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Abstract

In this work we propose a biologically realistic local cortical circuit model (LCCM), based on neural masses, that incorporates
important aspects of the functional organization of the brain that have not been covered by previous models: (1) activity
dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2) realistic inter-
laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the
LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using
Bayesian inference. It was found that: (1) besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer
5/6), there exists a parallel ‘‘short-cut’’ pathway (layer 4 to layer 5/6), (2) the excitatory signal flow from the pyramidal cells to
the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory
interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3) the habituation rates of the
connections are unsymmetrical: forward connections (from layer 4 to layer 2/3) are more strongly habituated than backward
connections (from Layer 5/6 to layer 4). Our evaluation demonstrates that the novel features of the LCCM are of crucial
importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes
them applicable to modeling based on macroscopic data (like EEG or MEG), which are usually available in human
experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.
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Introduction

Traditionally, two main classes of models have been commonly

used to explore the dynamics of neural circuits [1]. One is based

on single neuron simulation using spiking neuron models, for

example, of the leaky integrate-and-fire or the more elaborate

Hodgkin-Huxley types [2–3]. Such networks include multiple

interconnected neurons and the short-term synaptic plasticity

depends on the dynamics of the presynaptic spike trains [4–9].

There is an extensive literature on the use of such models to link

detailed structural and physiological features, such as inter- and

intralaminar connections, various neurotransmitter-receptor sys-

tems and synaptic plasticity mechanisms, to various brain

functions, including perceptual binding, attention, learning and

speech perception [10–17]. These models are, for example,

relevant for single cell recordings in animals, while their state

variables are not captured adequately by macroscopic measure-

ments, like EEG, MEG, local field potentials (LFP), or functional

magnetic resonance imaging (fMRI). In contrast, neural mass

models (NMMs) [18–25] describe the mean activity of entire

neural populations, represented by their averaged firing rates and

membrane potentials. Such models are, therefore, more useful for

modeling macroscopic brain signals. Despite their parsimony,

NMMs are still biologically realistic; that is, their parameters are

related to microscopically measurable quantities, such as dendritic

time constants.

In the past, brain networks and functions have been investigated

using NMMs with different sets of assumptions, e.g., by Wilson

and Cowan [26], Freeman [20], Wright and Liley [27], Robinson

and colleagues [28], Rennie and colleagues [29], Jansen and Rit,

and Lopes da Silva and colleagues [21–22]. One of the most

widely used ways to account for the dynamics of a cortical circuit

has been the approach of Jansen and Rit [18–19], which

comprises three interconnected neural populations: pyramidal

cells (PCs), excitatory interneurons (EINs), and inhibitory inter-

neurons (IINs) (Fig. 1). The averaged membrane potentials of the

PCs are considered proportional to the observed EEG/MEG

signals [30]. David and colleagues [31] added an inter-area

connectivity scheme following the hierarchical rules described by

Felleman and Van Essen [32], in order to assemble a network of

coupled sources, Wendling and colleagues [33] separated the

originally singular IIN population into a fast GABAergic and a

slow GABAergic IIN, and Zavaglia and colleagues [34] added a

recurrent loop to the circuit of fast GABAergic IINs. These models

have been used to simulate various EEG/MEG features in both

time and frequency domains, such as: brain rhythms ranging from

the delta to the gamma bands [18,34–35]; event-related evoked

responses [31,36–39], induced responses [25,40]; spectral respons-
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es [41–43]; and epilepsy-like activity [33,44]. Moreover these

model have also been used to account for effects in other brain

image modalities such as fMRI [45] and voltage sensitive dyes

[46].

However, most of these approaches are based on static network

structures with fixed connection strength, synaptic weights and

time constants. This severely limits their potential to explain brain

function, which is crucially dependent on plasticity. Accordingly,

models of cortical networks consisting of several connected NMMs

have been used to study the effect of short-term synaptic plasticity.

In their epilepsy study, David and colleagues [47] simulated short-

term plasticity as a fast modulation of synaptic efficacies in either

intrinsic or extrinsic connections to the epileptic focus. Garrido

and colleagues [39] modeled auditory repetition effects on

connections within and between the sources in primary auditory

cortex and superior temporal gyrus. However, in their model, they

did not include any mechanistic model to constrain the plasticity

process. Instead they simply mapped changing signal amplitudes

to changes in connectivity.

Here, we intend to develop a mechanistic model for synaptic

plasticity and use it to explain a specific phenomenon based on

short-term synaptic plasticity – habituation. Habituation refers to

the suppression of neural and behavioral responses as a result of

repeated stimulation. It usually follows an exponential decay

function of stimulus repetition and is reversed if stimulation

changes [48]. This neural mechanism helps us to use our limited

brain resources to interact with our environment in an efficient

way: repeated irrelevant information will be ignored. Short-term

habituation of event-related responses in electroencephalography

(EEG) or magnetoencephalography (MEG) has been reported in

the auditory domain [49–50]. The N100 and N100m are the most

reliable and prominent peaks observed in the auditory evoked

potential (AEP) and auditory evoked field (AEF), respectively, and

appear about 100 ms after stimulus onset [51]. Repeated

stimulation causes attenuation of the N100/N100m amplitude if

the stimuli (e.g., short tones) are presented in rapid succession (e.g.,

with 500 ms spacing). This amplitude suppression recovers after

about 6 to 10 s of stimuli free time [52]. This effect is of great

interest in clinical neuroscience, because impaired habituation has

been observed in patients suffering from, for example, schizo-

phrenia [53], Alzheimer’s disease [54], or migraines [55]. In

cognitive neuroscience, the neuronal adaptation in the auditory

cortex is associated with the mismatch negativity. This is a

negative EEG deflection in response to deviant stimuli and has

been explained in terms of short-term habituation [56–57]. Its

MEG counterpart is called the mismatch field [58].

The underlying neural mechanisms of short-term habituation,

however, are still not fully understood. On a microscopic level,

considerable insight has been gained from animal studies. In the

1970s Castellucci and Kandel [59–60] showed that synaptic

modification might be a possible basis for habituation, based on

their series of experiments of the aplysia gill-withdrawal reflex.

They found that after habituation there were fewer synaptic

vesicles released per action potential. Studies of frog neuromus-

cular junctions as well as hippocampal synapses in rats have,

furthermore, suggested that a decrease in transmitter release can

be caused by a depletion of the readily releasable pool of vesicles,

or a decrease in the release probability of each docked vesicle, or

both [61–63].

On a very different level of detail, there are a number of EEG

and MEG studies that have shed light on the mechanisms of

habituation. Garrido and colleagues [39] used human EEG and

computational modeling techniques to suggest that the reduction

of evoked responses is associated with a decrease of the

connectivity within or between the involved cortical areas. In

their MEG study, Rosburg and colleagues found that only the first

repetition of auditory stimuli resulted in a decrease of the

amplitude of the AEF [64]. There was no evidence for any

further response decrement after the 2nd stimulus. The results

suggested that the suppression of the AEF was probably due to the

refractoriness of cell populations involved in the generation of AEF

components. Todorovic and colleagues [65] demonstrated in their

MEG auditory experiment that the reduction of the AEF was

larger for expected repetitions than for unexpected ones and,

thereby, provided evidence for a top-down prior expectation

modulation of the habituation.

The question is: How can these different scales of description be

linked together? That is, how do we construct a comprehensive

model of neural circuits that can capture important aspects of the

microscopic generative mechanism of short-term habituation and,

at the same time, predict macroscopic effects like N100 or N100m

amplitude reduction? Such a comprehensive model would allow

for data from different sources, both macroscopic and microscopic,

to be integrated and enable testing of hypotheses and quantifica-

tion of microscopic dynamics for given macroscopic observations

[42].

