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One of the most important characteristics of light in flat spacetime is that it satisfies Huygens’ principle:

Initial data for the vacuum Maxwell equations evolve sharply along null (and not timelike) geodesics.

In flat spacetime, there are no tails which linger behind expanding wavefronts. Tails generically do exist,

however, if the background spacetime is curved. The only nonflat vacuum geometries where electro-

magnetic fields satisfy Huygens’ principle are known to be those associated with gravitational plane

waves. This paper investigates whether perturbations to the plane wave geometry itself also propagate

without tails. First-order perturbations to all locally constructed curvature scalars are indeed found to

satisfy Huygens’ principles. Despite this, gravitational tails do exist. Locally, they can only perturb one

plane wave spacetime into another plane wave spacetime. A weak localized beam of gravitational

radiation passing through an arbitrarily strong plane wave therefore leaves behind only a slight

perturbation to the waveform of the background plane wave. The planar symmetry of that wave cannot

be disturbed by any linear tail. These results are obtained by first deriving the retarded Green function for

Lorenz-gauge metric perturbations and then analyzing its consequences for generic initial-value

problems.
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I. INTRODUCTION

In flat spacetime and in the absence of intervening
matter, electromagnetic fields do not develop tails. Light
propagates without dispersion, and bursts of radiation
which are initially sharp remain sharp as they evolve.
More precisely, the electromagnetic field FabðxÞ at an event
x depends on current densities and initial data only on, and
not inside, the past null cone of x. This is referred to as
Huygens’ principle.

It is fundamental to our everyday lives that light and
sound as we tend to experience them satisfy at least ap-
proximate versions of Huygens’ principle. If this were not
true, moving objects would appear to blur together, and
spoken language would be impractical. There are, how-
ever, many wave phenomena for which Huygens’ principle
does fail. A pebble falling into a pond, for example,
produces water waves which persist at any fixed location
long after the initial wavefront has passed. Whether or not
Huygens’ principle is valid for any particular system may
be interpreted as a property of the initial-value problem
associated with the particular differential equations used to
describe that system. From this point of view, only a
handful of reasonable wave equations satisfy Huygens’
principle exactly. The vast majority of possibilities develop
tails.

In the context of general relativity, it is of particular
interest to understand how the curvature of spacetime is
related to the presence of tails. The vacuum Maxwell
equations provide a particularly well-studied example.
Restricting to four-dimensional background spacetimes

satisfying the vacuum Einstein equation Rab ¼ 0,
Huygens’ principle holds if and only if the geometry
is either flat or is associated with a plane-symmetric gravi-
tational wave [1,2]. Slightly more can be said by noting
that Maxwell’s equations are conformally invariant.
Electromagnetic waves therefore propagate tail-free on
all (not necessarily vacuum) metrics which are conformal
either to flat spacetime or to a plane wave. If any further
possibilities exist, they are highly constrained by the
results reviewed in Refs. [1,3,4].
It is clear that plane wave spacetimes play a privileged

role in the theory of electromagnetic fields. This is not,
it should be emphasized, a peculiarity of Maxwell’s
equations. The massless Klein–Gordon equation also sat-
isfies Huygens’ principle in flat and plane wave spacetimes
[5] but essentially no others [6]. Massless spin-1=2
fields propagate tail-free on plane wave backgrounds as
well [3,7].
This paper explores whether perturbations to the plane

wave spacetimes themselves satisfy a version of Huygens’
principle. In physical terms, does a localized packet of
gravitational waves passing through a background plane
wave leave behind a ‘‘wake?’’ The answer is that such a
wake does exist, although its form is remarkably simple.
There are many motivations of studying plane wave

spacetimes. Their most obvious application is as exact
models of gravitational radiation in general relativity.
Separate from this, plane wave spacetimes also have a
number of unusual mathematical properties. Their rele-
vance for (nongravitational) wave tails has already been
mentioned. Additionally, Penrose has shown [8] that plane
waves arise as universal limits of all spacetimes in the
vicinity of null geodesics. This might imply that certain*harte@aei.mpg.de
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aspects of ‘‘ultrarelativistic physics’’ in generic curved
spacetimes can be understood using effective plane wave
backgrounds. Ideas of this type have already been applied
to understand properties of classical [9] and quantum [10]
fields propagating on curved backgrounds. The Penrose
limit and other features of plane wave spacetimes have
also produced applications in string theory and related
topics [11,12].

Regardless of motivation, we consider linear metric per-
turbations onvacuumplanewave backgrounds in four space-
time dimensions. The few existing results on Huygens’
principles in linearized general relativity cannot be used to
immediately answer whether gravitational tails exist on
plane wave backgrounds. Waylen [13] considered the line-
arized Einstein equation on general backgrounds and in the
Lorenz gauge. He then asked whether the trace gabðxÞhabðxÞ
of the first-order metric perturbation hab at a point x
depended on initial data lying inside the past null cone of
x. This was always found to occur unless the background
spacetimewas either flat or a planewave. Later, Noonan [14]
and Wünsch [15] separately asked—again in Lorenz
gauge—whether any part of habðxÞ depended on initial
data inside the past null cone of x. They found that this
always occurred unless the background was flat.

None of these results settles the issue. Even if a metric
perturbation develops a tail in the Lorenz gauge, it might
not do so in another gauge. This is precisely what occurs
for electromagnetic fields on plane wave backgrounds. In
that case, the vector potential in the Lorenz gauge develops
a tail (as it does in all curved spacetimes [16]). Such tails
can, however, be removed by appropriate gauge transfor-
mations [17]. The electromagnetic field Fab ¼ 2r½aAb�
satisfies Huygens’ principle even though Aa typically
does not.

The problem of gauge is significantly more subtle for
metric perturbations. This is both because the class of
possible gauge transformations is larger than in electro-
magnetism and also because it is less clear which observ-
ables should be considered. The metric at a single point is
not very interesting, for example. One might instead con-
sider perturbations to curvature scalars such as RabcdRabcd.
These scalars vanish on the background, so their first-order
perturbations are gauge-invariant. It is shown here that all
such perturbations satisfy Huygens’ principles: Every lo-
cally constructed polynomial in the curvature and its de-
rivatives propagates tail-free on plane wave backgrounds.
Despite this, there is a sense in which gravitational tails—
unlike their scalar or electromagnetic counterparts—do
exist. Locally, these can only perturb one plane wave
spacetime into another plane wave spacetime. Even initial
data with no symmetries whatsoever produce tails which
retain the full1 five-dimensional space of Killing fields

associated with the background. The waveform associated
with that background may be perturbed, however. This is
found to depend on only a single component of the initial
metric perturbation.
Our results are derived by first considering the general

problem of first-order perturbations on plane wave back-
grounds. We derive the retarded Green function for metric
perturbations in Lorenz gauge and then use a Kirchhoff
integral to write an arbitrary metric perturbation in terms of
Cauchy data and any sources which may be present. The
tail of the resulting Green function is used to derive various
properties satisfied by the ‘‘tail portion of the metric’’ in
the Lorenz gauge. Lastly, an explicit gauge transformation
is constructed which transforms the perturbed metric into
the canonical form for a plane wave spacetime.
Section II briefly reviews some properties of plane wave

spacetimes needed for the later development. Section III
then illustrates how simple test fields propagate on plane
wave backgrounds by deriving Green functions for scalar
and electromagnetic fields. While the main conclusions
of this section have appeared elsewhere in various forms,
they are rederived here more succinctly and to allow for a
more direct comparison to the gravitational case. The
methods reviewed in Sec. III are applied in new ways in
Sec. IV to derive a Green function for metric perturbations
on plane wave backgrounds. This Green function has a tail
which is interpreted in Sec. V.
3þ 1 dimensions are assumed throughout this

paper. The signature is taken to be þ2, and the sign
of the Riemann tensor is defined such that Rabc

d!d ¼
2r½arb�!c for any !a. Latin letters a; b; . . . from the

beginning of the alphabet are used to denote abstract
indices. The letters i; j; . . . instead refer to coordinates xi

(i ¼ 1, 2) which are transverse to the direction of propa-
gation associated with the background plane wave. The
coordinates xi are not to be confused with spacetime points
denoted by x; y; . . . (without indices).

