Der Einfluss von Spannungen auf die Reaktivität von getragenen Metalloxidkatalysatoren

Kazuhiko Amakawa, Lili Sun, Chunsheng Guo, Michael Hävecker, Pierre Kube, Israel E. Wachs, Soe Lwin, Anatoly I. Frenkel, Anitha Patlolla, Klaus Hermann, Robert Schlögl und Annette Trunschke*

Sir H.S. Taylor schlug im Jahre 1925 vor, dass nur wenige Oberflächenatome eines Katalysators, die sich energetisch in einem ungünstigeren Zustand befinden (z.B. koordinativ ungesättigte Zentren), für die Katalyse verantwortlich sind.^[1] Experimentelle und theoretische Bestätigung fand dieses Konzept erst Jahrzehnte später. Für Modellkatalysatoren konnten die Oberflächenwissenschaften in metallkatalysierten Reaktionen hochaktive, niedrig-koordinierte Atome an den Kanten von Stufen nachweisen.^[2] Jüngste Fortschritte in den Materialwissenschaften bestätigten, dass Sir Taylor's Konzept auch auf leistungsfähige Multikomponentenkatalysatoren, wie z.B. nano-strukturierte Cu/ZnO Katalysatoren für die Methanolsynthese^[3] oder Nano-Partikel von Gold auf TiO₂,^[4] angewendet werden kann, wobei hier Ensemble, die an Oberflächendefekten oder an der Metall-Träger-Grenzfläche

[*] Dr. K. Amakawa, Dr. L. Sun, Dr. C. S. Guo, Dr. M. Hävecker,
P. Kube, Prof. Dr. K. Hermann, Prof. Dr. R. Schlögl, Dr. A. Trunschke
Department of Inorganic Chemistry
Fritz-Haber-Institut der Max Planck Gesellschaft
Faradayweg 4-6, 14195 Berlin (Germany)
E-mail: trunschke@fhi-berlin.mpg.de
Homepage: http://www.fhi-berlin.mpg.de/

> Dr. M. Hävecker Department of Solar Energy Research Helmholtz-Zentrum Berlin/BESSY II Albert-Einstein-Str. 15, 12489 Berlin (Germany)

Prof. Dr. I. E. Wachs, S. Lwin Operando Molecular Spectroscopy & Catalysis Laboratory Department of Chemical Engineering Lehigh University Bethlehem, Pennsylvania 18015 (USA)

Prof. Dr. A. I. Frenkel, Dr. A. Patlolla Department of Physics Yeshiva University 245 Lexington Avenue, New York, NY 10016 (USA)

[**] Wir danken G. Weinberg, Dr. T. Cotter, M. Hashagen, G. Lorenz, Dr. F. Girgsdies, E. Kitzelmann, A. Klein-Hoffmann, C.V.T. Nguyen, den NSLS und HZB Angestellten für ihre professionelle Hilfe. Prof. Dr. I.E. Wachs dankt der Alexander von Humboldt Stiftung für einen Humboldt Forschungspreis. Prof. Dr. A. I. Frenkel erhielt Fördermittel aus dem U.S. DOE Grant No. DE-FG02-05ER15688 für die X18B Strahlrohr-Betreibung. S. Lwin and C.V.T Nguyen bedanken sich für folgende Fördermittel: U.S. DOE-Basic Energy Sciences (Grant No. FG02-93ER14350), NSF-Research Experience for Undergraduates (Grant No. CBET-1134012). K. Amakawa ist der Firma Mitsubishi Gas Chemical Co. Inc. dankbar für ein Stipendium.

Weitere Informationen sind im WWW unter http://www.angewandte.org oder beim Autor verfügbar. gebildet werden, die katalytische Aktivität bestimmen.

