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Abstract
We study the Brans–Dicke theory with arbitrary potential within a functional
renormalization group framework. Motivated by the asymptotic safety scenario
of quantum gravity and by the well-known relation between f(R) gravity and
Brans–Dicke theory at the classical level, we concentrate our analysis on the
fixed-point equation for the potential in four dimensions and with Brans–Dicke
parameter ω = 0. For two different choices of gauge, we study the resulting
equations by examining both the local and global properties of the solutions, by
means of analytical and numerical methods. As a result of our analysis we do not
find any nontrivial fixed point in one gauge, but we find a continuum of fixed
points in the other one. We interpret such an inconsistency as a result of the
restriction to ω = 0, and thus we suggest that it indicates a failure of the
equivalence between f(R) gravity and Brans–Dicke theory at the quantum level.

Keywords: Brans–Dicke theory, quantum gravity, renormalization group

1. Introduction

Many models of modified gravity have been proposed and studied over time in an attempt to
address the problems encountered in quantum gravity and cosmology [1]. New models are most
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commonly postulated as the starting point of a new research direction, however, one instance in
which the logic is partially reversed, and a new model of gravity is hoped to emerge as the final
result, is the asymptotic safety scenario [2–6]. The general idea behind such a scenario is that
the theory of quantum gravity should be sought within a large class of theories (e.g. all possible
theories described by an action functional of a single metric field), out of which one single
theory (or a few isolated ones) should emerge with the peculiar characteristic of being a fixed-
point of the renormalization group (RG) flow. IR-unstable trajectories emanating from such
fixed point(s) would then define nonperturbatively renormalized theories of gravity. The use of
functional renormalization group equations (FRGEs) has provided considerable evidence in
support of the existence of a nontrivial fixed point theory for gravity, in a large number of
formulations and approximations (see list of references in [5, 6]).

Even within a given class of models, specified by a choice of variables and symmetries, it
is obviously impossible to explore the entire space of theories and one has to resort to
approximations. A common approximation in the asymptotic safety literature consists in
truncating the theory space to a finite-dimensional subspace by making a guess of what might
be the most important terms to keep track of in the effective action. The guess is then supposed
to be repeatedly refined until little improvement of the results is gained by new refinements. In
practice, even this is quite hard, and only recently such a program has been implemented to a
high order of refinement for truncations that only retain polynomials of the Ricci scalar [7–11].
At the same time, the functional nature of the renormalization group methods being used has
just started to be exploited further, opening up the possibility of exploring infinite-dimensional
subspaces of the theory space. The main idea is to study the RG flow of gravity in a spirit
similar to the derivative expansion of scalar field theory [12–15]. There, the leading order
approximation is known as the local potential approximation (LPA), and it consists in
projecting the flow equation on a constant scalar field, thus allowing to study the flow of a
generic effective potential ∫ϕ Γ ϕ= =[ ]( )V d xconst.k k

d . The next-to-leading order term
includes a term with two derivatives and any field dependence, and so on at higher orders. At
each order of the derivative expansion one is led to study partial differential equations for
functions of the field ϕ and of the running scale k. In gravity there is much more structure, and
there are probably many options in organizing an expansion of this sort. A very natural option is
to organize the action as if it was an expansion around a maximally symmetric background. For
the latter the only non-zero component of the Riemann tensor is the Ricci scalar R, which is
constant: we have  = = =μ μν μνρσR S C 0, where μνS is the traceless Ricci tensor, and μνρσC is the
Weyl tensor. The analogue of the derivative expansion can then be an expansion in μνS , μνρσC and
their derivatives (by the Bianchi identity  =μ

ν
μν−R Sd

d

2

2
), with arbitrary dependence on R at

each order. In the leading order of such an expansion we are left with an f(R) theory, whose
study in such spirit was begun in [16–20].