II. PLANE WAVE SPACETIMES

Various aspects of plane wave spacetimes have been
reviewed in Refs. [9,18–20]. For our purposes, these are
most naturally introduced as special cases of the plane-
fronted waves with parallel rays (pp-waves). Although the
concept is more general, we focus only on pp-waves which
are solutions to the vacuum Einstein equation Rab ¼ 0 in
four spacetime dimensions. It is then sufficient to consider
a simply connected region M, which admits a vector field
‘a that is everywhere null, nonvanishing, and covariantly
constant [18]:

‘a‘a ¼ rb‘
a ¼ 0: (1)

The integral curves of ‘a are interpreted as the rays of the
gravitational wave. These are free of expansion, shear,
and twist. There is a sense in which all such rays remain
parallel to one another and are orthogonal to a family

1Some plane wave spacetimes admit a sixth Killing field. This
is not necessarily preserved by tails.
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of planar wavefronts. It follows from the simple-
connectedness of M and r½a‘b� ¼ 0 that a scalar field u
exists such that

‘a ¼ �rau: (2)

u describes the phase of the gravitational wave.
Hypersurfaces of constant u are null and are referred to
as wave surfaces.

Any vacuum spacetime which admits a constant null
vector field ‘a also admits a nonvanishing and covariantly
constant null 2-form fab ¼ f½ab� [18]. fab and its dual

f�ab ¼ �ab
cdfcd=2 (which is also null and constant)

describe the plane of polarization associated with the
gravitational wave. This is always transverse to the direc-
tion of propagation in the sense that fab‘

b ¼ f�ab‘
b ¼ 0.

An explicit metric for pp-wave spacetimes may be
constructed using a phase coordinate u, which satisfies
Eq. (2), an affine parameter v defined by

‘a ¼ @

@v
; (3)

and two more scalar fields xi (i ¼ 1, 2) related to fab via

fab ¼ ‘½arb�x1; f�ab ¼ �‘½arb�x2: (4)

These choices result in the so-called Brinkmann metric

ds2 ¼ �2dudvþHðu; xkÞdu2 þ ðdx1Þ2 þ ðdx2Þ2 (5)

for general pp-wave spacetimes. The vacuum Einstein
equation constrains the wave profile H to satisfy

r2Hðu; xiÞ ¼ 0; (6)

where r2 ¼ @2
x1
þ @2

x2
is usual Laplace operator in two

dimensions. H is otherwise arbitrary.
The Brinkmann coordinates ðu; v; xiÞ have a number

of useful properties. Unlike coordinate systems which
are more closely related to typical perturbative discussions
of gravitational radiation in transverse-traceless gauge,
Brinkmann coordinates do not develop coordinate singu-
larities. Brinkmann coordinates are also harmonic and
place the metric into the Kerr–Schild form

gab ¼ �ab þH‘a‘b: (7)

Here,�ab is flat, and ‘a ¼ gab‘
b ¼ �ab‘

b. The vector field
‘a is null with respect to both �ab and gab. ViewingH‘a‘b
as an arbitrarily large perturbation on the ‘‘background’’
�ab, Eq. (6) implies that this perturbation satisfies the
linearized as well as the fully nonlinear Einstein equations
(which is true for all Kerr–Schild metrics [21]). Indeed,
pp-waves obey exact linear superposition and other prop-
erties typically associated with waves in linear theories.
This linearity is generally not apparent in other coordinate
systems.

In general, pp-waves admit only one Killing vector.
Recall, however, that electromagnetic plane waves in flat
spacetime are preserved by a five-dimensional space of

Killing vector fields. Gravitational plane waves may there-
fore be defined as those pp-waves which admit at least five
linearly independent Killing fields [22]. This can be shown
to imply that for a plane wave spacetime,Hðu; xiÞ can be at
most quadratic in the two transverse coordinates xi. A
coordinate transformation may always be used to eliminate
all terms in Hðu; xiÞ which are either independent of or
linear in xi. Plane wave spacetimes may therefore be
described by a symmetric 2� 2 matrix HijðuÞ satisfying

Hðu; xkÞ ¼ HijðuÞxixj: (8)

Einstein’s equation (6) then reduces to the trivial algebraic
constraint that Hij be trace-free. This leaves two free

functions of u corresponding to waveforms2 associated
with the two polarization states of the gravitational wave.
It can be convenient to replace the real matrix HijðuÞ by

a single complex function H ðuÞ via
H ¼ H11 þ iH12: (9)

Similarly complexifying the transverse coordinates using

� ¼ 1ffiffiffi
2

p ðx1 þ ix2Þ; (10)

the pp-wave line element (5) with a plane-wave–type
profile (8) is then equivalent to

ds2 ¼ 2ð�dudvþ<½H ðuÞ ��2�du2 þ d�d ��Þ: (11)

Here, overbars denote complex conjugates, and < returns
the real component of its argument. Both the real and
complex representations of plane wave spacetimes are
used interchangeably below.
The complex waveform H constitutes a nearly gauge-

invariant way to describe a vacuum plane wave spacetime.
To see this, first note that vector fields ‘a satisfying Eq. (1)
are unique up to an overall constant. Phases u satisfying
Eq. (2) may therefore be altered only by constant affine
transformations. � and �� can vary by rotations in the
complex plane but also by more subtle u-dependent ‘‘trans-
lations’’ which affect v as well. All coordinate transforma-
tions that preserve the form of the Brinkmann metric (11)
are known [18]. Applying them results in each plane wave
spacetime being describable by a 3-parameter family of
possible waveforms:

H ðuÞ ! a2H ðau� bÞeic: (12)

Here, a � 0, b, and c are arbitrary real constants. These
cannot change the overall ‘‘shape’’ of a nonconstant wave-
form. Note, however, that the overall magnitude of a

2This notion of waveform is different from the one typically
used in perturbative descriptions of gravitational radiation. Hij

directly describes the local curvature Rabc
d [see Eq. (16)]. The

waveforms associated with perturbation theory in the transverse-
traceless gauge must instead be differentiated twice in order to
recover Rabc

d.
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particular H is not invariant. There is no intrinsic notion
for the amplitude of a gravitational plane wave unless
additional structure is introduced (such as a preferred
observer).

Without any such structure, it is difficult to find any local
scalar invariants in plane wave spacetimes. All polyno-
mials in the curvature and its derivatives vanish, for
example. A nontrivial invariant may nevertheless be con-
structed from a particular H using [18,23]

IðuÞ ¼ ½@u lnH ðuÞ�2
jH ðuÞj : (13)

This is unique up to affine transformations of its argument.
It is not, however, a reasonable measure of amplitude;
I ¼ 0 when H is a nonzero constant even though this
case is physically nontrivial.

