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Abstract

The Controlled Molecule Imaging group (CMI) at the Center for Free Electron
Laser Science (CFEL) has developed the CMIstark software to calculate, view,
and analyze the energy levels of adiabatic Stark energy curves of linear, sym-
metric top and asymmetric top molecules. The program exploits the symmetry
of the Hamiltonian to generate fully labeled adiabatic Stark energy curves.

CMIstark is written in Python and easily extendable, while the core numer-
ical calculations make use of machine optimized BLAS and LAPACK routines.
Calculated energies are stored in HDF5 files for convenient access and programs
to extract ASCII data or to generate graphical plots are provided.
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No. of bytes in distributed program, including test data, etc.:. 61962

Distribution format:. tar.gz

Programming language:. Python (version 2.6.x, 2.7.x)

Computer:. Any Macintosh, PC, or Linux/UNIX workstations with a modern
Python distribution

Operating system:. Tested on Mac OS X and a variety of Linux distributions

RAM:. 2 GB for typical calculations

Classification:. Atomic and Molecular Physics, Physical Chemistry and Chem-
istry Physics

External routines:. Python packages numpy and scipy; utilizes (optimized) LA-
PACK and BLAS through scipy. All packages available under open-source li-
censes.

Nature of problem:. Calculation of the Stark effect of asymetric top molecules
in arbitrarily strong dc electric fields in a correct symmetry classification and
using correct labeling of the adiabatic Stark curves.

Solution method:. We set up the full M matrices of the quantum-mechanical
Hamiltonian in the basis set of symmetric top wavefunctions and, subsequently,
Wang transform the Hamiltonian matrix. We separate, as far as possible, the
sub-matrices according to the remaining symmetry, and then diagonalize the in-
dividual blocks. This application of the symmetry consideration to the Hamilto-
nian allows an adiabatic correlation of the asymmetric top eigenstates in the dc
electric field to the field-free eigenstates. This directly yields correct adiabatic
state labels and, correspondingly, adiabatic Stark energy curves.

Restrictions:. The maximum value of J is limited by the available main memory.
A modern desktop computer with 16 GB of main memory allows for calculations
including all Js up to a values larger than 100 even for the most complex cases
of asymmetric tops.

Additional comments:.

Running time:. Typically 1 s–1 week on a single CPU or equivalent on multi-
CPU systems (depending greatly on system size and RAM); parallelization
through BLAS/LAPACK. For instance, calculating all energies up to J = 25 of
indole (vide infra) for one field strength takes 1 CPU-s on a current iMac.
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2. Introduction

Over the last decade, the manipulation of the motion of molecules using
electric fields has been revitalized [1–5]. Exploiting the Stark effect, large
asymmetric-top polar molecules have been deflected [6], focused [7], and decel-
erated [8]. These techniques can be used to spatially separate neutral molecules
according to their quantum states [9], structural isomers [7, 10], and clus-
ter sizes [11]. These techniques promise advanced applications of well-defined
samples of complex molecules in various research fields, e. g., modern spec-
troscopies [12, 13] or the direct imaging of structural and chemical dynam-
ics [2, 14–16]. However, successful implementation of these methods requires a
thorough theoretical understanding of the molecule-field interaction for the in-
volved molecular quantum states. Here we provide a well-tested and optimized
program package for the calculation and labeling of so called Stark curves, i. e.,
the energies of molecules as a function of electric field strength, for general
use. This software package will benefit the advance of those forthcoming ap-
plications, esp. also for complex molecules. Moreover, it allows non-specialists
and newcomers to the field to concentrate on their envisioned applications of
controlled molecules.

The code presented here is designed to calculate eigenenergies of very cold
(on the order of a few Kelvin) ensembles of polar molecules in the presence of
external electrostatic fields. The interaction of the molecular dipole moment
with the dc electric field changes the internal energy, and this is called Stark
effect. To quantify this behavior, the eigenvalue problem of the Hamiltonian is
solved. CMIstark does this calculation in terms of numerically diagonalizing
the corresponding Hamiltonian matrix. An efficient method of diagonalizing
the matrix, exploiting underlying physics phenomena, is employed. Moreover,
a correct method of correlating eigenvalues to quantum states, i. e., labeling the
calculated energies for all field strengths, is also required for further use in order
to predict or simulate and analyze control experiments.

The software package is named CMIstark. It is developed and maintained
by the Controlled Molecule Imaging (CMI) group at the Center for Free Electron
Laser Science (CFEL), DESY, in Hamburg, based on earlier work by some of
the authors at the Fritz Haber Institut of the MPG in Berlin.

