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Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit
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We have explored the spatial distribution of an ion cloud trapped in a linear octopole radio-frequency (rf) ion
trap. The two-dimensional distribution of the column density of stored Ag+

2 was measured via photofragment-ion
yields as a function of the position of the incident laser beam over the transverse cross section of the trap. The
profile of the ion distribution was found to be dependent on the number of loaded ions. Under high ion-loading
conditions with a significant space-charge effect, ions form a ring profile with a maximum at the outer region
of the trap, whereas they are localized near the center axis region at low loading of the ions. These results are
explained quantitatively by a model calculation based on equilibrium between the space-charge-induced potential
and the effective potential of the multipole rf field. The maximum adiabaticity parameter ηmax is estimated to be
about 0.13 for the high ion-density condition in the present octopole ion trap, which is lower than typical values
reported for low ion densities; this is probably due to additional instability caused by the space charge.
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I. INTRODUCTION

Linear multipole radio-frequency (rf) ion traps have become
increasingly important in atomic, molecular, and cluster
physics [1,2]. In spectroscopic studies, for example, these
traps improve the resolution by enabling cooling with a neutral
buffer gas and improve the sensitivity by enabling accumula-
tion and, thereby, increasing the number density [3–14]. In
gas-phase reactivity studies, multipole rf traps have proven
ideal in thermalizing all degrees of freedom of reagents and in
providing accurate knowledge of their concentrations [15–17].
The success of these traps is due to the characteristics of the
time-averaged potential experienced by the trapped ions, the
effective potential �eff . The strength of the effective potential
is proportional to p2 for a 2p-pole trap, and its dependence
on the distance r from the central axis is proportional to
r2p−2 [18]. For high values of p, traps are particularly deep
and have a large nearly field-free region around the axis, which
guarantees little rf heating [18–21]. The deeper a trap, i.e.,
the larger the phase space acceptance, the larger the fraction
of ions that can be captured and accumulated. Additionally,
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buffer gas cooling allows phase space compression, which, in
turn, can further increase the number of stored ions. Recently,
the depth of a 22-pole trap was measured by analyzing the
evaporation rates of trapped ions from a thermodynamical
point of view; this result was employed to calculate effective
trap depths for several 2p-pole ion traps as a function of the rf
amplitude [22,23].

Taking advantage of the high ion density attainable in
a multipole ion trap, we have recently been able to apply
cavity ring-down spectroscopy directly to the mass-selected
ions stored in an octopole trap [3–5]. In the course of these
studies, the ions were found to be distributed not uniformly
inside the trap, as it was first pointed out in Ref. [3]. In fact,
the ion density distribution is not defined by the effective
potential alone in a regime where space charge effects become
relevant. Understanding these distributions in linear rf traps is
extremely important (i) for the optimization of spectroscopic
methods that profit from the maximal overlap of laser light
with the ion clouds inside the trap, (ii) for the measurement of
absolute absorption cross sections, (iii) to accurately estimate
the thermalization temperature in reactivity studies, and
(iv) for optimization and interpretation of experiments where
the ion trap is used as a pick-up cell [24].

The density distribution of a non-neutral plasma in a
Penning trap has been extensively studied by Dubin and
O’Neil [25]. For a Paul trap, i.e., a quadrupole rf field, profiles
of an ion cloud were studied for atomic metal ions and organic
molecular ions by monitoring fluorescence and photodissocia-
tion of stored ions, respectively [26–28]. These profiles have a
Gaussian shape with the maximum ion density at the center of
the trap. More recently, even single ions have been observed by
fluorescence imaging of Coulomb crystals formed in a linear
Paul trap at temperatures around 10 mK [29]. For multipole ion
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traps, on the other hand, only a few measurements have been
reported. Walz et al. measured a radial distribution of ions in a
three-dimensional hyperbolic octopole ion trap by monitoring
fluorescence intensity from stored Ba+ ions [30]. They found
that Coulomb repulsion between stored ions resulted in two
separate ion peaks. Wester and coworkers reported a radial
distribution of column densities of OH− ions in a 22-pole
ion trap from photodetachment-rate measurements [31]. The
distribution showed a rather uniform profile and was explained
by a model calculation neglecting Coulomb-repulsion effects;
this model was applicable to the measurement performed at a
low ion density (less than 103 stored ions). They extended the
measurement to two-dimensional tomography of the column
density [32]. A Coulomb crystal of laser-cooled Ca+ ions has
recently been formed in a linear octopole ion trap by Okada
et al.; the ions were observed by fluorescence imaging for
storage of up to 104 ions, which is still in the low-density
regime [33,34].