As compared to the LPA for scalar field theory, in the f(R) approximation for gravity we
face a number of additional technical complications, in particular a larger number of
contributions to the FRGE, with a more complicated dependence on the unknown function, and
the challenge of evaluating functional traces on a curved background. The latter in particular
introduces some subtleties related to the presence of zero modes in compact backgrounds and to
the staircase nature of the results obtained for the traces when using cutoffs with step functions
[16]. Also for these reasons progress has been slow in this direction, and it is desirable to find
alternative ways to study the same problem.
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One possible simplification, which we will explore in this paper, is suggested by a well-
known classical property of the f(R) theory [21, 22]. The classical action for f(R) gravity3,

∫=[ ] ( )S g d x g f R , (1)d

can be traded for an equivalent action, describing a scalar-tensor theory,

∫ϕ ϕ ϕ= −{ }[ ] ( )S g d x g V R, . (2)d

The relation between the two Lagrangians is given by a Legendre transform,

ϕ ϕ ϕ ϕ= + ( )( ) ( ) ( )V R f R , (3)

where ϕ( )R is found by solving the equation ϕ = − ′ ( )f R for R, and as usual, the regularity of

the transform is guaranteed if ″ ≠( )f R 0. From an RG perspective the advantage of such a
formulation is that we can study the running of the potential by projecting the FRGE on a flat
background, thus sidestepping all the complications of curved backgrounds. In fact, we will
construct flow equations for a more general version of (2), that is, a generic Brans–Dicke theory
with a potential (see (4))4. Projection on a flat background will allow us to study such a theory
without truncating the potential to a polynomial form, thus performing an analysis similar to
that of pure scalar theory [28–33].

Of course, at a quantum level the two theories might be inequivalent. They are both
perturbatively nonrenormalizable, and standard perturbative reasonings could only apply at an
effective field theory level. When looking for a UV completion in the form of a nontrivial fixed
point, we study the RG equations in two different theory spaces, and in the full fixed point
theory the scalar field might couple to other geometric invariants, or acquire its own dynamical
term. Moreover, since the functions f(R) or ϕ( )V are not chosen a priori, but have to be found
such that they correspond to an RG fixed point, it could happen that the regularity of the
transform fails at one or several field values (or even in the full range of definition if for
example f(R) is linear at the fixed point). As a consequence, if fixed points were to be found in
both formulations, they might describe different physics. It might also happen that one
formulation admits an asymptotic safety scenario and the other does not5. However, we also do
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3 As in most asymptotic safety research (for a rare exception see [23]) we will be working in Euclidean signature.
4 Note that in the context of asymptotic safety, Brans–Dicke theory with ω = 0 was considered in [24] as an RG
improvement of the Einstein–Hilbert truncation, in which the running gravitational and cosmological constants
were promoted to fields as a result of an identification of scales with spacetime points. Clearly our work differs
substantially from [24], as we study the RG equations directly for the Brans–Dicke theory. In a sense our work
relates to [24] like the general f(R) studies [16–20] relate to the f(R) actions obtained by improvement of the
Einstein–Hilbert truncation [25–27].
5 In addition, we should also notice that often in the cosmology literature other ‘frames’ are considered, in which a
new metric field is defined via a conformal map, often together with a redefinition of the scalar field as well. Again,
at the classical level these are all equivalent theories (although there has been some confusion on the issue in the
past [34]), but at the nonperturbative quantum level this is not guaranteed (perturbatively there is on-shell
equivalence, as shown for example in two dimensions [35], but at the nonperturbative level this has not been
shown, although it might be possible following the developments of [36, 37]). We will not study here other frames,
having always in mind the original pure metric theory, whose metric we assume to define the coupling to ordinary
matter.



not know a priori whether the (nonperturbatively renormalized) quantum theories are
equivalent or not, and only a direct comparison (which we can at least do at the level of
truncations) could allow us to settle the question. In any case, given that in asymptotic safety we
are in principle allowing for extra degrees of freedom, there seems to be no reason to consider
only pure metric theories of gravity, and the study of scalar-tensor theories is of interest in its
own. Brans–Dicke theory is one of the oldest modifications of general relativity [38], and
together with its variations and generalizations it finds plenty of applications in cosmology [1],
and in quantum gravity (e.g. [39–41]). Other versions of scalar-tensor theories have already
been studied in the context of asymptotic safety [42–44], but to the best of our knowledge, no
study of this sort has been done before for the Brans–Dicke theory in the formulation we
consider here (sometimes referred to as the Helmholtz–Jordan frame).

We will introduce more precisely our ansatz and setup in section 2, together with the two
choices of gauge fixing that we are going to employ. In section 3 we will derive the FRGEs for
both gauges for the general dimension and Brans–Dicke parameter, while in section 4 we will
proceed to analyze their local properties in d = 4 and ω = 0. Finally, we will present the results
of numerical integrations in section 5, concluding in section 6 with a discussion of our findings
and of future prospects. In appendix we analytically solve the special case d = 2, which helps to
illustrate some of the points discussed in the conclusions.