In our approach, we model the habituation as a function of the

dynamic change in average firing rate. We associate the synaptic

connection strength with the neuronal vesicles’ release probability.

Repetition of stimuli causes insufficient availability of vesicles in

releasing pools and reduces the release probability, which in turn

causes a reduction in synaptic connection strength and hence

EEG/MEG signal amplitude. The recovery from habituation is

linked to the process of recycling these vesicles back to the

releasing pools, which occurs spontaneously.

In the modeling process, our goal was not only to implement a

mechanism for short-term habituation on the basis of the current

knowledge from cellular research, but also to refine the very

parsimonious NMM of a local cortical circuit proposed by Jansen

and Rit [18]. Detailed cortical circuit models have shown that the

segregated role of the different lamina of the cortex as well as the

connectivity between the lamina is an important key for

understanding the implementation of brain function [10–

11,13,66–67]. Consequently, we aimed to introduce more realistic

inter-laminar dynamics into the NMM. Commonly, most of the

neocortex is considered to be divided into 6 distinct layers [68].

Excitatory interneurons (e.g., spiny stellate cells) are located in

layer 4, pyramidal cells are found in layers 2 to 6 and inhibitory

interneurons are present in all layers. We propose an extension to

the Jansen and Rit model comprising 5 neural masses : one for

EINs in layer 4, one for superficial pyramidal cells (sPCs) in

supragranular layers 2/3, one for deep pyramidal cells (dPCs) in

infragranular layers 5/6, as well as two for the supragranular and

infragranular interneuron populations (sIINs & dIINs) (Fig. 2). The

IIN in layer 4 are lumped into sIIN population. The laminar-

specific connections among the populations were motivated by

previous modeling attempts [18,31,69–70] and animal studies

[71–72]. Our habituation model, embodying the depression and

recovery processes, can be applied to all the excitatory connections

to account for the stimulus specified repetition suppression. In

comparison to simpler approaches [18,27–28,33], the resulting

local cortical circuit model (LCCM) is more detailed and realistic

with respect to laminar organization of information processing and

better explains measured EEG/MEG data.

In contrast to the earlier work on auditory habituation [39]

using an extended network (including A1 and the STG in both

hemispheres) to simulate the entire auditory response (0–400 ms

after stimulus), we focused on the N100m (70–130 ms after

A Realistic Neural Mass Model of the Cortex
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stimulus), which was accounted for by a single generator using

MEG source reconstruction, located in the right superior middle

temporal lobe near Heschl’s gyrus (for the motivation of this

choice, please refer to the Discussion section). This restriction to

the N100m component is motivated by the intended simplicity of

the model. Taking into account the entire time course of the

auditory evoked field would necessitate the inclusion of multiple

neural circuits and result in a greatly enlarged parameter space,

which would pose substantial challenges to the source localization

and Bayesian inference procedures. Hence, in this proof-of-

principle study only the dynamics of the N100m source, which

captures the main features of the habituation, was modeled using

our LCCM. The specific aim of this modeling was to study the

effect of stimulus repetition on the intra-columnar connections

between the different sub-populations and ask the following

questions: How is the information processing organized with

respect to the different cortical layers, and how are these

connections affected by the stimuli repetition? We proposed two

different hypotheses concerning the information pathways follow-

ing the arrival of the bottom-up input at EINs in layer 4: (1)

information follows a serial pathway, where it first ascends from

layer 4 to the sPC in layers 2/3 and then goes down to the dPC in

layers 5/6; (2) information follows parallel pathways, where it flows

simultaneously from layer 4 to both layer 2/3 and layer 5/6, and

then integrates at the dPC. We also studied the excitatory and the

inhibitory cross-layer connection probability between the super-

ficial layers and the deep layers.

In order to link our LCCM and, in particular, the generative

model of habituation to observed data in an MEG experiment and

explore the information pathway among the cortical layers, we

used a Bayesian inference technique similar to the well-known

dynamical causal modeling approach (DCM) [36,73], which estimates

the model parameters from the measured EEG/MEG data as well

as from prior information about these parameters. The model

evidence was approximated to account for model accuracy and

model complexity [74]. It was used as an index for finding the

most ‘‘optimized’’ connectional organization in the light of the

data [75]. We propose a new technique for the formulation of

priors for the connectivity parameters, which allows for accom-

modating larger portions of the model space within a single model

that can be specified by fitting to the data.

Materials and Methods

In this section, we will first describe the generative model used

in our approach, namely the LCCM based on neural masses,

including the habituation mechanism of its synaptic connections.

This model was used to forwardly simulate the MEG signals.

Second, we will explain the model inversion procedure based on

Bayesian inference, including the model selection scheme used to

test our different hypotheses. Finally, we will detail the experi-

mental design, recording procedure, basic processing, and source

localization of our MEG experiment.

Ethics Statement
The study follows the guidelines of the declaration of Helsinki

and has an ethical approval of the ethics commission of the

University of Leipzig.

Generative Models
Neural mass model of a cortical area/source. The model

was developed based on the previous work of Jansen and Rit [18–

Figure 1. Neural mass model of Jansen and Rit with excitatory interneurons (EIN), pyramidal cells (PC) as well as inhibitory
interneurons (IIN).
doi:10.1371/journal.pone.0077876.g001
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19] and under the assumption that a population of neurons, which

are lumped together and share similar physiological properties,

can be described as a neural mass (NM). In the model, two state

variables were used to describe the activity of an NM: average

firing rate and average membrane potential. As can be seen in the

equation below, each NM receives an average firing rate, Q(t), as

an input and converts it into an average membrane potential, u(t).

This conversion is called the rate-to-potential operator, embodying

the convolution of the incoming spike rate with an impulse

response, h(t):

u(t) ~ Q(t)6h(t)

h(t) ~

H
t t exp ({ t

t ) t§0

0 tv0

(
ð1Þ

Here, H denotes the average synaptic gain and tunes the

maximum amplitude of the average membrane potential. The

time constant, t, is a lumped representation of the conduction time

delays, synaptic time constants and dentritic time constants of all

cells belonging to the mass. The kernel, h, can be interpreted as

Green’s function of second-order ordinary differential equation,

which can be further expressed as two first-order linear

inhomogeneous differential equations:

_uu ~ v

_vv ~
H

t
Q(t){

2

t
v{

1

t2
u

ð2Þ

The dot over the variable indicates the time derivative h/ht.

The converted average membrane potential is transferred into an

average firing rate and sent further to the other connected NMs.

This potential-to-rate transformation is described by a sigmoid

function:

Q(t)~S(u)~
2e0

1z exp (r(u0{u(t)))
{

2e0

1z exp (ru0)
ð3Þ

Figure 2. Neural mass model for a cortical source with excitatory interneurons (EIN) in layer 4, superficial pyramidal cells (sPC) in
layers 2/3, deep pyramidal cells (dPC) in layers 5/6, as well as two inhibitory interneuron populations (sIIN, dIIN).
doi:10.1371/journal.pone.0077876.g002
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Here, e0 tunes the maximum firing rate of the NM, u0 is the

average membrane potential for which half of the maximum firing

rate is reached, and r is the slope of the sigmoid function. Note that

we modified the original sigmoid function used by Jansen and Rit

[18–19] to let it cross the point (u(t) = 0, S(u) = 0). The motivation

for this modification was to achieve a stable fixed-point, where all

the states are equal to zero. The fixed-point corresponds to the

system’s equilibrium or steady state. This means that all the state

variables can be interpreted as the deviation from the steady state:

i.e., positive and negative firing rate can be interpreted as higher

or lower neural activity compared to steady state activity [36].

