳ mc + 4Zm̄c)− Zgab`a
′
`b

′
}
.

(67)

The real function Z(u, u′) appearing here also arose in

the electromagnetic Green function Ga
a′ and is defined

by (49). Y (u, u′) = Y (u′, u) is complex and satisfies

(u− u′)Y (u, u′) =

u∫
u′

dτ
(
∇2(ζ2)− 2H

)
. (68)

The only portion of the gravitational Green function
which is left to be determined is Lab

a′b′ . Substituting
(67) into (59) while using (49) and (68) shows that

Lab
a′b′ = −1

4
(|Y |2 + 8Z2)`a`b`

a′`b
′
. (69)

Note that the scalar coefficient in this equation depends
only on u and u′. Together, (49), (57), (58), and (67)-
(69) completely describe the retarded Green function
for Lorenz-gauge metric perturbations on vacuum plane
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wave backgrounds. This appears to be the first closed-
form example of a Green function for Einstein’s equa-
tion linearized off of a non-flat vacuum background (see,
however, [32, 33] for discussions of Green functions on
Friedmann-Robertson-Walker backgrounds).

The scalar, electromagnetic, and gravitational Green
functions derived here all have the remarkable property
that their Hadamard series terminate at finite order. In
generic spacetimes, tails of Green functions can be ob-
tained systematically using the series expansion

V ···(x, x′) =

∞∑
n=0

V ···n (x, x′)σn(x, x′). (70)

This is called a Hadamard series, and is motivated by the
observation that initial data equations such as (60) are
ordinary differential equations which apply when σ = 0
(see, e.g., [34]). Terms which are higher order in σ effec-
tively expand the solution “into the light cones.” Con-
ditions may be placed on the coefficients V ···n such that
these functions are uniquely determined by ordinary dif-
ferential equations for all n. The results of Sec. III
imply that all Hadamard coefficients vanish for mass-
less scalar fields propagating on plane wave backgrounds.
For Lorenz-gauge vector potentials, V aa

′

n vanishes for
all n ≥ 1. The tail associated with Lorenz-gauge met-
ric perturbations admits non-vanishing Hadamard coef-
ficients only when n = 0 or n = 1. In all of these
cases, Hadamard expansions result in finite series. More
precisely, the Hadamard coefficients V ···n vanish for all
n ≥ (tensor rank of the relevant field). It is not clear if
this pattern continues for higher-rank fields propagating
on plane wave backgrounds.

Plane-fronted perturbations

The tail associated with Gab
a′b′ is discussed in detail

in Sec. V. One interesting class of perturbations may,
however, be understood immediately. Consider sources
with the form Tab = T`a`b and initial data satisfying

hab ∝ `a`b, dSc∇chab ∝ `a`b (71)

on a spacelike hypersurface Σ. Eqs. (25), (57), (58), (62),
(67), and (69) imply that the tail cannot affect any metric
perturbation to the future of Σ. The relevant portion of
the Green function is simply

Gab
a′b′`a′`b′ = ∆1/2δ−(σ)`a`b, (72)

from which it follows that

hab = δH`a`b (73)

for some scalar field δH. Stress-energy conservation and
the Lorenz gauge condition require

L`T = ∂vT = ∂vδH = 0. (74)

Perturbations in this class therefore share some degree of
plane symmetry with the background spacetime.

More than this, the perturbed metric is exactly that of
a (not necessarily vacuum) pp-wave spacetime with the
profile Hij(u)xixj +εδH(u, xk). Although this result has
been obtained using the linearized Einstein equation, it is
actually an exact solution to the fully nonlinear Einstein
equation. That the linearized solution is also an exact
solution is a consequence of the fact that the perturbation
(73) is in extended Kerr-Schild form [21].

V. INTERPRETING THE TAIL

It was shown in Sec. III that tails associated with
Lorenz-gauge vector potentials are pure gauge in plane
wave backgrounds. It is interesting to ask whether a
similar situation arises for the tail associated with the
gravitational Green function Gab

a′b′ derived in Sec. IV.
In the electromagnetic case, all physical information is
contained in the Faraday tensor Fab. A “relevant” elec-
tromagnetic tail therefore exists if and only if initial data
for Fab propagates along timelike curves. It follows from
(52) that this does not occur, so any tails associated with
the vector potential are unphysical.