Monolagenkatalysatoren, bei denen eine Metalloxidphase als zweidimensionale Oberflächenschicht auf einen Träger aufgezogen wurde, bilden eine weitere wichtige Klasse von heterogenen Katalysatoren. Auch hier wird eine Struktursensitivität beobachtet. Die Tatsache, dass z.B. nur etwa ~1.5% der Molybdänatome in Siliziumdioxid-getragenen MoO₃-Katalysatoren als aktive Zentren für die Metathese von Olefinen fungieren,^[5] erinnert an das Konzept von Sir Taylor. Die katalytische Leistung von getragenen Metalloxiden weist mitunter eine nichtlineare Abhängigkeit bezüglich der Beladung mit dem Metalloxid auf, wobei es zu einem sprunghaften Anstieg der katalytischen Aktivität oberhalb eines kritischen Bedeckungsgrades kommt.^[6–10] Die Ursache für dieses experimentell beobachte Phänomen blieb bislang ungeklärt.

In der vorliegenden Arbeit wurden Siliziumdioxid-getragene Molybdänoxide, die Modellkatalysatoren für Oxidationsreaktionen^[8] und die Metathese von Olefinen^[5,9] darstellen, ausgewählt, um den Einfluss der Beladung auf die katalytischen Eigenschaften zu studieren. Dabei wurde wasserfreies^[11] Molybdänoxid, aufgebracht auf mesoporöses Siliziumdioxid SBA-15 (MoO_x/SBA-15), zunächst mittels Temperatur-programmierter Reduktion mit Wasserstoff (H₂-TPR) untersucht.^[6,9,10] Die H₂-TPR Profile (Abbildung 1) zeigen einen Anstieg der Reduzierbarkeit mit zunehmender Molybdänoxid-Beladung. Bei der niedrigsten Beladung (2.1% Mo) wird ein einziges, scharfes Reduktionssignal bei 1158 K beobachtet. Wird die Beladung stufenweise erhöht, erscheint neben der voranschreitenden Verbreiterung dieses Hochtemperatursignals ein neues Tieftemperatursignal bei 856 K. auf ein vermehrtes Auftreten von Oberflächendas Molybdänoxidspezies mit verbesserter Reduzierbarkeit schließen lässt.

Abbildung 1. Temperatur-programmierte Reduktion (H₂-TPR) von MoO_x/SBA-15 gemessen bei einer Heizrate von 10 K min⁻¹ in 2% H₂ in Ar nach Vorbehandlung in 20% O₂ in Ar bei 823 K für 0.5 h.

Der Einfluss des Bedeckungsgrades auf die Reaktivität von Monolagen-Übergangsmetalloxidkatalysatoren wird gemeinhin Änderungen im Grad der Polymerisation, d.h. dem Auftreten von Polymeren und nano-kristallinen Monomeren, Domänen, zugeschrieben.^[7] Die spektroskopische Untersuchung der vorliegenden Beladungsserie zeigt jedoch, dass sich die Struktur mit der Beladung in nur sehr eingeschränktem Maße ändert. Ähnliche spektroskopische Charakteristika an der Mo K-Kante der Röntgenabsorptionsspektren (XANES) und vergleichbare Bandenformen in den UV-vis-Spektren (Abbildung 2 a und b) lassen lediglich geringfügige Änderungen im Polymerisationsgrad und der Koordinationsgeometrie vermuten.^[12] Molybdän liegt wie in der Vergleichsverbindung Al2(MoO4)3 vorrangig tetraedrisch koordiniert vor, worauf die intensive Vorkanten-Bande bei 20006 eV hindeutet (Abbildung 2b). Durch Auswertung der Feinstruktur der Röntgenabsorptionsspektren an der Mo K-Kante (EXAFS) (Abbildung 2c) werden zwei diskrete Bindungsabstände bei R < 2 Å gefunden, die in Übereinstimmung mit der Lage der Schwingungsbanden in den Raman- und IR-Spektren Mo=O Doppel- und Mo-O Einfachbindungen zugeordnet werden können (Zusatzinformationen; Abbildung S6, 980-997 cm⁻¹ für Mo=O, und 926-943 cm⁻¹ für Mo-O).^[13-16] Auch die durch DFT Rechnungen gestützte Auswertung der Röntgenabsorptionsspektren an der Sauerstoff K-Kante liefert konsistente Ergebnisse. Die beiden bei geringen Beladungen beobachteten Absorptionsbanden an der O 1s-Kante (Abbildung 2d; Banden bei 530.2 und 532.5 eV) stimmen bei Zugrundelegung von Modellen mit zweifach verankerten di-oxo (Si-O-)2Mo(=O)2 Strukturen, die Si-Si Abstände von etwa 4.6-4.7 Å aufweisen, gut mit den mittels DFT^[17] simulierten Spektren überein (Zusatzinformationen; Cluster a und b in Abbildung S1, Abbildung S5A, Tabelle S1). Auch bei der Anpassung der Röntgenabsorptionsspektren an der Mo K-Kante (EXAFS) am selben Modell werden Mo-O Bindungslängen in guter Übereinstimmung mit den theoretischen Vorhersagen erhalten. (Zusatzinformationen; Abbildungen S1, S4, Tabellen S1, S3). Darüber hinaus geben die berechneten IR-Spektren des di-oxo Modells das Experiment zufriedenstellend wieder (Zusatzinformationen; Abbildungen S6D, S7). In Übereinstimmung mit früheren Arbeiten^[13–17] zeigen alle diese Ergebnisse, dass es sich bei den zweifach verankerten, tetraedrischen di-oxo (Si-O-)₂Mo(=O)₂ Einheiten um die dominierenden Oberflächenspezies in SiO₂-getragenen Molybdänoxidkatalysatoren handelt.