2. The general setup: ansatz, variations and gauge fixing

The action (2) is a particular case (ω = 0) of the more general Brans–Dicke theory with a
potential,

∫Γ ϕ ϕ ϕ ω
ϕ

ϕ ϕ¯ = − + ∂ ∂μ
μ

⎧⎨⎩
⎫⎬⎭[ ] ( )g d x g V R, , (4)k

d
k

which in turn is a special case of dilaton gravity. The f(R) theory in the Palatini formalism is
related to the same theory but with ω = −3 2 [45]. We have introduced a subscript k which
stands for the running scale at which the effective average action Γ̄k is defined [14]. To a large
extent we will keep ω general, only to concentrate on the specific case ω = 0 for our numerical
analysis (studying the running of ω would require using a non-constant background, or looking
at the 2-point function, which we leave for future work). Note that (4) differs from other scalar-
tensor theories studied in the asymptotic safety literature [42–44] in two important aspects: it is
not invariant under ϕ ϕ→ − (and ϕ is not restricted to be positive, so that a substitution ϕ χ→ 2

would require us to integrate the new field variable χ on a complex contour), and the kinetic
term is not the canonical one (in particular we are interested in the case ω = 0 which makes the
model essentially different from the one in [42–44]).

The point of view we wish to adopt in this paper is that the action (4) is an LPA
approximation for the effective action, and that only to next order we would promote ω and the
function coupled to R to general functions of ϕ. As we explained in the introduction, we will
project the flow equation for (4) on a flat background and study only the running of the
potential. However, for future reference, we will present in this section the results of variations
and gauge fixing for a general maximally symmetric background metric and constant
background scalar field.
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Introducing the background splitting

ϕ ϕ φ→ + → +μν μν μνg g h , , (5)

we make the usual approximation for the effective average action [46]

Γ φ ϕ Γ ϕ φ φ ϕ φ ϕ= ¯ + + + + ¯⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦h g g h S h g S C C h g, ; , , , ; , , , , ; , , (6)k k gf gh

and neglect the running of the gauge-fixing and ghost actions, Sgf and Sgh.

For the FRGE we will need the second variation of the effective average action, therefore
we expand

Γ ϵ ϕ ϵ φ Γ ϕ ϵ δ Γ φ ϕ

ϵ δ Γ φ ϕ ϵ

¯ + + = ¯ + ¯

+ ¯ +

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ( )

[ ]g h g h g

h g O

, , , ; ,

, ; , , (7)

( )

( )

1

2 2 3

and find (omitting from now on the field dependencies of the action functionals)



  

    

∫δ Γ φ ω
ϕ

ϕ φ

φ ϕ ϕ

ϕ

ϕ

¯ = − +

+ − + − + ′ + −

+ − + − + −

+
− +

−
−

− +
−

″

μ ν
μν

μν
μν

μν
μρ νσ μσ νρ μν ρσ ρμ ν σ ρσ μ ν

ρσ

μν
μν

⎜ ⎟ ⎜ ⎟

⎪

⎪

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( )

( )

( ) ( )

( )

( )
( )

( )
( )

d x g V

h h
d

d
R h V h V h h h

h g g g g g g g g h

R
d d

d d
h h

d d

d d
h

1
2

2
2

1
2

1
8

1
4

1
8

2 4 4

3 4

4 1

5 8

8 1
. (8)

( )
k

d
k

k k

2 2

2 2

2

2

We can exploit the gauge-fixing freedom to simplify the Hessian operator, adding to the
original action the gauge-fixing term

∫α
= μ

μν
ν S d x g G

1
2

, (9)d
gf

for some choice of gauge-fixing constraint μ and of the non-degenerate operator μνG . Physical
results should be independent of the gauge choice, however, it is well known that the off-shell
effective action is not gauge independent, and furthermore, the approximations we employ in
the FRGE lead to additional gauge dependences. It is then important to test our analysis against
different choices of gauge. We present in the following the two types of gauge which we will
use in the forthcoming sections.

