arXiv:1307.5677v1 [astro-ph.HE] 22 Jul 2013

DRAFT VERSIONJULY 23,2013
Preprint typeset usingTgX style emulateapj v. 08/13/06

EVOLUTION OF THE RELATIVISTIC PLASMOID-CHAIN IN THE POYNTNG-DOMINATED PLASMA

MAKOTO TAKAMOTO
Max-Planck-Institut fir Kernphysik, Heidelberg, Germany
Draft version July 23, 2013

ABSTRACT

In this paper, we investigate the evolution of the plasnafidin in a Poynting-dominated plasma. We model
the relativistic current sheet with cold background plasisiag the relativistic resistive magnetohydrodynamic
approximation, and solve its temporal evolution numelycalMe perform various calculations using different
magnetization parameters of the background plasma aretetiff Lundquist numbers. Numerical results show
that the initially induced plasmoid triggers a secondagyitey instability, which gradually fills the current
sheet with plasmoids, as has also been observed in the tadivigtic case. We find the plasmoid-chain greatly
enhances the reconnection rate, which becomes indepeofih@ Lundquist number, when this exceeds a
critical value. In addition, we show the distribution of pitaoid size becomes a power law. Since magnetic
reconnection is expected to play an important role in varioigh energy astrophysical phenomena, our results
can be used for explaining the physical mechanism of them.

Subject headingsnagnetic fields, magnetohydrodynamics (MHD), relaticigtiocesses, plasmas

1. INTRODUCTION connection, such as the anomalous resistivity in the colli-
Magnetic reconnection is a process that converts mag-Sioniess plasma. (Ugai & Zheng 2005; Fujimoto 2011) and
netic ?‘ield energy into thermal gnd kinetic energy very ef%] the turbulent effect (Lazarian & Vishniac 1999; Kowal et al.
ficiently (Biskampl 2000} Priest & ForBés 2000). Because 2009)- Recently, it was found that spontaneous currentshee
of this, it is believed that magnetic reconnection plays fragmentation in a non-refativistic plasma occurs via sec-
an important role in various phenomena from the labo- ondary tearing instabilities when the Lundquist number ex-
ratory plasma to the astrophysical plasma. Recently, in-C€€dsacritical value, leading to the so-called plasmbiirc
terest in the properties of relativistic magnetic reconnec 1N€ critical value is thought to be about 1 the non-

tion has been growing, especially in Poynting-dominated relativistic plasma | (Shibata & Tanuma 2001; Lourei,ro etal.
plasmas Whichgare bglieveg to bg prese%t ingvarious hithOO'i; Samtaney et al. 2009; Uzdensky et al. 2010; Barta et al.

energy astrophysical phenomena, such as ultra relativisti 2011b; Loureiro et all 2012; Huang &.Bhattacha,r_iee 2013;
jets (Lovelace & Romanola 2003; Barkov & Baushev 2011), Loureiro etali 2013). In those works, it was shown that (1)
gam‘ma ray bursts (GRB) (Lyutikov & Blandford 2003: the reconnection rate is enhanced by the plasmoid-chain and
Zhang & Yan[2011), and pulsar winds_(Kennel & Coroniti '€aches typicallys ~ 10°2c,; (2) the distribution of plas-
198440 Lyubarsky & Kirk 2001: Kirk & Skjeeraasen 2003). Moid size is either power law™® or an exponential function

In those models, the Poynting energy of the plasma is as-&*PEW/alwherepis the powerlaw indexy is the plasmoid

sumed to be dissipated into thermal and kinetic energy al-Width, anda’ is a constant. Since the plasma temperature in
most completely at some distance from the central object.tN€ Plasmoid region is higher than that of background plas-

However, such an efficient dissipation process is still un- Mas, the plasmoid-chain is expected to generate pulsed emis

known. In the last decade, several studies have been perSions: Hence, the plasmoid-chain is of interest from olsserv

formed with the goal of finding efficient dissipation pro- tiqrr]]alhand tlhe?lretic(a\l points Olf \/2iew, especially in coriee
cesses| (Lazarian & Vishniac 1999; Komissarov ét al. 2007b; With the solar flare/(Barta et al. 2011a). . .
Takamoto et al| 2012 Inoue 2012; Amano & Kitk 2013; _Ihe first study of relativistic plasmoid-chain was given by
Mochol & Kirk 20134,b). Magnetic reconnection is one of £anotti& Dumbser((2011). They performed 2-dimensional
the most promising candidates among them, and has bee@nd 3-dimensional numerical simulations of the relativist
studied actively from analytical (Blackman & Ficld 1994; Magnetic reconnection using the relativistic resistivegne

Lyutikov & Uzdensky[ 2003/ Lyubarsky 2005) and numeri- tohydrodynamic approximation (Dumbser & Zanatti 2009).

cal points of view [(Komissarov etil. 2007a; Zenitani et al. N those calculations, they assumed a background plasma

2009K.5: | Dumbser & Zandtti 2009 Zenitani et al.2010; With high Lundquist numbeg_~ 10° - 10°, relativistic tem-

Takahashi et al. 201L1; Bessho & Bhattachdriee 2012). peraturekgT ~ mc” and high magnetization parameter with
For magnetic reconnection to be occurred, the plasma€SPect to thehmagss Eensny(;m = By/ 47Tp]97tl> iy 20hwr?etr)e

should contain current sheets. Such structures evolve intoBO’p?’70 are the acdgrou_n mo?gnetlc ']? In the labora-

the Sweet-Parker configuration when the Lundquist numbert©"Y frame, rest mass density and Lorentz factor, respelgtiv