In this paper, we report on the measured ion-density
profile in a linear octopole ion trap at a high-density regime,
where the space charge plays a significant role. Silver dimer
cations, Ag+

2 , are detected via photofragmentation and the two-
dimensional distributions of column densities are measured as
a function of the number of loaded ions and as a function of
the amplitude of the rf field. Up to about 109 ions are loaded
into the trap, which is the space-charge-limit condition for
the present ion trap geometry. The distribution profiles are
compared with a model calculation, which takes the balance
between the trapping force due to the rf field and the Coulomb
repulsion among the stored ions into account.

II. EXPERIMENTAL PROCEDURES

A schematic diagram of the experimental setup is shown
in Fig. 1; a detailed description can be found elsewhere [3].
Ag+

2 ions were selected by a quadrupole mass filter (labeled
QM1, model MAX-4000 by Extrel CMS) from the distribution
generated by a magnetron-sputter cluster-ion source. A typical
current of the Ag+

2 ion beam after the mass filter was
200 pA, with QM1 operated at relatively low mass resolution
(m/�m ∼ 20). The selected Ag+

2 ions were transported by
octopole ion guides (IGs) and quadrupole deflectors (QDs) to
a linear octopole ion trap.

The ion trap has a length of 40 cm and an inner diameter
of 1.1 cm. The trap is kept at room temperature and is filled
with about 0.1 Pa of He buffer gas. We assume, thus, that
all degrees of freedom of the ions are well thermalized within
0.5 s. The rf potentials at about 3 MHz applied to the octopole’s
rods were provided by a homemade rf generator [35]. The rf
amplitude Vrf was varied in the range 95–300 V, while the
offset dc potential was kept at −12 V. The ions were confined
in the longitudinal direction using potentials generated by an
entrance (Lin) and an exit (Lout) electrode. The potential of
Lin was switched between −8 and +5 V for loading and
trapping, respectively. Lout was held at +5 V during loading
and trapping and was switched to −12 V for extraction of
trapped ions. The number N0 of ions stored in the trap was
measured via monitoring the ion current at the detector (ID1),
taking into account the transmission probabilities of IG and
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FIG. 1. (Color online) A schematic diagram of the experimental
setup. QM1 and QM2, quadrupole mass filters; IGs, octopole ion
guides; QDs, quadrupole deflectors; PDin and PDout, photodiodes;
PM: a power meter; Lin and Lout, entrance and exit electrodes of the
ion trap; ID1 and ID2, ion current detectors.

QD. These were estimated to be unity and 0.9, respectively.
The number of stored ions N0 was controlled by changing the
loading time and/or the ion current. We determined a saturation
curve for the loading of the trap as a function of time and
from this we determined the maximum loading condition for
each Vrf .

The column density of the ions was measured by recording
the photofragmentation yield introduced by UV laser pulses
at 415 nm, near the peak absorption of Ag+

2 [36]. These
were generated by using an optical parametric oscillator
(MOPO-HF, Spectra Physics) operated at a repetition rate of
10 Hz, which was attenuated to about 20 μJ/pulse. With a
collimated 2-mm-diameter beam, the intensity was sufficiently
low that the photofragment yield depended linearly on the
laser pulse energy. The laser beam was aligned carefully
to be parallel to the axis of the ion trap. To map the ion
density distribution, the laser position was displaced both
vertically and horizontally with an interval of 0.5 mm. The
laser pulse intensity was monitored during the measurement
by the photodiodes (PDin and PDout), located before and
after the ion trap, outside the vacuum chamber. The signal
intensities of the PDs were calibrated by a power meter
(PM) placed downstream. The number of photons of the
injected laser pulses, Np, was determined from the signal
intensities of PDin measured shot by shot. The intensity ratio
between the two PDs was used to confirm that the laser beam
was not clipped while scanning its position. The number of
photofragment ions, Nf , was measured by an ion current
detector (ID2) after mass analysis using a quadrupole mass
filter (QM2). The transmittance of QM2 was estimated to
be 0.4.