To simulate the neural dynamics of a single cortical area, we

used five such interconnected NMs. They represent neural

populations distributed in different cortical layers: superior

pyramidal cells (sPC) in supragranular layers 2/3, deep pyramidal

cells (dPC) in infragranular layers 5/6, excitatory interneurons

(EIN) in layer 4, and inhibitory interneurons (sIIN & dIIN) in

supra- and infragranular layers (Fig. 2). Based on simplified

Felleman and van Essen rules for connectivity [32] and the

hierarchical extension of the Jansen and Rit model by David and

colleagues [31], we restricted the external input to the EIN. Note

that, according to the auditory cortex studies in macaque monkeys

[76], squirrel monkeys [77], and cats [78–79], the information

flow from the ventral division of the medial geniculate complex

(MGv) to the core region of the primary auditory cortex is

concentrated in layers 3b and 4. Here, we did not specify the

external input as thalamo-cortical input. We rather simply

assumed that the external input would be a bottom-up projection

from hierarchically lower areas – it could be from the thalamus or

from other cortical areas. This external input was simulated by an

impulse function similar to the one used in previous studies [18–

19]:

P(t)~P0(
t

w
)n exp ({

t

w
) ð4Þ

In this formula, w and n tune the shape and the latency of the

response, while P0 serves as a scaling parameter. The function

represents the impulse response of the sensory pathway as

proposed by Watson and Nachmias [80]. The most important

parameter is the time constant w, which is therefore treated as a

free parameter in our estimation scheme. For the exponent n,

Jansen and colleagues [19] proposed the value 7, which we

adopted as well. Note that this parameter is almost redundant with

the time constant and the input gain, and is therefore not fitted in

the estimation scheme. The scaling factor P0 was chosen 0.0064 in

order to ensure that the maximum input signal is equal to the

maximum firing rate of the neural masses. The intrinsic

connectivity scheme of the local circuit is sketched in Fig. 2.

Here, C1 tunes the maximal amplitude of the input and is

considered as the effective connectivity from the hierarchically

lower areas to the auditory cortex. The couplings among the

different NMs are described by the remaining parameters Ci,

controlling the maximum strength of intrinsic synaptic connec-

tions. The entire system of differential equations describing the

local circuit is given by Eq. 5–10. The connections between the

neural masses are, besides being controlled by the static

connectivities Ci, additionally controlled by the dynamic synaptic

efficacies Wi (Eq. 11), which embody the habituation and recovery

processes. In vivo results from rat auditory cortex have indicated

that forward suppression is due to synaptic depression, rather than

inhibitory postsynaptic potentials [81]. Accordingly, we assumed

that habituation would affect the excitatory synapses of our model.

The specific dynamics of the synaptic efficacies Wi will be

explained later.

The sum of averaged membrane potentials of the sPC and dPC

were assumed to be proportional to the reconstructed cortical

current densities obtained by source reconstruction algorithms

based on the measured EEG/MEG signals. The neuronal currents

underlying EEG/MEG generation have been suggested to be

produced mainly by the membrane potentials of the pyramidal

cells [30], because of their asymmetric shape and parallel

alignment perpendicular to the cortical surface [82].

Our NMM of a single cortical source can be described, based

on Eq.2, by the following system of 26 nonlinear first-order

differential equations (without habituation/recovery dynamics):

Connections to EIN, from dPC (C7) and external input:

_yy1 tð Þ~y2 tð Þ

_yy2 tð Þ~ He

te,PE

C1P tð Þ{ 2

te,PE

y2 tð Þ{ 1

t2
e,PE

y1 tð Þ

_yy3 tð Þ~y4 tð Þ

_yy4 tð Þ~ He

te,dPE

W7 tð ÞC7QdP tð Þ{ 2

te,dPE

y4 tð Þ{ 1

t2
e,dPE

y3 tð Þ

QdP tð Þ~S(y21 tð Þzy23 tð Þ{y25 tð Þ{y27 tð Þ)

ð5Þ

Connection to sIIN, from sPC (C3) and dPC (C12):

_yy5 tð Þ~y6 tð Þ

_yy6 tð Þ~ He

te,sPsI

W3 tð ÞC3QsP tð Þ{ 2

te,sPsI

y6 tð Þ{ 1

t2
e,sPsI

y5 tð Þ

_yy7 tð Þ~y8 tð Þ

_yy8 tð Þ~ He

te,dPsI

W12 tð ÞC12QdP tð Þ{ 2

te,dPsI

y8 tð Þ{ 1

t2
e,dPsI

y7 tð Þ

QsP tð Þ~S(y13 tð Þzy15 tð Þ{y17 tð Þ{y19 tð Þ)

ð6Þ

Connection to dIIN, from dPC (C9) and sPC (C14):

_yy9 tð Þ~y10 tð Þ

_yy10 tð Þ~ He

te,dpdI

W tð Þ9C9QdP tð Þ{ 2

te,dpdI

y10 tð Þ{ 1

t2
e,dpdI

y9 tð Þ

_yy11 tð Þ~y12 tð Þ

_yy12 tð Þ~ He

te,sPdI

W14 tð ÞC14QsP tð Þ{ 2

te,sPdI

y12 tð Þ{ 1

t2
e,sPdI

y11 tð Þ

ð7Þ

Connections to sPC, from EIN (C2), dPC (C6), sIIN (C4), dIIN

(C13):

A Realistic Neural Mass Model of the Cortex
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_yy13 tð Þ~y14 tð Þ

_yy14 tð Þ~ He

te,EsP

W2 tð ÞC2QE tð Þ{ 2

te,EsP

y14 tð Þ{ 1

t2
e,EsP

y13 tð Þ

_yy15 tð Þ~y16 tð Þ

_yy16 tð Þ~ He

te,dPsP

W6 tð ÞC6QdP tð Þ{ 2

te,dPsP

y16 tð Þ{ 1

t2
e,dPsP

y15 tð Þ

_yy17 tð Þ~y18 tð Þ

_yy18 tð Þ~ Hi

ti,sIsP

C4QsI tð Þ{ 2

ti,sIsP

y18 tð Þ{ 1

t2
i,sIsP

y17 tð Þ

_yy19 tð Þ~y20 tð Þ

_yy20 tð Þ~ Hi

ti,dIsP

C13QdI tð Þ{ 2

ti,dIsP

y20 tð Þ{ 1

t2
i,dIsP

y19 tð Þ

QE tð Þ~S(y1 tð Þzy3 tð Þ)

QsI tð Þ~S(y5 tð Þzy7 tð Þ)

QdI tð Þ~S(y9 tð Þzy11 tð Þ)

ð8Þ

Connections to dPC, from EIN (C8), sPC (C5), sIIN (C11), dIIN

(C10):

_yy21 tð Þ~y22 tð Þ

_yy22 tð Þ~ He

te,EdPC

W8 tð ÞC8QE tð Þ{ 2

te,EdP

y22 tð Þ{ 1

t2
e,EdP

y21 tð Þ

_yy23 tð Þ~y24 tð Þ

_yy26 tð Þ~ Hi

ti,dIdP

C10QdI tð Þ{ 2

ti,dIdP

y26 tð Þ{ 1

t2
i,dIdP

y25 tð Þ

_yy27 tð Þ~y28 tð Þ

_yy28 tð Þ~ Hi

ti,sIdP

C1 QsI tð Þ{ 2

ti,sIdP

y28 tð Þ{ 1

t2
i,sIdP

y27 tð Þ

ð9Þ

Depolarization of pyramid cells:

y0 tð Þ~y13 tð Þzy15 tð Þ{y17 tð Þ{y19 tð Þzy21 tð Þ

zy23 tð Þ{y25 tð Þ{y27 tð Þ
ð10Þ

The lower case indices e and i indicate the connection types

excitatory or inhibitory; E, sP, dP, sI and dI indicates the neural

populations EIN, sPC, dPC, sIIN and dIIN, respectively. For the

excitatory and inhibitory connections we used uniform synaptic

gain parameter He and Hi, but connection specific time constants

te,xy and ti,xy. The pair of indices xy indicate the connection from

neural population x to neural population y (E, sP, dP, sI or dI). This

means that each connection will be uniquely characterized by

three parameters: the static coupling strength C, the dynamic

coupling strength W (controlled by habituation) and the time

constant t. The excitatory connections between EIN and PCs

(C2,7,8) were motivated by previous modeling studies [18,69–70,83]

as well as animal studies [71,84]. In particular, C2 (EINRsPC) was

considered as the most prominent connection in a cortical column

of sensory cortex (for reviews, see [85] and reference cited therein).

