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All-sky, broadband, coherent searches for gravitational-wave pulsars are computationally limited. It is

therefore important to make efficient use of available computational resources, notably by minimizing the

number of templates used to cover the signal parameter space of sky position and frequency evolution. For

searches over the sky, however, the required template density (determined by the parameter-space metric)

is different at each sky position, which makes it difficult in practice to achieve an efficient covering.

Previous work on this problem has found various choices of sky and frequency coordinates that render the

parameter-space metric approximately constant but that are limited to coherent integration times of either

less than a few days or greater than several months. These limitations restrict the sensitivity achievable by

hierarchical all-sky searches and hinder the development of follow-up pipelines for interesting

gravitational-wave pulsar candidates. We present a new flat parameter-space metric approximation and

associated sky and frequency coordinates, which do not suffer from these limitations. Furthermore, the

new metric is numerically well conditioned, which facilitates its practical use.
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I. INTRODUCTION

Gravitational-wave pulsars are rapidly rotating neutron
stars that are hypothesized to emit continuous, narrow-band,
quasisinusoidal gravitational waves. Nonaxisymmetric dis-
tortions of the neutron star, unstable fluid oscillations such
as rmodes, and free precession due to misaligned symmetry
and rotation axes have been proposed as possible emission
mechanisms; see Refs. [1,2] for reviews. It remains uncer-
tain, however, whether any of these mechanisms can gen-
erate gravitational waves strong enough to be detectable by
large-scale ground-based interferometric detectors such as
LIGO [3] or Virgo [4]. Several searches using data from the
first generation of these detectors have been performed; see
Refs. [5–7] for recent results. While energy-conservation-
based upper limits on gravitational waves have been beaten
for some individual sources [5,8,9], to date no gravitational-
wave pulsars have been detected. Second-generation
gravitational-wave interferometers such as Advanced
LIGO [10], which are currently being constructed, may,
however, be sufficiently sensitive to make a first detection
[7,11,12].

The data analysis challenge of searching for gravitational-
wave pulsar signals in long stretches of interferometer data
is formidable. Aside from searches for gravitational waves
from known radio and x-ray pulsars, which target a single
gravitational-wave template assumed to be phase locked to
the known electromagnetic signal [5,9], searches for undis-
covered gravitational-wave pulsars must cover a vast pa-
rameter space of potential signals. For example, it is not
feasible to perform a coherent search over the entire sky and

a broad band of signal frequencies, despite the harnessing of
�1021 floating-point operations of computing power
through Einstein@Home [13], a distributed computing plat-
form [7]. This has led to the development of numerous
hierarchical pipelines [14–17], where several sensitive,
computationally expensive coherent searches of different
data segments are incoherently combined using a less sen-
sitive, but computationally cheaper, semicoherent search.
Recent progress has been made on the optimal combination
of coherent and semicoherent searches [13,18] and on the
accurate estimation of the overall search sensitivity [19].
A central issue in constructing a sensitive search for

gravitational-wave pulsars is determining the bank of tem-
plate signals to search over. The signal template of a
gravitational-wave pulsar [20] is parametrized by its sky
position, often given in terms of right ascension � and
declination �, and its frequency evolution, given most com-
monly by an initial frequency at some reference time, f0,
and a series of frequency time derivatives, or spindowns:

f1 � _f, f2 � €f, etc., up to as many as required. The signal

parameters define a manifold P containing points ~� ¼
ð�; �; f0; f1; f2; . . .Þ, each of which corresponds to a signal

template; the parameters ~�0 are then coordinates in P . The
search must select a finite subset of the members of P ,
which in turn defines a finite bank of templates to search
over. It is improbable, however, that any real signal present
in the data will possess parameters precisely matching one
of the chosen templates. At best, the real signal will be
sufficiently close to one of the templates that it can be
recovered with some loss in its signal-to-noise ratio.
An optimal template bank should contain a minimum

number of templates, in order to reduce computational
cost, with the constraint that any real signal will be recovered
with some maximum acceptable loss in the signal-to-noise
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ratio. To achieve these constraints, the parameter space is
associated with a metric, or distance function, g [14,21,22].

Given two points ~�0, ~� 2 P , the metric computes the mis-
match�, which gives the loss in the signal-to-noise ratio that

would result, were ~�0 a real signal and ~� a nearby template.

The template bank is then a finite subset of points f ~�ng � P ,

such that the mismatch between any point ~�0 2 P and the

‘‘closest’’ template-bank member ~� 2 f ~�ng is bounded by
some prescribed maximum mismatch �max . If the metric is

independent of ~�, i.e., it is explicitly flat, results from the
theory of lattices can be used to place template points on a
regular grid, such that the number of points required is
minimized [23,24].

The most persistent obstacle to performing optimal
template placement for gravitational-wave pulsar searches

has been finding a set of coordinates ~�, with respect to
which the metric is (approximately) constant. For searches
targeting a particular point in the sky, where the search is
only over the frequency evolution parameters ðf0; f1;
f2; . . .Þ, the metric does satisfy this property [25,26], and
optimal template placement is used in a search targeting
the supernova remnant Cassiopeia A [8]. For searches over
the sky, however, the metric is not constant with respect
to the angular coordinates ð�; �Þ [25,27]. An additional
practical issue, noted in Ref. [25], is that the metric, when
expressed in conventional coordinates, is numerically
highly ill conditioned. This makes it very difficult to,
for example, compute the transformations of the metric
required to implement optimal template placement.

Several alternative sky coordinates and approximate
phase models have been developed, with respect to
which the metric is constant: the linear phase models of
Refs. [28,29] and the global correlation coordinates of
Refs. [17,30]. The principal limitation of these approaches
is that, in a hierarchical pipeline, the time span of the data
segments that can be coherently searched is restricted to
less than a few days [17,29] or greater than several months
[25,29]. The segment time span is a free parameter when
designing a search for gravitational-wave pulsars; one
would ideally choose it based solely on trade offs between
sensitivity and computational cost, as detailed in Ref. [13].
These restrictions, however, prevent the sensitivity of an
all-sky search from being improved by increasing the
length of the coherently searched data segments beyond a
few days, and it is not computationally feasible to perform
an all-sky search with month-long coherent segments. They
also hinder the development of follow-up pipelines [31],
where one would like to perform more sensitive searches
targeting a small number of interesting gravitational-wave
pulsar candidates.

In this paper we present a new solution to these long-
standing problems: an explicitly flat parameter-space metric
approximation, and associated coordinates, without limita-
tions on the coherent time span and where the metric is well

conditioned. Section II of this paper presents relevant
background, and Sec. III examines prior research on the
parameter-space metric. Section IV presents a new
parameter-space metric approximation that is explicitly
flat but that embeds P in a higher-dimensional space.
Section V then demonstrates how to reduce the dimension-
ality of the new metric back to the dimensionality of P ,
while remaining constant and improving its numerical con-
ditionedness. Section VI discusses the potential uses of the
new metric. Details of the numerical simulations presented
throughout this paper are found in the Appendix.
When comparing different predicted and/or calculated

mismatches, �a and �b, we compute their relative error,
which we define following Ref. [25] to be

"ð�a;�bÞ ¼ �a ��b

0:5ð�a þ�bÞ ; �a;�b � 0: (1)

This definition of relative error is bounded within the
range ½�2; 2�, even for large differences j�a ��bj � 1,
while for j"ð�a;�bÞj � 1, it approaches more common
definitions, e.g., ð�a ��bÞ=�b. The behavior of the rela-
tive error is illustrated in Fig. 1.

II. BACKGROUND

This section presents background information relevant
to this paper. We introduce the gravitational-wave pulsar
signal model (Sec. II A), the concept of a parameter-space

FIG. 1. Illustration of the behavior of the relative error
"ð�solid; �dashedÞ between mismatches computed by a reference
metric �solid and a transformed metric �dashed. Top: the reference
and transformed metrics are plotted as solid and dashed ellipses.
The transformed metric has been (left to right), inflated, deflated,
and rotated relative to the reference metric. The circles and pluses
represent 50 random points, sampled uniformly with respect to the
reference metric; points where "ð�solid; �dashedÞ 	 0 are plotted as
circles, and points where "ð�solid; �dashedÞ> 0 are plotted as
pluses. Bottom: histograms of "ð�solid; �dashedÞ of the 50 plotted
points.
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metric (Sec. II B), and a useful approximation known as
the phase metric (Sec. II C).