The measurement was performed following this procedure:
First, Ag+

2 ions were loaded into the ion trap for a duration
between 0.3 and 2.0 s depending on the number of ions to be
stored. Second, the stored ions were thermalized by collisions
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with the He buffer gas at room temperature for 0.5 s. Third, the
ions were irradiated with the laser pulse for 1 s, i.e., 10 shots.
Finally, the ions were extracted from the trap and the yield of
Ag+ photofragments was recorded. The above measurement
was repeated five times at each laser position.

An absolute value of the local number density of ions, n(r),
was derived from the relationship:

n(r) = f (r)

σ L
, (1)

where σ is the photodissociation cross section, L is the length
of the ion trap, and f (r) is the number of fragment ions per
photon (Nf /Np). We measured the quantity f as a function of
the laser position r . Because the trap is 40 cm long, we assume
a uniform distribution of ions along the longitudinal direction
of the linear ion trap. The cross section σ was determined from
the normalization condition:

N0 = L

∫
n(r)d r = 1

σ

∫
f (r)d r. (2)

In the present experiments, typical ion densities were found
to be of the order of 107 ions/cm3, which corresponds to a
Debye length of about 400 μm.

III. RESULTS

Figure 2 shows the result of a two-dimensional scan of
an ion cloud containing 5.5 × 108 Ag+

2 ions. A major part
of the trapped ions are found in the outer region rather
than at the center of the ion trap. The small variation of
the densities depending on the azimuthal angle might be
caused by imperfect configuration of the poles and/or other
neighboring electrodes [32]. In the following discussion, we
assume cylindrically symmetric distributions and will analyze
the radial distributions obtained by one-dimensional scans
along the horizontal axis. These data are then analyzed using
an adiabatic approximation, which provides a rotationally
symmetric shape for the effective potential [18].

The radial distributions of the ion density are shown in Fig. 3
for three different amounts of loaded ions, along with model
calculations discussed in the following section. For these
measurements, Vrf was held constant at 200 V, the optimal
value. With N0 = 4.0 × 107, the ion distribution is found to
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FIG. 2. (Color) Two-dimensional distribution of the Ag+
2 ion

density. The total number N0 of stored ions was about 5.5 × 108.
The eight circles represent the pole electrodes of the ion trap.
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FIG. 3. (Color online) Radial distributions of the ion density
obtained by one-dimensional scans on the horizontal axis for different
amounts, N0, of loaded ions. The amplitude of the rf field Vrf was
200 V. Error bars show statistical standard errors of the measurements.
Dashed lines show calculated distributions based on an adiabatic
approximation according to Eq. (10) using the measured values
for N0. Upon convolution of the calculated distribution with a
Gaussian function of 2-mm FWHM representing the laser beam
profile, we obtained the solid lines, which should be compared with
the experimental data. Thermal effects are not considered in these
calculations.

be concentrated around the center of the trap [Fig. 3(a)]. As N0

is increased, the ion density in the central region increases only
slightly while most of the ions are found in the outer region.
At the maximum loading condition of N0 = 1.2 × 109, the ion
density is peaked around r = 4 mm [Fig. 3(c)]. The fact that
the density distribution is confined to the center of the trap
when the ion number is low suggests that the ions are well
thermalized by collisions with the He buffer gas. Therefore,
we interpret the ring profile of the distribution measured for the
highest ion density, N0 = 1.2 × 109, as the effect of Coulomb
repulsion between the trapped ions.

The radial distribution profiles are shown in Fig. 4 for
three values of the rf amplitude Vrf . Ions were loaded until
saturation for each Vrf ; the number of ions was measured to be

053414-3



TAKUYA MAJIMA et al. PHYSICAL REVIEW A 85, 053414 (2012)

r0
r0

10

8

6

4

2

0io
n 

de
ns

ity
 (

10
7  

io
ns

 c
m

−
3 
)

6420-2-4

distance from the center (mm)

1.5

1.0

0.5

0.0

6420-2-4

)b()a(

300 V, N0 = 1.1x109

  95 V, N0 = 1.4x108
200 V, N0 = 1.6x108

200 V, N0 = 1.2x109

FIG. 4. (Color online) Experimental (symbols) and calculated
(line) radial distribution profiles of the ion density for various rf
amplitude Vrf . (a) The trap is fully loaded with N0 = 1.1 × 109 and
1.2 × 109 ions at Vrf = 300 and 200 V, respectively. (b) The trap is
fully loaded with N0 = 1.4 × 108 ions at Vrf = 95 V and partially
loaded with 1.6 × 108 ions at Vrf = 200 V [the latter are the same
data as in Fig. 3(b)].