However, the interlaminar connectivity between the EIN in layer

4 and the sPC in layers 2/3 has been suggested to be uni-

directional in the sensory cortex [71–72]. In terms of information

flow, the anatomical existence of the connection C5 (sPCRdPC)

[71,86–87] triggered us to propose a serial signal pathway from

layer 4 up to layers 2/3 and then down to layers 5/6 [69–70,83].

The reciprocal connection C6 (dPCRsPC) has also been

confirmed in animal studies [71,88–91], but has been found to

be much weaker than C5 [71]. The feedback connection C7

(dPCREIN) has been reported as a projection from pyramidal

cells in layer 6 to the input layer 4 in visual cortex [87] and an

interaction between layer 4 spiny stellate cells and layer 5

pyramidal cells in the somatosensory cortex [92]. This connection

was not mentioned in at least one animal study [71]. The direct

connection from layer 4 to infragranular layers C8 (EINRdPC)

was motivated by reports of a synaptic connection between layer 4

spiny stellate neurons and layer 5A pyramidal cells in rat barrel

cortex [92–93]. As a consequence, in addition to the serial

pathway hypothesis, we proposed a parallel pathway from layer 4

to layers 2/3 and to layers 5/6 [89,94]. The connections between

inhibitory interneurons and pyramidal cells C3, C4, C9 ,C14 were

motivated by previous studies by Thomson and colleagues on rat

and cat cortex [71,95]. In summary, the LCCM structure could be

simply considered as one input layer (EIN) with two output layers

(sPC & dPC). The sPC targets the superficial (feedback connec-

tion) and input (feedforward connections) layers of other cortical

areas. Their axons usually run through the gray matter. The dPC

sends axons through the white matter and tends to target more

distant cortical and subcortical areas.

Based on our a priori knowledge, we classified these 13 intrinsic

synaptic connections into two groups. The first group of ‘‘certain’’

connections included EINRsPC (C2), sPCRdPC (C5), and

dPCREIN (C7)–they form the basic laminar circuit of a column

with forward (C2 & C5) and backward (C7) connections, as well as

intra-laminar connections between pyramidal cells and inhibitory

interneurons (C3, C4, C9, and C10). The second group of

‘‘uncertain’’ connections, in relation to our study perspective,

comprised the key connection for the parallel signal processing

EINRdPC (C8) as well as additional cross-laminar connections

(C6, C11 ,C14). These uncertain connections were given a zero

prior expectation.

Short-term habituation model for NMM. Our habituation

model was designed to mimic the dynamics of the synaptic

depression and recovery caused by the cycle of depleting and

recycling of neurotransmitters. In the framework of NMM, its

relevant state variable is the dynamic synaptic efficacy Wi (see Eq.

5–10). Repetitive stimulation leads to a decrease of the postsyn-

aptic membrane potentials. This depression is due to a decrease in

presynpatic transmitter release [61,96], which can be caused by a

depletion of the readily releasable pool (RRP) or by a decrease in

the release probability of each docked vesicles, or both. In previous

work by Sara and colleagues [63], as well as Wu and colleagues

[62], three-pool models were used to simulate the vesicle kinetics

underlying synaptic activity. The authors assumed that the

synaptic vesicles reside in one of three pools (states): reserve pool,

RRP and fused pool. The vesicles are released from the RRP after

stimulation and mobilized to the fused state, and then they are

endocytosised and recycled from the fused pool into the reserve

pool. The vesicles in the reserve pool refill the RRP. For our

purposes, we further simplified this cycle by restricting the vesicles
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to only two states: readily releasable (RR) and not-readily

releasable (NRR), summarizing the endocytosis and recycling

processes (Fig. 3). In comparison to the three-pools model, this can

be regarded as lumping the fused and the reserve pools together.

ARR and ANRR are the probabilities of a vesicle being in either state

and the sum of them is always 1. The connectivity efficiency Wi is

proportional to ARR. It is equal to 1 in the steady state. According

to Fig. 3, the dynamics of ARR can be described as:

_AARR tð Þ~{n1
Q tð Þ
Qmax

ARR tð Þzn2ANRR tð Þ

ANRR tð Þ~1{ARR tð Þ
_WW tð Þ~ _AARR tð Þ

ð11Þ

The decrease rate of the RRP, n1?Q(t)/Qmax, is the depression

rate depending on the current NM activity, while n2 is the

recycling rate of the RRP or habituation recovery rate. This

description is defined for positive mean firing rates Q(t). For

negative Q(t) (see Eq. 3), the process is considered to be dominated

by the recovery process alone:

_AARR tð Þ~n2ANRR tð Þ ð12Þ

Wehr and Zador [81] reported in their in vivo studies that

forward masking of auditory cortex cells was due to synaptic

depression rather than inhibitory postsynaptic potentials (IPSPs)

and Galarreta and Hestrin [97] showed that excitatory synapses

depressed much more strongly than inhibitory ones. Motivated by

these studies, in our model we assumed that the habituation would

Figure 3. A simple sketch to show the releasing and recycling process of neural vesicles. We classify the vesicles as belonging to one of
two states. Neural vesicles, which dock at the presynaptic membrane, are in readily releasable state (RR). Neural vesicles, which are under endocytosis
and recycling processes are in not-readily releasable state (NRR).
doi:10.1371/journal.pone.0077876.g003
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only affect the excitatory pathways. Moreover, because the same

presynaptic neuron may have different short-term plasticity for

connections to different types of target neurons [98], we used

different depression and recovery rates for each excitatory

connection.

Model Inversion
Model inversion is a computational technique that uses

observed data to estimate the model parameters. In our study,

we used a Bayesian inversion procedure, which was similar to the

one employed in the DCM framework [99]. It involved the

computation and maximization of the conditional mean gh|y of the

posterior probability distribution p(h|y,m) of the parameters h

given the model m and the data y (maximum a posteriori, MAP).

According to Bayes’ rule, the posterior probability is proportional

to the probability of obtaining the data given the parameters p(y|h)

(likelihood), multiplied by the prior probability of the parameters

p(h):

p(hDy,m)!p(yDh)p(h) ð13Þ

All distributions are assumed to be Gaussian. This choice is

necessary to ensure that we can use the conjugate prior theorem to

characterize the posterior. As all parameters and state variables

are lumped over many neurons and subject to many independent

random influences, the central limit theorem predicts that the

distributions are at least similar to Gaussians.

An Expectation Maximization (EM) Gauss-Newton search was

applied to maximize the expectation of the posterior density. This

estimation procedure was described by Friston [99]. For details

please see the Text S1.