3. Description

Stark energies are obtained by setting up and diagonalizing the Hamiltonian
matrix for a given electric field strength. The matrix elements can be obtained
analytically (vide infra) and the resulting matrix is diagonalized numerically
to obtain its eigenvalues, corresponding to the energies of the molecular states.
First, the matrix is block-diagonalized as far as possible using symmetry con-
siderations in order to correctly assign quantum numbers to eigenvalues. The
block-diagonalization also significantly reduces the overall computation time,
which is dominated by the diagonalization. The resulting blocks are diagonal-
ized using LAPACK’s dsyevr or zheevr subroutines for real and complex matri-
ces, respectively. The following overview section will provide a brief review of
the main concepts of the above approach.
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3.1. Overview

The quantum-mechanical energy of a molecule, E, can be obtained by solving
the Schrödinger equation

HΨ = EΨ. (1)

Neglecting translation, H denotes the Hamiltonian operator in the center-of-
mass frame and Ψ is the wavefunction. For a rigid rotor and neglecting nuclear
hyperfine-structure effects, the Hamiltonian can be expressed in terms of compo-
nents of the total angular moment operator J about the principal axes (a, b, c),
i. e., Ja,Jb,Jc [17, 18]:

Hrigid = ~2(
J2
a

2Ia
+

J2
b

2Ib
+

J2
c

2Ic
) = h(AJ2

a +BJ2
b + CJ2

c), (2)

where h is Planck’s constant, ~ = h/2π, and Ia, Ib and Ic are three principal
moments of inertia of the rotor. By convention, the principal axes of inertia
(a, b, c) are labeled such that Ia ≤ Ib ≤ Ic. Note that, in the program, instead
of moments of inertia we use rotational constants, A,B,C, which in units of
Hertz (Hz) are [17, 18]:

A =
h

8π2Ia
, B =

h

8π2Ib
, C =

h

8π2Ic
. (3)

Molecular rotors are classified in terms of the magnitudes of their inertial mo-
ments, or rotational constants, as shown in Table 1. Several quantum numbers
are used to denote zero-field wavefunctions and energies of the rotational states
of molecules [17, 18]. The Schrödinger equation of Hrigid, (1) and (2), of linear
rotors and symmetric tops in free space (see Table 1) can be solved analytically,
and their eigenfunctions of Hrigid are expressed as spherical harmonics |J,M〉
and Wigner D matrices |J,K,M〉, respectively [17, 18]. J represents the quan-
tum number of total angular momentum J, K characterizes the projection of J
onto the symmetry axis of the symmetric top, and M is the quantum number
characterizing the projection of J onto a space fixed Z-axis. For asymmetric
tops K is not a good quantum number and the Schrödinger equation of Hrigid

cannot generally be solved analytically. A numerical calculation uses symmetric
top wavefunctions |J,K,M〉 as a basis set for obtaining asymmetric top eigen-
functions |JKaKc

M〉. Here, the quantum number J and two pseudo quantum
numbers Ka,Kc specify the zero-field rotational states. Finally, we only focus
on closed shell molecules, i. e., molecules which do not have unpaired electrons.
Therefore, the values of J , K and M are integer.

However, a real molecular system is not rigid. It is assumed that all non-
rigidity under the experimental conditions (on the order of 1 K) can be described

moments of inertia rotational constant rotor type
Ia = 0; Ib = Ic A =∞, B = C linear top
Ia = Ib = Ic A = B = C spherical top
Ia < Ib = Ic A > B = C prolate symmetric top
Ia = Ib < Ic A = B > C oblate symmetric top
Ia 6= Ib 6= Ic A 6= B 6= C asymmetric top

Table 1: Types of rotors defined through their inertial parameters.
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by a Hamiltonian representing centrifugal distortion, Hd, with corresponding
centrifugal distortion constants [17]. The Hamiltonian for such a nonrigid rotor
is thus written as: Hrot = Hrigid +Hd. The further details of Hd for each type
of rotor are described in the next sections. In all cases we have implemented the
lowest order quartic centrifugal distortion terms. Higher order terms can easily
be added if necessary.

The Stark effect of a polar molecule in a dc electric field is dominated by
the interaction ~µ · ~ε of the molecule’s dipole moment ~µ with the field ~ε. While
higher-order effects become relevant in strong field, they can still be neglected
in our case. For instance, the permanent dipole moment of benzonitriles ground
state leads to an energy shift of 300 GHz at 200 kV/cm, but the corresponding
effect due to the polarizability of the very similar non-polar molecule benzene
is only 50 MHz [19], i. e., almost four orders of magnitude smaller.

The dipole interaction with the electric field is described by the following
contribution to the Hamiltonian:

HStark = −ε
∑

g=x,y,z

µgφZg
, (4)

where x, y, z represent a molecule-fixed coordinate system, µg represent the
dipole moment components along the molecule-fixed axes x, y, z, and φZg

are
the direction cosines of the x, y, z axes with reference to the space-fixed X,Y, Z-
axes. Z is oriented along the electric-field direction. In the program, the prin-
ciple axis system (a, b, c) is identified with the molecule-fixed system (x, y, z) in
representation Ir(x = b, y = c, z = a) [17, 18]. Note that this definition has the
advantage that the Stark Hamiltonian does not mix states with different values
of K if the dipole moment is parallel to the molecular a axis. The rotational
Hamiltonian in the field ε can thus be written as: Hrot, ε = Hrot +HStark.