Local physics in a curved spacetime is largely deter-
mined by the Riemann tensor Rabc

d. For plane waves, the

only independent coordinate components of the curvature
are determined by

Ruiuj ¼ �Hij: (14)

It can be convenient to reexpress this equation in terms of a
complex null tetrad ð‘a; na; ma; �maÞ. Let ‘a be defined by
Eq. (3) and

na ¼ @

@u
þ<ðH ��2Þ @

@v
; ma ¼ @

@ ��
: (15)

All scalar products of these vector fields vanish except for
‘ana ¼ �1 and ma �ma ¼ 1. The associated Weyl scalars
vanish except for

�4 ¼ Cabcdn
a �mbnc �md ¼ � �H : (16)

Derivatives of the tetrad are

ran
b ¼ 2‘a<ð �H�mbÞ; ram

b ¼ H ��‘a‘
b; (17)

from which it follows that all divergences and
d’Alembertians of the tetrad components must vanish
(e.g., ran

a ¼ 0 and hna ¼ rbrbn
a ¼ 0).

A. Geodesics and associated bitensors

Geodesics in plane wave spacetimes fall into one of two
classes. The simpler (and less interesting) case comprises
those geodesics which remain confined to a single hyper-
surface of constant u. The only causal geodesics with this
property are the null integral curves of ‘a, the rays of the
gravitational wave. More interesting are the geodesics
which pass through wave surfaces. Recalling that ‘a is
Killing, the u coordinate may be used as an affine parame-
ter for all such geodesics. All timelike and almost all null
geodesics are in this class. Their transverse coordinates �,
�� satisfy

€� ¼ H ��; (18)

where overdots denote derivatives with respect to u.
Solutions to this equation directly determine almost all
interesting properties of plane wave spacetimes. They
describe not only the behaviors of individual geodesics
but also geodesic deviation, parallel transport, distances
between finitely separated points, and so on.
Relations of this type have previously been formulated

using the real form

€xi ¼ Hijx
j (19)

of Eq. (18) [9]. This equation is linear, so its solutions
depend linearly on initial conditions. Specifying these
conditions at a phase u0, there exist 2� 2 real matrices
Aij and Bij such that

xiðuÞ ¼ Aijðu; u0Þxjðu0Þ þ Bijðu; u0Þ _xjðu0Þ: (20)

The two propagators here satisfy

@2uAijðu; u0Þ ¼ HikðuÞAkjðu; u0Þ (21a)

@2uBijðu; u0Þ ¼ HikðuÞBkjðu; u0Þ (21b)

together with

½Aij� ¼ ½@uBij� ¼ �ij; ½@uAij� ¼ ½Bij� ¼ 0: (22)

Brackets are used in these last equations to denote the
coincidence limit lim u!u0 . Knowledge of the waveform
Hij (or equivalently H ) is sufficient to compute Aij and

Bij everywhere. Detailed properties of these matrices are

discussed in Refs. [9,20].
Equation (19) is analogous to the equations which

describe Newtonian masses coupled by springs with
time-varying stiffnesses. That Hij is trace-free implies

that some of these stiffnesses must be negative. In cases
where Hij is periodic, Eq. (19) is a form of Hill’s equation.

This arises in many areas of physics and engineering and is
known to have a rich phenomenology [24]. No particular
form for Hij is assumed here, however (other than a

sufficient degree of regularity).
It is intuitively clear that solutions to oscillatorlike equa-

tions tend to eventually pass through zero. Fixing some u0,
there generically exist some values of U � u0 such that
detBijðU; u0Þ ¼ 0. This means that in Eq. (20), the initial

transverse velocity _xiðu0Þ of a geodesic may be varied in the
null space of BijðU; u0Þ without affecting the final trans-

verse position xiðUÞ. The initial and final v coordinates of
such a family of geodesics may also be arranged to coin-
cide. Two points in a plane wave spacetime can therefore
be connected by an infinite number of geodesics when
detBij ¼ 0. This clearly signals the boundary of a normal

neighborhood. It is also closely related to the largest
domains on which initial data may be used to uniquely
determine the future (since plane wave spacetimes are not
globally hyperbolic [25]). For simplicity, this paper
restricts attention to regions which are sufficiently small
that detBijðu; u0Þ � 0 for all relevant phases u � u0. Any
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pair of points is then connected by exactly one geodesic,
there are no conjugate points, and initial-value problems
associated with standard equations are well-posed.

Various geometric objects important for the construction
of Green functions may be found explicitly in terms of
Aij and Bij (see, e.g., Refs. [9,10]). Synge’s function

�ðx; x0Þ ¼ �ðx0; xÞ, which returns one-half of the squared
geodesic distance between the points x and x0, is

� ¼ 1

2
ðu� u0Þ½�2ðv� v0Þ þ ð@uBB�1Þijxixj

þ ðB�1AÞijx0ix0j � 2ðB�1Þijx0ixj�: (23)

Here ðB�1Þij denotes the matrix inverse of Bij. By assump-

tion, ðu� u0Þ½B�1ðu; u0Þ�ij exists in all regions which are

of interest here. �ðx; x0Þ is positive, negative, or zero if its
arguments are spacelike-, timelike-, or null-separated.

Another important bitensor is the ‘‘scalarized’’ van
Vleck determinant �ðx; x0Þ ¼ �ðx0; xÞ. In plane wave
spacetimes,

�ðx; x0Þ ¼ ðu� u0Þ2
detBijðu; u0Þ : (24)

Holding x0 fixed, this is related to the expansion of the
congruence of geodesics passing through x0 [26]. �
depends only on the phase coordinates of its arguments
in plane wave spacetimes.

The last important bitensor needed here is the parallel
propagator gaa0 ðx; x0Þ ¼ ga0

aðx0; xÞ. Contracting this

with any vector at x0 returns that same vector parallel-
propagated to x along the unique geodesic which passes
through both x and x0. Coordinate components of gaa0 have

been computed in Ref. [9]. Reexpressed in terms of the null
tetrad (15),

gaa0 ¼ �‘a½na0 þ � ��‘a0 � 2<ð ��ma0 Þ� � na‘a0

þ 2<½mað �ma0 � ��‘a0 Þ�: (25)

The complex function �ðx; x0Þ appearing here may be
found by first considering a geodesic yð�Þ which passes
through two given points x and x0. Using Eq. (20) with
the boundary conditions yiðuÞ ¼ xi and yiðu0Þ ¼ x0i, the
transverse components of such a geodesic satisfy

yið�Þ ¼ ½Bð�; u0ÞB�1ðu; u0Þ�ij½xj � Aj
kðu; u0Þx0k�

þ Aijð�; u0Þx0j: (26)

Then � is given by

� ¼ 1ffiffiffi
2

p f½ _y1ðuÞ � _y1ðu0Þ� þ i½ _y2ðuÞ � _y2ðu0Þ�g: (27)

This is independent of v, v0 and linear in xi, x0i (or
equivalently �, ��). It also antisymmetric in its arguments:
�ðx; x0Þ ¼ ��ðx0; xÞ. The bitensors �, �, gaa0 are all trivial
to compute once Aij and Bij are known. These latter

matrices in turn depend only on the waveform Hij.