Model priors. The specification of the priors was crucially

important for the performance of the Bayesian inversion. The

priors reflected our a priori information about the model structure

and the parameters, based on anatomical and physiological

knowledge. Because the priors were Gaussian they were specified

in terms of their means and variances. The mean corresponded to

our expectation on a particular parameter and the variance

reflected the amount of information we had about that parameter.

The parameters in our model were divided into four subsets: (i)

intrinsic connectivity parameters, which reflect prior knowledge on

the connections between the NMs within a cortical area; (ii)

habituation parameters, which control the synaptic depression and

recovery rates; (iii) synaptic and sigmoid parameters, which control

the dynamics of the NMs; and (iv) input parameters, which control

the time delay and dispersion of the input signal flow from

subcortical or lower level cortical areas to the considered cortical

area. The prior expectations and variances are listed in Tab. 1.

The expectation values of the connection strengths among NMs

were chosen according to proposals by by Jansen & Rit [18]. The

values of synaptic gains and sigmoid parameters were chosen

according to other studies [18,33]. They were kept constant, i.e.,

their prior variances were zero. The dendritic time constants were

assume to be 10 ms for the excitatory connections and 20 ms for

the inhibitory connections [18]. We assumed that the expectation

of the recovery rate would be 2 s21. With this value we could

ensure that, in the absence of concurrent habituation, the

connection efficiency could rise from 0 to 1 within 3 seconds

(5t= 3 s, time constant t= 600 ms). It was similar to the time

constants of recovery from depression observed in the animal

studies that were fitted with an exponential function: 4766104 ms

(least-squares fit 6 estimated fitting error SD) for synapses between

excitatory layer 4 neurons [100], 634696 ms [101] and

480640 ms [102] reported for EPSPs in layer 2/3 pyramidal

neurons evoked by extracellular field stimulation, 8136240 ms for

connected neighboring layer 5 pyramidal neurons and

3996295 ms for layer 5 pyramidal to interneuron synapses [98].

The habituation should be far faster than the recovery, so we set

this parameter to 20 s21. By using this pair of habituation

parameters, simulated N100m data decreased in amplitude at a

similar rate as observed in other experiments.

In our model, all the parameters were positive by definition. To

ensure non-negativity during the parameter estimation, we re-

parameterized the original model parameters in two ways. All

parameters, except for the intrinsic connection parameters, had to

be non-zero at all times. They were re-parameterized with

Table 1. Priors of parameters.

Expectation Prior Type (U/I/C)

Intrinsic connection parameters

Certain intrinsic connections

EINRsPC (C2) 108 U

sPCRsIIN (C3) 33.75 U

sIINRsPC (C4) 33.75 U

sPCRdPC (C5) 135 U

dPCREIN (C7) 135 U

dPCRdIIN (C9) 33.75 U

dIINRdPC (C10) 33.75 U

Uncertain intrinsic connections

dPCRsPC (C6) 0 U

EINRdPC (C8) 0 U

sIINRdPC (C11) 0 U

dPCRsIIN (C12) 0 U

dIINRsPC (C13) 0 U

sPCRdIIN (C14) 0 U

Synaptic gain parameters

He 3.2561023[V] C

Hi 2261023[V] C

Dendritic time constants (from NM x to NM y)

te,xy 1061023[s] U

ti,xy 2061023[s] U

Sigmoid parameter

e0 2.5 [s21] C

r 560 [V21] C

u0 661023[V] C

Input parameter

w 0.005[s] I

C1 50 I

Depression and recovery rate (from NM i to NM j)

Depression rate nd,ij 20[s21] U

Recovery rate nr,ij 2[s21] U

Note. Re-parameterization for uncertain connections used: w = h2, p(h)/N(0, 104)
for uninformative prior. Re-parameterization for other parameters use:
w = u?exp(h),u is the expectation. The un-informative priors are p(h)/N(0, 1/2),
the informative priors are p(h)/N(0, 1/16). EIN = excitatory interneurons,
sPC = superficial pyramidal cells, sIIN = superficial inhibitory interneurons,
dPC = deep pyramidal cells, dIIN = deep inhibitory interneurons.
U = uninformative prior, I = informative prior, C = constant.
doi:10.1371/journal.pone.0077876.t001
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w = u?exp(h), where u is the prior expectation and h is the new

parameter with a zero mean Gaussian prior p(h)/N(0,Ch). A

variance of Ch = 1/2 corresponded to a rather uninformative prior

and allowed the parameter to be relatively freely tuned depending

on the data, while a variance of Ch = 1/16 corresponded to an

informative prior and prevented the parameter from running away

very far from its expectation [36]. However, this re-parameteri-

zation technique kept the model parameter away from zero. If one

likes to explicitly allow a parameter to be zero, for example in the

case of the intrinsic connection strengths C6, C8, C11–C14 (i.e., the

possibility that the connection does not exist at all), a different re-

parameterization can be used: w = h2. Here, a variance of Ch = 104

was used as uninformative prior. This type of re-parameterization

yielded a true shrinkage prior behavior with respect to the original

parameters, that is, the parameter (e.g., the connection strength)

was assumed to be zero, unless the data provided sufficient

evidence to the contrary.

Model Comparison
We fitted the MEG data (see below) with both the J&R model

(see Table S2 for parameter configuration) and the LCCM model.

Different models were compared by means of approximations of

their model evidences [74], where the most likely model is the one

with the largest evidence. Therefore, two models, Mi and Mj, were

compared by means of the Bayes factor, Bij, computed as the ratio

of the model evidences. This is often expressed in term of their

logarithms:

ln Bij~ ln p(yDm~i){ ln p(yDm~j) ð14Þ

Figure 4. Field mapping of the observed MEG over the right hemisphere. During the development of the N100m peak, the pattern clearly
suggests a single dipole located in the right superior middle temporal lobe near Heschl’s gyrus.
doi:10.1371/journal.pone.0077876.g004

Figure 5. Habituation of the N100m source. The amplitudes are
normalized to the responses to the first stimulus.
doi:10.1371/journal.pone.0077876.g005
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Strong evidence in favor of one model requires the difference in

log-evidences to be three or more [74,103].

Data Acquisition and Processing
Experiment. Six right-handed and normal-hearing subjects

(aged 18–30, 3 females) participated in the experiment. Written

informed consent was obtained from all subjects prior to the

experiment. The stimulation paradigm was based on previous

auditory short-term habituation studies [50,58,64]. The subjects

were binaurally stimulated via earphones with a total of 160

sequences (divided into two equal blocks of ca. 20 min duration) of

ten identical tones each. The tones were 900 Hz sine waves 15 ms

long (including 1.5 ms fade-in and 1.5 ms fade-out time). Within

one sequence, the tones were separated by 485 ms (from offset to

onset). Sequences were separated by 10 s of silence. The subjects

were instructed to lie on a comfortable bed and watched a silent

movie with subtitles of their own choice during the MEG

recordings.

MEG recording. MEG was recorded with a NEUROMAG-

306 system (Elekta Oy, Helsinki) with 204 planar gradiometers

and 102 magnetometers. Two EOG channels (vertical, horizontal)

were used to detect eye blink and eye movement artifacts. The

head position relative to the sensors was monitored online with 5

Head Position Indicator (HPI) coils. The signal was digitized with

a bandwidth from DC to 330 Hz and a sampling rate of 1000 Hz.

The raw data were corrected using MaxFilterTM for noise

contamination. MaxFilterTM is based on the Signal Space

Separation (SSS) method [104], which separates the biomagnetic

and external interference signals. The raw MEG data were filtered

offline with a 1–20 Hz band-pass filter (4096 points, FIR), and

then epoched from 2100 ms to 2500 ms (first stimulus presented

at 0 ms, time frame included 5 stimuli) for averaging. The time

range from 2100 ms to 0 ms was used for base-line correction.