1.4 × 108, 1.2 × 109, and 1.1 × 109 for Vrf = 95, 200, and
300 V, respectively. The number of ions increased by a factor
of 8.6 when Vrf was changed from 95 to 200 V, while it slightly
decreased when Vrf was changed from 200 to 300 V. Although
the total number of ions varied only slightly between Vrf = 200
and 300 V, the distributions exhibited clearly different profiles;
with the higher rf amplitude the density peak became sharper
and was shifted by 0.5 mm toward the center of the trap.
In Fig. 4(b), the measurement at Vrf = 200 V shown in
Fig. 3(b), obtained without filling the trap, is superimposed
for comparison. We note that, although the total number of
ions in Fig. 3(b) and that in the trap filled at Vrf = 95 V are
approximately the same, the distributions are different.

In the above analyses of the absolute ion densities, the
photodissociation cross section, σ , was evaluated by Eq. (2)
for each measurement. It was found to be σ = (5 ± 1) ×
10−17 cm2 at 415 nm for the present 300-K ion trap. The un-
certainty represents a statistical error of the measurement; we
mention that this evaluation may have an additional systematic
error due to uncertainties in the estimation of the ion transmit-
tance through the ion optics (see Sec. II) and in the measure-
ment of the laser pulse energy. Note that, as the spectral profile
of photoabsorption is dependent on the temperature of
the ions, the cross section at a given wavelength changes
accordingly [36].

IV. MODEL CALCULATION

To explain the radial distributions of the ion density
dependent on the trapping conditions, we have performed a
model calculation based on an adiabatic approximation [18].
Here, effects of the static potential produced by Lin and Lout are
neglected because they are much smaller than the magnitude
of the effective potential for the long trap we have used
(40 cm). Thus, we assume a cylindrical symmetry along the
trap axis. The transverse motion of the ions in a multipole
ion trap is described as a motion in an effective electric

potential [37] expressed by

�eff(r) = p2

4

q V 2
rf

m �2 r2
0

(
r

r0

)2p−2

, (3)

where q, m, 2p, �/2π , and r0 denote the ion charge, the ion
mass, the number of poles, the frequency of the rf field, and
the inscribed radius of the ion trap, respectively. In general,
the equilibrium ion density n(r) in such a potential at a given
temperature T , is described by

n(r) = n0 exp

[
− q

kB T

(
�eff(r) + �sc(r)

)]
, (4)

where n0 and kB are a normalization and Boltzmann’s
constants, respectively, and �sc(r) is the electric potential due
to the space charge of the ion cloud [20,30]. In the general
case, Eq. (4) is nonlinear because �sc(r) is related to the local
ion density by Poisson’s equation,

∇2�sc(r) = −q n(r)

ε0
. (5)

However, if one assumes the space charge effect to be
negligible, Eq. (4) simplifies to

n(r) = n0 exp

[
− q

kB T
�eff(r)

]
. (6)

This approximation was applied to explain an ion distribution
in a 22-pole trap containing about 103 ions [31]. In the present
study, we have about 5 to 6 orders of magnitude more ions
so that we load the trap until saturation. Therefore, we cannot
neglect the space charge effect, and as a result we rearrange
Eq. (4) as

−�sc(r) = kB T

q
ln

n(r)

n0
+ �eff(r). (7)

At zero temperature the space charge due to the ion distribution
must exactly counterbalance the effect of the external potential
�eff . That is to say, neglecting the energy due to the thermal
motion of the ions allows one to recast Eq. (4) as [38]

�eff(r) + �sc(r) = 0. (8)