III. SCALAR AND ELECTROMAGNETIC FIELDS

Before considering metric perturbations propagating on
a plane wave background, it is instructive to first review the
behavior of scalar and electromagnetic fields in this con-
text. As outlined above, we restrict attention only to
regions which are sufficiently small that all initial value
problems are well-posed and exactly one geodesic passes
through any two distinct points.
Consider a massless scalar field c propagating on a

plane wave background. Supposing the existence of a
charge density �, this satisfies

hc ¼ rarac ¼ �4	�: (28)

It is convenient to introduce a retarded Green function
Gðx; x0Þ. Let

hGðx; x0Þ ¼ �4	�ðx; x0Þ; (29)

and demand that Gðx; x0Þ vanish when x is not in the causal
future of x0. Given an appropriate spacelike hypersurface�
on which to impose initial data, arbitrary solutions to
Eq. (28) in the future of � may be written in terms of the
Kirchhoff integral

c ðxÞ¼
Z
Dþð�Þ

�ðx0ÞGðx;x0ÞdV0

þ 1

4	

Z
�
½c ðx0Þrc0Gðx;x0Þ�Gðx;x0Þrc0c ðx0Þ�dSc0 :

(30)

Here Dþð�Þ denotes the future domain of dependence of
�. Tails exist when perturbations to the source or initial
data can travel along timelike as well as null geodesics.
It follows from Eq. (30) that this occurs when the support
of G includes regions where its arguments are timelike-
separated. If no such regions exist, G is said to be
tail-free and c satisfies Huygens’ principle.
It has long been known that the retarded Green function

associated with Eq. (28) in a plane wave background is
tail-free [5]. In full, it is

Gðx; x0Þ ¼ �1=2ðx; x0Þ��ð�ðx; x0ÞÞ: (31)

��ð�Þ ¼ �ð�Þ�ðx > x0Þ, and �ðx > x0Þ is a distribution
which is equal to 1 if x is in the future of x0 and vanishes
otherwise.� denotes Synge’s world function and� the van
Vleck determinant. These two-point scalars are explicitly
given by Eqs. (23) and (24) in plane wave spacetimes.
Noting that �flat ¼ 1 everywhere in flat spacetime, the
form of Eq. (31) is identical to that of the retarded Green
function Gflat ¼ ��ð�flatÞ associated with a flat back-
ground. Both solutions are concentrated only on light
cones (where � ¼ 0 or �flat ¼ 0). The only qualitative
difference between the flat and plane wave Green functions
is that � is not constant in the plane wave case. This is
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essentially a geometric optics effect related to the focusing
of null geodesics by the spacetime curvature.

In generic (not necessarily plane wave) spacetimes, the
first term in Eq. (31) remains as is. It describes the propa-
gation of disturbances along null geodesics. A second term
may also arise, however:

G ¼ �1=2��ð�Þ þ V��ð��Þ: (32)

V is relevant for timelike-separated points and is therefore
referred to as the tail of G. If V � 0, disturbances propa-
gate in timelike as well as null directions. The effects of
localized perturbations may then persist long after they are
first observed. Mathematically, it is straightforward to
show that tails do not occur for massless scalar fields on
plane wave backgrounds. Substituting Eq. (32) into
Eq. (29) shows that in any spacetime,

hV ¼ 0 (33)

everywhere, and

�araV þ 1

2
ðh�� 2ÞV ¼ 1

2
h�1=2 (34)

when � ¼ 0. The self-adjointness of Eq. (28) also implies
that Vðx; x0Þ ¼ Vðx0; xÞ. Fixing x0 and noting that
�aðx; x0Þ ¼ ra�ðx; x0Þ is tangent to the geodesic connect-
ing x0 to x, Eq. (34) acts like an ordinary differential
equation along each null geodesic which passes through
x0. Integrating it provides characteristic initial data that can
be used to solve Eq. (33) and obtain V everywhere. In a
plane wave background, recall from Eq. (24) that

�1=2ðx; x0Þ is a scalar field depending only on the phase
coordinates u, u0 of its arguments. Any scalar of this type

has vanishing d’Alembertian, so h�1=2 ¼ 0. The initial
data for V therefore vanishes, and the unique solution to
Eq. (33) is V ¼ 0. This recovers Eq. (31).

Tails typically do appear if the field equation (28) is
modified in some way. Consider the addition of a mass
term

ðh�
2Þc 
 ¼ �4	�: (35)

Solutions to this equation develop tails even in flat space-
time. Remarkably, the form of the tail in plane wave back-
grounds is exactly the same as in the flat case. Using J1 to
denote a Bessel function of the first kind, the associated
retarded Green function is

G
 ¼ �1=2

"
��ð�Þ �
2

 
J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�
2
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�
2
p !

��ð��Þ
#
: (36)

Initially sharp perturbations to a massive scalar field do not
appear sharp to timelike observers. Consider holding the
second argument of G
ðx; x0Þ fixed and extending x as far

as possible into the future before encountering a u ¼ U
wave surface where detBijðU; u0Þ ¼ 0. Excluding degen-

erate cases whereBijðU; u0Þ vanishes entirely, it is shown in

Ref. [9] that � ! �1 and ð�=j�jÞ1=2 is finite for almost
all approaches to such a hypersurface. The tail appearing in
Eq. (36) therefore tends to zero almost everywhere in this
limit.
Of more direct physical interest is the behavior of an

electromagnetic field Fab. This is known to propagate
without tails in plane wave backgrounds [17]. Unlike in
the scalar case, gauge is an important ingredient here.
Green functions for vector potentials Aa in commonly
used gauges do develop tails in plane wave backgrounds.
These can nevertheless be removed by appropriate gauge
transformations Aa ! Aa þra� and are therefore physi-
cally irrelevant.
Consider a vector potential Aa in the Lorenz gauge.

Introducing an electromagnetic current Ja, Maxwell’s
equations are equivalent to

hAa ¼ �4	Ja; raAa ¼ 0 (37)

in vacuum spacetimes. The Hadamard ansatz for an asso-
ciated retarded Green function is

Ga
a0 ¼ Ua

a0��ð�Þ þ Va
a0��ð��Þ: (38)

This must be a solution to

hGa
a0 ¼ �4	ga

a0� (39)

in a vacuum spacetime. As in the scalar case, the first

(‘‘direct’’) term in Ga
a0 has the same form in any space-

time [26]:

Ua
a0 ¼ �1=2ga

a0 : (40)

ga
a0 is the parallel propagator, and� is again the van Vleck

determinant. The appearance of ga
a0 here may be inter-

preted as a reason why polarizations associated with elec-
tromagnetic waves are parallel-propagated in the limit of

geometric optics. In plane wave backgrounds, ga
a0 is

explicitly given by Eq. (25).
The self-adjointness of the wave equation implies that

the tail is symmetric in its arguments:

Vaa0 ðx; x0Þ ¼ Va0aðx; x0Þ: (41)

Substituting Eqs. (38) into (39) also shows that

hVa
a0 ¼ 0 (42)

everywhere, and

�brbVa
a0 þ 1

2
ðh�� 2ÞVa

a0 ¼ 1

2
hUa

a0 (43)

when � ¼ 0. Equation (43) provides characteristic initial
data for Eq. (42). Unlike in the massless scalar case, this
data is not trivial. It may be found by first noting that the
van Vleck determinant satisfies the transport equation [26]

�ara�
1=2 þ 1

2
ðh�� 4Þ�1=2 ¼ 0: (44)
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Factoring this out of the tail by definingWa
a0 ¼ ��1=2Va

a0 ,
Eq. (43) reduces to

�brbWa
a0 þWa

a0 ¼ 1

2
hga

a0 : (45)

The main advantage of Eq. (45) over Eq. (43) is that the
left-hand side of Eq. (45) is a total derivative. Consider a
null geodesic yðuÞ such that yðu0Þ ¼ x0. Then,

D

d�
½ð�� u0ÞWa

a0 ðyð�Þ; x0Þ� ¼ 1

2
hga

a0 ðyð�Þ; x0Þ (46)

on a plane wave background. Initial data for the tail is
entirely determined by the degree to which parallel-
transported vectors satisfy the vector wave equation.