Unfortunately, there is no direct analog of Fab which
can describe the geometry of spacetime in a way that is
both complete and gauge-invariant. The perturbed met-
ric changes drastically in different gauges, and is therefore
difficult to interpret directly. The perturbed Riemann
tensor is less dependent on gauge, but not completely in-
dependent of it. Nevertheless, the curvature may be used
to construct various quantities which are gauge-invariant.
One possible route is to compute perturbations to all
scalars

RabcdRabcd, ∇aRbcdf∇aRbcdf , . . . (75)

formed from local polynomials in the Riemann tensor and
its derivatives (together with gab and εabcd). Every scalar
of this type is known to vanish in the background space-
time. Their perturbations are therefore gauge-invariant.
Local knowledge of all curvature scalars places strong
constraints on the local geometry [35]. Here, all tail-
related perturbations to the curvature scalars may be
shown to vanish. This is a gauge-invariant statement. It
does not, however, exhaust all physically-relevant infor-
mation which may be extracted from hab.

Geometries with vanishing curvature scalars are known
to comprise a certain subset of the Kundt spacetimes [36].
A metric ĝab is said to be of the Kundt type if it admits

a null vector field ˆ̀a which is geodesic, expansion-free,
shear-free, and twist-free. All pp-waves (and therefore
plane waves) are in this class. Our strategy to understand

the tail portion of Gab
a′b′ is to first identify a perturba-

tion ˆ̀a of the background vector field `a which establishes
the perturbed spacetime to locally be in the Kundt class.
Indeed, we obtain a nontrivial null vector field whose first
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derivative vanishes entirely: ∇̂b ˆ̀a = O(ε2). This implies
that through first order in the small parameter ε, tail
effects can only perturb a background plane wave into
a pp-wave. We construct an explicit gauge transforma-
tion which transforms the perturbed metric ĝab into the
canonical Brinkmann form (5). The perturbed wave pro-
file may then be read off directly from the metric compo-
nents. It is found to be at most quadratic in the trans-
verse coordinates, so the perturbed spacetime is locally
a plane wave and not a more general type of pp-wave.

Before carrying out this procedure, it is first important
to note that no universal properties can be expected to
hold for the perturbed metric as a whole and for com-
pletely arbitrary initial data. Only the “tail components”
of metric perturbations might be expected to have a sim-
ple description for all possible choices of initial data. This
concept must be made precise. In general, it is difficult
to disentangle a meaningful tail from the remainder of a
generic metric perturbation. Naively, the Kirchhoff inte-
gral (62) could be used to isolate only those portions of
hab(x) which involve data in the interior of the past light
cone of x. This could be called the “tail” h[ab(x) of the full
metric perturbation at a particular point x. It is, how-
ever, impossible to make geometrically-meaningful state-
ments knowing only a metric at a single point. Deriva-
tives of h[ab must also be computed at x. These have
Kirchhoff representations of their own which involve data
that is no longer guaranteed to be confined only to the
interior of the past light cone of x. Derivatives of ob-
jects which appear to be “pure tails” are not pure tails
themselves. This is because initial data which lies suffi-
ciently close to – but not on – the past light cone of x
can intersect the past light cone of a neighboring point
x+ dx.

Although our assumptions can be weakened, this prob-
lem is avoided here by considering only those cases where
it does not arise. First suppose for simplicity that
Tab = 0. Fixing a particular point x, let all nontrivial
data on the initial hypersurface Σ vanish where that hy-
persurface meets the past light cone of x. Also demand
that similar conditions exist for all points in an open
neighborhood of x. This corresponds to considering gen-
eral vacuum perturbations observed only in regions which
are timelike- or spacelike- (but not null-) separated to all
nontrivial initial data.