A. Signal model

A gravitational-wave pulsar signal hðt;A; ~�Þ, as seen
in a detector, can be expressed as the sum of the products
of four time-independent amplitudes, Ai, and four time-

dependent basis waveforms hiðt; ~�Þ [20]:

hðt;A; ~�Þ ¼ X4
i¼1

Aihiðt; ~�Þ; (2)

where t is the time at the detector. TheAi are functions of
the gravitational-wave strain amplitude h0, the pulsar’s
angles of inclination � and polarization c , and the wave’s

initial phase �0 at a reference time t0. The hiðt; ~�Þ depend
on the response functions Fþðt; ~�Þ and F
ðt; ~�Þ of the
detector and on the gravitational-wave phase evolution

�ð�; ~�Þ
2�

¼ Xsmax

s¼0

fðsÞ
ð�� t0Þsþ1

ðsþ 1Þ! ; (3)

where � is the arrival time of a wavefront at the Solar

System barycenter (SSB), and fðsÞðt0Þ � dsf=d�sjt0 are the
time derivatives of the signal frequency fð�Þ at the SSB.
The gravitational-wave phase at the detector is found by
substituting

�ðt; ~�Þ � t0 ¼ ðt� t0Þ þ ~rðtÞ � ~n
c

þ �relativistic; (4)

where t is the arrival time of the wavefront at the detector,
~rðtÞ is the detector position vector relative to the SSB, ~n is a
unit vector pointing from the SSB to the pulsar’s position in
the sky, and �relativistic represents the relativistic Einstein
and Shapiro delays. The second term of Eq. (4) is also
known as the Rømer delay.

The result of coherently matched filtering the signal
model with detector data and maximizing over the un-
known amplitudes Ai is known in this context as the F
statistic [20,32]. For a signal with parameters ðAi; ~�0Þ, the
F statistic in a template ~� follows a noncentral 	2 distri-
bution with 4 degrees of freedom and a noncentrality
parameter given by the squared signal-to-noise ratio

(SNR) 
2ðA; ~�0; ~�Þ. For perfectly matched signals,


2ðA; ~�0; ~�0Þ ¼ 2

Shðf0Þ
Z t0þT=2

t0�T=2
dt h2ðt;A; ~�0Þ; (5)

where Shðf0Þ is the (single-sided) power spectral density
(PSD) of the detector noise at the signal frequency f0, and
T is the time spanned by the coherently analyzed data. For
simplicity, in this paper we will assume that the detector
data is continuous (i.e., contains no gaps) and that the PSD
in a sufficiently small frequency band surrounding a signal
is constant in time and frequency. These limitations are

readily addressed in a real implementation of the F
statistic [33].

B. Metric

The mismatch � between a signal with parameters ~�0

and a nearby template with parameters ~� is defined in terms
of the squared SNR [14,25]:

�0 ¼ 
2ðA; ~�0; ~�0Þ � 
2ðA; ~�0; ~�Þ

2ðA; ~�0; ~�0Þ

; (6)

where the mismatched SNR 
2ðA; ~�0; ~�Þ is given by
Eq. (28) of Ref. [25]. In the numerical simulations pre-
sented in this paper, �0 is calculated as follows: a
gravitational-wave pulsar signal is generated with parame-

ters ~�0 and searched for using the F statistic at points ~�0

and ~�, returning the values F ð ~�0Þ and F ð ~�Þ, respectively.
The mismatch is then calculated using Eq. (6) and the
relation

2F ð ~�Þ ¼ E½2F ð ~�Þ� ¼ 4þ 
2ðA; ~�0; ~�Þ: (7)

No simulated noise is added to the gravitational-wave

pulsar signal, and thus 2F ð ~�Þ is equal to its expectation

value E½2F ð ~�Þ�.
If the difference � ~� ¼ ~�� ~�0 is small enough,


2ðA; ~�0; ~�Þ can be Taylor expanded with respect

to 
2ðA; ~�0; ~�0Þ. The F -statistic mismatch �0 is then
approximated by

�0 � �g � � ~� � g� ~�: (8)

The metric mismatch �g is calculated via the metric g, for

which the coefficients are

gð�i; �jÞ ¼ �1

2
2ðA; ~�0; ~�0Þ
@
2ðA; ~�0; ~�Þ

@�i@�j

�������� ~�¼ ~�0

: (9)

There are no terms proportional to the first derivatives of


2ðA; ~�0; ~�Þ with respect to ~�, since by definition


2ðA; ~�0; ~�Þ is a maximum at the signal location ~�0.
The matrix g is positive definite by construction [25],

and thus the region� 	 �max forms an ellipsoid, centered

on ~�0, in the parameter space P . If g is flat, each template

point ~�n 2 P will be surrounded by an identical ellipsoid.
We can then apply a global coordinate transformation to P
that maps the ellipsoids to spheres, each with a template
point at its center. The problem of template placement is
now equivalent to the sphere-covering problem in lattice
theory [23], and the solution that minimizes the number of
template points is to place them at the vertices of a lattice
that is known to achieve the best possible covering. The
best choice of lattice depends on the dimensionality of P ;
for example, in two dimensions it is the hexagonal lattice
[34]. If g is not flat (or just nonconstant), however, other
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methods of template placement, such as random or
stochastic algorithms [35–37], must be employed.

C. Phase metric

For the F statistic, the gð�i; �jÞ are complicated

functions depending on the unknown amplitudes A, as
described in Ref. [25], which include both derivatives of

the amplitude modulation Fþðt; ~�Þ and F
ðt; ~�Þ of the
signal, and derivatives of the phase modulation, given by

�ðt; ~�Þ. If T is large compared to a day, however, the
contribution of the more rapid (* 100=s) phase modula-
tion dominates that of the slower (& 1=day) amplitude
modulation. In this limit, the metric reduces to a simplified
form, known as the phase metric, for which the coefficients

involve only derivatives of �ðt; ~�Þ:

gð�i; �jÞ ¼
�
@�ðt; ~�Þ
@�i

;
@�ðt; ~�Þ
@�j

�
; (10)

where we define the operators

½xðtÞ; yðtÞ� ¼ hxðtÞyðtÞi � hxðtÞihyðtÞi; (11)

hxðtÞi ¼ 1

T

Z t0þT=2

t0�T=2
dt xðtÞ: (12)

An equivalent expression for the metric was also obtained
in Ref. [14] by instead assuming a simplified signal model
where the amplitude motion is discarded. If the phase

�ðt; ~�Þ is linear in the coordinates ~�, then the gð�i; �jÞ
are independent of ~�, and g is therefore flat. Thus, the
problem of finding a constant metric approximation is

reduced to one of linearizing �ðt; ~�Þ with respect to its
coordinates.

To linearize �ðt; ~�Þ with respect to the frequency and

spindown coordinates fðsÞ, we first substitute Eq. (4) into
Eq. (3), neglecting the relativistic terms that are not
important for template placement:

�ðt; ~�Þ
2�

� Xsmax

s¼0

fðsÞ

ðsþ 1Þ!
�
�tþ ~rðtÞ � ~n

c

�
sþ1

; (13)

where �t ¼ t� t0. We now expand the factor ½. . .�sþ1 and
retain only the first two leading-order terms in �t. This
approximation can be made because ~rðtÞ � ~n=c & 500 sec
(the approximate light travel time from the Sun to the
Earth) while �t� T, and so �t � ~rðtÞ � ~n=c for T *
days. The approximate Eq. (13) now reads

�ðt; ~�Þ
2�

� Xsmax

s¼0

fðsÞ
�tsþ1

ðsþ 1Þ!þ
~rðtÞ � ~n

c

Xsmax

s¼0

fðsÞ
�ts

s!
: (14)

The summation in the second right-hand-side term is pre-
cisely fðtÞ, the instantaneous frequency of the signal at
time t. Using the same argument, we see that the deriva-

tives of�ðt; ~�Þwith respect to the fðsÞ [which will appear in

Eq. (10)] of the second term will be small relative to the
first, i.e., �tsþ1 � �ts ~rðtÞ � ~n=c. Hence, fðtÞ may be
approximated by some constant fmax , usually chosen con-
servatively to be the maximum of fðtÞ over T. The resulting
approximate phase is now

�ðt; ~�Þ
2�

� Xsmax

s¼0

fðsÞ
�tsþ1

ðsþ 1Þ!þ
~rðtÞ � ~n

c
fmax : (15)

III. PRIOR WORK

While it is straightforward to obtain a linear phase model

�ðt; ~�Þ with respect to the frequency and spindown

coordinates fðsÞ, as shown in Sec. II C, the same cannot
be said of the sky coordinates, which enter Eq. (3) through
the sky position vector ~n. If, for example, we choose right
ascension � and declination � as sky coordinates, then

the derivatives of �ðt; ~�Þ themselves depend on the sky
coordinates,

d� / ðrz cos�� ry sin� sin�� rx cos� sin�Þd�
þ ðry cos� cos�� rx sin� cos�Þd�þ � � � ; (16)

where ~n ¼ ðcos� cos�; sin� cos�; sin�Þ, and ~rðtÞ ¼
ðrx; ry; rzÞ are expressed in equatorial coordinates ðx; y; zÞ.
If, instead, two components of the vector ~n ¼ ðnx; ny; nzÞ
are chosen, e.g., nx and ny, the constraint j ~nj ¼ 1 requires

that the third component is a function of the other two, i.e.,

nz ¼ ð1� n2x � n2yÞ1=2, and so the derivatives of �ðt; ~�Þ
still depend on the coordinates:

d� /
�
rx � rz

nx
nz

�
dnx þ

�
ry � rz

ny
nz

�
dny þ � � � : (17)

This section presents two prior approaches to this prob-
lem: the linear phase models (Sec. III A) and the global
correlation coordinates (Sec. III B). The new approach to
this problem taken in this paper is presented in Sec. IV.