Directly computing the right-hand side of Eq. (46) using
Eq. (25) and properties of the null tetrad ð‘a; na; ma; �maÞ
described in Sec. II,

hga
a0 ¼ �r2ð� ��Þ‘a‘a0 : (47)

Recalling that � is linear in the transverse coordinates xi,
x0i and is independent of v, v0, r2ð� ��Þ can depend only on
the phase coordinates u, u0. The initial data for Va

a0 is
therefore

Va
a0 ðx; x0Þ ¼ ��1=2ðx; x0ÞZðu; u0Þ‘a‘a0 ; (48)

where

ðu� u0ÞZðu; u0Þ ¼ 1

2

Z u

u0
d�r2ð� ��Þjðyð�Þ;x0Þ: (49)

The reciprocity relation (41) implies that Zðu; u0Þ ¼
Zðu0; uÞ.

Equation (48) arose as the solution to Eq. (43). As such,
it is a priori valid only when its arguments are null-
separated. Note, however, that Eq. (48) is a solution to
the bulk wave equation (42) everywhere. No additional
work is required to extend the tail into the interiors of null
cones. The complete retarded Green function for Lorenz-
gauge vector potentials in plane wave backgrounds is

Ga
a0 ¼ �1=2½gaa0��ð�Þ � Z‘a‘

a0��ð��Þ�: (50)

A general vector potential in Lorenz gauge may be
derived from this Green function using the Kirchhoff
integral

Aa ¼
Z
Dþð�Þ

Gb
a0Ja0dV

0

þ 1

4	

Z
�
ðAa0rc0Ga

a0 �Ga
a0rc0Aa0 ÞdSc0 : (51)

This produces solutions to the wave equation hAa ¼
�4	Ja in terms of the current Ja and initial data prescribed
on �. It does not enforce the gauge condition, however.
Electromagnetic fields Fab ¼ 2r½aAb� determined by

Eq. (51) are true solutions to Maxwell’s equations only if

the initial data is chosen appropriately and the current is
everywhere conserved.
It is evident from Eqs. (50) and (51) that perturbations in

Aa generically propagate along timelike as well as null
geodesics. The same cannot be said for perturbations to
Fab. This can be shown by applying an exterior derivative
to Eq. (51) in order to obtain a Kirchhoff formula for Fab.

The relevant propagator is clearlyGab
a0 ¼ r½aGb�

a0 , which

has no tail:

r½aVb�
a0��ð��Þ ¼ 0: (52)

Fab therefore satisfies Huygens’ principle on plane wave
backgrounds, as claimed.

IV. GRAVITATIONAL PERTURBATIONS

At least within normal neighborhoods, both scalar and
electromagnetic test fields on plane wave backgrounds
behave essentially as they do in flat spacetime: Pulses of
radiation which are initially sharp remain sharp as they
propagate. We now consider perturbations to the plane
wave metric itself.
Metric perturbations on plane wave spacetimes have

previously been considered in several contexts. The theory
of colliding plane waves is particularly well-developed,
containing many exact solutions to the fully nonlinear
Einstein equation [27]. Yurtsever has also discussed collid-
ing waves which are planar only over large but finite
regions [28,29].
These results do not allow for localized perturbations

and are therefore inadequate to discuss the presence of
tails. Linear perturbations of plane wave spacetimes which
are not plane-symmetric have been derived before [30,31],
although not in a form which appears to be useful for our
purposes. The approach taken here is to instead describe
perturbations of plane wave spacetimes in terms of a Green
function associated with the linearized Einstein equation.
As is usual in general relativistic perturbation theory, we

consider a 1-parameter family of metrics,

ĝabð�Þ ¼ gab þ �hab þOð�2Þ; (53)

which tend smoothly to a vacuum plane wave background
gab as � ! 0þ. Only first-order perturbations are consid-
ered here. Carets are used to denote quantities associated
with the full (backgroundþ perturbation) spacetime.
All indices are raised and lowered using the background
metric gab.
It is convenient to work in the Lorenz gauge. This is

defined by demanding that the trace-reversed metric per-
turbation hTRab ¼ hab � gabg

cdhcd=2 be divergence-free:

rbhTRab ¼ 0: (54)

Einstein’s equation linearized about gab is then

hhTRab þ 2Ra
c
b
dhTRcd ¼ �16	Tab; (55)
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where Tab denotes the perturbed stress-energy tensor.
All derivative operators are those associated with the
background.

General solutions to Eq. (55) may be constructed using
Green functions. Consider a two-point distribution
Gab

a0b0 ðx; x0Þ, which is separately symmetric in the indices

ab and a0b0 and which satisfies

hGab
a0b0 þ 2Ra

c
b
dGcd

a0b0 ¼ �4	ga
ða0gb

b0Þ�: (56)

The Hadamard ansatz for a retarded solution to this
equation is

Gab
a0b0 ¼ Uab

a0b0��ð�Þ þ Vab
a0b0��ð��Þ: (57)

In every spacetime, the first term here is known to be given
by [26]

Uab
a0b0 ¼ ga

ða0gb
b0Þ�1=2: (58)

The polarization tensor of a gravitational wave is therefore
parallel-propagated in the limit of geometric optics. Its
‘‘amplitude’’ also varies according to the usual focusing

factor �1=2.

The gravitational tail Vab
a0b0 appearing in Eq. (57) does

not have a universal form. It satisfies

hVab
a0b0 þ 2Ra

c
b
dVcd

a0b0 ¼ 0 (59)

everywhere with characteristic initial data determined by

�crcVab
a0b0 þ 1

2
ðh�� 2ÞVab

a0b0

¼ 1

2
hUab

a0b þ Rc
a
d
bUab

a0b0 (60)

for all null-separated points x, x0. The self-adjointness of
Eq. (55) implies the reciprocity relation

Vaba0b0 ðx; x0Þ ¼ Va0b0abðx0; xÞ: (61)

As in the scalar and electromagnetic cases discussed

above, Gab
a0b0 may be used to relate general solutions of

the relaxed Einstein equation (55) to sources and initial
data using the Kirchhoff integral

hTRab ¼ 4
Z
Dþð�Þ

Gab
a0b0Ta0b0dV

0

þ 1

4	

Z
�
ðrc0Gab

a0b0hTRa0b0 �Gab
a0b0rc0hTRa0b0 ÞdSc0 :

(62)

Only perturbations which satisfy the gauge condition (54)
are true solutions to the linearized Einstein equation. As a
consequence, raTab ¼ 0 and the initial data appearing in
Eq. (62) must satisfy the gauge condition in an appropriate
sense.

One component of Vab
a0b0 may be derived immediately.