Data preparation. In order to acquire the lead field matrix

for the forward modeling, a source model and a volume conductor

model were prepared for each participant. For the volume

conductor model, we chose a realistically shaped single-compart-

ment boundary element model (BEM), which was constructed from

individual anatomical MRI data. The segmentation of the MRI-

data and the triangulation of the relevant surfaces were calculated

using the watershed algorithm [105] in FreeSurfer (http://surfer.

nmr.mgh.harvard.edu) and the MNE software [106]. We used

5120 triangles per surface. The grid spacing for the source space

on the white matter surface was 5 mm. Dipole were oriented

perpendicularly to the cortical surface. In the time range of the

N100m (70–130 ms; see Fig. 4 for representative spatial

distributions) a large proportion of the MEG can be explained

by one dipolar source per hemisphere. Therefore, a representative

source for the N100m generator (time windows: 70–130 ms post

stimulus) in the right temporal lobe was localized using a subset of

the MEG-channels on the right hemisphere (102 planar

gradiometers and 51 magnetometers), by exhaustive search of a

equivalent current dipole. The search area was constrained to the

right Heschl’s gyrus (rHG). Note that we did not intend to find the

‘‘true’’ N100m generator position, but wanted to acquire a

representative dipole, which captured the main features of the

habituation of the N100m peak. We will discuss this issue in the

Discussion section later. The goodness-of-fit (GoF) expressed the

proportion of variance of the MEG data explained by the source,

and for subjects 1 through 6 amounted to 95%, 93%, 96%, 98%,

Figure 6. Observed and simulated (using LCCM) time courses of dipole activities.
doi:10.1371/journal.pone.0077876.g006
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97% and 97% at the latency of the peak of the N100m (59%, 76%,

62%, 94%, 81% and 62%, for subjects 1–6 respectively, for the

entire time window). The lead field matrix of the single source for

each participant was calculated using the MNE software [106].

For the Bayesian inversion, the source activity time courses were

downsampled to 125 Hz and the amplitudes were normalized to

their maximum.

The habituation effect was observed in all participants (N100m

source) and the suppression seemed to converge after the second

stimulus (Fig. 5). The field mapping of MEG over right

hemisphere around N100m peak are shown in Fig. 4. The

observed source activities are shown in Fig. 6.

Figure 7. Simulated data to demonstrate that the N100m peak recovers completely during the 10 s stimulus free time.
doi:10.1371/journal.pone.0077876.g007
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Results

We first compared the fitting results (goodness of fit and model

evidence) of the Jansen and Rit model (JRM) and the local cortical

circuit model (LCCM), at both single subject and group levels.

Then we studied the effective connection probability for those

connections with zero priors. Of special interest was the

connection from the EIN to the dPC (C8): values near zero would

support the serial signal processing hypothesis, while larger values

would support the parallel signal processing hypothesis. We also

studied the habituation effects for each of the estimated

connections. Finally, we demonstrated that, in our model, the

habituation effect depends on the inter-stimuli interval (ISI) as has

been observed in previous work [64]. We show the simulated

habituation processes of the source activities in Fig. 6 as well as the

simulated recovery processes in Fig. 7.

Comparison of the Local Cortical Circuit Model (LCCM)
with the Jansen and Rit Model (JRM)

We compared the goodness of the fit (Fig. 8a) and the model

evidence (Fig. 8b,8c) of the LCCM and JRM. In most subjects, the

LCCM yielded the better fit to the data, while for one subject

(Subj. 2) there was virtually no difference. Accordingly, the model

evidence, comprising both model fit and model complexity, was in

favor of the JRM in that one subject, while for all other subjects

there was clear evidence for the LCCM. Hence, in most cases the

data supported the more detailed description of the local cortical

circuit embodied in the LCCM.

Laminar Signal Flow in a Cortical Column
We examined the six ‘‘uncertain’’ connections (C6, C8, C11 –

C14) from the LCCM of each subject. The ‘‘uncertain’’ connec-

tions were assumed to possibly not be necessary for the effective

laminar information transfer (expressed by zero prior expectation)

and this hypothesis would be rejected only if they were estimated

with a non-zero value by given data. A value is considered non-

zero, if the 10% tail (one sided) of the posterior distribution did not

include zero. See Tab. 2 for the results. Three subjects (1, 5 & 6)

supported the parallel information flow hypothesis.

Habituation of Synaptic Connections
We examined the synaptic efficacies, Wi, for each existing

excitatory connection at the stimulation time points (500 ms,

1000 ms, 1500 ms, and 2000 ms) (Tab. 3 and Table S2). The
Figure 8. Model comparisons for LCCM and JRM. (a) Goodness of
fit. (b) Log Bayes factors on individual subject level. (c) Log model
evidences at group level (sum over all subjects).
doi:10.1371/journal.pone.0077876.g008

Table 2. Estimated ‘‘uncertain‘‘ connections. Non-zero
connections are marked with ‘‘X’’.

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6

EINRdPC x X X

dPCRsPC x

sIINRdPC x X X

dPCRsIIN X

dIINRsPC X X

sPCRdIIN x

Note. EIN = excitatory interneurons, dPC = deep pyramidal cells, sPC = superficial
pyramidal cells, sIIN = superficial inhibitory interneurons, dIIN = deep inhibitory
interneurons.
doi:10.1371/journal.pone.0077876.t002

Table 3. Synaptic efficacies at the time point of the fifth
stimulus (when the habituation is usually converged, the
synaptic efficacies at the 2nd, 3th, 4th and 5th stimulus are
listed in Table S2).

Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6

EINRdPC 0.8 – – – 0.97 0.94

dPCRsPC – 0.53 – – – –

dPCRsIIN – – – – – 0,96

sPCRdIIN 0.51 – – – – –

EINRsPC 0.32 0.41 0.49 0.32 0.47 0.33

sPCRdPC 0.56 0.86 0.57 0.48 0.8 0.72

dPCREIN 0.56 0.96 0.8 0.96 0.9 0.95

sPCRsIIN 0.62 0.6 0.83 0.72 0.92 0.94

dPCRdIIN 0.89 0.6 0.82 0.97 0.86 0.97

Note. EIN = excitatory interneurons, dPC = deep pyramidal cells, sPC = superficial
pyramidal cells, dIIN = deep inhibitory interneurons, sIIN = superficial inhibitory
interneurons.
doi:10.1371/journal.pone.0077876.t003
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Figure 9. Simulated data using variable inter-stimuli interval (ISI) (500 ms, 1000 ms, and 1500 ms).
doi:10.1371/journal.pone.0077876.g009
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excitatory forward pathways (EINRsPC, sPCRdPC) seem to be

more strongly suppressed than the backward pathway

(dPCREIN). The parallel signal flow (EINRdPC) seems to be

little affected by the stimulus repetition (Tab. 3).

Simulated ISI Effect
We simulated the habituation process with variable ISIs

(500 ms, 1000 ms, and 1500 ms) using the LCCM. The results

demonstrate stronger suppression for shorter ISIs (Fig. 9). A

similar effect was reported previously [64].

Discussion

In this piece of work, we developed a detailed neural mass

model (NMM) featuring use-dependent synaptic plasticity, and

used it to account for a specific component of auditory evoked

fields (AEFs), namely the N100m. In particular, we aimed to

explain the phenomenon of short-term habituation, which refers to

the fact that a rapid succession of identical stimuli results in a

reduction of the associated neural response.

The NMM approach has the advantage that it describes neural

activity at the level of detail that is captured by extracranial

measurements, like EEG/MEG, and at the same time maintains a

certain degree of biological realism in the sense that the

parameters of the model directly relate to biophysical quantities.