A. Linear phase models

The linear phase models of [28,29] express ~n ¼
ðnX; nY; nZÞ in ecliptic coordinates ðX; Y; ZÞ and adopt the
X and Y components ðnX; nYÞ as sky coordinates. The

restriction j ~nj ¼ 1 then requires nZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2X � n2Y

q
.

We write

~rðtÞ � ~n ¼ rXðtÞnX þ rYðtÞnY þ rZðtÞnZ (18)

¼ ½rsXðtÞ þ roXðtÞ�nX
þ ½rsYðtÞ þ roYðtÞ�nY þ rsZðtÞnZ; (19)

where the detector position vector ~rðtÞ ¼ ~rsðtÞ þ ~roðtÞ is
decomposed into its diurnal and orbital components in
ecliptic coordinates, ~rsðtÞ ¼ ½rsXðtÞ; rsYðtÞ; rsZðtÞ� and
~roðtÞ ¼ ½roXðtÞ; roYðtÞ; 0�, respectively. (This assumes a
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planar Earth orbit, which is not exactly satisfied in reality,
due to, e.g., the Earth–Moon interaction.) We see that ~rðtÞ �
~n is linear in nX and nY only if rsZðtÞ ¼ 0, i.e., only if the
diurnal motion of the detector in the ecliptic Z direction is

neglected. Two linear phase models are presented in
Ref. [28], which achieve this; in linear phase model I,
rsZðtÞ is discarded, and in linear phase model II (also
known as the orbital metric [25]), the entire diurnal motion

FIG. 2. Relative errors as a function of T between mismatches calculated from theF -statistic,�0, and predicted by: (a) the phase metric
using linear phase model I, "ð�0; �lpIÞ, for �0 	 0:2; (b) the phase metric using linear phase model II, "ð�0; �lpIIÞ for �0 	 0:2; (c) the

global correlation metric, "ð�0; �gcÞ for �0 	 0:2 and T < 30 days; (d), (e) the super-sky metric, "ð�0; �ssÞ for �0 	 0:2 and 0:2 	
�0 	 0:6 respectively; and (f) the reduced supersky metric, "ð�0; �rssÞ for �0 	 0:2. Plotted are the median (solid line), the 25th–75th
percentile range (error bars), and the 2.5th (dotted line) and 97.5th (dashed line) percentiles. Only first spindown is used.
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~rsðtÞ is discarded. Simulations investigating the accuracy of
signal parameter estimation using the linear phase models
were presented in Ref. [28].

Figures 2(a) and 2(b) show the relative errors "ð�0; �lpIÞ
and "ð�0; �lpIIÞ between mismatches predicted by the

phase metric using the linear phase models I and II vs
the mismatch �0 calculated from the F statistic, as given
in Eq. (6). Linear phase model I [Fig. 2(a)] models the
F -statistic mismatch well, converging to j"ð�0; �lpIÞj &
0:1 for T * 20 days. The spread of errors can, however,
be quite large: the 25–75th percentile range (error bars) is
*0:5 for T & 10 days; the 2.5–97.5th percentile range
(dotted to dashed lines) is * 1 for T & 35 days. Linear
phase model II [Fig. 2(b)] is also a reasonable approxima-
tion in the longer-T limit, consistent with similar simula-
tions presented in Ref. [25]. It initially underestimates �0

[i.e., "ð�0; �lpIIÞ> 0], up to 0.5 at T � 5 days, before

converging to an overestimate ["ð�0; �lpIIÞ< 0] of �0:1

for T * 30 days.
The relative errors between the linear phase models and

the F statistic exhibit features common to most of the
phase metrics examined in this paper. In general, the phase
metrics tend to overestimate the F -statistic mismatch
[i.e., "ð�0; ����Þ< 0], which would lead to a conservative,
overdense template bank. This is due to the neglect of

higher-order terms in � ~� in the derivation of the metric
[Eq. (8)], which leads to the metric-predicted mismatch
typically being larger than theF -statistic mismatch for the

same � ~�. This effect prevents the phase metric from ex-
actly predicting the F -statistic mismatch at long T. In
addition, at T � 1 day, the diurnal amplitude modulation
of the gravitational-wave pulsar signal, neglected in the
phase metric approximation, changes the size and orienta-
tion of the full F -statistic metric [25] relative to the phase

metric. As illustrated in Fig. 1, this can lead to further
overestimation of the F -statistic mismatch by the phase
metric.

B. Global correlation coordinates

The global correlation coordinates of Refs. [17,30] adopt
the x and y coefficients of ~n in equatorial coordinates,
ðnx; nyÞ, as sky coordinates. Decomposing the detector po-

sition vector into its diurnal and orbital components in
equatorial coordinates, ~rsðtÞ ¼ ½rsxðtÞ; rsyðtÞ; 0� and ~roðtÞ,
respectively, we have

~rðtÞ � ~n ¼ rsxðtÞnx þ rsyðtÞny þ ~roðtÞ � ~n: (20)

The global correlation coordinates then absorb ~roðtÞ � ~n
into the frequency and spindown parameters fðsÞ, by
Taylor-expanding ~roðtÞ in time and defining new parame-

ters �ðsÞðtÞ that are functions of fðsÞ and ~n. Assuming that
no second- or higher-order spindowns are required, i.e.,

fðsÞ ¼ 0 for s > 1, the global correlation coordinates �ðtÞ
at time t are functions of the frequency fðtÞ ¼ fþ _f�t and

spindown _f at time t [30]:

�ðtÞ ¼ fðtÞ þ fðtÞ _~roðtÞ þ _f~roðtÞ
c

� ~n; (21a)

_�ðtÞ ¼ _fþ fðtÞ€~roðtÞ þ 2 _f _~roðtÞ
c

� ~n: (21b)

The phase is then linear in the coordinates nx, ny, �ðtÞ, and
_�ðtÞ. The approximation of ~roðtÞ as a Taylor series limits
the validity of these coordinates to T & 2–10 days, de-
pending on the frequency searched [17]. A similar linear-
ized phase model is also presented in Ref. [29]; they found
that the adequacy of this model was limited to T &
8–14 days, depending on the search frequency, number

FIG. 3 (color online). Median magnitude of the relative error j"ð�0; �gcÞj, as a function of � and �, for �0 	 0:2. The ecliptic
equator is overplotted in black. Left: median j"ð�0; �gcÞj over time spans 1 	 T 	 29 days and over all simulation reference times

�t0 and maximum frequencies fmax ; see the Appendix. Right: median j"ð�0; �gcÞj at fixed values of T, �t0, and fmax ; axis ranges and

color values are the same as for the left-hand-side plot. Only the first spindown is used.
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of spindowns, and the parameter estimation accuracy
required. An examination of the limitations of the global
correlation method is presented in Ref. [38].

Figure 2(c) plots the relative error "ð�0; �gcÞ between
mismatches predicted by the global correlation metric
and calculated from the F statistic via Eq. (6), up to T <
30 days. The global correlation coordinates perform
best when 3 & T & 7 days; below �3 days and above
�15 days, j"ð�0; �gcÞj * 0:5, broadly consistent with

the domain of validity found in Ref. [17]. Unlike other
phase metrics examined in this paper, the global correla-
tion coordinates perform worse at long T due to the break-
down of the Taylor expansion of the orbital motion.
Figure 3 plots the median error magnitude j"ð�0; �gcÞj
as a function of sky position, over the full ranges of
simulation parameters and at fixed values of T, �t0, and
fmax . The smallest j"ð�0; �gcÞj are along the ecliptic

equator and at the poles; the largest are at the points � ¼
180
 � 90
, � ¼ �20
. The errors are independent of sky
position at fixed T but become sky-position dependent
when considering fixed �t0 and fmax .

IV. SUPERSKY METRIC

In this paper, to linearize the phase metric �ðt; ~�Þ with
respect to the sky coordinates ~n, we simply relax the con-
straint that j ~nj ¼ 1 and instead consider each of the three
components of ~n to be independent. It follows that the phase

variation d�ðt; ~�Þ is independent of sky position:

d� / ~rðtÞ � d ~nþ � � � : (22)

This idea is the foundation of the parameter-space metric
described in this paper. We refer to the phase metric ex-
pressed in the three sky coordinates ~n 2 R3 as the supersky
metric gss; it is given, e.g., in equatorial coordinates by

gss ¼

gnx;nx gnx;ny gnx;nz gnx;f gnx; _f � � �
gnx;ny gny;ny gny;nz gny;f gny; _f � � �
gnx;nz gny;nz gnz;nz gnz;f gnz; _f � � �
gnx;f gny;f gnz;f gf;f gf; _f � � �
gnx; _f gny; _f gnz; _f gf; _f g _f; _f � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (23)

where the elements g�i;�j
are given by Eq. (10).