Under these restrictions, various properties of hab may
be deduced directly from inspection of (62) and (67). The
first of these is that gabhab = 0. Using the notation hn` =
habn

a`b, it follows that hn` = hmm̄. Additionally, h`` =
hm` = 0. The components hmm, hmm̄, and h`n depend
only on the phase coordinate u. hmn may depend on both
u and xi, and is at most linear in the latter coordinates.
hnn is at most linear in v (with a coefficient depending
only on u) and at most quadratic in xi. Together, these
observations strongly constrain the geometric character
of the perturbed spacetime.

Recall that the vector field `a = ∂/∂v is both null
and covariantly constant with respect to the background

metric gab. `
a is also null with respect to the perturbed

metric ĝab. It is easily verified, however, that ∇̂b`a 6= 0
in general. Nevertheless, the rescaled vector field

ˆ̀a = (1 + εα)`a (76)

is both null and constant with respect to ĝab [through
O(ε)] if the real scalar field α(u) satisfies

α̇ =
1

2
∂vhnn. (77)

That such an ˆ̀a exists is highly nontrivial. It implies that
ĝab must describe a pp-wave through O(ε). The lack of
uniqueness associated with α corresponds to the usual

freedom to rescale ˆ̀a by a multiplicative constant.
Any pp-wave spacetime must admit not only a con-

stant null vector field, but also a constant null 2-form.
In the background spacetime, examples of such 2-forms
are the fab and f∗ab of Eq. (4). The complex 2-form

`[amb] = (fab − if∗ab)/
√

2 and its conjugate are null and
constant as well. Preferred perturbations m̂a to the back-
ground tetrad component ma may therefore be found by

demanding that ˆ̀[am̂b] be null and constant with respect
to ĝab (together with the usual requirements that m̂a be

null, orthogonal to ˆ̀a, and that ĝabm̂
a ¯̂mb = 1). This

results in

m̂a = [1 + ε(iθ − 1

2
hmm̄)]ma − 1

2
εhmmm̄

a

− ε∂ξ̄γ`a. (78)

m̂a is considerably less unique than ˆ̀a. It depends on the
choice of an arbitrary real function3 γ(u, ξ, ξ̄). m̂a also
depends on θ(u), which is real and satisfies

θ̇ = =(∂ξhmn). (79)

Here, = denotes the imaginary component of its argu-
ment. Different solutions for θ correspond to the usual
freedom to vary m̂a by a constant complex phase.

Given particular choices for ˆ̀a and m̂a within the class
just described, a unique real vector field n̂a may be con-

structed which is null, satisfies ĝab ˆ̀
an̂b = −1, and is or-

thogonal to m̂a and ¯̂ma:

n̂a = [1 + ε(hmm̄ − α)]na +
1

2
εhnn`

a

− 2ε<
[
(∂ξ̄γ + hmn)m̄a

]
. (80)

Together, the vector fields (ˆ̀a, n̂a, m̂a, ¯̂ma) form a null
tetrad in the perturbed spacetime with very similar prop-
erties to the null tetrad (`a, na,ma, m̄a) defined by (3)
and (15) in the background spacetime. The perturbed

3 Only ∂ξ̄γ is relevant for m̂a. γ appears undifferentiated in the
coordinate transformation (86).
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tetrad is not unique. It depends on a real function
γ(u, ξ, ξ̄) as well as two real numbers corresponding to
initial conditions for the differential equations (77) and
(79).

Given that ˆ̀a is constant, the 1-form ĝab ˆ̀
b must be

closed. It follows that there exists a scalar field û such
that

ĝab ˆ̀
b = −∇aû. (81)

By analogy with (2), this defines a phase coordinate û for

the perturbed spacetime. Similarly, scalar fields v̂ and ξ̂
may be introduced such that

ˆ̀a =
∂

∂v̂
, ¯̂ma =

∂

∂ξ̂
. (82)

Coordinates with these properties fix seven out of ten
metric components. The remainder follow from demand-
ing that

n̂a =
∂

∂û
+ h

∂

∂v̂
(83)

for some real h(û, ξ̂,
¯̂
ξ) [cf. (15)]. The perturbed metric

then reduces to the explicit Brinkmann form

d̂s
2

= 2
(
−dûdv̂ + hdû2 + dξ̂d

¯̂
ξ
)

+O(ε2) (84)

for a pp-wave with profile 2h.
Coordinate (or gauge) transformations (u, v, ξ, ξ̄) →