2.1. Feynman gauge

First we consider a Feynman gauge (α = 1) with

 
ϕ

φ= − −μ
ν

μν μν μ
⎜ ⎟⎛
⎝

⎞
⎠ h g h

1
2

1
, (10)( )F

and

ϕ=
μν μνG g . (11)( )F
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The total quadratic action becomes







∫δ Γ φ ω
ϕ

ϕ φ

φ ϕ

ϕ ϕ

ϕ

¯ + = − + +

+ + − + ′

− + − +

+
− +

−
−

− +
−

″

μν
μρ νσ μσ νρ μν ρσ

ρσ

μν
μν

⎜ ⎟

⎪

⎪

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( )( )

( )

( )

( ) ( )

( )
( )

( )
( )

S d x g V

d

d
R V h

h g g g g g g V h

R
d d

d d
h h

d d

d d
h

1
2

1 2

1
2

2

1
8

3 4

4 1

5 8

8 1
. (12)

( ) ( )
k

F d
k

k

k

2
gf

2

2

2

2

Decomposing = ˆ +μν μν μνh h
d

g h
1

, with ˆ =μν
μνg h 0, we finally obtain









∫δ Γ φ ω
ϕ

ϕ φ

φ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

¯ + = − + +

+ + − + ′

− ˆ −
− +

−
+ ˆ

+ − − − +

″

μν
μν

⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎫⎬⎭

( )

( )

( )
( ) ( )

( )

S d x g V

d

d
R V h

h
d d

d d
R V h

d

d
h

d

d
R V h

1
2

1 2

1
2

2

1
4

3 4

1

2
8

4
. (13)

( ) ( )
k

F d
k

k

k

k

2
gf

2

2

2

2

We note that via the gauge-fixing procedure we have introduced a kinetic term for the auxiliary
field φ even in the case ω = 0. The kinetic term disappears for ω = −1 2, which is a special
value for the Brans–Dicke theory in this gauge.

For the gauge sector we employ a standard Fadeev–Popov determinant which we rewrite
in terms of a quadratic integral over complex Grassmann fields μC and ¯ μ

C . For a constant
background scalar field, the ghost action reads

∫¯ = ¯ +μ
μ

⎜ ⎟⎡⎣ ⎤⎦ ⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭S C C d x g C
R

d
C, . (14)gh

d 2

2.2. Landau gauge

As an alternative choice of gauge, we consider a Landau gauge (α = 0) with

= −μ
ν

μν μν
⎜ ⎟⎛
⎝

⎞
⎠ h

d
g h

1
, (15)( )L

and

=
μν μνG g . (16)( )L

The interesting aspect of such a gauge is that it does not modify the kinetic term of φ, in
particular it does not introduce one for ω = 0.
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In this case, in order to simplify the non-minimal operators that appear in the second
variation, we use the transverse-traceless decomposition of the metric fluctuations, given by

    ξ ξ σ σ= + + + + −μν μν μ ν ν μ μ ν μν ( )h h
d

g h
1

, (17)T 2

with the component fields satisfying

  ξ= = = =μν
μν

μ
μν

μ
μ μν

μνg h h h g h0 , 0, 0 , . (18)T T

In the α → 0 limit, the ξμ and σ field components decouple completely from the rest of the

Hessian, and their contribution to the FRGE cancels exactly with the ghost contribution, when
properly implemented [47]. We thus write the second variation of the action directly omitting
the contribution of the longitudinal components:









∫δ Γ φ ω
ϕ

ϕ φ

φ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

¯ + = − +

+ − + − + ′

− −
− +

−
+

+ − − − − +

″

μν
μν

⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎫⎬⎭

( )

( )

( )
( ) ( )

( )

S d x g V

d

d

d

d
R V h

h
d d

d d
R V h

d

d
h

d

d

d

d
R V h

1
2

2

1 2
2

1
2

1
4

3 4

1

2
8

2
1 4

. (19)

( ) ( )
k

L d
k

k

T
k

T

k

2
gf

2

2

2

2

Because of the change of variables (17), in this case there is also a Jacobian to keep track
of, which we do by introducing auxiliary fields. The Jacobian for the gravitational sector leads
to the auxiliary action [47]

  

  

∫ χ χ χ χ

ζ ζ ζ ζ

= ¯ + + − ¯ +
−

+ + + − +
−

μ
μ

μ
μ

− ⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

S d x g
R

d

d

d

R

d

R

d

d

d

R

d

2
1

1

2
1

1
, (20)

d T T

T T

aux gr
2 2 2

2 2 2

where the χμ
T and χ are complex Grassmann fields, while ζμ

T and ζ are real bosonic fields. The

Jacobian for the transverse decomposition of the ghost action is given by

∫ ψ ψ=−S d x g , (21)d
aux gh

2

with ψ a real scalar field.