In the program, the Schrödinger equation of the Hamiltonian in the field,
Hrot, ε, is solved numerically. The corresponding Hamiltonian matrix and the
strategy of its diagonalization are described in following sections for each type of
rotor. Finally, the program assigns the calculated rotational energies in the field
to “adiabatic quantum numbers”, i. e., to the adiabatically corresponding field-
free rotor states [20]. To ensure correct assignments, a symmetry classification of
Hrot, ε and quantum states according the electric field symmetry group [21, 22]
is required. In addition to the separation of M and, for the symmetric top,
K, this is achieved through an appropriate unitary transformation of Hrot, ε

following Wang’s method [17, 23].

3.2. Linear top

In a linear polyatomic molecule, the moment of inertia about the principal
axis a is zero whereas the two other moments of inertia along axes b and c are
equal: Ib = Ic = I. The centrifugal distortion Hamiltanion Hd takes the form

Hd = −hDJ4 (5)

where D (Hz) is a centrifugal distortion constant. The first-order perturbation
energy, which is the expectation value of Hd over field-free linear rotor wave-
functions, |J,M〉, is included in the Hamiltonian matrix. The dipole moment
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of a linear molecule is along its symmetry axis z, i. e., µz = µ and µx = µy = 0.
Thus the Stark Hamiltonian simply becomes

HStark = −µεφZz
(6)

The non-zero matrix elements for Hrot and HStark in the basis of linear top
wavefunctions |J,M〉, are provided in Appendix A. The Hamiltonian matrix is
diagonalized directly without any further simplification.

3.3. Symmetric top

A molecule in which two of the principal moments of inertia are equal is a
symmetric-top rotor, such as a prolate top (Ia < Ib = Ic) and an oblate top
(Ia = Ib < Ic). The figure axis of the molecule,2 which is parallel to the dipole
moment, must lie along the special principal axis of inertia, i. e., along the a
axis for a prolate top and the c axis for an oblate top. The non-rigidity of a
symmetric top is taken into account by including the first order perturbation
energy of the corresponding centrifugal distortion Hamiltonian (Hd) [17] into
the Hamiltonian matrix. The Stark Hamiltonian HStark of symmetric tops is
the same as that for linear rotors, as shown in Equation 6. The matrix elements
for Hrot and HStark in the basis of symmetric top wavefunctions, |J,K,M〉,
are listed in Appendix B. Finally, the strategy for diagonalizing symmetric and
asymmetric top Hamiltonian matrices is the same, and is described in the next
section. Moreover, in the case of the symmetric top, K is a good quantum
number and an additional factorization into separate K blocks is possible.

3.4. Asymmetric top

An asymmetric-top molecule has three non-zero and non-equal principal mo-
ments of inertia. As mentioned before, its Schrödinger equation even in the
field-free case has no trivial analytical solution for general J , and field-free
symmetric top wavefunctions, |J,K,M〉, are used as the basis set for the Hamil-
tonian matrix Hrot, ε [17]. All nonzero matrix elements of Hrot, ε in this basis set
are listed in Appendix C. Note that, in this Hamiltonian matrix Hrot, ε, there
are no off-diagonal matrix elements in M , because M is still a good quantum
number in the field. Thus, the blocks of each value of M in the matrix, as shown
in Figure 1, can be diagonalized separately. As K in the asymmetric top case
and J in the non-zero field case are not good quantum numbers the set of basis
functions for the block must cover a wide enough range of K and J to ensure
the accuracy of the numerical solution of the eigenvalue problem.

A further simplification of the matrix can be obtained by considering the
symmetry properties of the Hamiltonian. As mentioned before, the symme-
try classification is required in order to distinguish avoided crossings (between
curves with the same symmetry) and real crossings (between curves with differ-
ent symmetries) and to assign the energy levels correctly. The field-free Hamil-
tonian operator (Hrigid and Hrot) belongs to a symmetry group called Fourgroup
and it is designated by V (a, b, c) (see Appendix D for a detailed introduction).
However, symmetric top wavefunctions, which are the natural basis set, do not

2Here we consider axially symmetric molecules, ignoring molecules which accidentally have
an equivalent tensor of inertia.
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Figure 1: Schematic illustration of the factoring of the Hamiltonian matrix into blocks, labeled
by HM

i , in terms of M (depicted by dashed lines) and symmetry. Nonzero elements are only
present in the shaded blocks. The number of shaded blocks in each M block depends on the
molecular properties, i. e., the symmetry and the dipole moment direction; see text for details.

belong to the Fourgroup. A transformation to a symmetrized basis is provided
by the Wang transformation of the Hamiltonian matrix [17]:

HWang = X̃HX =
∑
i

Hi (7)

where X denotes the Wang transformation matrix and Hi denotes a sub-matrix
for each symmetry species i. Thus, the Hamiltonian is expressed in a basis of
linear combinations of symmetric top wavefunctions which obey the Fourgroup
symmetry [17]. For a field-free asymmetric top, its Wang transformed Hamilto-
nian matrix, i. e., HWang, rot, can be factorized into four sub-matrices in terms
of the Fourgroup symmetry species, as described in Appendix D.