Equations (5) and (8) thus lead to

n(r) = ε0

q
∇2�eff(r), (9)

which determines the radial profile of the ion density. We
will see later that this approximation is not entirely fulfilled,
but it is nevertheless sufficiently good to explain most of
our experimental data. An alternative approach to the general
derivation of the charge distribution in a cylindrically symmet-
rical external potential is described in the Appendix. Using
Eq. (3) for the effective potential, we obtain the following
radial distribution from Eq. (9):

n(r) = p2(p − 1)2 ε0V
2

rf

m�2r4
0

(
r

r0

)2p−4

. (10)

At T = 0, we expect a sharp cut in the distribution at rmax,
which is determined by the number N0 of stored ions. In an
octopole ion trap (p = 4), the ion density is proportional to r4.
Note that instead, in the case of a quadrupole (p = 2), Eq. (10)
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FIG. 5. (Color) A two-dimensional distribution of ion densities
measured for Ag+

2 ions in a quasiquadrupole ion trap, which should
be compared with Fig. 2. In this measurement the neighboring poles
were wired pairwise together to form four pairs of electrodes. The
total number of ions stored was about 1.3 × 108 in this particular
condition with Vrf = 360 V. The eight circles represent the pole
electrodes of the ion trap, along with the polarity of the rf voltage
applied to each electrodes.

predicts a constant ion distribution. In order to compare these
predictions with the experimental data, the distribution n(r)
was evaluated in the interval [0,rmax] and then convoluted
with a Gaussian function, 2 mm FWHM, representing the
laser-beam diameter. The results of the calculations are shown
in Figs. 3 and 4 together with the experimental data. The
maximal radius rmax is such that the integral of n(r) over a
40-cm-long cylinder of radius rmax corresponds to the
measured N0.

The standard way to create multipole potentials is by
approximating the hyperbolic equipotential surfaces with
cylindrical electrodes. In general, it is always possible to
approximate a lower order multipole with the electrodes
configuration designed for a higher order one. Thus, we
approximated a quadrupole by wiring the neighboring poles of
our octopole trap together to form four pairs of electrodes. The
ion distribution measured for this quasiquadrupole ion trap is
shown in Fig. 5. The ions are concentrated around the axis with
a rather flat density profile as predicted by the present model
calculation. As the surface of the eight rods cannot perfectly
follow the equipotential lines of a quadrupole potential, this
quadrupole trap is not perfect and provides a smaller trapping
volume than an ordinary four rods configuration.

V. DISCUSSION

The distributions calculated by using Eq. (10) are compared
with experimental results in Fig. 3. Note that three curves
calculated for different N0 have the same profile except for
rmax, which was determined to be 4.3, 3.0, and 2.4 mm for
N0 = 1.2 × 109, 1.6 × 108, and 4.0 × 107, respectively. The
calculated curves reproduce well the overall features of the
experimental results, particularly for larger N0. This agreement
indicates that the ring profiles of the ion distribution are mainly
governed by the space charge effect, which forces the stored
ions toward the outer region. Note that the largest discrepancies
between the model and the experiment are found near the
center of the trap and for a low ion density. This is due to the

T = 0 approximation, which is a poor approximation where
�eff and �sc are comparable to the energy of the thermal
motion, i.e., at small r and/or small N0. The room temperature,
kBT = 26 meV, is equal to �eff(r) at r = 2.2 mm for Vrf =
200 V.

Figures 2 and 5 show that the maximal ion densities in
an octopole and in a quadrupole are similar, but the latter
provides the maximum around the center of the trap, whereas
in the former the maximal density is found on a ring at larger
radius. Since it is easier to overlap a laser beam to an ion
cloud that is concentrated around the center of the trap than to
a ring, a quadrupole is probably the most favorable rf linear
trap for laser spectroscopy. However, since the phase space
acceptance of a quadrupole is lower than that of every other
higher order linear rf trap, it is possible that many ions injected
into a quadrupole are lost. This makes the loading time of a
quadrupole longer than for a higher order multipole. In order
to optimize the loading time and the laser beam overlap with
the ions, one can imagine using a high-order multipole trap for
loading and thermalizing the ions and then switching it to a
quadrupole for spectroscopy. This can be done by controlling
the potential on each electrode independently.