S = cal/n is small {Loureiro et 2l 2005), wher, is the ~ 1hey also assumed the existence of a local anomalously large

Alfvén velocity, L is the sheet lengthy is the resistivity. ~ '€Sistivity, so that their current sheet became very sintda

It is well-known that the reconnection rate of the Sweet- € Petschek type one. They found that relativistic magnet

Parker sheet is very slow (Sweet 1058; Parker 1957,]1963)/€connection is similar to Petschek-type reconnectioh wit

so that a considerable number of studies have been conductegfitical Lundquist number. 10°, which is much larger than

on finding an enhancement mechanism of the magnetic reI'e€ non-refativistic cases. . .
In this paper, we investigate the evolution of the plasmoid-
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large Lundquist numberS. ~ 10°-10°. In particular, we Name o ca/c S x10° S

mainly investigate statistical properties of the plasrachi@in, Bl 014 0354 113 354
such as the distribution function of the plasmoid width el t B2 14 0767 245 767
dynamics of X and O-points along the current sheet. To study B3 14 Q967 309 967
the evolution of the secondary tearing instability, we use a B4 29 0983 314 983

uniform, constant resistivity, and initialize the magnodield
with a perturbations localized at the origin. This enablesou TABLE 1

p h gmn. . . . LIST OF SIMULATION PARAMETERS OF BASIC RUNSojn = B%/47rp0h0’y§
understand the evolution of current sheets in which a tgarin = |s THE MAGNETIZATION PARAMETER WHEREB, po, ho, Yo ARE THE

instability is triggered at a point. UPSTREAM MAGNETIC FIELD, THE REST MASS DENSITYTHE SPECIFIC
ENTHARPY, AND THE LORENTZ FACTOR RESPECTIVELY, Ca IS THE
2. FORMATION OF PLASMOID-CHAIN ALFVEN VELOCITY, S = Lca/n IS THE LUNDQUIST NUMBER RELATED
TO THE SHEET LENGTHL AND S5 = dCa/7 IS THELUNDQUIST NUMBER
In this section, we give a brief review of the non-relatiidst RELATED TO THE SHEET THICKNESS.

plasmoid-chain theory.

It is widely known that current sheets are unstable to the
tearing instability. The maximum growth rate of this in- A more complete derivation is presented in
stability can be expressed asmax = 1//7TrR7a Wherer = (Bhattacharjee et al. 2009; Uzdensky et al. 2010;
62/n is the resistive diffusion timescale amg= ¢/ca is the  ILoureiro etall 2013).
Alfven crossing time across a current sheetis the sheet
thickness,n is the resistivity, andca is the Alfvén veloc- 3. NUMERICAL SETUP
ity in the background plasma (Furth ef al. 1963; Low 1973;  we model a very long current sheet using the relativis-
Komissarov et al. 200 7a) This expression can be rewriten a tic resistive magnetohydrodynamic approximation_ We use

follows: the resistive relativistic magnetohydrodynamics (RRMHD)
g2\ V2 scheme developed hy Takamoto & Inoue (2011) extended

wmax=1/\/TRTA = <——) = (1) to the multi-dimensional case using the unsplit method

Ca VS (Gardiner & Stone 2005, 2008). To preserve the divergence

where S5 = cad/n is the Lundquist number related to the free constraint on the magnetic field, we use the constrained
sheet thicknesé. This equation shows the tearing instabil- transport algorithm (Evans & Hawley 1988). We calculate the
ity grows faster as the sheet thicknésshrinks. The current RRMHD equations in a conservative fashion, and the mass
sheet thickness behind plasmoids shrinks when the plasmoidiensity, momentum, and energy are also conserved within
grows along the current sheet, and this triggers the grofvth o machine round-off error. For the equation of state, we agsum
other small plasmoids, which are called secondary plassnoid a relativistic ideal gas witth = 1+ (I'/(T' - 1))(p/p) where
Hence, we can expect that a current sheet would evolve into d = 4/3, h is the specific relativistic enthalpy, is the rest
stochastic plasmoid-chain in a few growth times of the large mass density, angdis the gas pressure.

plasmoid. Uzdensky et al. (2010) assumed the existence of a For our numerical calculations, we prepare a square do-
critical Lundquist numbeg. at which current sheets become main, [Q L] % [0,L,] =[0,205] x [0,3205], wheres is the cur-
unstable to the plasmoid instability, and discussed thesphy rent sheet thickness. We divide it into homogeneous numeri-
ical nature of the plasmoid-chain. This critical value iatr ~ cal meshes with sizA =54 /128~ 0.04¢ which is equivalent
duces the smallest elementary structure in the chain,ctalle to the mesh numbe¥, x N, =512x 8192. Note that to re-
the “critical layer”; the related key parameters are thegtan ~ duce computational costs we solve only a quarter regioneof th
scaleL. = S7/ca, the thickness. = L./+/S and the recon-  current sheet and impose the point symmetric boundary con-
nection ratevg = ca//S. The authors also showed that the dition about &,2) = (0,0) following |[Zenitani et al. [(2009a).
global reconnection rate is independent of the Lundquistnu  Hence, the above set up is equivalent to a square domain,
berS. whenS > S and the plasmoid-chain reaches a statis- [~Lx, Lx] x [Lz, Lz] = [-205,200] x [-3203, 3205] divided by

tical steady state. They obtained the global reconnectiten r  the mesh numbei, x N, = 1024x 16384, Along the bound-
value as:Vg ~ 1072c, by assuming the value of the critical ariesx = Ly andz= L, we impose the free boundary con-
Lundquist number to b& ~ 10* in accordance with the re- dition. For the initial condition, we consider the statid-re

sults of their numerical simulations. ativistic Harris current sheet (Hoh 1966; Kirk & Skjeeraasen
As is explained by [ Loureiroethl. [ (2007) and 12003):