Geometrically, relaxing the constraint j ~nj ¼ 1 amounts to
embedding the two-dimensional physical sky in three-
dimensional space R3, as illustrated in Fig. 4. The physical
skymetric is recovered by reimposing the restriction j ~nj ¼ 1,
which is equivalent to finding the intersection of the sky
sphere with a supersky metric ellipsoid centered on a point
on the sky sphere. From Fig. 4 it is evident that, while the
supersky metric ellipsoids have the same shape and orienta-
tion, regardless of their location, their intersections with the

sky sphere produce shapes of differing sizes and orientations.
This confirms that the metric is flat in the supersky ~n 2 R3

but not on the physical sky j ~nj ¼ 1.
Figures 2(d) and 2(e) plot the relative error "ð�0; �ssÞ

between mismatch predicted by the supersky metric, and
calculated from the F statistic, for �0 	 0:2 and 0:2 	
�0 	 0:6, respectively. For template placement, we are
most interested in the median error and whether the
supersky metric significantly underestimates the F -statistic
mismatch, which would lead to undercovering of parameter-
space regions. For �0 	 0:2, the median error is
j"ð�0; �ssÞj & 0:3 for T * 2 days and j"ð�0; �ssÞj & 0:2
for T * 7 days; the 25–75th percentile range (error bars) is
within �0:5 for T * 1 day and within �0:2 for T *
40 days. The supersky metric overestimates the F -statistic
mismatch on average ["ð�0; �ssÞ< 0], leading to slightly
conservative template placement. Only for a small number
of trials will the supersky metric significantly underestimate
the F -statistic mismatch ["ð�0; �ssÞ> 0], e.g., at T �
3 days, "ð�0; �ssÞ> 0:5 for 2.5% of trials (above dashed
line). For 0:2 	 �0 	 0:6, the median error magnitude is
only slightly worse, j"ð�0; �ssÞj & 0:25.
Figure 5 plots the median error magnitude j"ð�0; �ssÞj

as a function of sky position, over the full ranges of
simulation parameters, and at fixed values of T, �t0, and
fmax . Generally, the j"ð�0; �ssÞj are largest in two bands
above and below the ecliptic equator (plotted in black) and
smallest near the poles. The area of the sky where the error
is large decreases as a function of T, increases as a function
of fmax & 500 Hz, and is a more complicated function of
the reference time of the data.
While testing the supersky metric by generating an

actual template bank is beyond the scope of this paper,
we believe the performance of the metric, demonstrated

FIG. 4 (color online). Metric ellipsoids of the supersky metric
gss, at five example points, for T ¼ 4 days and �max ¼ 30.
Their intersections with the sky sphere j ~nj ¼ 1 reproduce the
physical sky metric.
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here, is sufficiently accurate for this task. That the phase
metric, despite its approximations, still closely models the
F -statistic mismatch (even at large mismatches of 0.6)
demonstrates the relative importance of maintaining phase
coherence (as opposed to amplitude consistency) between
a gravitational-wave pulsar signal and a search template. In
Sec. IVB, we demonstrate the suitability of the coordinates
~n as sky coordinates, as opposed to the angular coordinates
ð�; �Þ.

A. Comparison to the F -statistic metric

The results presented in the previous section may be
compared to similar simulations performed in Ref. [25].
Figure 15 of that paper compares measured F -statistic mis-
matches, �0, to mismatches predicted by the full F -statistic
metric,�F ; while Figs. 4 and 5 of that paper compare�F to

mismatches predicted by the phase metric, which is essen-
tially �ss. Taken together, these three figures show, for
mismatches up to 0.5, relative errors "ð�0; �F Þ & 0:05
and "ð�F ; �ssÞ & 0:4 for T � 1 day and "ð�0; �F Þ � 0�
0:01 and "ð�F ; �ssÞ � 0� 0:05 for T * 7 days.

While the simulations of Ref. [25] suggest better agree-
ment between the F statistic and the phase/supersky metric
than is shown in, e.g., Fig. 2(d), one must first account for a
subtle difference between the two sets of simulations: the
distributions of the randomly generated sky coordinate off-
sets j��j and j��j from which the mismatches are calcu-
lated. The simulations in Ref. [25] drew offsets uniformly
distributed in j��j and j��j and furthermore excluded
‘‘large’’ sky offsets, quantified by

��̂ � 10�4fT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� cos�Þ2 þ ð��Þ2

q
* 5: (24)

In contrast, the simulations in this paper sample offsets
uniformly in coordinates defined by the eigenvectors of

the supersky metric, i.e., the axes of the metric ellipsoids
(see the Appendix for details). As seen in Fig. 4, the
supersky metric ellipsoids are typically highly elongated
along one semimajor axis. Giving equal weight to each
metric semimajor axis when sampling offsets, as is done in
this paper, leads to a greater number of large sky offsets
than is achieved by uniform sampling in j��j and j��j
(see the discussion in Sec. IV E 2 of Ref. [25]). Figure 6

FIG. 5 (color online). Median magnitude of the relative error j"ð�0; �ssÞj, as a function of � and �, for �0 	 0:2. The ecliptic
equator is over-plotted in black. Left: median j"ð�0; �ssÞj over time-spans 1 	 T 	 29 days, and all simulation reference times �t0
and maximum frequencies fmax ; see the Appendix. Right: median j"ð�0; �ssÞj at fixed values of T, �t0, and fmax ; axis ranges and
color values are the same as for the left-hand-side plot. Only first spindown is used.

FIG. 6 (color online). Probability density of simulated coor-

dinate offsets j��j and j��j (top row) and the minimum of ��̂
[Eq. (24)] at fixed j��j and j��j (bottom row), over all
simulation reference times and maximum frequencies and at
T ¼ 1 day (left column) and T ¼ 7 days (right column).
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plots, at T ¼ 1 and 7 days, the probability density of j��j
and j��j, and the minimum sampled value of ��̂ for
simulations presented in this paper. The distributions of
j��j and j��j are far from uniform and contain few points

that would satisfy the��̂ & 5 cutoff used in Ref. [25]. We
expect differences between theF statistic and the supersky
metric to be magnified at larger coordinate offsets, and so it
is unsurprising that the errors shown in, e.g., Figure 2(d)
are larger than those found in Ref. [25].

Figure 7 plots the mean and standard deviation of �0 vs
�ss, at T ¼ 1 and 7 days. It is qualitatively similar to
Fig. 10 of Ref. [25], which plots �0 vs �F at T ¼ 0:5 and

2.5 days. In both cases, higher-order terms in � ~�, neglected

in the derivation of Eq. (8), result in both �F and �ss

overestimating �0 at larger mismatches. The empirical fit
�0 ¼ �F � 0:38�2

F to the behavior of the full F -statistic

metric, found in Ref. [25], is not as good a fit to the behavior
of �ss, suggesting that the approximations made in
deriving the phase metric lead to further overestimation
of �0.

B. Comparison to sky metric in �–� coordinates

In contrast to the supersky coordinates ~n, the angular
coordinates ð�; �Þ are a poor choice of sky coordinates for
the purpose of predicting mismatch. This is because, since
the sky metric expressed in �–� coordinates is itself a
function of � and �, the mismatch in these coordinates is
generally calculated by evaluating the metric at a given
point, e.g., ð�0; �0Þ, and computing

FIG. 7. Mean (solid line) and standard deviation (error bars)
of �0 as a function of �ss, over all simulation reference
times and maximum frequencies, and for (a) T ¼ 1 day and
(b) T ¼ 7 days. The dotted lines plot �0 ¼ �ss; the dashed lines
plot �0 ¼ �ss � 0:38�2

ss.

FIG. 8. True mismatch region � 	 �max of the sky metric
(solid line) and the local metric ellipse in ð�; �Þ given by
Eq. (25) (dotted line) at four example points (black dots) for
T ¼ 2 days and �max ¼ 0:3.

FIG. 9. Relative errors (a) "ð�0; ���Þ and (b) "ð�ss; ���Þ
between mismatches predicted by the sky metric in �–� coor-
dinates, ���, predicted by the supersky metric, �ss, and calcu-
lated from the F statistic, �0, as a function of T for �0 	 0:2
and �ss 	 0:2, respectively. Plotted are the median (solid line),
the 25–75th percentile range (error bars), and the 2.5th (dotted
line) and 97.5th (dashed line) percentiles. Only the first spin-
down is used.
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��� �

�� �0

�� �0

�f

..

.

0
BBBBBB@

1
CCCCCCA � gj�¼�0;�¼�0

�� �0

�� �0

�f

..

.

0
BBBBBB@

1
CCCCCCA: (25)

As can be seen in Fig. 4, this is often a very poor approxima-
tion, since the sky metric can change noticeably as a function
of� and �. To illustrate, Fig. 8 plots, for four example points,
the true mismatch region of the sky metric, given by the
intersection of the supersky metric ellipsoid and sky sphere,
alongside the local metric ellipse, which is found from the
intersection of the supersky metric ellipsoid with a plane
tangent to the sky sphere at the chosen point. The agreement
between the two changes from very good (top-left plot) to
very poor (bottom-left plot) within a 10 deg change in �.