Während die durch EXAFS ermittelten Bindungslängen in den dominierenden Oberflächenspezies keine Abhängigkeit von der Mo Beladung aufweisen (Zusatzinformationen; Tabelle S3), offenbaren die Röntgenabsorptionsspektren an der O K-Kante (NEXAFS) eine deutliche Varianz bezüglich der tetraedrischen Feinstruktur dieser Spezies. Mit zunehmender Beladung geht die im für Molybdänoxid charakteristischen Spektralbereich (528-534 eV) bei niedriger Beladung beobachtete gute Trennung der beiden Banden durch Bandenverbreiterung verloren und es tritt eine neue Komponente bei 531 eV auf (Abbildung 2d). Diese Veränderungen scheinen mit der Verbreiterung des Hochtemperatursignals und dem Auftreten eines neuen Tieftemperatursignals bei 856 K in den H2-TPR Profilen (Abbildung 1) in Verbindung zu stehen. Die breite Absorption im NEXAFS bei höheren Beladungen ist jedenfalls nicht mit der klar getrennten Doppelbandenstruktur des kristallinen Na₂MoO₄ (Abbildung 2d), das aus einheitlichen, isolierten MoO₄ Einheiten besteht, vereinbar. Wir vermuten, dass diese Diskrepanz auf Änderungen in den Bindungswinkeln zurückzuführen ist, die durch bedeckungsgradabhängige Änderungen in den Mo-Si Abständen hervorgerufen wird. In Übereinstimmung mit dieser Vermutung zeigt die Auswertung der Röntgenabsorptionsspektren an der Mo K-Kante (EXAFS) mit zunehmender Beladung weder spezifische Banden, noch systematische Änderungen in Richtung größerer Abstände (Abbildung 2c), was auf das Fehlen einer wohldefinierten Ordnung jenseits der ersten Koordinationssphäre hinweist. Im Gegensatz dazu wird das Vorliegen einer breiten Verteilung von Mo—Si Abständen in den verankernden Mo—O—Si Gruppen anzeigt.

Abbildung 2. (a) UV-vis, (b) Mo K-Kanten XANES, (c) FT Mo K-Kanten EXAFS (phasenunkorrigiert), und (d) O K-Kanten NEXAFS Spektren von wasserfreiem MoO_x/SBA-15.