Taking the trace of Eq. (55) and noting the appropriate

boundary conditions, the gravitational tail Vab
a0b0 is related

to the tail V associated with massless scalar fields via

gabVab
a0b0 ¼ ga

0b0V [26]. But V ¼ 0 in plane wave back-

grounds, so

gabVaba0b0 ¼ Vaba0b0g
a0b0 ¼ 0: (63)

gabhab therefore propagates only along null geodesics in
the Lorenz gauge. This is the sense in which Waylen [13]
has claimed that metric perturbations on plane wave back-
grounds satisfy Huygens’ principle. Other components of
hab do not behave so simply. To see this, it is sufficient to

note that regularity of Vab
a0b0 in Eq. (60) implies that the

tail has the coincidence limit [26]

½Vabc0d0 � ¼ Rac0bd0 : (64)

The right-hand side of this equation does not vanish, so

Vab
a0b0 cannot vanish either.

As in the electromagnetic case above, it is convenient to
factor the van Vleck determinant out of the tail by defining

Wab
a0b0 ¼ ��1=2Vab

a0b0 : (65)

Equation (60) then reduces to

D

d�
½ð�� u0ÞWab

a0b0 � ¼ 1

2
hðgaða0gbb0ÞÞ þ Rc

a
d
bgc

ða0gd
b0Þ

(66)

along null geodesics passing through x0. The characteristic
initial data needed to obtain the tail follows from this
equation by using Eq. (25) and contracting with all pos-
sible tetrad components. The resulting calculation is tedi-
ous but straightforward. It results in an expression for

Vab
a0b0 which is valid when � ¼ 0. Whatever is not taken

into account by this data may be parametrized by the

addition of �Lab
a0b0 for some smooth Lab

a0b0 . The result

of these computations is that

Vab
a0b0 ¼ �1=2<f�Lab

a0b0 þ ð �ma �mbY þ 4Zmða �mbÞÞ‘a0‘b0

þ ‘a‘b½gca0gdb0 ðY �mc �md þ 4Zmðc �mdÞÞ � Zga
0b0 �

� 2‘ðambÞ‘ða
0
gc

b0Þð �Ymc þ 4Z �mcÞ � Zgab‘
a0‘b

0 g:
(67)

The real function Zðu; u0Þ appearing here also arose in the

electromagnetic Green function Ga
a0 and is defined by

Eq. (49). Yðu; u0Þ ¼ Yðu0; uÞ is complex and satisfies

ðu� u0ÞYðu; u0Þ ¼
Z u

u0
d�ðr2ð�2Þ � 2H Þ: (68)

The only portion of the gravitational Green function

which is left to be determined is Lab
a0b0 . Substituting

Eq. (67) into Eq. (59) while using Eqs. (49) and (68) shows
that

Lab
a0b0 ¼ � 1

4
ðjYj2 þ 8Z2Þ‘a‘b‘a0‘b0 : (69)
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Note that the scalar coefficient in this equation depends only
on u and u0. Together, Eqs. (49), (57), (58), and (67)–(69)
completely describe the retarded Green function for
Lorenz-gauge metric perturbations on vacuum plane
wave backgrounds. This appears to be the first closed-
form example of a Green function for Einstein’s equation
linearized off of a nonflat vacuum background (see, how-
ever, Refs. [32,33] for discussions of Green functions on
Friedmann–Robertson–Walker backgrounds).

The scalar, electromagnetic, and gravitational Green
functions derived here all have the remarkable property
that their Hadamard series terminate at finite order. In
generic spacetimes, tails of Green functions can be
obtained systematically using the series expansion

V���ðx; x0Þ ¼ X1
n¼0

V���
n ðx; x0Þ�nðx; x0Þ: (70)

This is called a Hadamard series and is motivated by the
observation that initial data equations such as Eq. (60) are
ordinary differential equations which apply when � ¼ 0
(see, e.g., Refs. [34]). Terms which are higher order in �
effectively expand the solution ‘‘into the light cones.’’
Conditions may be placed on the coefficients V���

n such
that these functions are uniquely determined by ordinary
differential equations for all n. The results of Sec. III imply
that all Hadamard coefficients vanish for massless
scalar fields propagating on plane wave backgrounds. For

Lorenz-gauge vector potentials, Vaa0
n vanishes for all

n � 1. The tail associated with Lorenz-gauge metric per-
turbations admits nonvanishing Hadamard coefficients
only when n ¼ 0 or n ¼ 1. In all of these cases,
Hadamard expansions result in finite series. More pre-
cisely, the Hadamard coefficients V���

n vanish for all n �
ðtensor rank of the relevant fieldÞ. It is not clear if this
pattern continues for higher-rank fields propagating on
plane wave backgrounds.

A. Plane-fronted perturbations

The tail associated with Gab
a0b0 is discussed in detail in

Sec. V. One interesting class of perturbations may, how-
ever, be understood immediately. Consider sources with
the form Tab ¼ T‘a‘b and initial data satisfying

hab / ‘a‘b; dScrchab / ‘a‘b (71)

on a spacelike hypersurface �. Equations (25), (57), (58),
(62), (65), (67), and (69) imply that the tail cannot affect
any metric perturbation to the future of �. The relevant
portion of the Green function is simply

Gab
a0b0‘a0‘b0 ¼ �1=2��ð�Þ‘a‘b; (72)

from which it follows that

hab ¼ �H‘a‘b (73)

for some scalar field �H. Stress-energy conservation and
the Lorenz gauge condition require

L‘T ¼ @vT ¼ @v�H ¼ 0: (74)

Perturbations in this class therefore share some degree of
plane symmetry with the background spacetime.
More than this, the perturbed metric is exactly that of a

(not necessarily vacuum) pp-wave spacetime with the pro-
fileHijðuÞxixj þ ��Hðu; xkÞ. Although this result has been
obtained using the linearized Einstein equation, it is
actually an exact solution to the fully nonlinear Einstein
equation. That the linearized solution is also an exact
solution is a consequence of the fact that the perturbation
(73) is in extended Kerr–Schild form [21].

V. INTERPRETING THE TAIL

It was shown in Sec. III that tails associated with
Lorenz-gauge vector potentials are pure gauge in plane
wave backgrounds. It is interesting to ask whether a similar
situation arises for the tail associated with the gravitational

Green function Gab
a0b0 derived in Sec. IV. In the electro-

magnetic case, all physical information is contained in the
Faraday tensor Fab. A ‘‘relevant’’ electromagnetic tail
therefore exists if and only if initial data for Fab propagates
along timelike curves. It follows from Eq. (52) that this
does not occur, so any tails associated with the vector
potential are unphysical.
Unfortunately, there is no direct analog of Fab which can

describe the geometry of spacetime in a way that is both
complete and gauge-invariant. The perturbed metric
changes drastically in different gauges and is therefore
difficult to interpret directly. The perturbed Riemann ten-
sor is less dependent on gauge but not completely inde-
pendent of it. Nevertheless, the curvature may be used to
construct various quantities which are gauge-invariant.
One possible route is to compute perturbations to all
scalars

RabcdRabcd; raRbcdfraRbcdf; . . . (75)

formed from local polynomials in the Riemann tensor and
its derivatives (together with gab and �abcd). Every scalar
of this type is known to vanish in the background space-
time. Their perturbations are therefore gauge-invariant.
Local knowledge of all curvature scalars places strong
constraints on the local geometry [35]. Here, all tail-related
perturbations to the curvature scalars may be shown to
vanish. This is a gauge-invariant statement. It does not,
however, exhaust all physically relevant information which
may be extracted from hab.
Geometries with vanishing curvature scalars are known

to comprise a certain subset of the Kundt spacetimes [36].
A metric ĝab is said to be of the Kundt type if it admits a

null vector field ‘̂a which is geodesic, expansion-free,
shear-free, and twist-free. All pp-waves (and therefore
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plane waves) are in this class. Our strategy to understand

the tail portion of Gab
a0b0 is to first identify a perturbation

‘̂a of the background vector field ‘a which establishes the
perturbed spacetime to locally be in the Kundt class.
Indeed, we obtain a nontrivial null vector field for which

the first derivative vanishes entirely: r̂b‘̂
a ¼ Oð�2Þ. This

implies that through first order in the small parameter �,
tail effects can only perturb a background plane wave into a
pp-wave. We construct an explicit gauge transformation
which transforms the perturbed metric ĝab into the canoni-
cal Brinkmann form (5). The perturbed wave profile may
then be read off directly from the metric components. It is
found to be at most quadratic in the transverse coordinates,
so the perturbed spacetime is locally a plane wave and not a
more general type of pp-wave.