Figure 9 plots the relative errors "ð�0; ���Þ and
"ð�ss; ���Þ between mismatches predicted by the sky
metric in �–� coordinates, by the supersky metric, and
calculated from the F statistic. While the sky metric in
�–� coordinates begins to perform better at longer T *
60 days, it performs extremely poorly at shorter T. This is
a consequence of the poor approximation in Eq. (25),
which, as shown in Fig. 8, can cause the sky region covered
by the local metric ellipsoid at ð�0; �0Þ to be very different
from the true mismatch region. This difference in covered
sky regions tends to show up as an overestimation of, e.g.,
�0 by ��� ["ð�0; ���Þ< 0], as illustrated in Fig. 1.

V. REDUCED SUPERSKY METRIC

The fundamental idea behind the supersky metric, pre-
sented in Sec. IV, is also its main drawback when it comes to
template placement: it embeds the two-dimensional physical
sky in three-dimensional space. This means that we cannot
simply fill the three-dimensional supersky space with tem-
plates, since only a small fraction of themwill correspond to
physical sky positions (i.e., satisfy j ~nj ¼ 1). Instead,wemust
find a way to reduce the dimensionality of the supersky
metric to two dimensions, while preserving flatness, and
without making assumptions that introduce significant errors
between the supersky and F -statistic mismatches.

The approach taken in this paper is to derive a new set of
sky coordinates ðna; nb; ncÞ and frequency and spindown
coordinates ð�; _�; . . .Þ, such that the supersky metric in

these coordinates, gy
ss, is (nearly) diagonal:

gy
ss ¼

gyna;na 0 0 0 0 � � �
0 gynb;nb 0 0 0 � � �
0 0 gync;nc 0 0 � � �
0 0 0 gy�;� gy�; _� � � �
0 0 0 gy�; _� gy_�; _� � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (26)

Suppose that the new sky coordinates are chosen such

that the inequalities gyna;na � gynb;nb � gync;nc always hold.
The metric ellipsoids of the supersky metric in these coor-
dinates, shown in Fig. 10, are longest along the c axis;
equivalently, the mismatch is most insensitive to changes
in the coordinates nc. Dropping the c dimension, therefore,
will introduce the smallest possible error in calculating
mismatches, relative to using the full three-dimensional
supersky metric. This is geometrically equivalent to pro-
jecting the supersky metric onto the two-dimensional a–b
plane, as seen in Fig. 10. The reduced superskymetric, grss,
in the coordinates ðna; nb; �; _�; . . .Þ reduces the sky dimen-
sionality to two dimensions while remaining constant. Its
derivation is presented in the remainder of this section.

A. Diagonalization and condition numbers

A straightforward approach to diagonalizing the super-
sky metric would be to decompose it as gss ¼ Q�QT,
where � is a diagonal matrix of eigenvalues and Q is an
orthogonal matrix for which the columns are the corre-
sponding eigenvectors; its transpose, QT, gives the linear
transform from the original to the new supersky coordi-
nates. This approach is complicated, however, by a prac-
tical difficulty: the numerical stability of the matrix gss. A
useful measure of numerical stability of a matrix is its
condition number, which for a real symmetric matrix,
gss, is given by the absolute ratio of the largest to the
smallest of its eigenvalues, e.g., Ref. [39]. Generally,
when the condition number is of the same order as the
numerical precision of the matrix components, computa-
tions using the matrix become unreliable [25]. When com-

puted in Systeme International units (i.e., f in Hz, _f in

FIG. 10 (color online). Metric ellipsoids of the supersky
metric, in aligned coordinates ðna; nb; ncÞ [see Sec. VC], for
T ¼ 4 days and �max ¼ 5 at five example points. By removing
the c dimension, we produce a projected metric on the two-
dimensional a–b plane.
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Hz=s, etc.), the condition number of gss, plotted in Fig. 11,
is * 1020, much larger than the �2 in 1016 numerical
precision of double-precision floating-point computer
arithmetic. Figure 12 shows the effect of the metric’s

ill-conditionedness, by plotting the relative error j�ss �
�y
ssj=�y

ss between the smallest eigenvalue, �ss, computed
from the untransformed metric gss and the smallest eigen-

value �y
ss computed from the diagonalized metric gy

ss

[Eq. (26)], obtained in Sec. VD. When the metric includes
only the first spindown, relative errors of * 1 are possible

for T & 2 days; when a second spindown is included, the
errors increase by several orders of magnitude.
One simple method of reducing the condition number of

a matrix, g, is the following diagonal rescaling:

�gð�i; �jÞ ¼
gð�i; �jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð�i; �iÞgð�j; �jÞ
q ; (27)

where the �gð�i; �jÞ are elements of a rescaled matrix, �g.

This particular diagonal rescaling reduces the condition
number to within a factor n of the smallest condition
number achievable by any diagonal rescaling, n being the
dimensionality of the matrix [39]. Even after applying
Eq. (27) to the supersky metric, resulting in �gss, its condi-
tion number is still of the order �108–1015 (Fig. 11).
We therefore apply a series of transformations to the

supersky metric, described in the following sections, which
are designed to both diagonalize the metric and further
reduce its condition number.

B. Modeling the orbital motion

The first transformation takes advantage of a well-
known property of the gravitational-wave pulsar signal
model: that for coherent time spans T much shorter than
1 year, the change in signal phase due to Earth’s orbital
motion closely resembles a change in phase due to the
frequency evolution of the pulsar. This is because, for
�t � To ¼ 1 year, and assuming a circular orbit about
the Sun, the orbital motion of Earth is modeled by terms
involving sin 2��t=To and cos 2��t=To; for small �t=To,
these can be Taylor expanded as a series of terms
in ð�t=ToÞs, which are then absorbed into the frequency
and spindown terms in the signal phase [Eq. (15)]. This
property of the signal model is the basis of the global
correlation method [17,30].
Here, we hypothesize that the similarity between the

orbital motion and frequency evolution terms in the signal
model leads to a linear relation between the corresponding
components in the supersky metric and hence to an
ill-conditioned matrix gss. We introduce an intermediate

set of coordinates ð ~n; fðsÞ0Þ that take advantage of this
relation and result in a metric, g0

ss, with a greatly reduced
condition number. The derivation of these coordinates
consists of three steps: splitting the diurnal and orbital
motion of the detector into separate sky coordinates
(Sec. VB1), performing a least-squares fit to the orbital
motion using the frequency and spindown coordinates
(Sec. VB 2), and recombining the diurnal and orbital
motion to recover the supersky coordinates (Sec. VB 3).

1. Splitting the diurnal and orbital motions

Recall that the supersky coordinates ~n enter the signal

phase �ðt; ~�Þ through the expression ~rðtÞ � ~n [Eq. (15)].
We split ~rðtÞ ¼ ~rsðtÞ þ ~roðtÞ into its diurnal and orbital
components, ~rsðtÞ and ~roðtÞ, respectively:

FIG. 11. Condition numbers of the supersky metric, in
Systeme International units, gss (points, dotted line), and after
diagonal rescaling, �gss (points, solid line); the diagonal-rescaled
metric �g0

ss, derived in Sec. VB (triangles); and the diagonal-
rescaled metrics �gyy

ss (squares) and �gy
ss (circles), derived in

Sec. VC. Plotted as functions of T are the mean (lines) and
the minimum-to-maximum range (error bars) of condition num-
bers over all simulation reference times �t0; see the Appendix.
Only the first spindown is used.

FIG. 12. Relative error in computing the smallest eigenvalue of
the supersky metric in Systeme International units, including the
first spindown (points) and a second spindown (circles). Plotted
as functions of T are the mean (lines) and the minimum-to-
maximum range (error bars) of errors over all simulation refer-
ence times �t0; see the Appendix.
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~rðtÞ � ~n ¼ ~rsðtÞ � ~nþ ~roðtÞ � ~n: (28)

We now relax the constraint that the ~n that multiplies rsðtÞ
is the same ~n that multiplies roðtÞ. Instead, we introduce
new sky position vectors, ~ns and ~no, and write

~rðtÞ � ~n ¼ ~rsðtÞ � ~ns þ ~roðtÞ � ~no; (29)

where ~ns and ~no are now treated as independent sets of
coordinates. If we now write ~rsðtÞ ¼ ½rsxðtÞ; rsyðtÞ; rsz�
and ~ns ¼ ðnsx; nsy; nszÞ in equatorial coordinates and

~roðtÞ ¼ ½roXðtÞ; roYðtÞ; roZðtÞ� and ~no ¼ ðnoX; noY; noZÞ in
ecliptic coordinates, we have

~rðtÞ � ~n ¼ rsxðtÞnsx þ rsyðtÞnsy þ rsznsz þ roXðtÞnoX
þ roYðtÞnoY þ roZðtÞnoZ: (30)

Since rsz is a constant (i.e., there is no motion of the
detector with respect to the Earth in the equatorial z
direction), gðnsz; �iÞ ¼ 0 for any coordinate �i, and so
we ignore the term rsznsz. (Since, however, Earth’s orbit
does include motion in the ecliptic Z direction, due to, e.g.,
its interaction with the Moon, we do not neglect the
term roZðtÞnsZ.) We are left with five independent sky
coordinates,

~ness ¼ ðnsx; nsy; noX; noY; noZÞ; (31)

and we write the metric in these expanded supersky
coordinates as gess. Just as the supersky coordinates ~n
embedded the two-dimensional physical sky in three
dimensions, the expanded supersky coordinates embed
the three-dimensional supersky in five dimensions.
Reimposing the constraint ~ns ¼ ~no recovers the supersky
metric gss.