(û, v̂, ξ̂,
¯̂
ξ) with these properties may be constructed ex-

plicitly and used to write h in terms of hab. Noting (76)
and (81), the perturbed and background phase coordi-
nates are related by

û(u) = u+ εβ(u), β̇(u) = α(u)− hmm̄(u). (85)

Different choices for α and β correspond to the fact that a
constant affine transformation applied to any valid phase
coordinate produces another valid phase coordinate. The
remaining coordinate transformations which imply (82)
and (83) are

v̂(u, v, ξ, ξ̄) =
[
1− εα(u)

]
v + εγ(u, ξ, ξ̄), (86)

ξ̂(u, ξ, ξ̄) =
[
1 + ε

(
iθ(u) +

1

2
hmm̄(u)

)]
ξ

+
1

2
εhmm(u)ξ̄ + ελ(u), (87)

where λ(u) is complex and satisfies

λ̇ = ∂ξ̄γ +
[
hmn − iξ=(∂ξhmn)

]
− 1

2
∂u(hmm̄ξ + hmmξ̄). (88)

λ can exist only if the right-hand side of this last equation
is independent of both ξ and ξ̄. As a consequence, γ is
constrained by the two integrability conditions

∂ξ∂ξ̄γ =
1

2
∂uhmm̄ −<(∂ξhmn), (89)

∂2
ξ̄γ =

1

2
∂uhmm − ∂ξ̄hmn. (90)

The right-hand sides of both of these relations depend
only on u, so γ must be quadratic in ξ, ξ̄. For any real
function γ0(u), the most general γ is

γ = γ0 + <
{

2
[
λ̇− (hmn|ξ=0)

]
ξ̄ +

1

2
ξξ̄∂vhnn

+
1

2
ξ̄2(∂uhmm − 2∂ξ̄hmn)

}
. (91)

The Lorenz gauge condition (54) has been used here in
the form

<(∂ξhmn) =
1

2
(∂uhmm̄ − ∂vhnn). (92)

It is clear from (91) that the sub-quadratic components
of γ may be varied arbitrarily by appropriate choices of
λ and γ0.

This freedom can be used to simplify the wave profile
h. Applying the various coordinate transformations and
comparing to (83),

h = <
{[(

1 + 2ε(iθ − α)
)
H− εβḢ

]
¯̂
ξ2 − εHhm̄m̄ξ̂ ¯̂

ξ

− 2ελ̄H ¯̂
ξ +

1

2
(hnn − v̂∂vhnn) + ∂uγ

]}
. (93)

This has been written in terms of the perturbed

Brinkmann coordinates (û, v̂, ξ̂,
¯̂
ξ). It satisfies ∂v̂h = 0,

as required for a general pp-wave profile. Furthermore,

h is at most quadratic in the transverse coordinates ξ̂,
¯̂
ξ.

This means that the perturbed spacetime is actually a
plane wave and not another type of pp-wave.
ĝab satisfies the linearized Einstein equation by con-

struction, so

∂ξ̂∂ ¯̂
ξ
h = 0. (94)

Further simplifications arise from appropriate choices for
γ0 and λ. Letting

γ̇0 = −1

2
(hnn − v∂vhnn)|ξ=0 (95)

eliminates all terms in h which are independent of the
transverse coordinates. Different solutions to (95) cor-
respond to definitions for v̂ coordinates which differ by
additive constants.

All terms linear in ξ̂ and its conjugate which appear in
h may be eliminated by demanding that λ satisfy

λ̈ = Hλ̄+ (∂uhmn −
1

2
∂ξ̄hnn)ξ=0. (96)

In the absence of metric perturbations, this reduces to
the background geodesic equation (18). Different so-

lutions for λ affect the definitions for both v̂ and ξ̂ in
ways which may be identified with motions generated by
Killing fields.