Die verschiedenen Mo-Si Abstände resultieren aus der amorphen Natur des Siliziumdioxids, für das eine breite Verteilung der Si-Si Abstände zwischen benachbarten Silanolgruppen charakteristisch ist.^[13,18,19] Die Silanolgruppen sind für die Verankerung der Molybdänoxidspezies verantwortlich. Wenn die Si-Si-Abstände variieren, ist auch eine Variation der durch die Verankerung erhaltenen Mo-O-Si Bindungswinkel und O-Si Bindungslängen zur erwarten. Zusätzlich können vereinzelt vierfach koordinierte, pentaedrische mono-oxo (Si-O-)₄Mo=O Strukturen auftreten, wenn vier Silanolgruppen in vorteilhafter Weise an der Oberfläche arrangiert vorliegen.^[13] In der Tat können mittels Resonanz Raman Spektroskopie zusätzliche Schwingungsbanden beobachtet werden, die mono-oxo Spezies zuzuordnen sind^[13,14] Mit Hilfe resonanter Raman Spektroskopie lassen sich Minoritätsspezies nachweisen, die in der nicht-resonanten Raman Analyse unsichtbar sind (Zusatzinformationen; Abbildung S8).

Terminale Silanolgruppen werden durch die Bildung von Mo-O-Si Brückenbindungen bei der Verankerung des Molybdänoxids an der Siliziumdioxidoberfläche verbraucht. Die Dichte der isolierten Silanolgruppen fällt von 1.6 (reines SBA-15) auf 0.07 (13.3% Mo) Zentren pro Quadratnanometer (Zusatzinformationen; Tabelle S2, Abbildung S6C), was bedeutet, dass ein starkes Defizit an Silanolgruppen bei hohen Molybdänoxidbeladungen auftritt. Die limitierte Verfügbarkeit von OH Gruppen führt zu hohen strukturellen Spannungen bei der Verankerung von Molybdänoxidspezies mit mindestens 2 Bindungen zum Träger (wie z.B. in den di-oxo Strukturen). Dieser Gedanke wird in Abbildung 3 schematisch erläutert. Die zweidimensionale (x-y Achsen) Beschreibung in Abbildung 3a zeigt ein Netzwerk von Siloxanringen, die verschiedene Ringgrößen aufweisen,^[18,20] während eine weitere zweidimensionale Perspektive in Abbildung 3b daran erinnern soll, dass im realen 3D Raum auch Variationen in Richtung der z Achse auftreten. Aus Abbildung 3a geht hervor, dass di-oxo MoO₄ Einheiten, die bei geringen Beladungen verankert werden, wenig verzerrte Konfigurationen bilden, während nachfolgende di-oxo MoO₄ Strukturen mit abnehmender Silanolgruppendichte zunehmend verzerrte Konfigurationen einnehmen müssen. Die Verteilung der Spezies wird aufgrund der Molybdänoxid^[11,22] hohen Oberflächenmobilität von höchstwahrscheinlich von ihrer thermodynamischen Stabilität bestimmt.^[21] In der zweidimensionalen Projektion können die geometrischen Einschränkungen annähernd an Hand der Größe des kleinsten Molybdosiloxanrings, der zu einer di-oxo MoO₄ Einheit gehört, abgeschätzt werden (Abbildung 3a). Wird das 2D Modell auf den 3D Raum erweitert, ergeben sich weitere Kombinationsmöglichkeiten von Silanolgruppen selbst bei gleicher Grösse des Molybdosiloxanrings.

a) Draufsicht

Abbildung 3. Schematische Darstellung möglicher Verankerungen von di-oxo (—Si—O—) $_2$ Mo(=O) $_2$ Spezies an einer 2D SiO $_2$ Oberfläche bei unterschiedlichen Molybdänbeladungen. Die verschiedenfarbigen Linien in der Draufsicht a) stellen di-oxo Spezies mit unterschiedlichem Grad von strukturellen Spannungen dar.