Bhattacharjee et al.| (2009), the above expression of the _

growth rate of the tearing instabilitymax Can be reinterpreted B2(x) =Botanhg;/9), (3)

as follows. When we consider the Sweet-Parker current P(X) = Pin + Ps/ COSIT(X/), (4)

sheet, we can obtain a relation between sheet thickhassd -4 R(x/5 5

sheet length_: 6 ~ L/\/S. whereS = Lca/n. Using this PO)=pin + ps/ COSIT(x/0), ®)

relation, the above equation can be rewritten as follows: wherep, p are the gas pressure and the rest mass density, and

/4 other variables are set to 0 except for a small perturbatfon o
cal /L i the magnetic field described later. For the upstream region
2)

Cmax SV oS T AL

wherera =L/ca. This equation means that the growth of
the tearing instability becomes very fast wh&n reaches
about 106, which they considered as the critical value of the
Lunqu|§t number.S. depends on the current .Sheet Iength 1 Note that in Fig[B of Se¢_4.2, we change the simulation beelsi to
L and this means we need a very large numerical domain tOgxpiore the property of the magnetic reconnection rate averge parameter
study the effect of the plasmoid-chain. space of the Lundquist number. In the other part, we set3205.

of the current sheet, we consider a cold plasma= 10pin;

for the inside of the sheet, we consider a relativisticalty h
plasmaps = ps whereps = B3 /8. Note that the temperature
of the sheet decreases with decreasing magnetic field #treng
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FiG. 1.— Snapshots of the temperature profile, s T /mc] of runs B1-B4 just before the largest plasmoid run away fitke numerical domain where
ta = Lz/ca is the Alfvén crossing time along the current sheet.

In this calculation, we use a constant resistivjtjo concen-  the plasmoids-chain. We also find that the thickness of the
trate on investigating the effect of the plasmoid-chaintom t  current sheet between plasmoids decreases and the apparent
reconnection rate. Since it is easy to extend the law of+esis number of plasmoids increases with increasing magnetizati
tivity, we will consider various kind of resistivity in ouuture parameterr. We will discuss this in Sec[_4.2. At the ori-
work 2 . To trigger the initial tearing instability at the origin  gin (x,2) = (0,0), we note the existence of a large hot region.
(x,2) = (0,0), we add the following small perturbation to the This is an artifact of our assumption of point symmetry about

magnetic field: the origin, which means that plasmoids entering the region
) ) from above have counterparts entering from below with the
Ay = -0.03Bo5 exp[-(x° +Z) /457]. (6)  same magnitude and opposite speed. Their merger results in a

Typical parameters used in our calculations are listed en Ta Plasmoid with zero momentum at the origin, which gradually
bie[l. To model magnetic reconnection in high energy astro- @&ccumulates matter as the simulation proceeds.

physical phenomena, such as a relativistic jet, the Y-paiint ]

a pulsar magnetosphere and a gamma ray burst, we consider 4.2. Reconnection Rate

magnetically dominated plasma with magnetization parame-  Fig. [2 shows the time evolution of the reconnection rate in

ter oin > 1. In the following sections, we present numerical units of the Alfvén crossing time,,/ca = ta. The reconnec-
results and consider the effects of the plasmoid-chain. tion rate is defined as:

4. RESULTS AND DISCUSSION

In this section, we present numerical results of the tearing
instability and evolution of the plasmoid-chain.

c Le
VR/CA:_m/O dZE/(X—O,Z) (7)

The top panel is the result of B3 plotted using a logarithmic
4.1. Temperature Profile scale. Here, we see that the evolution of the reconnectten ra
i can be divided into three phases, separated in the figure by
Fig. [ shows snapshots of temperature profiles of runs Bl-vertical lines at = ta andt = 2.2ta. To the left of the blue line,
B4 at the time when the largest plasmoid to result from the ini  the reconnection rate shows exponential growth due to the in
tial perturbation reaches the edge of numerical domairceSin  tial tearing instability at the origin. Between the blue and
plasmoids move at approximately the Alfvén speed of the up-green lines, the reconnection rate oscillates around a powe
stream flow unless the plasmoid inertia is comparable to thelaw growth rate with index approximately 2. This is the regio
magnetic field energy, the escape time is of the ordéx.of where the plasmoid-chain develops: small plasmoids siart t
First, we find that many plasmoids evolve along the current appear, changing the growth rate from exponential to power
sheet. As we mentioned in the previous section, the evaiutio law 3 . Finally, the reconnection rate saturates to the right of
of a plasmoid induces a thinner current sheet behind it-lead the green line, which marks the time when the largest plas-
ing to a secondary tearing instability and the generatioa of moid escape.
In the bottom panel, we compare reconnection rates of runs
2 In the case of a plasma with high temperature, the Coulomi col B1-B4. We find that runs B2-B4 show very similar evolution

sion cross section is usually very small and the collisiamalstivity is also s T . ..
very small. However, if the plasma temperature rises up ¢éoréativistic after the pIasm0|d 'nStab'“ty 1S t“ggered' This indicaitbat

temperaturekg T ~ m& wherekg is the Boltzmann constant and is the the reconnection rate in units of the Alfvén velocity/ca,
particle rest mass, the photon density in the plasma becoegsdense
and the Compton drag becomes effective as a dominant oollisprocess 3 This might be due to the self-similarity of structures in flasmoid-

8). chain [Shibata & Tanurfia 2001; Uzdensky eéfal. 2010).
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— 2 .