2. Least-squares linear fit to the orbital motion

We apply the diagonal rescaling of Eq. (27) to the
expanded supersky metric:

�gessð�i; �jÞ ¼
gessð�i; �jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gessð�i; �iÞgessð�j; �jÞ
q ; (32)

where �i; �j 2 ~� ¼ ð ~ness; fðsÞÞ. We now hypothesize an

(approximately) linear relationship between the rows of
�gess corresponding to orbital motion in the ecliptic X and Y
directions and the rows of �gess corresponding to frequency
evolution; i.e., we write

�gessð�i; no�Þ ¼
Xsmax

s¼0

�gessð�i; f
ðsÞÞCðfðsÞ; no�Þ

þ � �gessð�i; no�Þ; (33)

where � 2 fX; Yg, CðfðsÞ; no�Þ are the components of a
ð1þ smax Þ 
 2 matrix of fitting coefficients C, and
� �gessð�i; no�Þ are components of a ð6þ smax Þ 
 2 matrix
of residuals � �gess. Equations (33) are overdetermined since

they represent ð6þ smax Þ 
 2 equations, one for each
element �gessð�i; no�Þ, for only ð1þ smax Þ 
 2 unknowns

CðfðsÞ; no�Þ. Using linear least squares for each � 2
fX; Yg, i.e., minimizing the objective function

P
i½� �gess

ð�i; no�Þ�2 over the vector CðfðsÞ; no�Þ at fixed �, yields
the fitting coefficients

CðfðsÞ; no�Þ ¼
Xsmax

s0¼0

A�1ðfðsÞ; fðs0ÞÞBðfðs0Þ; no�Þ; (34)

where the ð1þ smax Þ 
 2 matrix B has components

BðfðsÞ; no�Þ ¼
X
i

�gessðfðsÞ; �iÞ �gessð�i; no�Þ; (35)

and A�1ðfðsÞ; fðs0ÞÞ are the elements of the inverse of
the symmetric ð1þ smax Þ 
 ð1þ smax Þ matrix A, with
components

AðfðsÞ; fðs0ÞÞ ¼ X
i

�gessðfðsÞ; �iÞ �gessð�i; f
ðs0ÞÞ: (36)

Next, we perform a coordinate transformation that
results in a metric, �g00

ess. In this metric, the linear fits to
�gessð�i; no�Þ are subtracted, leaving only the residuals:

�g00essð�i; no�Þ ¼ � �gessð�i; no�Þ: (37)

This is achieved by the coordinate transform

fðsÞ00 ¼ fðsÞ þ X
�2fX;Yg

no�CðfðsÞ; no�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gessðno�; no�Þ
gessðfðsÞ; fðsÞÞ

s
;

(38)

with the sky coordinates ~ness remaining unchanged. The

new frequency and spindown coordinates fðsÞ00 are now
linear functions of sky position, similar to the global
correlation coordinates [c.f. Eqs. (21)].

3. Recombining the diurnal and orbital motions

Finally, we reimpose the constraint ~ns ¼ ~no and reverse
the diagonal rescaling given by Eq. (32). This gives the
final product of this section, the metric g0

ss. The coordinates

of this metric are ð ~n; fðsÞ0Þ, where ~n is the three-dimensional
sky position vector, and

fðsÞ0 ¼ fðsÞ þ ~�
s � ~n: (39)

The components of the vectors ~�
s
are given in ecliptic

coordinates by

�s
X ¼ CðfðsÞ; noXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gessðnoX; noXÞ
gessðfðsÞ; fðsÞÞ

s
; (40a)

�s
Y ¼ CðfðsÞ; noYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gessðnoY; noYÞ
gessðfðsÞ; fðsÞÞ

s
; (40b)

�s
Z ¼ 0 (40c)
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and in equatorial coordinates by

�s
x ¼ �s

X; (41a)

�s
y ¼ �s

Y cos 
; (41b)

�s
z ¼ �s

Y sin 
; (41c)

where 
 is Earth’s inclination angle with respect to the
ecliptic Z direction.

In summary, the coordinate transformation presented in
this section consists of the following steps:

(i) Compute the phase metric gess, using Eq. (10), in
the expanded supersky coordinates of Eq. (31). The
signal phase is found by substituting Eq. (30) in
Eq. (15).

(ii) Rescale the metric using Eq. (32), which gives the
metric �gess.

(iii) Compute the matrices A, using Eq. (36), and B,
using Eq. (35).

(iv) Compute the matrix C from Eq. (34).
(v) Compute the vectors ~�

s
from Eqs. (40) and (41).

(vi) Apply the inverse of the coordinate transformation
given by Eq. (39) to the supersky metric gss, which
gives the metric g0

ss.
The condition number of this metric after diagonal rescal-
ing, �g0

ss, is plotted in Fig. 11; it is reduced to�1–106 and is
�3–8 orders of magnitude less than the condition number
of the untransformed metric, �gss.

Figure 13 plots the metric ellipsoids of g0
ss, with�max¼5.

The areas of intersections of the ellipsoids of g0
ss with the

sky sphere j ~nj ¼ 1 are larger (and more circular) than for
the ellipsoids of gss, plotted in Fig. 4 with �max ¼ 30,
which implies a coarser sky metric induced by g0

ss than
by the untransformed metric, gss. This can be intuitively

understood as follows: given the constraint � 	 �max ,
the resolution in the supersky coordinates, e.g., j�nxj,
are inversely proportional to the corresponding supersky
metric elements; e.g., gssðnx; nxÞð�nxÞ2 ¼ � 	 �max im-

plies j�nxj / gssðnx; nxÞ�1=2. The magnitude of gssðnx; nxÞ
is proportional to the magnitude of the detector position
vector, j~rðtÞj2, which is dominated by the magnitude of its
orbital component, j~roðtÞj2 � j~rsðtÞj2. Hence, j�nxj /
1=j~roðtÞj, and the coordinate resolution is largely deter-
mined by the orbital motion. If, however, the fitting of the
orbital motion described in Sec. VB2 is effective, the
magnitude of the transformed supersky metric elements,
e.g., g0ssðnx; nxÞ, will instead be proportional to magnitude
of the unfitted diurnal motion, j~rsðtÞj2, and hence the coor-
dinate resolution j�nxj / 1=j~rsðtÞj will be coarser by a
factor �j ~roðtÞj=j~rsðtÞj.

C. Diagonalizing the metric

Now that we have a transformed supersky metric, g0
ss,

with a greatly reduced condition number, we can reliably
apply two further transformations to diagonalize it and

arrive at the metric gy
ss in the form shown in Eq. (26).

The first transformation removes the elements of g0
ss that

couple the sky coordinates ~n to the frequency and spin-

down coordinates fðsÞ0. We write the matrix g0
ss as a block

matrix of the form

g0
ss ¼

g0
nn g0

nf

g0T
nf g0

ff

0
@

1
A; (42)

where g0
nn, g

0
nf, g

0
ff are matrices with elements g0ssðni; njÞ,

g0ssðni; fðsÞ0Þ, and g0ssðfðsÞ0; fðs0Þ0Þ, respectively. We then
require a coordinate transformation that sets g0

nf ¼ 0.

This condition is satisfied by the coordinates ð ~n; �ðsÞÞ,
where

�ðsÞ ¼ fðsÞ þ ~�
s � ~n; (43)

~�
s ¼ ~�

s þ g0
ff

�1g0
nf

T: (44)

The vectors�s introduce additional shifts in frequency and
spindown that are linear in the sky position ~n. The metric in
these coordinates is given by

g yy
ss ¼ gyy

nn 0
0 g0

ff

 !
; (45)

where

gyy
nn ¼ g0

nn � g0
nfg

0
ff

�1g0
nf

T: (46)

The right-hand side of Eq. (46) is the Schur complement of
the block form of g0

ss given in Eq. (42). Figure 11 plots the

condition number of the diagonal-rescaled �gyy
ss , which for

T & 10 days is reduced, relative to �g0
ss, by a few orders of

magnitude.

FIG. 13 (color online). Metric ellipsoids of the transformed
supersky metric g0

ss, in equatorial coordinates ~n, for T ¼ 4 days
and�max ¼ 5, at five example points and their intersections with
the sky sphere j ~nj ¼ 1.
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The second transformation diagonalizes the sky coordi-

nate block gyy
nn of the matrix gyy

ss . We introduce aligned
supersky coordinates ðna; nb; ncÞ, such that the metric takes
the form [c.f. Eq. (26)]

gy
ss ¼

gyna;na 0 0

0 gynb;nb 0 0

0 0 gync;nc
0 g0

ff

0
BBBBBB@

1
CCCCCCA: (47)

This is achieved by eigendecomposing gyy
nn as

gyy
nn ¼ Qy�yQyT; (48)

where the elements of the diagonal matrix �y are the

eigenvalues gyna;na � gynb;nb � gync;nc , and the columns of

Q are the corresponding eigenvectors ~Qna ,
~Qnb , and

~Qnc .