Before carrying out this procedure, it is first important to
note that no universal properties can be expected to hold
for the perturbed metric as a whole and for completely
arbitrary initial data. Only the ‘‘tail components’’ of metric
perturbations might be expected to have a simple descrip-
tion for all possible choices of initial data. This concept
must be made precise. In general, it is difficult to disen-
tangle a meaningful tail from the remainder of a generic
metric perturbation. Naively, the Kirchhoff integral (62)
could be used to isolate only those portions of habðxÞwhich
involve data in the interior of the past light cone of x. This
could be called the ‘‘tail’’ h[abðxÞ of the full metric pertur-

bation at a particular point x. It is, however, impossible to
make geometrically meaningful statements knowing only a
metric at a single point. Derivatives of h[ab must also be

computed at x. These have Kirchhoff representations of
their own, which involve data that is no longer guaranteed
to be confined only to the interior of the past light cone of
x. Derivatives of objects which appear to be ‘‘pure tails’’
are not pure tails themselves. This is because initial data
which lies sufficiently close to—but not on—the past light
cone of x can intersect the past light cone of a neighboring
point xþ dx.

Although our assumptions can be weakened, this prob-
lem is avoided here by considering only those cases
where it does not arise. First suppose for simplicity that
Tab ¼ 0. Fixing a particular point x, let all nontrivial data
on the initial hypersurface � vanish where that hypersur-
face meets the past light cone of x. Also demand that
similar conditions exist for all points in an open neigh-
borhood of x. This corresponds to considering general
vacuum perturbations observed only in regions which are
timelike- or spacelike- (but not null-)separated to all
nontrivial initial data.

Under these restrictions, various properties of hab may
be deduced directly from inspection of Eqs. (62) and (67).
The first of these is that gabhab ¼ 0. Using the notation
hn‘ ¼ habn

a‘b, it follows that hn‘ ¼ hm �m. Additionally,
h‘‘ ¼ hm‘ ¼ 0. The components hmm, hm �m, and h‘n
depend only on the phase coordinate u. hmn may depend

on both u and xi and is at most linear in the latter coor-
dinates. hnn is at most linear in v (with a coefficient
depending only on u) and at most quadratic in xi.
Together, these observations strongly constrain the geo-
metric character of the perturbed spacetime.
Recall that the vector field ‘a ¼ @=@v is both null and

covariantly constant with respect to the background metric
gab. ‘

a is also null with respect to the perturbed metric ĝab.

It is easily verified, however, that r̂b‘
a � 0 in general.

Nevertheless, the rescaled vector field

‘̂a ¼ ð1þ ��Þ‘a (76)

is both null and constant with respect to ĝab [throughOð�Þ]
if the real scalar field �ðuÞ satisfies

_� ¼ 1

2
@vhnn: (77)

That such an ‘̂a exists is highly nontrivial. It implies that
ĝab must describe a pp-wave through Oð�Þ. The lack of
uniqueness associated with � corresponds to the usual

freedom to rescale ‘̂a by a multiplicative constant.
Any pp-wave spacetime must admit not only a constant

null vector field but also a constant null 2-form. In the
background spacetime, examples of such 2-forms are the

fab and f�ab of Eq. (4). The complex 2-form ‘½amb� ¼
ðfab � if�abÞ=

ffiffiffi
2

p
and its conjugate are null and constant

as well. Preferred perturbations m̂a to the background
tetrad component ma may therefore be found by demand-

ing that ‘̂½am̂b� be null and constant with respect to ĝab
(together with the usual requirements that m̂a be null,

orthogonal to ‘̂a, and that ĝabm̂
a �̂mb ¼ 1). This results in

m̂a ¼
�
1þ �

�
i
� 1

2
hm �m

��
ma � 1

2
�hmm �ma � �@ ���‘

a:

(78)

m̂a is considerably less unique than ‘̂a. It depends on the
choice of an arbitrary real function3 �ðu; �; ��Þ. m̂a also
depends on 
ðuÞ, which is real and satisfies

_
 ¼ =ð@�hmnÞ: (79)

Here = denotes the imaginary component of its argument.
Different solutions for 
 correspond to the usual freedom
to vary m̂a by a constant complex phase.

Given particular choices for ‘̂a and m̂a within the class
just described, a unique real vector field n̂a may be

constructed which is null, satisfies ĝab‘̂
an̂b ¼ �1, and is

orthogonal to m̂a and �̂ma:

3Only @ ��� is relevant for m̂a. � appears undifferentiated in the
coordinate transformation (86).
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n̂a ¼ ½1þ �ðhm �m � �Þ�na þ 1

2
�hnn‘

a

� 2�<½ð@ ���þ hmnÞ �ma�: (80)

Together, the vector fields ð‘̂a; n̂a; m̂a; �̂maÞ form a null
tetrad in the perturbed spacetime with very similar prop-
erties to the null tetrad ð‘a; na; ma; �maÞ defined by Eqs. (3)
and (15) in the background spacetime. The perturbed tetrad
is not unique. It depends on a real function �ðu; �; ��Þ as
well as two real numbers corresponding to initial condi-
tions for the differential equations, Eqs. (77) and (79).

Given that ‘̂a is constant, the 1-form ĝab‘̂
b must be

closed. It follows that there exists a scalar field û such that

ĝab‘̂
b ¼ �raû: (81)

By analogy with Eq. (2), this defines a phase coordinate û

for the perturbed spacetime. Similarly, scalar fields v̂ and �̂
may be introduced such that

‘̂a ¼ @

@v̂
; �̂ma ¼ @

@�̂
: (82)

Coordinates with these properties fix seven out of ten
metric components. The remainder follow from demand-
ing that

n̂a ¼ @

@û
þ h

@

@v̂
(83)

for some real hðû; �̂; �̂�Þ [cf. Eq. (15)]. The perturbed metric
then reduces to the explicit Brinkmann form

cds2 ¼ 2ð�dûdv̂þ hdû2 þ d�̂d �̂�Þ þOð�2Þ (84)

for a pp-wave with profile 2h.