3. The flow equation

The flow equation can be evaluated by means of the functional renormalization group equation
(FRGE), which takes the generic form [12–15]
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Γ Φ Γ∂ = + ∂
−⎡

⎣⎢
⎤
⎦⎥ ( )[ ] 1

2
STr , (22)( )

t k k k t k
2

1

being

Γ
δ Γ

δΦ δ Φ
=( ) ( ) ( )

x y
x y

, , (23)( )
k

k

i j

2
2

and where Φ is a superfield collecting all the fields involved in the quantum action, i.e.

Φ φ≡ ⋯μν{ }h, , . k is a generic cutoff operator, ≡ ( )t klog is the RG running scale and STr

identifies a functional supertrace, carrying a factor 2 for complex fields and a factor −1 for
Grassmann fields.

We will construct the cutoff operator in such a way to implement the substitution rule

  − → ≡ − + −( )P k r k , (24)k
2 2 2 2 2

being r(z) a dimensionless smearing function. That is, we choose a cutoff of the form

Γ Γ= −− → ( ) ( )
k k P k

2 2

k
2 . A convenient choice of smearing function, leading to a considerable

simplification of the functional traces, and which we will therefore use here, is the so-called
‘optimized’ cutoff [48] which reads

Θ= − −( ) ( ) ( )r z z z1 1 , (25)

where Θ ( )x is a Heaviside step function.

3.1. Feynman gauge

The Hessian of the effective action is mostly diagonal in field space, with the only exception of
the φ{ }h, sector, thus the supertrace in (22) can be easily decomposed into standard functional
traces. In the Feynman gauge we obtain

Γ Φ∂ = ∂ + ∂ − ∂
φ

− − −

¯

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦     ( ) ( ) ( )1
2

Tr
1
2

Tr Tr , (26)t k k t k
h

k t k
h h

k t k
C C

1

,

1

,

1

,T T

where k is the modified inverse propagator, namely Γ= + ( )
k k k

2 . The evaluation of the
first trace requires to invert the h–φ matrix, which is trivial since the matrix elements commute.
The ghost term takes a factor of minus two with respect to the other terms, because of the
complex Grassmannian nature of the ghost fields.

The trace over a generic Riemannian manifold can be evaluated by means of a heat kernel
expansion, but since we are interested in projecting the flow equation on a flat background we
can evaluate the trace over modes as a simple integral over momenta. The derivative of the
cutoff operator with respect to the RG time returns

Θ δ∂ = − + − −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )k r

p

k
k

p

k

p

k
k p

p

k
2 1 2 1 , (27)t

2
2

2
2

2

2

2

2
2 2

2

2

which reduces to the sole Heaviside step function using the property that the distributional
product of the delta function with its argument is zero. Because of the step function, the trace
reduces to a momentum integral between 0 and k, thus automatically rendering the functional
traces UV finite, a well-known feature of the FRGE. Performing the trace we obtain
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π
Γ

∂ =
φ

−
− −

+⎡⎣ ⎤⎦ 
( )

( )
d

k
N

D

1
2

Tr
2

(28)k t k
h

d

d

d F

F

1

,

1

2

2

d
2

π
Γ

ϕ
ϕ ϕ

∂ =
+

−
−

−
− −

+⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟ 

( ) ( )
( ) ( )

( )
d d

d
k

k V

1
2

Tr
1

2
1

2
(29)k t k

h h

d

d

d1

,

1

2

2

2T T

d
2

π
Γ

∂ =−

¯

− −⎡⎣ ⎤⎦ 
( )

( ) kTr
2

(30)k t k
C C

d

d

d1

,

2

2

d
2

where

ϕ ω ω ϕ ϕ ϕ

ω ϕ

= + − − + − − ′

+ − +

″{ }( ) ( ) ( ) ( )
( ) ( ) ( )

N k d d d V dV

d V

4 2 1 2 2

2 2 1 ,

F
2

ϕ ω ϕ ϕ

ϕ ω ω ϕ ϕ

ϕ ϕ

= − + +

+ + − − + −

− ′ + ′

″

″

}
{

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

D d V k V

k k d d d V

dk V dV

2 2 1

2 2 1 2

2 .