Spannungen in den ankernden Bindungen führen zu einer hohen potentiellen Energie an dieser Stelle, was unter Berücksichtigung der Brønsted–Evans–Polanyi Beziehung,^[23,24] die offenbar auch auf Metalloxide anwendbar ist,^[25] sehr wahrscheinlich zu einer Erhöhung der Reaktivität führt. Folglich lässt sich die verbesserte Reduzierbarkeit des Molybdänoxids bei hohen Beladungen (Abbildung 1) mit starken Spannungen in einem Teil der vorrangig aus di-oxo MoO_4 Strukturen bestehenden Molybdänoxidspezies erklären. Das Auftreten des Tieftemperatursignals bei 856 K in den H₂-TPR Profilen könnte das Vorliegen von diskreten Si—Si Abständen anzeigen (die zu einer bestimmten Molybdosiloxan-Ringgröße gehören), welche gegenüber Wasserstoff eine besonders hohe Reaktivität aufweisen. Das ist einsehbar, da die Flexibilität des Siloxan-Netzwerkes nicht beliebig ist.

Da die Verfügbarkeit von Hydroxyl-Ankergruppen eng mit dem Effekt der geometrischen Verspannung verbunden ist, könnte die Reaktivität nicht nur eine Funktion der Metallbeladung, sondern auch der Silanolgruppendichte des Trägermaterials sein. Diese lässt sich z.B. über die Dehydratisierungstemperatur während der Vorbehandlung einstellen. So steigt in der Tat die Aktivität von Silziumdioxid-getragenen Chromoxidkatalysatoren (Phillips Katalysatoren) mit steigender Aktivierungstemperatur bis 1198 K. Durch die Aktivierung kommt es zu einer zunehmenden Dehydroxylierung.^[26–28] Folglich könnte die Aktivitätssteigerung auch hier in Sinne zunehmender geometrischer Spannungen in den Oberflächen-Chromatspezies verstanden werden.^[27–30]

Um den Einfluss der Verankerungsgeometrie auf die NEXAFS Spektren an der O-K Kante detaillierter zu untersuchen, wurde eine hochverzerrte di-oxo $(Si - O)_2 Mo = O)_2$ Struktur (Zusatzinformationen; Cluster c in Abbildung S1) berechnet, die an einem Silanolpaar verankert ist, das mit 3.07 Å einen viel kürzeren Si-Si Abstand als in anderen Clustermodellen (4.6-4.7 Å) aufweist (Zusatzinformationen; Abbildung S1, Tabelle S1). Diese geometrische Einschränkung bewirkt eine signifikante Änderung des O=Mo=O Bindungswinkels und der Mo=O Bindungslänge, was sich wiederum deutlich im NEXAFS Spektrum wiederspiegelt (Zusatzinformationen; Tabelle S1, Abbildung S5A). Die Änderung des O=Mo=O Bindungswinkels in einem Clustermodell, bei dem alle anderen geometrischen Parameter eingefroren wurden, bewirkte deutliche systematische Änderungen in den berechneten O-K NEXAFS Spektren (Ergebnisse nicht gezeigt). Es wurde gefunden, dass einige der winkelmodifizierten di-oxo Cluster eine intensive Absorption bei 531 eV aufweisen (Zusatzinformationen; Abbildung S5B), was möglicherweise ein Erklärung für die experimentell beobachtete Intensitätserhöhung bei 531 eV an den hochbeladenen Proben liefert (Abbildung 2d). Da MoOx/SBA-15 Katalysatoren, wie durch H2-TPR gezeigt, eine breite Verteilung von Spezies aufweisen, vermitteln die gemessenen NEXAFS Spektren an der O-K Kante lediglich das integrale Mittel aller Spezies. Auf Grund der limitierten Zahl der hier verwendeten Clustermodelle können die Spektren somit nicht exakt simuliert werden. Trotzdem stimmt der experimentell beobachtete Trend gut mit den Simulationen überein, wenn zunehmende Spannungen in den (Si-O-)2Mo(=O)2 Einheiten auf Grund von limitiertem Platz an der SiO2-Oberfläche durch die Modelle eingeführt werden. Die höhere Sensitivität der NEXAFS Spektren an der O-K Kante im Vergleich zu den UV-vis und XANES Spektren an der Mo-K Kante kann darauf zurückgeführt werden, dass NEXAFS auf der Anregung von Elektronen aus isotropen (spherischen) O 1s Orbitalen aller am Mo koordinierten Sauerstoffatome in unbesetzte, anisotrope Mo 4d-O 2p Orbitale beruht.