When an external field is applied, the number of sub-matrices in the Hamil-
tonian matrix, HWang, rot, ε, usually reduces depending on the dipole moment
direction in the molecule and on the values of M . As described in Appendix E
and Appendix F, if the molecule’s dipole moment is parallel to one principal axis
of inertia, HWang, rot, ε can be factorized into two sub-matrices for M 6= 0, and
four for the special case M = 0. If the molecule’s dipole moment is not parallel
to any principal axis of inertia, no factorization of HWang, rot, ε is possible for
M 6= 0. For M = 0 a factorization into two blocks is still possible if one dipole
moment component µα(α = a, b, c) is zero. In any case, the above block diago-
nalization ensures that all eigenstates obtained from the diagonalization of each
sub-matrix HM

i (see Figure 1) belong to a same symmetry. This means that all
crossings between eigenstates of each sub-matrix are avoided and that the en-
ergy order of these states remains the same adiabatically, at any field strength.
As a result, we can sort the resulting states of each HM

i by energy and assign
quantum number labels in the same order as for energy-sorted field-free states
of the same symmetry. This yields a correct assignment of “adiabatic quantum
number labels”, J̃K̃aK̃c

M̃ , to rotational states in the field [20].

3.5. Results

In practice, the calculation of the Stark energies is performed for a num-
ber of electric field strengths – typically in steps of 1 kV/cm from 0 kV/cm to
200 kV/cm – and the resulting energies are stored for later use. The calculated
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Stark curves and effective dipole moments for lowest-lying rotational quantum
states of OCS (linear rotor), iodomethane (symmetric top), and indole (asym-
metric top) are plotted using cmistark plot energies and are shown in Fig-
ure 2(a), Figure 2(b), and Figure 2(c), respectively. Here the effective dipole
moment, µeff, is introduced as:

µeff(ε) = −∂E(ε)

∂ε
(8)

This is the space fixed dipole moment, i. e., the projection of the molecular
frame dipole moment onto the field direction. It is extremely useful in further
simulations on the manipulation of polar molecules with inhomogeneous electric
fields, where the force exerted on the molecule is directly proportional to µeff [24].

Firstly, in these figures, the Stark energy curves from different M always
cross, i. e., M is a good quantum number. Secondly, while the energy curves of
OCS (Figure 2(a) L) and iodomethane (Figure 2(b) L) show relatively simple
structures, those for indole (Figure 2(c) L) show more complicated behavior.
Furthermore, for curves of indole of each M (Figure 2(c) L), most crossings
between Stark curves are avoided, because the dipole moment of indole is not
parallel to any principal axis (µa 6= 0, µb 6= 0, µc = 0). Thus, for M 6= 0 all states
in the field have the same symmetry. For OCS and iodomethane, the sign of
the effective dipole moment, µeff, can be negative or positive, depending on the
quantum state and field strength, as shown in Figure 2(a) R and Figure 2(b) R.
However, for indole, the sign of µeff is mostly positive, as shown in Figure 2(c) R.
The rapid changes of signs and values of µeff shown in Figure 2(c) R are due to
avoided crossings between Stark curves.

In order to evaluate the performance, we have calculated the energy curves
for OCS at 151 field strengths in the range 0 to 150 kV/cm using the different
algorithms for three types of rotors for all states up to J = 32. This yields the
following computation times on a current iMac:

• Linear rotor code: 1.0 s

• Symmetric-top code: 55 s

• Asymmetric-top code: 300 s (3 min 20 s, 150 % CPU utilization)

Note that the runtime largely reflects the time spent on diagonalizing the matrix,
and thus the size of the matrix. According to the LAPACK benchmark report in
LAPACK Users’ Guide [25], for diagonalizing dense symmetric N by N matrices
by using dsyevr, the computing time for N = 1000 is about 400 times of that
for N = 100. However, the computing time for N = 2000 is about 10 times of
that for N = 1000. In practice, for asymmetric top calculations an increase of
the maximum J by 10 (e. g., J = 40 → 50 or J = 90 → 100) included in the
calculation roughly doubles the runtime.

4. Installation instructions

4.1. Requirements

CMIstark needs an operational Python installation, the external Python
packages, numpy, scipy, PyTables, matplotlib, and a command-line interface to
start the various python scripts provided here.
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Figure 2: (L) Stark energies and (R) effective dipole moments (µeff) of OCS, iodomethane,
and indole for the M = 0 (black), M = 1 (blue), and M = 2 (red) levels of J = 0− 2.

9



4.2. Obtaining the code

The program is available from CPC Program Library, Queen’s University,
Belfast, N. Ireland. The latest version of the program can also be obtained from
the Controlled Molecule Imaging (CMI) group.

4.3. Installation

Installation is performed by executing the generic Python install command
python setup.py install in the unpacked source code directory. This re-
quires a write access to the packages directory tree of the Python distribution.
Alternatively, on Unix-like systems the provided shell-script user-install.sh

can be used to install the program into an user-specified directory, such as
$HOME/.python. This method requires the user to define the shell variable
PYTHONHOME to include this directory in the python search path.

5. Documentation

A full documentation is provided within the source code and only briefly
summarized here. To perform a Stark effect calculation the script file
cmistark calculate energy is used. Some of its general command-line op-
tions are

• --<moleculename>: specify which molecule is used in the calculation,

• --dc-fields: specify the range of the dc electric field strength,

• --Jmax calc: specify the maximum value of J included in the calculation,

• --Jmax save: specify the maximum value of J of Stark curves saved in
the output file.