We extended the NMM proposed by Jansen and Rit [18] by

distinguishing populations in three different cortical layers (input

layer 4, superficial layers 2/3 and deep layers 5/6), resulting in a

local cortical circuit model (LCCM) with anatomically motivated

intra- as well as inter-layer connections. The excitatory connec-

tions among the neural populations were endowed with dynamic

synapses. These synapses decreased their efficacy in response to

the input and recovered spontaneously. The rate of this

habituation was related to the processes of exhaustion and

recycling of neurotransmitters, in this case glutamate. The

modeling results show that these assumptions are sufficient to

reproduce the habituation effects observed in our experiment.

Furthermore, the employed Bayesian inference technique allowed

us to examine both model structure and model parameters. It

enabled the observed data to identify the most probable signal flow

circuit inside a cortical column. The results suggest that beside the

main signal flow, which first ascends from input layer 4 to

superficial layers and then runs down to the deep layers, there

possibly exists a ‘‘short-cut’’ parallel input flow running directly

from layer 4 into deep layers. The results also show that the

excitatory signal flow from the pyramidal cells to the inhibitory

interneurons seems to be preferably intra-laminar, while, in

contrast, the signal flow from the inhibitory interneurons to the

pyramidal cells seems to be both intra- and interlaminar. Further

interesting findings were acquired through the examination of the

estimated connection strengths. The feedforward connections

(layer 4 -. layer 2/3 -. layer 5/6) were far more suppressed by

the habituation process than the feedback connection (layer 5/6 -

. layer 4). Finally, the ‘‘short-cut’’ parallel signal flow was only

weakly affected by the habituation.

The most challenging part of the interpretation of our

computational findings (in fact, the most challenging part of

modeling in general) was to show that our model is reasonable in

terms of the reflected level of detail and physical realism.

Concerning detail, the model should be adapted to the quality

and the quantity of the available data, as well as to the questions

the model is supposed to answer. Physical realism concerns the

interpretability of structure, state variables, and parameters of the

model in terms of physically observable quantities. We believe our

LCCM is a suitable candidate for modeling cortex and discuss this,

with respect to the aforementioned aspects, in the following

sections.

Modeling N100m using a Single LCCM
The first question is: To what extent it is justifiable to explain

the N100m response by a single dipole in the auditory cortex?

Different approaches have been used in previous studies to

account for the generators of the auditory N100/N100m response

in EEG/MEG observations. Zouridakis and colleagues [107]

found that using a single moving dipole within the primary

auditory cortex could account for the entire duration of the

N100m (from about 70 ms to 150 ms after stimulus) and that

during the evolution of the component, it followed a bilateral

posterior-anterior, medial-lateral, superior-inferior trajectory, ex-

tending about 2 cm into the superior surface of the temporal lobes.

This finding was confirmed by several other MEG studies

[58,108]. Lu and colleagues [109] postulated that it might be

possible for one neural source in the primary auditory cortex to

account for a short ISI response and an additional one would be

needed in the auditory association cortex for the long ISI response.

Näätänen and Picton [51] reviewed the previous literature on the

N100 (50–150 ms after stimulus) and postulated three neural

generators: one tangentially oriented to the head surface and

bilaterally located in the auditory cortices, making the largest

contribution to the N100 recording [110]. Due to its radial

orientation the second generator (in auditory association cortex in

STG) is insensitive to MEG. The third generator was found only

with intracranial recordings [111–112]. Its location is unclear and

supposed to lie somewhat posterior to the first generator. Another

multi-generator approach was reported by Jääskeläinen and

colleagues [56]. They found two separate sources in the anterior

superior temporal gyrus (STG) and posterior STG/planum

temporale (PT) contributing to the N100 by combining MEG,

EEG and fMRI recordings. The posterior source activated at

around 85 ms and is considered to be related to the ‘‘where’’

information. The anterior source activated at around 150 ms and

is thought to be related to the ‘‘what’’ information [113].

In summary, the generation of the major component of the

N100m for a series of identical (location and pitch) stimuli with

short ISI might be explained by a single dipole at each time step.

All dipoles are located near the primary auditory cortex and their

orientations seem to be very similar [58]. Hence, they have similar

leadfields and their dynamics cannot be separated easily.

Consequently we decided to lump these sources together and

describe them by a single LCCM.

LCCM versus JRM
The next question: why and in what respect is the LCCM

proposed in our work more biologically realistic than the classical

model of Jansen and Rit?

The cortex has a clear laminar structure and neural populations

in different layers are structurally and functionally different. In

particular, the cortical connections are layer-dependent: forward

and backward connections target different neural populations in

different layers [32]: the sPC projects to the input layers and

superficial layers of other cortical areas through the grey matter,

while the dPC sends its axons through the white matter to more

distant cortical and subcortical areas.

The JRM features only one neural mass of pyramidal cells and

is, therefore, not capable of separating the different types of long-

range connectivity. Using separate supra- and infragranular

populations also allows a distinction to be made between different

local information processing schemes (serial vs. parallel pathway)
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that might relate to different cognitive functions. In these respects,

the LCCM constitutes an improvement in biological realism as

compared to the JRM. This improvement appears relevant in light

of the available MEG data, as shown by our model comparison

results. We expect that the LCCM will be useful building in more

extended models in the future, endowing them with the above-

described advantages.

Laminar Connections and Signal Flow
In this study, we combined MEG recordings with the LCCM in

order to infer the laminar connections in auditory cortex. We

postulated there to be 13 connections within and between cortical

layers, divided into ‘‘certain’’ and ‘‘uncertain’’ (with logarithmic

and quadratic prior, respectively) connections. The results showed

that, in some subjects, besides the main serial excitatory signal flow

circuit (layer 4 -. layers 2/3 -. layers 5/6), a ‘‘short-cut’’ parallel

pathway allowed the sensory input directly from EINs to access the

pyramid cells in deep layers 5/6. The functional meaning of this

finding is not entirely clear. The serial and parallel pathway could

be related to the ‘‘specific’’ and ‘‘unspecific’’ input; where the

‘‘unspecific’’ one is possibly able to bypass the superficial layer

through the connection EINRdPC [93]. Clearly, the question

remains as to whether this phenomenon is universal but not visible

in some subjects due to unfortunate anatomical circumstances or

other peculiarities of the measurement, or if there are variable

processing modes across subjects.

Another interesting finding is that half of the models need a

cross-layer inhibition in order to achieve reasonable fitting results:

The hierarchical signal flow descending from superficial to deep

layers is, possibly, both excitatory and inhibitory (sINNRdPC)

and models with a parallel pathway also send cross-layer inhibitory

signals to the superficial layers (dINNRsPC).

Modeling Habituation
In our work, we successfully reproduced the short-term

habituation of the N100m and its recovery via a dynamical

modification of the synaptic strength. The suppression and

recovery of the synaptic connections was related to the exhaustion

and refilling of the neural vesicles at the RRP. The key notion is

that the brain is not a static machine and has limited resources.

The brain will change its reaction to the incoming information

depending on the strategies of how to assign these resources.

Notice that we did not directly modify our model output with a

habituation rule based on phenomenological observation, as was

the case in previous work by Laxminarayan and colleagues [114]

developing an NMM for rat EEG or by Petersen [100] modeling

the excitatory postsynaptic potentials on single neuron level.

Instead, we implemented a physiologically motivated process to

generate dynamic synapses in our NMM, which increased the

biological plausibility. The observed stimulus repetition related

short-term habituation is only the final result of a serial dynamic

process. In other words, our main purpose was not to just mimic

the phenomenon of habituation (like parameterized curve fitting),

but to develop a simple, yet biological plausible model, which

contains sufficient detail to reproduce this aspect of real brain

activity and makes testable prediction on the underlying mecha-

nisms. These mechanisms may concern, for example, the reuptake

rate of neurotransmitters, the effect of ISI, the asymmetric

suppression of the synaptic connection in feedforward and

feedback pathways, and the existence of a parallel bypass pathway.