F
2

2 2

2 2

The trace over the tensor structure gives the factor + −( )d d 1 2 1 for the μνhT contribution and
a factor d for the ghosts, counting the number of their independent components. Since we are
working on a flat manifold and constant background field both the Ricci scalar and the kinetic
operator vanish, so that equation (26) reduces to an RG flow equation for the dimensionful
potential. We cast the equation in an autonomous form, i.e. with no explicit dependence on k,
by introducing the dimensionless quantities

ϕ ϕ ϕ ϕ˜ = ˜ ˜ = ˜− − −( )( )k V V k k, , (31)d d d2 2

in terms of which we obtain

ϕ∂ ˜ ˜ = + ( )V , (32)( )
t k

F
tree quant

where

ϕ ϕ ϕ= − ˜ ˜ + − ˜ ˜′ ˜ ( ) ( )( )d V d V2 , (33)tree

is the classical part of the equation, which is linear in the potential, and

π
Γ

ϕ

ϕ ϕ
= − +

+ − ˜

˜ − ˜ ˜
+ ͠

͠− − ⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

 ( )
( )( )
( )

( )d
d

d d

V

N

D

2
2

1
, (34)( )F

d

d

F

F
quant

1

2

1
2

2d
2

with

ϕ ω ω ϕ ϕ ϕ

ω ϕ

= ˜ + − − + − ˜ ˜ ˜ − ˜′ ˜

+ − + ˜ ˜

͠ ″{ }( ) ( )
( )

( ) ( )
( )( )

N d d d V d V

d V

4 2 1 2 2

2 2 1 , (35)

F
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ϕ ω ϕ ϕ ϕ ω ω

ϕ ϕ ϕ ϕ

= − ˜ ˜ + + ˜ ˜ ˜ + ˜ + − −

+ − ˜ ˜ ˜ − ˜′ ˜ + ˜′ ˜

͠ ″

″ }
( )

)
{( ) ( ) (

( ) ( ) ( )

( ) ( ) ( )

( )

D d V V d d

d V dV d V

2 2 1 2 2 1

2 2 ,

F

2

is the quantum part, which contains all the loop contributions, and which is responsible for the
nonlinear character of the equation.

3.2. Landau gauge

Working in the Landau gauge the supertrace in (22) reads

Γ Φ∂ = ∂ + ∂

+ ∂

φ

− −

−

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

   

 
[ ] ( ) ( )

( )

1
2

Tr
1
2

Tr

1
2

STr , (36)

t k k t k
h

k t k
h h

k t k
aux

1

,

1

,

1

TT TT

where the contributions of ghosts and longitudinal modes have been omitted, since they exactly
cancel each other as explained before.

After performing the integral over momenta we obtain

π
Γ

∂ =
φ

−
− −

+⎡⎣ ⎤⎦ 
( )

( )
d

k
N

D

1
2

Tr
2

, (37)k t k
h

d

d

d L

L

1

,

2

2

2

d
2

π
Γ

ϕ
ϕ ϕ

∂ =
+

− −
−

−
− −

+⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟ 

( ) ( )
( ) ( )

( )
d d

d
d

k
k V

1
2

Tr
1

2
1

2
, (38)k t k

h h

d d

d

d1

,

1 2

2

2

2TT TT

π
Γ

∂ = −−
− −⎡⎣ ⎤⎦ 

( )
( ) k

1
2

STr
2

, (39)k t k
aux

d d

d

d1
1 2

2

ϕ ω ω ϕ ϕ ϕ

ω ϕ

= − + − − + − − ′

+ −

″{ }( ) ( ) ( ) ( ) ( )
( ) ( )

N d k d d d V d V

d d V

1 4 2 1 2 2

2 ,

L
2

ϕ ϕ ω ω ϕ ϕ

ϕ ϕ ω ϕ ϕ

= ′ + − + − − + −

− − ′ + − +

″

″

{ ( )
( )}

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

D d V d k k d d d V

d d k V d d V k V

2 1 2 2 1 2

4 1 2 2 .

L
2 2 2 2

2 2

The RG flow equation for the dimensionless potential in such a gauge reads then

ϕ∂ ˜ ˜ = + ( )V , (40)( )
t k

L
tree quant

where the classical part tree is the same as in (33), and the quantum part reads

π
Γ

ϕ

ϕ ϕ
= − +

+ − − ˜

˜ − ˜ ˜
+ ͠

͠− − ⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

 ( )
( )( )

( )
( )d

d
d d d

V

N

D

2 1
2 , (41)( )L

d

d

L

L
quant

1

2

1
2

2d
2
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with

ϕ ω ω ϕ ϕ ϕ

ω ϕ

= − ˜ + − − + − ˜ ˜ ˜ − ˜′ ˜

+ − ˜ ˜

͠ ″{ }( ) ( )
( )

( ) ( ) ( )
( )

N d d d d V d V

d d V

1 4 2 1 2 2

2 , (42)

L

ϕ ϕ ω ω ϕ ϕ

ϕ ϕ ω ϕ ϕ

= ˜ ˜′ ˜ + − + − − + − ˜ ˜ ˜

− − ˜′ ˜ + − ˜ ˜ + ˜ ˜ ˜

͠ ″

″

{ ( )
( )}

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

D d V d d d d V

d d V d d V V

2 1 2 2 1 2

4 1 2 2 .