Two scripts cmistark plot energy and cmistark print energy are provided
to access existing files with stored Stark curves, and plot or convert to text,
respectively, all or selected Stark energy curves.

Calculating the Stark curves of OCS is as simple as running the command

cmistark_calculate_energy --Jmax_save=2 --Jmax_calc=10 \

--dc-fields=0:150:151 --OCS

The data is saved in OCS.molecule and no command-line output is produced.
The correct output resulting from this calculation is provided in the samples/

directory of the source code. The plot in Figure 2(a) L can then be produced
by running

cmistark_plot_energy OCS.molecule

Currently, isotopologues of the following molecules are implemented in
cmistark calculate energy, with parameters from the literature as referenced
in the code: 3-aminophenol, carbonylsulfide, water, indole, indole(water)1,
iodomethane, difluoroiodobenzene, aminobenzonitrile, benzonitrile, iodoben-
zene, and sulfurdioxide. Implementing a new molecule is as simple as adding
a code block in cmistark calculate energy to define relevant molecular pa-
rameters, molecular constants and dipole moment components. For the cis and
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trans conformers of 3-aminophenol [26], this is implemented in the following
way:

def three_aminophenol(param):

# Inertial parameters: Filsinger et al, Phys. Chem. Chem. Phys. 10, 666 (2008)

# dipole moment: Filsinger et al, Phys. Chem. Chem. Phys. 10, 666 (2008)

param.name = "3-aminophenol"

param.watson = ’A’ # specify Watson’s A reduction

param.symmetry = ’N’ # specify "no symmetry" in the dc electric field

if param.isomer == 0: # cis-conformer

# the following line specifies the rotational constants (A, B, C)

# in unit of Hz.

param.rotcon = convert.Hz2J(numpy.array([3734.93e6, 1823.2095e6, 1226.493e6]))

# the following line specifies the dipole moment components ($\mu_a,\mu_b,\mu_c$)

# in unit of Debye.

param.dipole = convert.D2Cm(numpy.array([1.7718, 1.517, 0.]))

elif param.isomer == 1: # trans-conformer

param.rotcon = convert.Hz2J(numpy.array([3730.1676e6, 1828.25774e6, 1228.1948e6]))

param.dipole = convert.D2Cm(numpy.array([0.5563, 0.5375, 0.]))

6. Alternative software

Several programs exist for the simulation of rotationally resolved spectra of
asymmetric top molecules, such as pgopher [27], spfit/spcat [28, 29], qs-
tark [30–32], dbsrot [33, 34], krot [35], asyrot [36] and jb95 [37], as well
as programs for automated fitting of high resolution spectra, e. g., based on ge-
netic algorithm [38]. Inherently these programs work by calculating the energies
of all states possibly involved in the relevant transitions, i. e., they do perform
similar calculations as CMIstark. So far, to the best of our knowledge, only
the programs pgopher [27] and qstark [30–32] can also calculate Stark ener-
gies of linear, symmetric, and asymmetric rotors. The program qstark [30–32]
allows calculations including quadrupole coupling effects for one nucleus. pgo-
pher [27] can take into account some internal motions, such as internal rotations
(torsion) or inversion motions, e. g., in NH3. These effects will be implemented
in future versions of CMIstark. However, they require considerably more in-
tricate handling of symmetry properties. However, the available programs are
not well suited for simulations in the controlled molecules field where it is nec-
essary to calculate Stark energies in very strong fields and to correctly label
large numbers of quantum states over the full field-strength regime. For exam-
ple, while the program qstark calculates Stark energies essentially correctly in
strong fields, labeling problems are known when the off-diagonal elements in the
H matrix become sufficiently large [32]. pgopher provides direct access to the
Stark curves of individual or a few quantum states. However, its graphical/text
based access is not convenient for the calculation and storage of many precisely
calculated Stark curves with a sufficiently large range of quantum states. Note
that, even for relatively small complex molecules, such as benzonitrile or indole
under conditions of only few K, many thousand Stark curves need to be calcu-
lated with J up to 50, with hundreds of energies per curve for specific dc field
strengths, and they must be stored for easy retrieval in further calculations.

7. Outlook

The current program has been successfully used in the calculation of Stark
energy maps of various asymmetric top molecules, for instance, benzonitrile [8],
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4-aminobenzonitrile [39], 3-aminophenol [7, 10], indole, and indole-water clus-
ters [11]. Those calculation results from the progam were successfully applied to
fit and analyze experimental data on the manipulation of molecules with elec-
tric fields. The program was also tested against the energies of lowest rotational
states from qstark [30–32], with a relative error on the order of 10−6 limited by
the numerical precision of slightly different implementations of the Hamiltonian
and the matrix diagonalization.