According to Eq. (10), the maximum radius rmax within
which ions are stably stored is determined by the total number
of ions and by Vrf—for a given trap geometry and a given
�. For full traps, however, two other factors reduce the value
of rmax. One is the physical geometry of the traps: according
to Gerlich [18], a typical geometric limit rgeom is 0.8 r0 due
to the space necessary for micromotion wiggling. The other
is the breakdown of the adiabatic approximation due to large
rf amplitude. The adiabaticity is quantified by means of a
dimensionless adiabaticity parameter η(r), as described in
Refs. [18,39]:

η(r) = 2p(p − 1)
qVrf

m�2r2
0

(
r

r0

)p−2

. (11)

There is a maximum value of η = ηmax for which the rf heating
makes the motion of the ions unstable. Since η(r) increases
with r , there is a critical radius rc at which η(rc) = ηmax.
Whereas rc decreases with increasing Vrf , rgeom is independent
of Vrf . Therefore, rmax is equal to rgeom at a sufficiently
low Vrf . As Vrf grows, the number of stored ions increases
according to Eq. (10) until rc is reduced to rgeom. A further
increase of Vrf causes a loss of the ions because rmax (now
equal to rc) is reduced. We summarize these two effects as
rmax = min[rc,rgeom]. This behavior has been observed by
Mikosch et al. [23] in their measurements of the trapping
potential depth.

The reduction of the maximum radius rmax observed when
Vrf is changed from 200 to 300 V as shown in Fig. 4 is
attributed to the decrease of rc. For the Vrf = 300 V case,
ηmax is determined to be 0.13, where the value rmax = 3.7 mm
is obtained from Eq. (10) and from the measured N0. We note
that this value for rmax is in good agreement with the data
shown in Fig. 4. Other groups found ηmax = 0.36 ± 0.02 for a
22-pole trap [23] and ηmax ∼ 0.2 for a 3D octopole trap [30].
In addition, Gerlich suggested ηmax = 0.3 from numerical
simulation [18]. Our value is much lower than the one for the
22-pole trap and the calculated one. The 22-pole experiment
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was done with less than 103 ions. Gerlich performed the
simulation for a single ion free from perturbation by other
ions. In contrast, the present experiment was performed under
a strong space-charge effect. The reduction of ηmax indicates
that the ion-ion interaction introduced an additional source of
instability.

On the premise that the same ηmax = 0.13 be applied for the
lower Vrf , the values of rc were calculated to be 4.4 and 6.4 mm
for Vrf = 200 and 95 V, respectively. Clearly, rmax is limited by
rgeom at Vrf = 95 V. At Vrf = 200 V, we were able to store the
maximum number of ions and, therefore, rmax = rc = rgeom;
the rc value of 4.4 mm is in good agreement with the rmax value
extracted from Fig. 4. The value of rgeom/r0 = 4.4/5.5 = 0.8
is consistent with Gerlich’s estimation of rgeom/r0 � 0.8.

The values of rgeom and ηmax are specific of this trap
geometry and possibly valid only in the high-density limit, but
otherwise independent of any other experimental parameter.
We have extracted these values using the measured number
of ions N0 together with Eq. (10), which describes the ion
distribution in the high-density limit. As the measurement
of absolute numbers is always challenging, it is interesting
to consider the inverse problem: namely, the determination
of the absolute number of ions in the trap, N0, based on a
relative measurement of the ion density and on the knowledge
of the characteristics of the trap. This is only possible when
the densities are high enough for the interaction between ions
to become relevant in shaping the ion distribution. Then, one
can turn a relative measurement of the ion distribution into
a measurement of the interaction strength between ions and,
thus, into a measurement of the absolute number of ions. Close
to the space charge limit, one obtains N0 directly by integration
of Eq. (10) between 0 and r0

max, where r0
max is the maximum of

the ion distribution, which is determined experimentally.

VI. SUMMARY

We studied the radial distributions of ions stored in a linear
octopole ion trap near the space-charge limit by monitoring
photofragmentation yields as a function of the laser position.
For the highest densities, we observed that the ion distribution
has a ring profile. We showed that this is a typical feature
of a multipole ion trap. The quadrupole potential, however,
is an exception in the family of the linear multipole rf traps
as it induces a uniform ion distribution even when the space
charge limit is reached. These observations are predicted and
explained by a simple model based on equilibrium between
the effective potential and that produced by the charge of
the ions. The only approximation we used is that the energy
related to the thermal motion of the ions inside the trap is
negligible in comparison with the effective potential generated
by the multipole. This approximation is fulfilled except for
the regions where the effective potential is very flat, which,
however, contain very few ions when the trap is full.