FiG. 2.— Top: The temporal evolution of the reconnection ratehia the Sweet-Parker sheet dependeﬁéé of the reconnection
case ofoin = 14. The blue line at =t, is the starting time of the plasmoid  rate predicted by Lyutikov & Uzdensky (2003) end Lyubarsky
instability. The green line dt= 2.2t, is the time when the largest plasmoid (2005) (see also Eq[{AlL1)). In our calculations, the aitic
goes away from the numerical domain. Bottom: The temporalugion of : ; :
the reconnection rate of runs B1-B4. Vf""“.e of the Weakly. m_agnetlged CaseSCSN 1.04.’ V.VhICh IS

similar to the value indicated in the non-relativistic wpda
) o the other hand, in the strongly magnetized case the critical
becomes nearly independent of the magnetization parameteyalue isS. ~ 2—-3 x 10%, which is a little less than that of
o in the strongly magnetized plasma, > 1, once the plas-  the weak magnetic field case. This can be explained as fol-
moid instability starts. The reconnection rate grows Wi |ows. After generating plasmoids, the current sheet betwee
largest plasmoid, which is initially triggered at the origes-  the plasmoids will become a Sweet-Parker current sheet. In
capes from the numerical domain, at which point the recon- this case, the sheet thickness can be obtain by(Eq. (A4). If we
nection rate has increased up t00.05ca. After this, the  assume the reconnection jet velocity is the Alfvén velqcity
plasmoid-chain reaches a statistical steady state andvthe a the sheet thickness can be written &s; L/v/201nS., where
eraged reconnection rate is aboud®,, which is approxi-  we used Eq[{A20) to estimatg. This means the sheet thick-
mately twice that of the relativistic tearing instabilitythout ~ ness decreases with increasing the magnetic field streBgth.
a plasmoid-chain f(TakagilS_hl Ie‘i al. 2211)-h NOt? thﬁt the re-the other hand, the growth time of the tearing instability is
connection rate of run is lower than that of other runs. 53] i ; i
o e ) . ~ 1/63/nca. Using these two expressions, the growth time of
This is because in this case the plasmoid-chain does not growe'tearing instability of the secondary current sheet is
sufficiently as can be seen in the left panel of Higj. 1 where
only one secondary plasmoid is generated. This reducesits r Trearinaond ~ ——— 5 o g YA (8)
. 8 . . . g2nd /4 in A -
connection rate comparing with other runs including théyful (20in)3/4§
evolved plasmoid-chain. We discuss later the reason why th
plasmoid instability does not grow in this case.
Fig. [3 are the time-averaged reconnection ratg/ca) as

a function of the Lundquist numb& 4 . The top panel is

tEe [)elanwstmallyl strohng magnletu_: field case, = 1?." ﬁnd larly, using the characteristic wavelength of the tearimgta-
the bottom panel is the non-relativistic magnetic field case 1o Meang ~ 93Ca/]1/*. the characteristic wavelength of

oin = 0.14. We calculate the time average of the reconnec-. dary tearing instabilit be obtained as:
tion rate curves over the plateau region where the plasmoid- € Secondary tearing instability can be obtained as.

chain reaches a statistical equilibrium state. As in the-non _ -~ \5/8c3/8 -5/8.°3/8
relativistic case, we find that the reconnection rate become Mearingzna ~ L/[(200)° S o 7”0, ©
independent of the Lundquist number when it is larger than This also indicates that the plasmoid instability evolvesen
a critical valueS.. For small Lundquist numbers, we find easily as the background magnetization parameter becomes
larger. Note that Eq[{9) means that a background plasma with
4 Our numerical code includes the following numerical diasign, larger magnetization parameter demands a smaller Luntdquis
7inum ~ 0.03cA, where A is the mesh size. This means our numerical nympber with respect to the sheet length for the plasmoid in-

code can calculate accurately problems with the Lundquistber up to e e
Sum = LCa/7num ~ 20NGa/C whereN is the mesh number along the cur- stability due to the smaller characteristic wavelengthlaf t

rent sheet. As explained in Sec. 3, we use the mesh nulbe8192 along second_ary tearing inlstat.)ilit.y. This also supports the |tSS_u
the current sheet, our calculation has sufficient accurgop G ~ 3 x 10°. shown in Fig.[B, which indicates that the critical Lundquist

rhis means as the magnetic field strength becomes strong, the
secondary tearing instability grows faster and the plagmoi
instability occurs much easier, especially along the reecn
tion jet resulted from the initially triggered plasmoid.n8i



number becomes smaller as the magnetization parameter of
the background plasma becomes larger.

As pointed out by Uzdensky etlal. (2010), the reconnection t=1.875t,, 6=0.14 =2ty 6=14
rate of the plasmoid-chain can be written ag/ca ~ 1/v/<, 812 220 320
using the relation of the Sweet-Parker sheet. If we use the
above critical valuesg, = 3 x 10°, in the strongly magnetized
case, the reconnection rate~g0.02cs, which agrees with the
values indicated in the top panel of Fig. 2.
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FIG. 5.— Snapshots of the density profile of the initially trigge plasmoid.
The left panel is at = 1.87%4 with weakly magnetized case;, = 0.14, and
the right panel is at = 2tp with strongly magnetized casej, = 1.4.
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30

reaches the above ratio, 6 : 1. Although we cannot be certain

that this ratio is the final state, it seems that the aspeict rat

1o depends very weakly on time. Finally, we cannot find any
strong dependence of the above aspect ratio on the magneti-

0 zation parameter.