The current program will be further improved in several directions. For
example, for molecules containing large nuclear quadrupole constants the cor-
responding quadrupole coupling terms need to be implemented. The challenge
here is to still automatically symmetrize the Hamiltonian and to correctly label
the resulting states. Moreover, especially many of the small molecules employed
in electric-field manipulation experiments are open-shell, i. e., they possess elec-
tronic (orbital and spin) angular momentum. The respective Hamiltonians could
also be implemented in CMIstark. We will implement such extensions as they
are relevant for the simulation of our manipulation experiments. We will sup-
port third parties to extend our code to their needs, under the provision that it
is provided to all users after a reasonable amount of time.
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Appendix A. Matrix elements for linear rotors

For the linear top, the matrix elements of Hrigid and Hd can be written
as [17]:

〈J,M |Hrigid|J,M〉 = hBJ(J + 1), (A.1)

〈J,M |Hd|J,M〉 = −hDJ2(J + 1)2, (A.2)

where B (Hz) and D (Hz) are the corresponding rotational constant and the
quartic centrifugal distortion constant, respectively. The matrix elements for
the Stark Hamiltonian HStark are expressed as following [18]:

〈J + 1,M |HStark|J,M〉 = 〈J,M |HStark|J + 1,M〉

= −
√

(J + 1)2 −M2√
(2J + 1)(2J + 3)

µε (A.3)

Appendix B. Matrix elements for symmetric tops

For the rigid prolate and oblate symmetric top the matrix elements of Hrigid

can be written as [17]:

〈J,K,M |Hrigid|J,K,M〉 = h
[
BJ(J + 1) + (A−B)K2

]
(prolate) (B.1)

〈J,K,M |Hrigid|J,K,M〉 = h
[
BJ(J + 1) + (B − C)K2

]
(oblate) (B.2)

12



with the rotational constants A, B, C (Hz). The matrix elements of Hd are
expressed as following [17]:

〈J,K,M |Hd|J,K,M〉 = −h
[
∆JJ

2(J + 1)2 + ∆JKJ(J + 1)K2 + ∆KK
4
]

(B.3)

where ∆J ,∆JK and ∆K are the first-order (quartic) centrifugal distortion con-
stants (Hz). The matrix elements of HStark are [18]:

〈J,K,M |HStark|J,K,M〉 = − MK

J(J + 1)
µε (B.4)

〈J + 1,K,M |HStark|J,K,M〉 = 〈J,K,M |HStark|J + 1,K,M〉

= −
√

(J + 1)2 −K2
√

(J + 1)2 −M2

(J + 1)
√

(2J + 1)(2J + 3)
µε (B.5)

Appendix C. Matrix elements for asymmetric tops

For the rigid asymmetric top, the matrix elements of Hrigid in terms of Ir

representation [17] can be written as [17, 18]:

〈J,K,M |Hrigid|J,K,M〉 = h

[
B + C

2
(J(J + 1)−K2) +AK2

]
, (C.1)

〈J,K + 2,M |Hrigid|J,K,M〉 = 〈J,K,M |Hrigid|J,K + 2,M〉

=
h(B − C)

4

√
J(J + 1)−K(K + 1)

√
J(J + 1)− (K + 1)(K + 2), (C.2)

with the rotational constants A, B, C (Hz). The distortable rotor is described
using Watson’s A reduction [40]:

〈J,K,M |Hd|J,K,M〉 = −h
[
∆J(J(J + 1))2 + ∆JKJ(J + 1)K2 + ∆KK

4
]
,

(C.3)

〈J,K + 2,M |Hd|J,K,M〉 = 〈J,K,M |Hd|J,K + 2,M〉

= − h
[
δJJ(J + 1) +

δK
2

((K + 2)2 +K2)

]
×
√
J(J + 1)−K(K + 1) (C.4)

×
√
J(J + 1)− (K + 1)(K + 2)

with the five linearly independent quartic distortion constants ∆J ,∆JK ,∆K , δJ
and δK (Hz). The contribution of µa, i. e., the dipole moment component along
the principal axis of inertia a, is [18, 41]:

〈J,K,M |Ha
Stark|J,K,M〉 = − MK

J(J + 1)
µaε (C.5)

〈J + 1,K,M |Ha
Stark|J,K,M〉 = 〈J,K,M |Ha

Stark|J + 1,K,M〉

= −
√

(J + 1)2 −K2
√

(J + 1)2 −M2

(J + 1)
√

(2J + 1)(2J + 3)
µaε (C.6)
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The contribution of µb is:

〈J,K + 1,M |Hb
Stark|J,K,M〉 = −

M
√

(J −K)(J +K + 1)

2J(J + 1)
µbε (C.7)

〈J + 1,K ± 1,M |Hb
Stark|J,K,M〉

= ±
√

(J ±K + 1)(J ±K + 2)
√

(J + 1)2 −M2

2(J + 1)
√

(2J + 1)(2J + 3)
µbε (C.8)

The HStark matrix elements involving µc are:

〈J,K ± 1,M |Hc
Stark|J,K,M〉 = ±i

M
√

(J ∓K)(J ±K + 1)

2J(J + 1)
µcε (C.9)

〈J + 1,K ± 1,M |Hc
Stark|J,K,M〉

= −i
√

(J ±K + 1)(J ±K + 2)
√

(J + 1)2 −M2

2(J + 1)
√

(2J + 1)(2J + 3)
µcε (C.10)

Note that the equations above use the representation Ir with the phase conven-
tion and formalism of Zare [18].