Coordinate (or gauge) transformations ðu; v; �; ��Þ !
ðû; v̂; �̂; �̂�Þ with these properties may be constructed
explicitly and used to write h in terms of hab. Noting
Eqs. (76) and (81), the perturbed and background phase
coordinates are related by

ûðuÞ ¼ uþ ��ðuÞ; _�ðuÞ ¼ �ðuÞ � hm �mðuÞ: (85)

Different choices for � and � correspond to the fact that a
constant affine transformation applied to any valid phase
coordinate produces another valid phase coordinate.
The remaining coordinate transformations which imply
Eqs. (82) and (83) are

v̂ðu; v; �; ��Þ ¼ ½1� ��ðuÞ�vþ ��ðu; �; ��Þ; (86)

�̂ðu; �; ��Þ ¼
�
1þ �ði
ðuÞ þ 1

2
hm �mðuÞÞ

�
�

þ 1

2
�hmmðuÞ ��þ ��ðuÞ; (87)

where �ðuÞ is complex and satisfies

_� ¼ @ ���þ ½hmn � i�=ð@�hmnÞ� � 1

2
@uðhm �m�þ hmm

��Þ:
(88)

� can exist only if the right-hand side of this last equation is
independent of both � and ��. As a consequence, � is
constrained by the two integrability conditions:

@�@ ��� ¼ 1

2
@uhm �m �<ð@�hmnÞ; (89)

@2��� ¼ 1

2
@uhmm � @ ��hmn: (90)

The right-hand sides of both of these relations depend only
on u, so � must be quadratic in �, ��. For any real function
�0ðuÞ, the most general � is

� ¼ �0 þ<
�
2½ _�� ðhmnj�¼0Þ� ��þ 1

2
� ��@vhnn

þ 1

2
��2ð@uhmm � 2@ ��hmnÞ

�
: (91)

The Lorenz gauge condition (54) has been used here in the
form

<ð@�hmnÞ ¼ 1

2
ð@uhm �m � @vhnnÞ: (92)

It is clear from Eq. (91) that the subquadratic components
of � may be varied arbitrarily by appropriate choices of �
and �0.
This freedom can be used to simplify the wave profile h.

Applying the various coordinate transformations and
comparing to Eq. (83),

h ¼ <
�
½ð1þ 2�ði
� �ÞÞH � �� _H � �̂�2 � �Hh �m �m�̂

�̂�

� 2� ��H �̂
�þ 1

2
ðhnn � v̂@vhnnÞ þ @u�

�
: (93)

This has been written in terms of the perturbed Brinkmann

coordinates ðû; v̂; �̂; �̂�Þ. It satisfies @v̂h ¼ 0, as required for
a general pp-wave profile. Furthermore, h is at most qua-

dratic in the transverse coordinates �̂, �̂�. This means that
the perturbed spacetime is actually a plane wave and not
another type of pp-wave.
ĝab satisfies the linearized Einstein equation by

construction, so

@�̂@ �̂�
h ¼ 0: (94)

Further simplifications arise from appropriate choices for
�0 and �. Letting

_�0 ¼ � 1

2
ðhnn � v@vhnnÞj�¼0 (95)

eliminates all terms in h which are independent of the
transverse coordinates. Different solutions to Eq. (95)
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correspond to definitions for v̂ coordinates which differ by
additive constants.

All terms linear in �̂ and its conjugate which appear in h
may be eliminated by demanding that � satisfy

€� ¼ H ��þ
�
@uhmn � 1

2
@ ��hnn

�
�¼0

: (96)

In the absence of metric perturbations, this reduces to the
background geodesic equation (18). Different solutions

for � affect the definitions for both v̂ and �̂ in ways which
may be identified with motions generated by Killing fields.

Applying Eqs. (94)–(96) to Eq. (93) reduces the wave
profile to the canonical form [cf. Eq. (11)]

hðû; �̂; �̂�Þ ¼ <½Ĥ ðûÞ �̂�2�; (97)

with the perturbed waveform

Ĥ ¼ ½1þ 2�ði
� �Þ�H � �� _H

þ 1

2
�ð@2��hnn þ @2uhmm � 2@u@ ��hmnÞ: (98)

Through Oð�Þ, the tail of any linear perturbation to a plane
wave spacetime with waveform H is another plane wave

spacetime with waveform Ĥ . This is a complete descrip-
tion for the local geometry and is unique up to the
3-parameter family of rescalings described by Eq. (12).
The integration constants associated with solving
Eqs. (77), (79), and (85) for �, �, and 
 represent infini-
tesimal versions of these rescalings and may therefore be
ignored.

Using the Kirchhoff representation (62) for hab, the
perturbed waveform can be written as an integral over
initial data specified on a spacelike hypersurface �.

Using the explicit form (67) for the tail Vab
a0b0 , Ĥ may

be shown to depend only on ĝ‘‘j� ¼ �h‘‘j� and the first
derivative of this quantity normal to �. In this sense, plane
wave tails arise from only a single component of the initial
metric perturbation.

VI. DISCUSSION

At least within normal neighborhoods, we have shown
that linear tails in vacuum general relativity cannot perturb
a gravitational plane wave into anything other than another
plane wave. The scattering of two gravitational waves—
one an initially localized burst and the other a much
stronger plane wave—can leave behind only a very par-
ticular type of tail. This situation is illustrated in Fig. 1 for
the particular case where initial metric perturbations exist
only in the vicinities of two distinct points i1 and i2.
Regions which are null-separated from the initial data
near i1 and i2 do not have any universal form.
Everywhere else in the future of � is locally a plane
wave. Different plane wave regions are separated by the

future light cones of the nontrivial initial data and may all
have different waveforms.
Except for two brief events associated with the wave-

fronts expanding outward from i1 and i2, the timelike
observer illustrated in Fig. 1 can use purely local measure-
ments to conclude that the surrounding geometry is always
a plane wave. The instantaneous waveform of that plane
wave can also be determined using local measurements.
Such an observer could not, however, conclusively deter-
mine whether or not the waveform observed immediately
after a particular wavefront is really ‘‘different’’ from the
waveform observed before that wavefront. Such a deter-
mination requires the use of experiments which sample the
geometry over finite distances.
These results are but one application of the Green func-

tion Gab
a0b0 derived in Sec. IV. Another possible applica-

tion concerns the effect of a compact object’s ‘‘own
gravitational field’’ on its motion through a gravitational
plane wave. Indeed, the gravitational self-force is most
easily expressed in terms of the tail of an appropriate
Green function [26,37–39]. A ‘‘self-torque’’ [38] could
be also be computed in this way. More generally, it might
be possible to use Penrose limits in order to understand
some aspects of the self-force problem on generic back-
grounds by considering equivalent problems on plane wave
backgrounds. This is especially likely to be relevant for the
ultrarelativistic self-force problem [40].
Another potential application for the plane wave Green

function Gab
a0b0 involves the long-time behavior of Green

functions associated with nonplane wave backgrounds.
Within a normal neighborhood, the most singular portion
of such a Green function always has the form

Uab
a0b0��ð�Þ. The structure of this term can change over

large distances. Penrose limits were used in Ref. [9] to

FIG. 1. An initial value problem for vacuum perturbations on a
plane wave spacetime. Nontrivial initial data are imposed on �
only in small regions around the two points i1, i2. The unshaded
regions are locally determined by the background plane wave.
The three shaded regions are locally plane waves, each of which
may have different waveforms. The (finite-width) boundaries
between each of the plane wave regions can be arbitrarily
complicated. Also illustrated is a timelike worldline representing
the path of a local observer.
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derive such changes for scalar Green functions G by
reducing the problem to an equivalent one in an appropri-
ate plane wave background. This showed that every
encounter with a nondegenerate conjugate point leads to
changes in the ‘‘leading-order singularity structure’’ of G
with the form

j�j1=2�ð�Þ ! pv

�j�j1=2
	�

�
! �j�j1=2�ð�Þ ! . . . (99)

This pattern is universal. An analogous result for linearized
metric perturbations could likely be established if the
plane wave Green function of Sec. IV could be extended
beyond the normal neighborhood.
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