20

5. TRAJECTORY OF X AND O-POINTS

FIG. 4.— Snapshots of the density profile of the initially trigeg plasmoid
in the case objy = 1.4. The left panel is at =ty and the right panel is at
t= 1.2t/.\.

Fig. 1 shows that the aspect ratio of plasmoids takes dif- 800
ferent values, depending on the magnetization paramgter
the aspect ratio seems to take a smaller value as the magnet
zation parametesj, increases. This can be explained as fol- 200 -
lows. Left panel of Fig.[} is the density profile of a plas-
moid att =tx. This figure shows its aspect ratio is about
14 : 1 and the inner structure of the plasmoid is very similar
to that of the Petschek reconnection case which was investi- 100 =
gated by Zenitani & Miyoshil (2011). Right panel of Figl 4
is the density profile of the same plasmoidt at 1.2t5. We

250

z/8

find that the plasmoid size in z-direction shrinks because of 0 [
the appearance of slow shocks. These shocks are generate 0 05 1 15 2 25 3
by the steepening of slow waves which are induced by col- t/ts

lisions with other plasmoids. In the example shown in Fig.

M@, slow waves are generated by the collision to the plasmoid o _

atz~ 485 in the left panel. As these slow shocks propagate Fic. 6.— Trajectories of X and O points of the run B3 along the entr
. . .| - sheet. Green points are the O-points and red points are {harXs.

across the plasmoid, the upstream plasma in the plasmoid is

compressed and the plasmoid size shrinks in z-directian. Fi

shows the density configuration of the plasmoid triggered To understand the physical nature of the plasmoid-chain, it

by the initial perturbation of runs B1, B2 at a time just befor is helpful to trace trajectories of the X and O points that are

it escapes from the numerical domain. In run Bj,= 0.14, the magnetic null pointsBy = B, = 0. At X-points, the mag-

we find the aspect ratio of the plasmoid keeps its initial @alu  netic configuration around them is the X-type and those are

approximately 14 : 1. This is because in run B1 the plasmoid points where magnetic reconnection occurs; at O-poings, th

instability does not grow sufficiently as explained in thepr  magnetic configuration around them is the O-type and they

vious sections and the largest plasmoid does not exper@&nce are usually equivalent to the location of a plasmoid. Elgs 6 i

collision with a smaller plasmoid. On the other hand, in runs a plot of the trajectories of X and O points of run B3. This

B2 many collision with smaller plasmoids reduce the aspectfigure shows that in the initial phase there is only one O-poin

ratio of the plasmoids to about 6 : 1. In our calculations, the which is generated by the initial perturbation at the origin

aspect ratio does not show any rapid time evolution after it Aroundt =t,, small plasmoids start to develop behind the ini-
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tial O-point and the number of O-points and X-points gradu-
ally increases with time. Arountd= 2.2t,, the initial plasmoid
reaches the boundary of the numerical domain and escapes
from the domain. After that, the current sheet is filled with

X and O points, the plasmoid-chain is fully evolved. This

is consistent with the temporal evolution of the reconraecti
rate shown in Figld2. Fid.]6 shows that most points, particu-
larly those close to the initial plasmoid, move steadily aoels
largerz. Their velocity is approximately.8c. Note that X and

O points which are not close to the initial plasmoid graduall
start to move in both directions along z-direction. Thisioeg

is confined around the origin initially and expands with time
as the plasmoid-chain evolves. Finally this region covéirs a
the simulation domain and the plasmoid-chain reaches a sta-
tistical equilibrium state arourtd= 3ta.

Concerning X-points, we find that they are located near
the midpoint between two O-points as is expected since they
are generated by the tearing instability which ejects tvaspl
moids away from the X-point. Figl]6 shows that many X-
points move along the current sheet and most of them disap-
pear after a short time due to the merger of two neighboring
plasmoids or the collapse of X-poinis (Loureiro et al. Z005)

In addition, we find that X-points that move in a way simi-
lar to that of the nearest plasmoid as reported by Bartal et al. 0.0001
(2011b). Since X-points are considered to play an impor- 001 0.1 1 10 100

tant role for the particle acceleration, their dynamicatéi Plasmoid Width /

along the current sheet will impose an upper limit on the ac- g, 7. The time-averaged distribution function of plasmoizesper-
celeration time. For example, if we consider a current sheetpendicular to the current sheet. The distribution functiane averaged over
with a plasmoid-chain in statistical equilibrium, with ater betweert =ta andt = 2.2tx. Top: The distribution of run B3 with error bars.
cal Lundquist numbeg,, the sheet length between them can Bottom: The distributions of run B1-B4.

be estimated ad:; ~ S1/ca; the dynamical time can be esti-
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Loureiro et all 2012; Huang & Bhattacharjee 2012, 2013). In

mated as i L S/ 10 those papers, the authors discuss the time evolution ofighe d
ace™~ Lo/Ca~ K1/ Ca, (10)  yibution function of the plasmoid-chain using the followi
and direct acceleration by the electric field at X-pointdtél ~ model kinetic equation:
limited by this time scale. Using our parameters, the value of  of fN f
of the acceleration time igcc ~ 1.5 x 107%t5. Note that Fig. a7 +a8_\11 =¢o(v) - Pty (11)
A A

includes X-points whose lifetime is much longer than the
above value. Their typical lifetime is about5lx 10 'ty and where f(¥) is the distribution function¥ is the magnetic
some of them survive for a much longer time. Fiy. 6 indicates flux of a plasmoid N(¥) = [,° f(¥/)d¥’ is the cumulative
that they accompany large plasmoids which have somewhayistribution function,a ~ Boca/v'S is the plasmoid grow-
large spaces around them. _ ing rate of a plasmoid; ~ L/ca is the Alfvén crossing time