L
2 2

4. Analytical study of the equation

We want to search for fixed point solutions of equation (32) and (40), i.e. search for scale
invariant solutions such that ∂ ˜ =V 0t k , requiring them to be globally analytic [28, 31, 49]. The
latter requirement has a well-understood physical and mathematical justification, being a
necessary condition for the existence of the average effective action at all values of k, and hence
of the full effective action in the limit →k 0 (which in >d 2 requires the existence of the
solution for ϕ̃ → ± ∞, see (31)). In addition, the condition of global analyticity is expected to
reduce the continuous set of solutions to a discrete subset of acceptable ones.

For ∂ ˜ =V 0t k , both (32) and (40) reduce to second order ordinary differential equations,
thus we expect two-parameter families of local solutions, parametrized by the initial value
conditions. Extending such local solutions to global ones, we generally have to impose
constraints coming from the analyticity requirement and from the symmetries of the problem. In
our case we do not have any constraints originating from symmetries (e.g. we have no ϕ ϕ˜ → − ˜
symmetry, hence ˜′ ≠( )V 0 0 in general), and we will have to study the equation on the full real

line imposing asymptotic boundary conditions at ϕ̃ ∼ ± ∞. The latter, due to the non-linear
nature of the equations, could contain less than two free parameters, implying that global
solutions would also necessarily be parametrized by less than two degrees of freedom. Other
explicit constraints can originate from fixed singularities of the equation, requiring analyticity
conditions (e.g. [50]), and it is hoped that the equation does not have too many such fixed
singularities, which would require an over constraining of the solutions [16, 18].

We will apply the following strategy to select solutions: (i) we look for singularities of the
equations, either fixed or movable, and study the behavior of the solution in a neighborhood of
the singularity, (ii) we study the large field asymptotic solutions of the equation and count the
degrees of freedom of each class of solutions, (iii) we numerically look for global solutions
satisfying all the constraints.

The study of the large field asymptotic solutions is important also for other two reasons,
namely, the derivation of the full effective action at the fixed point [16], and the relation to the f
(R) theory, as we will explain in the concluding section.

We will present most of the analysis for the case ω = 0, although occasionally we will
refer to other values. As in the Landau gauge the ω = 0 value is a critical value, analogous to
the ω = −1 2 value for the Feynman gauge, we will treat separately the two gauges, starting
with the Feynman gauge. Most of our considerations apply to generic dimension >d 2,
although we will most often specialize to d = 4. In appendix we will treat the special case d = 2.
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4.1. Feynman gauge

4.1.1. Fixed singularities. In order to look for fixed singularities, we search for poles of the
denominator of the scale invariant flow equation ∂ ˜ =V 0t k written in normal form, i.e.

ϕ
ϕ

ϕ
˜ ˜ =

˜ ˜′ ˜

˜ ˜′ ˜
″


( ) ( )

( )
V

V V

V V

, ,

, ,
, (43)

where  and  are polynomial functions obtained from (32). For >d 2 the only zero we find
is at ϕ̃ = 0, while for d = 2 the equation reduces to a first order equation with no fixed
singularities. To test the consequences of such singularity in >d 2 we impose analyticity, and
study the equation in a Laurent expansion.

Locally, imposing analyticity means requiring the existence of a Taylor expansion of the

solution, in other words we make the ansatz ϕ ϕ˜ ˜ = ∑ ˜
⩾( )V v

n n

n

0
, and after plugging it into the

equation we expand the latter in a Laurent series centered at the origin. At leading order, the
equation in the Feynman gauge reduces to

ω
π Γ

= +
+

−
⎛
⎝⎜

⎞
⎠⎟( )

( )d v d d
0 2 1

2

2 2 4
1 , (44)

d d 2 2
0

which vanishes either restricting to ω = −1 2 (the analogous case in the Landau gauge will be
ω = 0, see 4.2.1), or fixing the potential in the origin to