The aligned supersky coordinates are then defined by

na ¼ ~Qna � ~n; nb ¼ ~Qnb � ~n; nc ¼ ~Qnc � ~n: (49)

In summary, we have found the diagonal metric gy
ss of

Eq. (26), and associated coordinates ðna; nb; nc; �ðsÞÞ, by
performing the following steps:

(i) Compute the metric g0
ss and vectors ~�

s
, by follow-

ing the procedure described in Sec. VB.
(ii) Partition g0

ss into a block matrix, as given by
Eq. (42).

(iii) Compute the matrix gyy
nn , given by Eq. (46).

(iv) Eigendecompose gyy
nn into eigenvectors ~Qna ,

~Qnb ,

~Qnc and eigenvalues gyna;na , g
y
nb;nb , g

y
nc;nc , following

Eq. (48).
(v) Compute the vectors ~�

s
, given by Eq. (44).

The metric gy
ss is then given by Eq. (47), the sky coordinates

ðna; nb; ncÞ by Eqs. (49), and the frequency and spindown

coordinates �ðsÞ by Eq. (43). Figure 11 plots the condition

number of gy
ss, which after diagonal rescaling is reduced

to �1.

It should be noted that the transformation from gss to g
y
ss

is invertible, and no approximations or assumptions are

made in its derivation. Thus, the mismatch predicted by gy
ss

will be identical to that predicted by gss.

D. Reducing the sky dimensionality

As described at the beginning of Sec. V, the reduced
supersky metric, grss, takes the diagonalized supersky met-

ric gy
ss, derived in Secs. VB and VC, and removes the

dimension corresponding to nc. This is equivalent to pro-
jecting the metric onto the a–b plane, as illustrated in
Fig. 10. As a consequence, the mismatch predicted by the
reduced supersky metric, �rss, will always be smaller than
(or equal to) that predicted by the untransformed metric,

�ss, the difference being �ss ��rss ¼ gync;ncð�ncÞ2 � 0,

where �nc is a coordinate offset in nc. Since gync;nc is, by

construction, the smallest of the elements of the sky-sky

block of gy
ss, this represents the smallest error that can be

achieved by projecting the sky metric from three to two
dimensions.
Figures 2(f) and 14 plot the relative errors, "ð�0; �rssÞ

and "ð�ss; �rssÞ, respectively, between mismatches pre-
dicted by the reduced and untransformed supersky metrics
and calculated from the F statistic. The performance of
the reduced supersky metric, relative to the F statistic
[Fig. 2(f)], is similar to that of the untransformed supersky
metric [Fig. 2(d)]. The one noticeable difference is that
there are more trials where the reduced supersky metric
significantly underestimates the F -statistic mismatch
["ð�0; �rssÞ> 0]; for 2.5% of trials (above dashed line),
"ð�0; �rssÞ * 0:5 for T & 40 days. The origin of this dif-
ference is evident in Fig. 14; while the median error
"ð�ss; �rssÞ � 0, and the 25–75th percentile range is &
0:1, 2.5% of trials have "ð�ss; �rssÞ> 0:5 for 10 & T &
45 days.
Figure 15 plots the median error magnitude j"ð�ss; �rssÞj

as a function of sky position, over the full ranges of simu-
lation parameters, and at fixed values of T, �t0, and fmax .
The largest j"ð�ss; �rssÞj and the source of the underestima-
tion of �ss by �rss observed in Fig. 14 occur along the
ecliptic equator, when averaged over T and also at T ¼
41 days. Note, however, that at T ¼ 7 days the error is
largest along the equatorial equator � ¼ 0; at T ¼
23 days, the error region is transitioning between equatorial
and ecliptic equators. The largest error is also a function of
the reference time: compare �t0 ¼ 90 days with �t0 ¼ 0
and 180 days. This suggests that the source of the under-
estimation can occur either along the equatorial or ecliptic
equators, depending on T, and is also a function of �t0.

FIG. 14. Relative errors "ð�ss; �rssÞ between mismatches pre-
dicted by the supersky metric, �ss, and reduced supersky metric,
�rss, as a function of T, for �ss 	 0:2. Plotted are the median
(solid line), the 25–75th percentile range (error bars), and the
2.5th (dotted line) and 97.5th (dashed line) percentiles. Only the
first spindown is used.
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Figure 16 plots two quantities as functions of T and �t0.
The first, plotted in Fig. 16(a), is the ratio

R ¼ gync;nc
gynb;nb

(50)

of eigenvalues of the diagonalized supersky metric gy
ss. This

quantity is a proxy for the error introduced by dropping the

term gync;ncð�ncÞ2 from the reduced supersky mismatch,
relative to the size of the next-largest term in the sky-sky

mismatch, gynb;nbð�nbÞ2. We see that R increases over the
period 10 & T & 45, broadly consistent with the rise and
fall of the 97.5th percentile line plotted in Fig. 14. It is also
strongly a function of reference time, being largest at �t0 �
75 and 275 days, similar to the median j"ð�ss; �rssÞj plotted
in Fig. 15. Note that�t0 � 75 and 275 days roughly coincide
with the vernal and autumnal equinoxes [40], coordinated

universal time (UTC) �2007-03-21 (�t0 � 79 days) and
UTC �2007-09-23 (�t0 � 265 days), respectively.
The second quantity, plotted in Fig. 16(b), is the angle

� ¼ cos�1j~z � ~Qnc j



(51)

between the equatorial z axis ~z and the aligned c axis ~Qnc ,

as a fraction of Earth’s inclination angle 
. When �� 0, at

T & 10 days, ~z � ~Qnc � 1, and the a–b plane is aligned

with the equatorial x–y plane. Likewise, when �� 1, at

T * 45 days, ~z � ~Qnc � cos 
, and the a–b plane is aligned

with the ecliptic X–Y plane. In the period 10 & T &
45 days, the aligned supersky coordinates ðna; nb; ncÞ
transition from ‘‘equatoriallike’’ to ‘‘eclipticlike’’ coordi-
nates, at a rate dependent on �t0; note that the �t0 where
this transition occurs most rapidly correlate with the �t0
where R is largest.
From the results presented in this section, we may

deduce the behavior of the reduced supersky metric as a
function of T. When T & 10 days ( & 3% of 1 year), the
fitting performed in Sec. VB removes the orbital motion of
Earth from the signal phase, leaving only the diurnal
motion of the detector. This motion is in a plane parallel
to the equatorial equator, and hence the a–b plane is
aligned with the equatorial x–y plane, and the aligned
supersky coordinates resemble equatorial coordinates
[Fig. 16(b)]. The diagonalized supersky metric ellipsoids
are highly elongated perpendicular to the plane of motion,
i.e., in the equatorial z direction [Fig. 13], and hence the
ratio of eigenvalues R is small [Fig. 16(a)].
As T increases to between 3% and 12% of 1 year (10 &

T & 45 days), the change in signal phase due to Earth’s
orbital motion no longer closely resembles a change in
phase due to frequency evolution, essentially because it

FIG. 16 (color online). (a) Ratio of diagonalized supersky
eigenvalues R and (b) orientation of the a–b plane �, as
functions of T and �t0. Only the first spindown is used.

FIG. 15 (color online). Median magnitude of the relative error j"ð�ss; �rssÞj, as a function of � and �, for �ss 	 0:2. The ecliptic
equator is overplotted in black. Left: median j"ð�ss; �rssÞj over time spans 1 	 T 	 121 days and over all simulation reference times
�t0 and maximum frequencies fmax ; see the Appendix. Right: median j"ð�ss; �rssÞj at fixed values of T,�t0, and fmax ; axis ranges and
color values are the same as for the left-hand-side plot. Only the first spindown is used.
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can no longer be modeled as circular motion, which can
then be Taylor expanded (see Sec. VB). Consequentially,
the modeling of the orbital motion becomes less effective,
and the residuals of the fit, � �gessð�i; no�Þ [Eq. (33)],
become larger. The motion of the detector is therefore a
combination of diurnal motion in the equatorial x–y plane
and the residual, unfitted orbital motion in the ecliptic
X–Y plane. The a–b plane is oriented between the equa-
torial x–y and ecliptic X–Y planes [Fig. 16(b)]; its exact
position is determined by the relative contributions of the
diurnal and residual orbital motions. Since the detector
motion is no longer two-dimensional, the diagonalized
supersky metric ellipsoids are no longer highly elongated
perpendicular to the a–b plane, and hence R increases
[Fig. 16(a)]. Because Earth’s orbit is elliptical, the effec-
tiveness of the orbital motion modeling depends on the
reference time: at the equinoxes, where the Earth-Sun
distance is changing the most rapidly, Earth’s orbit is
most poorly approximated by a circular motion, and
hence the orbital motion modeling is least effective
[Fig. 16(a)].