Zusätzlich zu den durch die verankernden Mo—O—Si Bindungen bedingten geometrischen Verspannungen können bei höheren Beladungen Wechselwirkungen benachbarter Molybdänoxidspezies mit Konsequenzen für spektroskopische Eigenschaften und Reaktivität ins Spiel kommen. Die abstoßende Wechselwirkung zweier benachbarter di-oxo MoO₄ Einheiten wurde durch DFT Rechnungen veranschaulicht (Zusatzinformationen; Cluster **b** in Abbildung S1). Eine zunehmende Oberflächendichte von MoO_x Spezies ist zwangsläufig mit O—O Wechselwirkungen verbunden, die eine Modifikation der O=Mo=O Bindungswinkel oder anderer geometrischer Parameter zur Folge haben. Außerdem können Wasserstoffbrückenbindungen zwischen Silanolgruppen und Oberflächenmolybdänoxidspezies die Reaktivität beeinflussen. In der Tat sind solche Wasserstoffbrückenbindungen in den IR und Raman Spektren durch eine Rotverschiebung der Molybdän-Sauerstoff-Valenzschwingungen nachweisbar (Zusatzinformationen; Abbildung S6B,C).

Abbildung 4. Spezifische Produktbildungsgeschwindigkeiten in der Metathese von Propen bei 323 K (viereckige Symbole), und in der oxidativen Dehydrierung von Propan (ODP) bei 773 K (kreisförmige Symbole) an MoO_x/SBA-15. Die Selektivität zu den Zielprodukten erreichte > 99.5% in der Metathese von Propen bzw. 49~83% in der ODP. Die Selektivitäten in der ODP sind Abb. S9 in den Zusatzinformationen zu entnehmen.

Durch H₂-TPR (Abbildung 1) wurde eine Verteilung von Oberflächenmolybdänoxidspezies nachgewiesen. Das Konzept von Sir Taylor besagt, dass aus der Summe dieser Spezies nur einige "hochenergetische Zentren" reaktiv genug sind, um katalytische Umsätze in heterogen katalysierten Reaktionen zu bewirken. Tatsächlich wurden bei 8.2% Mo-Beladung starke Anstiege in der katalytischen Aktivität sowohl in der Metathese von Propen, als auch in der oxidativen Dehydrierung von Propan an den untersuchten Katalysatoren beobachtet (Abbildung 4). Das belegt den signifikanten Einfluss geometrischer Spannungen in verankerten Metalloxidspezies auf ihre Reaktivität. Wegen der großen Unterschiede hinsichtlich der Natur des Reaktanten (H2, Propen, Propan und O₂) und der damit verbundenen unterschiedlichen Anforderungen an die aktiven Zentren (Abbildungen 1, 4, S9) sind die beobachteten Trends bei den drei betrachteten stöchiometrischen bzw. katalytischen Reaktionen im Detail nicht identisch. Auf Grund des komplexen Netzwerks an Parallel- und Folgereaktionen ist die oxidative Dehydrierung von Propan die anspruchsvollste der untersuchten Reaktionen (Abbildung S9). Aber auch hier spiegelt sich die zunehmende Verzerrung der Oberflächenmetalloxidspezies mit zunehmender Beladung in der Bildungsgeschwindigkeit des Produktes wieder, da die Aktivierung der Methylen C-H Bindung im Propan an Molybdänoxidspezies der geschwindigkeitsbestimmende Schritt der Reaktion ist.^[33]

Zusammenfassend lässt sich feststellen, dass der merkliche Anstieg in der Reaktivität von Siliziumdioxid-getragenen Molybdänoxidspezies bei hohen Mo Beladungen im Zusammenhang mit einer zunehmenden Frustration der Molybdänoxidspezies steht.