_ Note that sometimes large spaces appear in the current shegff 3 plasmoid across the plasmoid-chain with sdaleand

in Fig. [8, such ag=0 orz= 1005. This is due to thethon- ¢ 5 the magnitude of the source of plasmoids. Thus, the
ster plasmoidSwhich result from the merger of many smaller  second term on the left-hand side describes the growth of
plasmoids. In particular, the monster plasmoidzat 1000 pjasmoids; the first term on the right-hand side is the source
around = 3ta shows interesting behavior. In the initial phase, of plasmoids; the second term is the loss of plasmoids due
it behaves in nearly the same as other plasmoids. In the latety mergers with larger plasmoids; the third term is the ad-
phase, its inertia becomes much larger than that of surroundyection loss. Some analytical steady state solutions of Eq.
ing plasmoids, and its dynamics starts to resemble Brownian(fT) in |largeW region can be obtained as follows. When the
motion, since it moves stochastically around an average tra |oss of plasmoids is mainly by advectioN,< 1, we obtain
jectory that has a low velocity. f o exp[-¥/a7a]; when the loss of plasmoids is mainly by

plasmoid mergerN > 1, we obtainf ~ 2a7a¥™2. In this

6. PLASMOID SIZE DISTRIBUTION derivation, we assumed the speed of plasmoids is of the or-

As mentioned in the previous sections, the evolution of a der of ca, corresponding to an assumption of the plasmoid
plasmoid induces a secondary tearing instability, and gene crossing time asa ~ L/ca. Recently, Huang & Bhattacharjee
ates small plasmoids behind it; the small plasmoids in turn (2013) showed that dropping this assumption allows a solu-
induce more tearing instabilities, and as a result the atrre tion f oc ¥™%. Since the magnetic flux can be expressed as:
sheet evolves into the plasmoid-chain. Since the distdhut ¥ ~ Bow wherew is the plasmoid size perpendicular to their
of plasmoid size is potentially important for high-energy a  current sheet (Uzdensky et al. 2010), the above distributio
trophysical phenomena, we investigate this using our nismer function of the magnetic flux can be used to find the plasmoid
cal results. size distribution.

The statistical behavior of the plasmoid-chain was inves- The top panel of Fig[]7 is the time averaged distribution
tigated in (Uzdensky et al. 2010; Fermo etlal. 2010, 2011; of the plasmoid size of run B3 with error bar. The time-
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FIG. 8.— The time-averaged distribution of plasmoid size pedieular to
the current sheet. The distribution functions are averayed aftert = 2.2t.
Top: The distribution of run B3 with error bars. Bottom: Thistdbutions of
run B1-B4.

average is taken over betweerr ty andt = 2.2ty each of
which is equivalent to the starting time of plasmoid instabi
ity and the escaping time of the initially triggered plasthoi
respectively, as indicated in Fil] 2 of Sdc.14.2. This figure
shows that the plasmoid size distribution is consistert ait
size distribution of power law index2 for small plasmoids

in the range [QL4, 6] of the plasmoid width, as predicted by
previous works for the non-relativistic case. From the abov

7

because small plasmoids are not sufficiently evolved inethes
runs to show a clear size dependence.

In Fig. [8, we plot the time-averaged distribution functions
after the initially triggered plasmoids escapéd: 2.2ta. The
top panel of Fig.[B is the time averaged distribution of the
plasmoid size of run B3 with error bar. In the small plasmoid
region, the distribution function has an index-¢&, similarly
to the previous case. However, the distribution function of
the larger plasmoid regiony > ¢, drops rapidly and clearly
cannot be approximated by the power law. We consider this
is due to the effect of the plasmoid loss by advection. Since
the initially triggered plasmoid already escaped from tine-s
ulation domain in this case, the plasmoids can freely escape
from the domain and this results in the exponential decay of
the distribution function, as indicated by the above disaus
using the kinetic equation.

The bottom panel of Fid.]8 is the plot of the plasmoid size
distribution of runs B1-B4. The behavior of the distributio
functions in small plasmoid regiom < 4, is very similar to
Fig. [@ but that in large plasmoid region also show rapid de-
cay, similarly to the strongly magnetized cases 14. Note
that the distribution function of the weakly magnetizedegas
o =0.14, seems to be a power law in large plasmoid region,
w > 0. Unfortunately, our data does not have sufficiently large
number of plasmoids in this region, so that we cannot con-
clude that this is a statistically correct result.

7. SUMMARY

In this paper, we investigated the evolution of the plasmoid
chain in a highs plasma. We modeled the relativistic cur-
rent sheet with cold background plasma using the relaitivist
resistive magnetohydrodynamic approximation, and solved
its temporal evolution numerically. We performed various
calculations using different magnetization parameterthef
background plasma fromi, = 0.14 to gi, = 29 and differ-
ent Lundquist numbers with respect to the sheet length from
S ~ 10 to S ~ 10°. The numerical results show that the
initially induced plasmoid triggers a secondary tearingtan
bility and the current sheet is gradually filled with manyspla

discussion, this means that the plasmoid loss is mainly duemoids, that is, it evolves into a plasmoid-chain, as predict

to plasmoid mergers. This is a natural consequence becausby non-relativistic work. As expected, this plasmoid insta
we consider the distribution at the escape time of the ini- bility enhances the reconnection rate, which grows unél th
tially triggered plasmoid and any plasmoids cannot escapeinitially triggered plasmoid escapes from the simulatian d