Eventually, for long enough T, the orbital motion can no
longer be fitted, and the residuals become equal to the full
orbital motion, i.e., � �gessð�i; no�Þ � �gessð�i; no�Þ [Eq. (33)].
The detector motion is then dominated by the full orbital
motion, which is much larger than the smaller diurnal
motion (as noted in Sec. VB2), and the a–b plane is aligned
with the plane of Earth’s orbit, i.e., the ecliptic X–Y plane.
The diagonalized supersky metric ellipsoids return to being
highly elongated perpendicular to the plane of motion, i.e.,
the ecliptic Z direction [Fig. 13], and the ratio R is again
small [Fig. 16(a)].

E. Second spindown

The results presented so far in this paper, with the
exception of Fig. 12, have considered parameter-space

metrics that include only the first spindown, _f, in the
gravitational-wave pulsar signal model. In this section,
we briefly consider the effect of adding the second spin-

down, €f, to the reduced supersky metric derived in Sec. V.
The second spindown is important for some potential
gravitational-wave pulsars, such as young neutron stars
in supernova remnants [26] and at the Galactic center [41].

Figure 17 plots the relative errors "ð�0; �rssÞ and
"ð�ss; �rssÞ between mismatches predicted by the reduced
and untransformed supersky metrics, respectively, and
calculated from the F statistic, where both the first and
second spindowns are included in the metrics. The median
errors are similar to those plotted in Figs. 2(f) and 14,
which include only the first spindown. In Fig. 17(a), how-
ever, we observe a larger number of trials outside of the
2.5–97.5th percentile range (dotted to dashed lines) at
longer T, relative to Fig. 2(f). In Fig. 17(b), the rise and
fall of the 97.5th percentile line spans 30 & T & 70 days,
whereas in Fig. 14 it spans 10 & T & 45 days.

FIG. 17. Relative errors (a) "ð�0; �rssÞ and (b) "ð�ss; �rssÞ
between mismatches calculated from the F statistic, �0, and
predicted by the supersky metric, �ss, and reduced supersky
metric, �rss, as a function of T, for �0 	 0:2 and �ss 	 0:2,
respectively. Plotted are the median (solid line), the 25–75th
percentile range (error bars), and the 2.5th (dotted line) and
97.5th (dashed line) percentiles. Both the first and second spin-
downs are used.

FIG. 18 (color online). (a) Ratio of diagonalized supersky
eigenvalues R and (b) orientation of a–b plane � as functions
of T and �t0. Both the first and second spindowns are used.
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Figure 18 plots R [Eq. (50)] and � [Eq. (51)] as
functions of T and �t0. Whereas in Fig. 16(a) the ratio
R is largest at the equinoxes, in Fig. 18(a) it is largest at
the solstices. Comparing Fig. 18(a) to Fig. 16(b), we see
that, with the second spindown included, the orbital
motion fitting is effective for longer T and that the
transition of the aligned supersky coordinates from equa-
toriallike to eclipticlike occurs over the later period
20 & T & 75 days, consistent with the rise and fall of
the 97.5th percentile line in Fig. 17(b). In short, includ-
ing the second spindown changes the behavior of the
reduced supersky metric as a function of T.

VI. DISCUSSION

In this paper we have presented a new explicitly flat
metric approximation, the reduced supersky metric grss,
with associated coordinates ðna; nb; �; _�; . . .Þ, for perform-
ing all-sky coherent searches for gravitational-wave pulsars.
Unlike previous work, the reduced supersky metric places
no limitation on the time span T that can be coherently
analyzed. In addition, compared to previous metrics, the
reduced supersky metric is well conditioned.

Figure 19 compares the median absolute relative errors
in the predicted mismatch of the supersky, reduced super-
sky, linear phase model I, and global correlation metrics.
The supersky metrics perform better at predicting the
F -statistic mismatch than both the linear phase model I
and global correlation metrics, for T & 10 days, and are
similar to linear phase model I for larger T. Additionally, as
shown in Fig. 20, the reduced supersky metric has the
practical advantage of a much smaller condition number
(after diagonal rescaling) than both the supersky and linear
phase model I metrics.

Future work will focus on extending this method to the
semicoherent metric, which is required for placing tem-
plates in a hierarchical search, where coherently analyzed
data segments are incoherently combined. In principle, by

allowing T to be increased, the reduced supersky metric
can help improve the sensitivity of all-sky hierarchical
searches.
Another interesting application of the reduced supersky

metric would be in follow-up pipelines for interesting
gravitational-wave pulsar candidates [31]. Starting with a
list of candidates from an initial all-sky search, the follow
up refines the candidates using a series of semicoherent
searches with increasing coherence time T (thereby increas-
ing sensitivity). Finally the follow up concludes by perform-
ing a fully coherent search of the remaining candidates. It
would bemost convenient for such a follow-up pipeline to be
able to make use of a parameter-space metric that remains
valid for all T, without having to switch and/or interpolate
between different metric approximants. Therefore, the re-
duced superskymetric could assist in performingmore refin-
ing searches, with a smoother increase inT, thereby allowing
more candidates tobe followedupand increasing the chances
of detection.
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APPENDIX: NUMERICAL SIMULATIONS

This appendix details the numerical simulations
presented in this paper.
The relative error comparisons presented in Figs. 2, 3, 5,

9, 15, 17, and 19 were produced by Monte Carlo simula-
tions, as follows. For each trial, pairs of gravitational-wave
signal parameters, given in the reduced supersky coordi-

nates of Sec. V by ~�0
1 ¼ ðna1; nb1; �ðsÞ

1 Þ and ~�0
2 ¼

ðna2; nb2; �ðsÞ
2 Þ, were randomly chosen, such that the mis-

match �rss between them, computed using the reduced

FIG. 19. Median absolute relative errors, as functions of T,
between mismatches calculated from the F statistic and pre-
dicted by the supersky metric, j"ð�0; �ssÞj (points); the reduced
supersky metric, j"ð�0; �rssÞj (circles); the linear phase model I
metric, j"ð�0; �lpIÞj (crosses); and the global correlation metric,

j"ð�0; �gcÞj (squares), for �0 	 0:2. Only the first spindown is

used.

FIG. 20. Mean condition numbers, as functions of T, of the
diagonally rescaled supersky (points), reduced supersky
(circles), and linear phase model I (crosses) metrics, over all
simulation reference times �t0; see the Appendix. Only the first
spindown is used.
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supersky metric grss, was uniformly distributed within
0 	 �rss 	 0:6. To achieve this, a random point ~p was
chosen uniformly within the (3þ smax )-dimensional unit

sphere and used to compute ~�0
2 � ~�0

1 ¼
ffiffiffiffiffiffiffi
0:6

p
G�1

rss ~p, where
Grss is the Cholesky decomposition of grss (i.e.,
GT

rssGrss ¼ grss). The reason for using the reduced super-
sky metric here was that a well-conditioned metric is
required to compute the Cholesky decomposition, which
in turn is needed for sampling uniformly with respect to

the metric. Once the offset ~�0
2 � ~�0

1 was determined in

this way, we could chose ~�0
1 uniformly in ðna1; nb1Þ over

the unit disc and �ðsÞ
1 uniformly in frequency and spin-

down(s). We then computed nc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2a1 � n2b1

q
and

transformed the coordinates ðna1; nb1; nc1; �ðsÞ
1 Þ back to the

untransformed supersky coordinates ~�1 ¼ ð ~n1; fðsÞ1 Þ and

similarly for nc2 and ~�2. These coordinates were then
used to compute the untransformed supersky mismatch
�ss and, with additional coordinate transformations, the
linear phase model mismatches �lpI and �lpII, the global

correlation mismatch �gc, and the mismatch in �–�

coordinates ���. The global correlation metric was com-
puted from the equations in Ref. [17]; all other metrics
were computed numerically using the software package

LALPULSAR [42], using the standard Jet Propulsion

Laboratory ephemerides for Earth’s orbital motion.
Finally, the F -statistic mismatch �0 was calculated as
described in Sec. II B, using the implementation of the F
statistic in LALPULSAR. Template banks are usually gen-
erated with mismatches of the order �max � 0:2–0:3 [e.g.
[7,8]]; in this paper we generally restricted the sampled
mismatches to �0 	 0:2.
The above procedure was parametrized by the coherent

time span T and reference time �t0 ¼ t0 � UTC 2007-01-
01 00:03:06 of the simulated data and the maximum fre-
quency fmax of the simulated signals. We performed the
simulations at 34 values of T, from 1 to 31 days in steps of
2 days and from 36 to 121 days in steps of 5 days; 25 values
of �t0, from 0 to 360 days in steps of 15 days; and 5 values
of fmax 2 f50; 287:5; 525; 762:5; 1000g Hz. In total, �108

trials were performed. When plotted, however, the trials
were filtered by restrictions on the mismatches, e.g., �0 	
0:2 in Fig. 2(a). The data from the simulations were also
used to generate Figs. 6 and 7.
Figures 11, 12, 16, 18, and 20 were created by comput-

ing the various super sky metrics gss, grss, etc., using
LALPULSAR, at: 121 values of T, from 1 to 121 days in

steps of 1 day; 73 values of�t0, from 0 to 360 days in steps
of 5 days; and at fmax ¼ 1000 Hz.
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