Die strukturellen Verspannungen resultieren aus geometrischen Einschränkungen bei der Verankerung der Spezies und lateralen Wechselwirkungen mit benachbarten Gruppen. Auf Grund struktureller Ähnlichkeiten ist es denkbar, dass ähnliche Szenarien auch für andere Monolagenkatalysatoren gelten, [14] insbesondere wenn SiO₂ als Trägermaterial verwendet wird, da hier bevorzugt isolierte Oberflächenmetalloxidspezies gebildet werden.^[14] Eine Veränderung des Trägers (z.B. Aluminiumoxid, Titandioxid, Zirkoniumoxid u.s.w.) ändert die Natur der Oberflächenmetalloxidspezies bezüglich sowohl ihrer strukturellen,^[31] als auch elektronischen Eigenschaften.^[32] Trotz dieser Komplexität werden geometrisch-induzierte "hochenergetische Zentren" lokal immer dann an der Metalloxid-Träger-Grenzfläche existieren, wenn eine Verteilung von ankernden funktionellen Gruppen vorliegt, was praktisch in allen Systemen der Fall ist.

Wir schlagen die Frustration von Oberflächenmetalloxidspezies als einen wichtigen neuen Deskriptor zur Beschreibung der Katalyse an getragenen Metalloxiden vor, der komplementär zu anderen bislang betrachteten strukturellen Klassifikationen (z.B. Grad der Polymerisation, Koordinationsgeometrie u.s.w.) ist. Theoretische und experimentelle Untersuchungen in der heterogenen Katalyse sollten sich daher verstärkt metastabilen Zuständen zuwenden, die wegen ihrer Instabilität oder geringen Konzentration bisher weniger gründlich analysiert wurden. Das hier vorgestellte Konzept zur Bildung von "hochenergetischen Zentren" eröffnet neue Wege im rationalen Katalysatorsynthese. Sinne einer So können Synthesestrategien gewählt werden, die künstlich die Bildung von "hochenergetischen Zentren" begünstigen. Das kann durch die Einführung von Promotoren geschehen oder durch eine gezielte Vorbehandlung des Trägers (z.B. durch Variation der Aktivierungstemperatur wie im Falle der Phillips Katalysatoren).

Experimenteller Teil

Die MoO_x/SBA-15 Katalysatoren (Mo Beladung von 2.1~13.3 Gew.-% / 0.2~2.5 Mo_Atome nm⁻²) wurden durch lonenaustausch hergestellt. Einzelheiten bezüglich der Synthese, Charakterisierung, den DFT Rechnungen und der katalytischen Testreaktionen sind in den Zusatzinformationen zu finden.

Erhalten: Veröffentlicht:

Schlagwörter: Heterogene Katalyse • Molybdän • Metathese von Olefinen • Selektive Oxidation • Getragene Katalysatoren

- [1] H. S. Taylor, Proc. R. Soc. Lond. A 1925, 108, 105–111.
- [2] T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Science 1996, 273, 1688– 1690.
- [3] M. Behrens et al., Science 2012, 336, 893–897.
- [4] I. X. Green, W. Tang, M. Neurock, J. T. Yates, *Science* 2011, 333, 736–739.
- [5] K. Amakawa, S. Wrabetz, J. Kröhnert, G. Tzolova-Müller, R. Schlögl, A. Trunschke, J. Am. Chem. Soc. 2012, 134, 11462–11473.
- [6] K. Chen, A. T. Bell, E. Iglesia, J. Catal. 2002, 209, 35-42.
- [7] I. E. Wachs, *Catal. Today* **2005**, *100*, 79–94.
- [8] T.-C. Liu, M. Forissier, G. Coudurier, J. C. Védrine, J. Chem. Soc., Faraday Trans. 1 1989, 85, 1607–1618.
- [9] R. Thomas, J. A. Moulijn, J. Mol. Catal. 1982, 15, 157–172.
- [10] Y. Lou, H. Wang, Q. Zhang, Y. Wang, J. Catal. 2007, 247, 245–255.