Appendix D. Fourgroup

The symmetry properties of the rotational Hamiltonian, as well as rotational
wavefunctions, of a rigid asymmetric top molecule may be deduced from its
ellipsoid of inertia, which is symmetric not only to an identity operation E but
also to a rotation by 180◦, a C2 operation, about any of its principal axes of
inertia. This set of symmetry operations forms the Fourgroup (Viergruppe),
which is designated by V (a, b, c) [17]. These symmetry operations cause the
angular momentum to transform in the following manner [17]:

E : Ja → Ja,Jb → Jb,Jc → Jc (D.1)

Ca2 : Ja → Ja,Jb → −Jb,Jc → −Jc (D.2)

Cb2 : Ja → −Ja,Jb → Jb,Jc → −Jc (D.3)

Cc2 : Ja → −Ja,Jb → −Jb,Jc → Jc (D.4)

The character table of the Fourgroup can is shown in Table D.2.

Appendix E. Wang transformation

The field-free semirigid rotor Hamiltonian operators Hrigid + Hd described
above can be symmetrized to belong to the Fourgroup V and every field-free ro-
tor wavefunction can be classified according to its behavior under V (a, b, c) [17].
This symmetry classification is provided in Table E.3.
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The symmetrized basis functions constructed by Wang transformation are
defined as [17, 23, 42]:

|J, 0,M, 0〉 = |J, 0,M〉 for K = 0 (E.1)

|J,K,M, s〉 =
1√
2

(|J,K,M〉+ (−1)s|J,−K,M〉) for K 6= 0 (E.2)

where s is 0 (symmetric) or 1 (antisymmetric) and K now takes on only positive
values. The Wang transformation can be expressed in a matrix form and the
transformation matrix X of order (2J + 1) can be expressed as:

X = X−1 = X̃ =
1√
2



. . .
...

...

−1 0 0 0 1
0 −1 0 1 0

· · · 0 0
√

2 0 0 · · ·
0 1 0 1 0
1 0 0 0 1

...
...

. . .


(E.3)

The change of basis can be written as ΨWang = X̃Ψ. For fixed values of J and
M , the vector Ψ consists of (2J + 1) symmetric top basis functions |J,K,M〉,
whereas ΨWang is the vector of new basis functions that contains the (2J + 1)
symmetrized functions |J,K,M, s〉:

ΨWang =



|J, J,M, 1〉
|J, (J − 1),M, 1〉

...
|J, 1,M, 1〉
|J, 0,M, 0〉
|J, 1,M, 0〉

...
|J, (J − 1),M, 0〉
|J, J,M, 0〉


, Ψ =



|J,−J,M〉
|J, (−J + 1),M〉

...
|J,−1,M〉
|J, 0,M〉
|J, 1,M〉

...
|J, (J − 1),M〉
|J, J,M〉


(E.4)

In the new basis the Hamiltonian matrix factorizes into four sub-matrices that
are historically denoted as E+, O+, E−, O− [23, 42]:

HWang, rot = X̃HrotX = E+ +O+ + E− +O− (E.5)

These sub-matrices are classified by the eveness and oddness of K and s, as
shown in Table E.3. For a single value of J , |J,K,M, s〉 wavefunctions within

V E Ca2 Cb2 Cc2
A 1 1 1 1
Ba 1 1 -1 -1
Bb 1 -1 1 -1
Bc 1 -1 -1 1

Table D.2: character table for the four group V
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each sub-matrix all belong to a same symmetry species of V [17, 43] and the
correlation is given in Table E.3. Thus, HWang, rot can also be block-diagonalized
in terms of four symmetry species, A, Ba, Bb, and Bc. This symmetrization
of the basis by the Wang transformation simplifying the numerical evaluation
and, most importantly, is necessary for the correct adiabatic labeling of the
eigenstates in the electric field.

Appendix F. Block diagonalization of the Hamiltonian matrix

The Hamiltonian is block-diagonal in M and the calculations are performed
for each M separately. In the field-free case all Ms are degenerate and only
M = 0 is calculated. For the symmetric top, K is a good quantum number and
the matrix is always also factorized into separate K blocks. As mentioned in
Appendix E, the Hamiltonian matrix of field-free symmetric or asymmetric tops
can be block diagonalized into four blocks according to Fourgroup symmetry.
An external dc electric field can mix these blocks, but remaining symmetries
allow partial factorization. In Table F.4 we summarize the block diagonalization
of the Hamiltonian matrix in an electric field according to V for all possible cases
of non-zero dipole moment directions, i. e., all possible combinations of non-zero
dipole-moment components in the principal axes of inertia system. We note
that the remaining symmetry can be higher for M = 0 than for M 6= 0. This
can also be seen from the matrix elements given above, where the ∆J = 0 Stark-
coupling elements are always proportional to M , i. e., these couplings vanish for
M = 0.