Applying (94)-(96) to (93) reduces the wave profile to
the canonical form [cf. (11)]

h(û, ξ̂,
¯̂
ξ) = <

[
Ĥ(û)

¯̂
ξ2
]
, (97)
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FIG. 1. An initial value problem for vacuum perturbations
on a plane wave spacetime. Nontrivial initial data is imposed
on Σ only in small regions around the two points i1, i2. The
unshaded regions are locally determined by the background
plane wave. The three shaded regions are locally plane waves,
each of which may have different waveforms. The (finite-
width) boundaries between each of the plane wave regions
can be arbitrarily complicated. Also illustrated is a timelike
worldline representing the path of a local observer.

with the perturbed waveform

Ĥ =
[
1 + 2ε(iθ − α)

]
H− εβḢ

+
1

2
ε(∂2

ξ̄hnn + ∂2
uhmm − 2∂u∂ξ̄hmn). (98)

Through O(ε), the tail of any linear perturbation to a
plane wave spacetime with waveform H is another plane
wave spacetime with waveform Ĥ. This is a complete
description for the local geometry, and is unique up to the
3-parameter family of rescalings described by (12). The
integration constants associated with solving (77), (79),
and (85) for α, β, and θ represent infinitesimal versions
of these rescalings and may therefore be ignored.

Using the Kirchhoff representation (62) for hab, the
perturbed waveform can be written as an integral over
initial data specified on a spacelike hypersurface Σ. Using
the explicit form (67) for the tail Vab

a′b′ , Ĥ may be shown
to depend only on ĝ``|Σ = εh``|Σ and the first derivative
of this quantity normal to Σ. In this sense, plane wave
tails arise from only a single component of the initial
metric perturbation.

VI. DISCUSSION

At least within normal neighborhoods, we have shown
that linear tails in vacuum general relativity cannot per-
turb a gravitational plane wave into anything other than
another plane wave. The scattering of two gravitational
waves – one an initially-localized burst and the other a
much stronger plane wave – can leave behind only a very
particular type of tail. This situation is illustrated in
Fig. 1 for the particular case where initial metric pertur-
bations exist only in the vicinities of two distinct points

i1 and i2. Regions which are null-separated from the ini-
tial data near i1 and i2 do not have any universal form.
Everywhere else in the future of Σ is locally a plane wave.
Different plane wave regions are separated by the future
light cones of the nontrivial initial data, and may all have
different waveforms.

Except for two brief events associated with the wave-
fronts expanding outwards from i1 and i2, the timelike
observer illustrated in Fig. 1 can use purely local mea-
surements to conclude that the surrounding geometry is
always a plane wave. The instantaneous waveform of that
plane wave can also be determined using local measure-
ments. Such an observer could not, however, conclusively
determine whether or not the waveform observed imme-
diately after a particular wavefront is really “different”
from the waveform observed before that wavefront. Such
a determination requires the use of experiments which
sample the geometry over finite distances.

These results are but one application of the Green func-
tion Gab

a′b′ derived in Sec. IV. Another possible applica-
tion concerns the effect of a compact object’s “own gravi-
tational field” on its motion through a gravitational plane
wave. Indeed, the gravitational self-force is most easily
expressed in terms of the tail of an appropriate Green
function [26, 37–39]. A “self-torque” [38] could be also
be computed in this way. More generally, it might be pos-
sible to use Penrose limits in order to understand some
aspects of the self-force problem on generic backgrounds
by considering equivalent problems on plane wave back-
grounds. This is especially likely to be relevant for the
“ultra-relativistic” self-force problem [40].

Another potential application for the plane wave Green
function Gab

a′b′ involves the long-time behavior of Green
functions associated with non-plane wave backgrounds.
Within a normal neighborhood, the most singular por-
tion of such a Green function always has the form
Uab

a′b′δ−(σ). The structure of this term can change over
large distances. Penrose limits were used in [9] to derive
such changes for scalar Green functions G by reducing
the problem to an equivalent one in an appropriate plane
wave background. This showed that every encounter with
a non-degenerate conjugate point leads to changes in the
“leading-order singularity structure” of G with the form

|∆|1/2δ(σ)→ pv

(
|∆|1/2

πσ

)
→ −|∆|1/2δ(σ)→ . . . (99)

This pattern is universal. An analogous result for lin-
earized metric perturbations could likely be established
if the plane wave Green function of Sec. IV could be
extended beyond the normal neighborhood.
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