Conclusion
In this work we described a neural mass model of a local cortical

circuit that features some important aspects of brain functionality

that were not covered by previous neural mass models. These

aspects are: (1) inclusion of activity induced synaptic plasticity, (2)

inter-and intralaminar information transfer, and (3) distinction

between supra- and infragranular output routes. These aspects, in

particular the first one, are of crucial importance for any

mechanistic explanation of brain function. Their incorporation

into a mass model makes them available to modeling based on

macroscopic data (like EEG or MEG), which are usually available

in human experiments. We demonstrated the usefulness of the

model at the example of short-term auditory habituation. Our

LCCM is potentially a valuable building block for more realistic

models of human cognitive function.

Supporting Information

Table S1 Parameter prior distributions of Jansen and
Rit Model.

(DOC)

Table S2 Synaptic efficacies at the time point of 2nd,
3th, 4th and 5th stimulus (500 ms, 1000 ms, 1500 ms,
and 2000 ms).

(DOC)

Text S1 Computing the Bayesian inversion procedure.

(DOC)

Acknowledgments

We would like to thank Yvonne Wolff for acquiring the MEG data.

Author Contributions

Conceived and designed the experiments: PW TRK. Performed the

experiments: PW TRK. Analyzed the data: PW. Contributed reagents/

materials/analysis tools: PW. Wrote the paper: PW TRK.

References

1. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic

brain: from spiking neurons to neural masses and cortical fields. PLoS

Computational Biology 4: e1000092.

2. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal

of physiology 117: 500.

3. FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve

membrane. Bulletin of Mathematical Biology 17: 257–278.

4. Abbott L, Varela J, Sen K, Nelson S (1997) Synaptic depression and cortical

gain control. Science 275: 221.

5. Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic

synapses. Neural computation 10: 821–835.

6. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same

axon of neocortical pyramidal neurons. Proceedings of the National Academy

of Sciences 95: 5323–5328.

7. Tsodyks MV, Markram H (1997) The neural code between neocortical

pyramidal neurons depends on neurotransmitter release probability. Proceed-

ings of the National Academy of Sciences 94: 719–723.

8. Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent

networks with frequency-dependent synapses. J Neurosci 20: 825–835.

9. Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of

synaptic plasticity based on spike timing. Biological Cybernetics 98: 459–478.

10. Grossberg S, Williamson JR (2001) A neural model of how horizontal and

interlaminar connections of visual cortex develop into adult circuits that carry

out perceptual grouping and learning. Cerebral cortex 11: 37–58.

11. Grossberg S, Seitz A (2003) Laminar development of receptive fields, maps and

columns in visual cortex: the coordinating role of the subplate. Cerebral cortex

13: 852–863.

12. Grossberg S, Swaminathan G (2004) A laminar cortical model for 3D

perception of slanted and curved surfaces and of 2D images: development,

attention, and bistability. Vision Research 44: 1147–1187.

A Realistic Neural Mass Model of the Cortex

PLOS ONE | www.plosone.org 15 October 2013 | Volume 8 | Issue 10 | e77876



13. Grossberg S, Versace M (2008) Spikes, synchrony, and attentive learning by

laminar thalamocortical circuits. Brain Research 1218: 278–312.

14. Grossberg S, Pearson LR (2008) Laminar cortical dynamics of cognitive and

motor working memory, sequence learning and performance: toward a unified

theory of how the cerebral cortex works. Psychological review 115: 677.

15. Grossberg S, Kazerounian S (2011) Laminar cortical dynamics of conscious
speech perception: Neural model of phonemic restoration using subsequent

context in noise. The Journal of the Acoustical Society of America 130: 440.

16. Cao Y, Grossberg S (2012) Stereopsis and 3D surface perception by spiking

neurons in laminar cortical circuits: A method for converting neural rate

models into spiking models. Neural Networks 26: 75–98.

17. Pilly PK, Grossberg S (2013) Spiking Neurons in a Hierarchical Self-

Organizing Map Model Can Learn to Develop Spatial and Temporal

Properties of Entorhinal Grid Cells and Hippocampal Place Cells. PloS one

8: e60599.

18. Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential

generation in a mathematical model of coupled cortical columns. Biological

Cybernetics 73: 357–366.

19. Jansen BH, Zouridakis G, Brandt ME (1993) A neurophysiologically-based

mathematical model of flash visual evoked potentials. Biological Cybernetics
68: 275–283.

20. Freeman W (1978) Models of the dynamics of neural populations.

Electroencephalography and clinical neurophysiology Supplement: 9.

21. Lopes da Silva F, Hoeks A, Smits H, Zetterberg L (1974) Model of brain

rhythmic activity. Biological Cybernetics 15: 27–37.

22. Lopes da Silva F, Van Rotterdam A, Barts P, Van Heusden E, Burr W (1976)

Models of neuronal populations: the basic mechanisms of rhythmicity. Progress

in brain research 45: 281–308.

23. Nunez PL (1974) The brain wave equation: A model for the EEG.

Mathematical Biosciences 21: 279–297.

24. Spiegler A, Kiebel SJ, Atay FM, Knösche TR (2010) Bifurcation analysis of
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46. Trong MN, Bojak I, Knösche TR (2012) Associating spontaneous with evoked

activity in a neural mass model of visual cortex. NeuroImage.

47. David O, Wozniak A, Minotti L, Kahane P (2008) Preictal short-term plasticity
induced by intracerebral 1 Hz stimulation. NeuroImage 39: 1633–1646.

48. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the
study of neuronal substrates of behavior. Psychological review 73: 16.

49. Fruhstorfer H, Soveri P, Järvilehto T (1970) Short-term habituation of the

auditory evoked response in man. Electroencephalography and clinical
Neurophysiology 28: 153–161.

50. Rosburg T, Trautner P, Boutros NN, Korzyukov OA, Schaller C, et al. (2006)

Habituation of auditory evoked potentials in intracranial and extracranial
recordings. Psychophysiology 43: 137–144.
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106. Hämäläinen M (2006) MNE software User’s Guide, Version 2.5. MGH/
HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Massa-

chusetts, USA.

107. Zouridakis G, Simos PG, Papanicolaou AC (1998) Multiple bilaterally

asymmetric cortical sources account for the auditory N1m component. Brain

topography 10: 183–189.

108. Rogers RL, Papanicolaou AC, Baumann SB, Saydjari C, Eisenberg HM (1990)

Neuromagnetic evidence of a dynamic excitation pattern generating the N100
auditory response. Electroencephalography and Clinical Neurophysiology/

Evoked Potentials Section 77: 237–240.

109. Lu Z, Williamson S, Kaufman L (1992) Behavioral lifetime of human auditory

sensory memory predicted by physiological measures. Science 258: 1668–1670.

110. Picton T, Alain C, Woods D, John M, Scherg M, et al. (1999) Intracerebral

sources of human auditory-evoked potentials. Audiology and Neurotology 4:
64–79.

111. Velasco M, Velasco F, Olvera A (1985) Subcortical correlates of the somatic,
auditory and visual vertex activities in man. I. Bipolar EEG responses and

electrical stimulation. Electroencephalography and clinical Neurophysiology

61: 519–529.

112. Velasco M, Velasco F (1986) Subcortical correlates of the somatic, auditory and

visual vertex activities. II. Referential EEG responses. Electroencephalography
and clinical Neurophysiology 63: 62–67.
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