from the plasmoid-chain at that time due to the presence ofmain, reaching up te- 0.05ca. Subsequently, the plasmoid-

the initially triggered plasmoid. In addition, larger phasids,
arounds < w < 54, deviate from the power law index2 and
tend to an index of-1. This indicates that the velocity of
large plasmoids deviates from the Alfvén velocity. Thisés b

chain reaches a statistically equilibrium state, and thepte

rally averaged reconnection rate in a steady state becemes
0.03ca. Since the maximum value of the Alfvén velocity is the
light velocity ¢, our numerical calculation indicates the maxi-

cause the large plasmoids have large inertia, which reducesnum reconnection rate of the plasmoid-chain.i38. In our
their velocity, as in the case of the monster plasmoid. Note calculations, the evolution of the reconnection rate shsims

that the distribution function of the largest plasmoid sige
gion, aroundwv > 54, drops rapidly and clearly deviates from

ilar behavior in strongly magnetized caseg; > 1. Although
the weakly magnetized case,, = 0.14, shows different be-

power law. This is because the number of plasmoids is toohavior, we consider this is due to the larger wavelength ef th

small to show statistically sufficient results. This carodie
seen from the large error bar of this region.

In the bottom panel of Fig[17, we plot the plasmoid size
distribution of runs B1-B4. We find that the distribution of

the strong magnetic field case, run B4, shows very similar be-

havior to the run B3; it becomes a power law with indeX
in the range [QL9, §] of the plasmoid width ané1 for larger

secondary plasmoid instability indicated by Hd. (9). Nottt
the above critical value is much smaller than that obtaired r
cently by[Zanotti & Dumbser (2011), who four§ ~ 108,

We believe this difference comes from their assumption of
a relativistically hot background plasma. A high tempera-
ture reduces the magnetization parametgr B3/4m pohoy2
and the critical Lundquist number becomes large when

plasmoids. In the weak magnetic field cases, runs B1,B2, theparameter is small, as shown in Sec] 4.2.

distribution also has an index efl in the range of larger plas-
moid. However, the distribution of the smaller plasmoickesiz
region seems to have an index-f, too. We consider this is

We also investigated the behavior of O-points and X-points.
In our simulations, the initial perturbation is confined bt
origin. The triggered plasmoid shrinks the current sheet be
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hind of it, inducing secondary tearing instabilities. Tad3 shown in this paper, once the tearing instability evolves
and X points that are close to the triggered plasmoid move inand generates plasmoids, the plasmoid-chain always evolve
the same direction, but the other points start to move in bothin the current sheet between them if the Lundquist num-
directions along the sheet, reflecting the final state ofstskat  ber of the current sheets is beyond the critical value, espe-
cal equilibrium of the plasmoid-chain. Most X and O points cially in the Poynting-dominated plasma. Since plasmoids
disappear by merging, which limits their lifetime, and ter  are associated with high temperature plasma and accelerate
fore, limits the time for which particles can be accelerdigd  particles, they can be used to explain intermittent observa
the electric field at such points. We estimate this lifetinse u tional signals from high energy astrophysical objectshsag
ing the parameters of the plasmoid-chain. As predictedifert pulsed emission from the Y-point of the Crab pulsar magne-
non-relativistic case, we noted the appearance ofriaister  tosphere (Uzdensky & Spitkovsky 2012) and multi-timescale
plasmoid&. Interestingly, our calculations show that monster TeV flares in blazars (Giannios 2013). In this paper, we as-
plasmoids slow down as they evolve, because of their inereas sumed a constant resistivity and used an approximate equati
ing inertia. Ultimately, they display Brownian like motion of state corresponding to a relativistic, adiabatic gasvexe
around fixed points. theless, we believe our results revealed general propestie
Finally, we investigated the plasmoid size distributiomrO  plasmoid-chain in a Poynting dominant background plasma.
numerical results show that in strongly magnetized cases th
distribution becomes power law with index2 in the small
plasmoid region anetl in the large plasmoid region before
the initially triggered plasmoid escapes. This indicatest t We would like to thank John Kirk, lwona Mochol, Simone
the plasmoid loss is mainly due to mergers; the plasmoid ve-Giacche, Seiji Zenitani, Keizo Fujimoto, Takaaki Yokoyama
locity is of order of the Alfvén velocity in the small plasntbi  and Tsuyoshi Inoue for many fruitful comments and discus-
region, but is lower in the large plasmoid region. This is be- sions. We also would like to thank our referees for a lot
cause the plasmoid inertia increases with increasinggiee,  of fruitful comments on our paper. Numerical computations
venting large plasmoids from moving at the Alfvén speed. Af- were carried out on SR16000 at YITP in Kyoto University.
ter the escape of the initial plasmoid, the distributiondion Calculations were also carried out on the Cray XT4 at Cen-
in large plasmoid region shows exponential decay because ofer for Computational Astrophysics, CfCA, of National As-
the free advective escape of plasmoids from the domain. tronomical Observatory of Japan. This work is supported by
Magnetic reconnection is one of the most efficient mecha- Max-Planck-Institut fir Kernphysik and the PostdoctoreallF
nisms of magnetic field dissipation, and is expected to play lowships for Research Abroad program by the Japan Society
an important role in many astrophysical phenomena. As for the Promotion of Science No. 20130253 (M. T.).