- [11] M. Boer, A. J. Dillen, D. C. Koningsberger, J. W. Geus, M. A. Vuurman, I. E. Wachs, *Catal. Lett.* **1991**, *11*, 227–239.
- [12] R. S. Weber, J. Catal. 1995, 151, 470–474.
- [13] J. Handzlik, J. Ogonowski, J. Phys. Chem. C 2012, 116, 5571-5584.
- [14] E. L. Lee, I. E. Wachs, J. Phys. Chem. C 2007, 111, 14410-14425.
- [15] S. Chempath, Y. Zhang, A. T. Bell, J. Phys. Chem. C 2007, 111, 1291–1298.
- [16] L. J. Gregoriades, J. Döbler, J. Sauer, J. Phys. Chem. C 2010, 114, 2967–2979.
- [17] C. S. Guo, K. Hermann, M. Hävecker, J. P. Thielemann, P. Kube, L. J. Gregoriades, A. Trunschke, J. Sauer, R. Schlögl, J. Phys. Chem. C 2011, 115, 15449–15458.
- [18] L. Lichtenstein, C. Büchner, B. Yang, S. Shaikhutdinov, M. Heyde, M. Sierka, R. Włodarczyk, J. Sauer, H.-J. Freund, *Angew. Chem. Int. Ed.* 2012, *51*, 404–407.
- [19] S. Bordiga, S. Bertarione, A. Damin, C. Prestipino, G. Spoto, C. Lamberti, A. Zecchina, J. Mol. Catal. A: Chem. 2003, 204–205, 527– 534.
- [20] F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, D. Costa, *Chem. Mater.* 2008, 20, 3336–3344.
- [21] M. A. Banares, H. C. Hu, I. E. Wachs, J. Catal. 1994, 150, 407-420.

- [22] S. Braun, L. G. Appel, V. L. Camorim, M. Schmal, J. Phys. Chem. B 2000, 104, 6584–6590.
- [23] J. N. Bronsted, Chem. Rev. 1928, 5, 231–338.
- [24] M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1938, 34, 11-24.
- [25] A. Vojvodic et al., J. Chem. Phys. 2011, 134, 244509-244509-8.
- [26] B. M. Weckhuysen, I. E. Wachs, R. A. Schoonheydt, *Chem. Rev.* 1996, 96, 3327–3350.
- [27] M. P. McDaniel, M. B. Welch, J. Catal. 1983, 82, 98-109.
- [28] M. P. McDaniel, in *Handbook of Heterogeneous Catalysis*, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- [29] E. Groppo, C. Lamberti, S. Bordiga, G. Spoto, A. Zecchina, *Chem. Rev.* 2005, 105, 115–184.
- [30] C. A. Demmelmaier, R. E. White, J. A. van Bokhoven, S. L. Scott, J. Catal. 2009, 262, 44–56.
- [31] G. Tsilomelekis, S. Boghosian, *Catal. Sci. Technol.* 2013, DOI 10.1039/C3CY00057E.
- [32] T. Fievez, P. Geerlings, B. M. Weckhuysen, F. De Proft, *ChemPhysChem* 2011, 12, 3281–3290.
- [33] X. Rozanska, R. Fortrie, J. Sauer, J. Phys. Chem. C 2007, 111, 6041-6050.

Heterogene Katalyse

K. Amakawa, L. Sun, C. S. Guo, M. Hävecker, P. Kube, I. E. Wachs, S. Lwin, A. I. Frenkel, A. Patlolla, K. Hermann, R. Schlögl, A. Trunschke* _____ Seite – Seite

Nur unkomfortable Plätze bleiben: Bei hohen Bedeckungsgraden, wo verankernde Oberflächenhydroxylgruppen rar werden, führt die Verankerung von Oberflächenmetalloxidspezies zu frustrierten Konfigurationen mit erhöhter Reaktivität. Diese Konzept erklärt experimentell beobachtete nichtlineare Bedeckungsgradabhängigkeiten an Monolagen-Metalloxid-Katalysatoren.