The maximum adiabaticity parameter, ηmax, was estimated
to be 0.13, when the trap is full. This value is lower than those
found in other studies under low ion-density conditions. We
tentatively attribute the reduced value of ηmax to an additional
source of instability induced by repulsive forces among the
stored ions.

Understanding the space-charge effects allows us to extract
the absolute number of ions in the trap and their absolute
density based on the relative distribution. This provides a
way of measuring absolute numbers without knowledge of
absorption cross sections nor detector efficiencies.
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APPENDIX: CHARGE DISTRIBUTION IN A
CYLINDRICALLY SYMMETRICAL EXTERNAL

POTENTIAL

The derivation of Eq. (9) is presented in an alternative way
for a general cylindrically symmetrical external potential. The
charge distribution is derived under the assumption that it is
translational invariant along the z axis, where it extends from
negative to positive infinity. Thus, all extensive quantities as
charge or energy represent a “per unit length” value in the
following.

Assume that a certain amount of charge per unit length, Q0,
is allowed to distribute freely in a cylindrically symmetrical
external potential �ext. In cylindrical coordinates r , z, and θ ,

�ext(r,z,θ ) = �ext(r). (A1)

The charge will distribute radially with density ρ(r) as to
minimize the total electrostatic energy E per unit length of Q0

in �ext. The density, ρ(r), is to be calculated as follows for any
given external potential �ext(r).

It is convenient to introduce the cumulative charge Q(r),
which is the amount of charge per unit length within a cylinder
of radius r around the z axis. Q(r) and ρ(r) are related by

ρ(r) = 1

2πr
Q′(r), (A2)

where Q′(r) is the derivative of Q(r) with respect to r ,
and Q(r) is defined for 0 � r � ∞, its boundary values
are Q(0) = 0 and Q(∞) = Q0. The total energy E per unit
length of the charge distribution is composed of the internal
energy Ei of ρ(r) [i.e., the electrostatic energy resulting from
the repulsion between the volume elements of ρ(r)] and the
external energy, Ee, of the charge distribution ρ(r) in the
external potential. The latter is found by volume-integration of
the product ρ(r)�ext(r) and can be expressed with the help of
Eq. (A2) as a one-dimensional integral along the r coordinate:

Ee =
∫

A

ρ(r)�ext(r) dA =
∫ ∞

0
Q′(r)�ext(r) dr, (A3)

where A represents the volume in the r-θ plane. To access
Ei(r), it is convenient to derive the strength of the radial
internal field E from the first Maxwell equation applied over
the surface of an infinite cylinder of radius r along the z axis:

E = Q(r)

2πε0r
er . (A4)

From classical electrostatics it follows that Ei is given by

Ei = ε0

2

∫
A

E · E dA =
∫ ∞

0

Q2(r)

4πε0r
dr. (A5)
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Combining Eqs. (A3) and (A5), the total energy can be written
as a single integral over r

E =
∫ ∞

0

{
Q′(r)�ext(r) + Q2(r)

4πε0r

}
dr. (A6)

Equation (A6) is already in the canonical form for the calculus
of variations. The distribution Q(r) that minimizes E under
the given boundary conditions can be found by solving the
Euler-Lagrange equation,

∂

∂r

∂L

∂Q′ − ∂L

∂Q
= 0, (A7)

where L = {Q′(r)�ext(r) + Q2(r)
4πε0r

}, the integrand of Eq. (A7),
is the Lagrangian associated with the variational problem.
Equation (A7) leads to

Q(r) = 2πε0r�
′
ext(r), (A8)

which can be used to finally derive ρ(r) with the help of
Eq. (A2):

ρ(r)

ε0
=

{
�′

ext(r)

r
+ �′′

ext(r)

}
= ∇2�ext(r), (A9)

which is equivalent to Eq. (9) and is applicable to calculate
ρ(r) for any given cylindrically symmetric potential �ext(r).
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L. Wöste, and R. S. Berry, Phys. Rev. Lett. 74, 4177
(1995).
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