APPENDIX

RELATIVISTIC SWEET-PARKER CURRENT SHEET

In this appendix, we derive the reconnection rate of theikeddic Sweet-Parker current sheet. The basic relati@velalready
been presented by several authors (Blackman & Irield|1994tkav & Uzdensky 2003; Lyubarsky 2005). Here, we clarifeth
dependence on the external pressure, following the natiristic approach of (Priest & Forbes 2000). A schematatye of
the Sweet-Parker current sheet is shown in Eig. Al.

| G-
ey U

FiG. Al.— A schematic picture of the Sweet-Parker current sheet

We assume a steady state plasma which can be described vibh# bsiativistic magnetohydrodynamic approximation othe
than around the X-point. We also assume that the plasma io@peneous in the y-direction. The background magnetic field
of the inflow region isBi, = Bine, if z> /2 andBy, = -Bjn&« if z< =§/2, and that in the sheet regionBs= B, + Bse, where
|Bin| > |Bs| ande is a very small constant. We assume tBat 0 at the X-point. In this case, the electric figdglis constant, and
we can obtain the following relation:

BinVin = BsVs, (A1)
wherev is the fluid 3-velocity. In addition, we can obtain the follimg relation at the X-point where the magnetic field and flow
velocity is O:

BinVin =17J, (A2)



wheren is the resistivity and is the current vector described by the Ampére’s law

j ~Bin/d. (A3)
From Egs.[(A2) and (A3), the sheet thicknéssan be expressed as:
& ~n/Vin. (A4)
The mass and the energy conservation equation are given by
PinYinVinL = psysVsd, (A5)
(Pin hin’Yiﬁ + B%)Vin L= (pshs%2 + Bg)vs(sa (AB)

wherep is the rest mass density,is the Lorentz factorl. is the curvature scale of the background magnetic fielddaiscthe
current sheet thicknesb.= 1+T'/(I' - 1)p/p is the specific entharpy of the ideal gas whEre 4/3 is the relativistic heat ratio
andp is the gas pressure. Here, we also assume the cold upstraamagpi, = O; in the sheet region we assume a hot plasma
ps < Ps Whose pressure can be determined through the pressuréequil, ps = B2 /2y2. Then, the energy equation can be
rewritten as

2B2~2
pinVi%(l"'Uin)VinL = |: "ﬂs +B§] Vsd, (A7)
in
whereo = B?/phm/? is the magnetization parameter. Using Efs.](A1), the abquatéon reduces to
oi 1)
(1+Uin)7i$1vin = {ZUin’Ysz"' V_IQ'V%V%] VSE- (A8)
S
Using Egs.[(A#),
o
(L+oin) Vi ~ [205E +9iva ] S—'\';s (A9)

where§ = Lc/n is the Lundquist number using the light velocity as the cbignastic velocity. From this equation, we can obtain

the following relation between, andvs:
[ 2
VinVin ~ m’YSVSCA7 (AlO)

whereca = /o /(1+0) is the Alfvén velocity. If we consider a plasma with high+idquist numbe§ > 1, the above equation
reduces to

/2
YinVin ~ §7$\/VSCA- (Al11)

This equation shows that the inflow velocity, the reconmectate, is inversely proportional 1¢S5, which is the same conclusion
as the non-relativistic Sweet-Parker current sheet motielobtain an explicit solution of the upstream velocity, wavé to
add another equation to the above equations. Here, we @ortkiel equation of motion along the x-direction. The relatie
hydrodynamical equation of motion in the current sheetvegiby
pshey2v2 _Po=Pv_ Bng _ Po—pn
L L s ° L
where we used Eql (A3)y, is pressure at the edge of the current sheet, @nd ps is pressure at the X-point, respectively.

Note that the scalk is a characteristic scale length in the above equation,tastiuld be the curvature scale of the background
magnetic field. Using the pressure equilibrium, the abowsm#qgn reduces to

~ st

(A12)

Bh1d  Bing _Po—pn

s : (A13)
72 L ) L
From the mass conservation equation Eq.](A5) and[Egl. (Alameobtain the following relation
% - % Ps7s (A14)
0 L PinVin.
Substitute this relation into Eq._(AlL3), we obtain
B_%’YSZVE B_ﬁw PsYs _ Po~ PN (A15)
'Yi% L L pin%in L
This equation reduces to
. 2
722 ~ BT T (p, - py). (A16)

2pin B_%
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From the mass conservation equation Eq.] (A5) and[Egl. (A4)ameobtain the following relation:

pPsYs  VinVin L ’YinVﬁq
o M= Ming Al7
Pin Vs 0 Vs S ( )
Using this equation, EqL_(A16) can be rewritten as follows:
(A18)

whereva is the Lorentz factor of the Alfvén velocity in the upstreasgion andx is the effect of the pressure gradient. Note that
whenpg > 3pn, a becomes imaginary number. This is because in this cased¢bamection outflow is prevented by the pressure
gradient force and this means the break down of the assumgpitihe steady state. Using this equation and Eq. [A11), viaiob
the following form of the reconnection rate:

/2
inVin/Ca ~ § ’YACAa\/’yﬁaz—l,

whereS_ = Lca /7 is the Lundquist number relating to the Alfvén velocity. Wih® = py, the above equation reduces to

2
YinVin/Ca ~ \/;\/ﬁ,

which is equivalent to the relation obtainedlin (Lyutikov &tknsky 2003). Whep, = 0, or the reconnection outflow is ejected
into very cold region, Eq.[(AT9) means the reconnection imtenhanced due to the pressure gradient force. Finallynwhe
po > pn, Which is, for example, the case where plasmoids are exitede edge of the current sheet, EG._(A19) means the
reconnection rate is reduced by the pressure gradient.force

(A19)

(A20)
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