The factorization summarized in Table F.4 can be understood in terms of
the symmetry properties of the direction cosine φZg

in (4) [17]. For the case of
µ = µα and M 6= 0, basis functions of symmetries A and Bα are coupled, as
well as those of symmetries Bα′ and Bα′′ , where α 6= α′ 6= α′′ 6= α. However,
no coupling between these two subsets exist. The Hamiltonian matrix can thus
be factorized into two blocks, as listed in Table F.4, one (filled square symbol)
containing A and Bα and the other one (filled diamond symbol) containing Bα′

and Bα′′ . For the special case of M = 0, states of symmetries A and Bα for
any given J are also not coupled, nor are states of symmetries Bα′ and Bα′′

coupled [44]. This is due to the vanishing matrix elements (C.5), (C.7), and
(C.9) for M = 0. As a result, states of symmetry A in Jeven (Jodd) only couple
with those of symmetry Bα in Jodd (Jeven), etc. This remaining symmetry for
the case µ = µα is represented by the open square symbol (open circle symbol)
in the first line of Table F.4. States of symmetries Bα′ and Bα′′ also couple

submatrix K s Jeven Jodd
E+ e 0 A(ee) Ba(eo)
E− e 1 Ba(eo) A(ee)
O+ o 0 Bb(oo) Bc(oe)
O− o 1 Bc(oe) Bb(oo)

Table E.3: Symmetry classification of asymmetric top wavefunctions |JKaKc ,M〉 for represen-
tation Ir [18]. The symmetry species of each JKaKc is determined by the eveness or oddness
of Ka and Kc, which is indicated in parentheses in columns 4 and 5. The classification of
Wang sub-matrices is also provided.
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in the same manner, and their remaining symmetries are represented by open
triangle and open diamond symbols in Table F.4. Similar behavior is observed
for all cases when the dipole moment is along a principal axis of inertia. For
the cases with more than one non-zero dipole moment component states of all
four symmetry species A, Ba, Bb and Bc are coupled for M 6= 0 and only one
symmetry species remains. For M = 0 and one µα = 0, the Hamiltonian matrix
can be factorized into two blocks. For a dipole moment with components along
all principal axes of inertia no partial Fourgroup symmetry remains in an electric
field.
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Chem. Chem. Phys. 13 (2011) 2076–2087.

[3] M. Schnell, G. Meijer, Angew. Chem. Int. Ed. 48 (2009) 6010–6031.

[4] M. T. Bell, T. P. Softley, Mol. Phys. 107 (2009) 99–132.
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Hinds, G. Meijer, J. Phys. B 39 (2006) R263–R291.

[25] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sørensen,
LAPACK Users’ Guide, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 3rd edition, 1999.

[26] F. Filsinger, K. Wohlfart, M. Schnell, J.-U. Grabow, J. Küpper, Phys.
Chem. Chem. Phys. 10 (2008) 666–673.

[27] C. M. Western, PGOPHER, a Program for Simulating Rotational Struc-
ture, 2003-2013. University of Bristol, Bristol, UK, URL: http://pgopher.
chm.bris.ac.uk.

18

http://pgopher.chm.bris.ac.uk
http://pgopher.chm.bris.ac.uk


[28] H. M. Pickett, J. Mol. Spec. 148 (1991) 371–377.

[29] H. M. Pickett, SPFIT/SPCAT, programs for fitting and predictions in ro-
tational spectroscopy, 1991-2007. URL: http://spec.jpl.nasa.gov.

[30] Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon, E. Steiner, J. Phys.
Chem. A 104 (2000) 6970–6978.

[31] Z. Kisiel, J. Kosarzewski, B. A. Pietrewicz, L. Pszczó lkowski, Chem. Phys.
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(2010) 052513.

[40] J. K. G. Watson, in: J. R. Durig (Ed.), Vibrational Spectra and Structure,
volume 6, Marcel Dekker, 1977, p. 1.

[41] P. C. Cross, R. M. Hainer, G. W. King, J. Chem. Phys. 12 (1944) 210.

[42] R. Mulliken, Phys. Rev. 59 (1941) 873–889.

[43] R. M. Hainer, P. C. Cross, G. W. King, J. Chem. Phys. 17 (1949) 826.

[44] R. Escribano, B. Mate, F. Ortigoso, J. Ortigoso, Phys. Rev. A 62 (2000)
023407.

19

http://spec.jpl.nasa.gov
http://www.ifpan.edu.pl/~kisiel/dip/dip.htm#qstark
http://www.ifpan.edu.pl/~kisiel/dip/dip.htm#qstark

	1 Program summary
	2 Introduction
	3 Description
	3.1 Overview
	3.2 Linear top
	3.3 Symmetric top
	3.4 Asymmetric top
	3.5 Results

	4 Installation instructions
	4.1 Requirements
	4.2 Obtaining the code
	4.3 Installation

	5 Documentation
	6 Alternative software
	7 Outlook
	Appendix A Matrix elements for linear rotors
	Appendix B Matrix elements for symmetric tops
	Appendix C Matrix elements for asymmetric tops
	Appendix D Fourgroup
	Appendix E Wang transformation
	Appendix F Block diagonalization of the Hamiltonian matrix