π Γ
≡ ˜ = −

−−

( ) ( )
( )

v V
d

d d
0

2 2 1

2
. (45)

d

d0

1

2 2

As a consequence for >d 2 and ω ≠ − 1 2 we have one constraint, thus reducing the number
of degrees of freedom at the origin to one. For technical reasons, when integrating the equation
numerically, we need to start from an arbitrary small value of the field ϵ. The boundary
condition at ϵ can then be parametrized in terms of the derivative of the field in zero

ϵ ϵ τ ϵ ϵ τ˜ = ˜ ˜ ˜′ = ˜′ ˜( ) ( )( ) ( ) ( ) ( )V V V V V V; 0 , , ; 0 , , (46)

being τ = ˜′ ( )V 0 the free parameter, and evaluated by means of a MacLaurin series

ϵ
π

Γ
τ ϵ τ ϵ ϵ˜ = −

−
+ + +

− −

 ( )( ) ( )
( )

( )V
d

d d
v

2 2 1

2
, (47)

d d1 2

2 2
2 3

where for example

τ

π Γ ω ω τ ω τ

=

− + − − − − − +

− −
{ }( )

( )
( ) ( ) ( ) ( )( )( )

( )( )

v

d d d d d d d d

d d

2 2 1 2 1 4 2 4 2 2 1 2 1

8 2 2 1
,

d d

2

2 2 2 2

and higher order coefficients are likewise obtained solving the equation order by order in ϵ.

4.1.2. Movable singularities. The constrained differential equation admits now a one-
parameter family of local solutions parametrized by τ. Still, because of the nonlinearity of the
equation, we expect most of the solutions to end at a movable singularity, i.e. at a singularity
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whose location depends on the initial condition. We want to study the behavior of solutions in
the neighborhood of such singularities, in order to confirm analytically the existence of such
singularities and be able to recognize them in the numerical integrations, as well as to discuss
possible interpretations in the terms of the f(R) theory. We will present in the next section the
results of our search for a set of values of τ for which the singularity goes to infinity.

Let ϕ̃
c
be the value of the field at which the singularity occurs, and suppose that the singular

behavior is such that there exists an ⩾n 00 such that ϕ˜ ˜ ∼ ∞( )V ( )n

c
for every ⩾n n0. In order to

understand what values of n0 can occur for our equation, it is convenient to recast the equation
(32) in the following form

ϕ ϕ ϕ
π Γ

ϕ

ϕ
− ˜ ˜ + − ˜′ ˜ ˜ +

˜ ˜′ ˜ ˜

˜ ˜′ ˜ ˜ =
″

″
( )
( )( ) ( )( )

( )
d V d V

d d

P V V V

P V V V
2

1

2 2

, , ,

, , ,
0 , (48)

d d 2

1

2

where the Pi are two polynomials containing the same monomials but with different coefficients.

As the polynomials Pi have the same structure we deduce that for ϕ ϕ˜ →
c̃
their ratio will in

general go to a constant for any value n0. Special situations can arise when some cancellation
occurs in P2 which does not happen in P1, and such cases will have to be discussed separately. As
a consequence, in the general case the linear part of the equation cannot diverge, otherwise it
could not be balanced by the rational part, i.e. both the potential and its first derivative do not
diverge at the singularity, restricting the possible value of n0 to >n 10 . At this stage, we can

assume that in the neighborhood of ϕ̃
c
the potential can be written as

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

˜ ˜ = ˜ − ˜ + ˜ − ˜ + ˜ − ˜

+ + ˜ − ˜ + ˜ − ˜

γ 


{ }( )
( )

( ) ( ) ( )

( ) ( )

( )V A A

u u , (49)

c c c

c c

1

2

0 1

2

and that γ > 1 (so that >n 10 ), and we can try to determine the value of γ by means of the
method of dominant balance. In order to do so we can start with the guess that the second
derivative is divergent at ϕ̃

c
, that is γ< <1 2. In such a case, by studying the balance of terms

we arrive at the equation γ γ− = − +1 2, leading to γ = 3 2, in accordance with our guess.
Plugging (49) with γ = 3 2 into (48), we can iteratively work out all the coefficients in the

expansion as functions of the parameter u0 and of the singular field value ϕ̃
c
. For example, in

d = 4 we find

π ϕ ϕ

π ϕ ϕ
=

− ˜ + + ˜

˜ − ˜
( )( )

( )
( )u u

u u

u

4 16 1

32
, (50)

c c

c c

1 0

0
2

0

2
0

ω ω ϕ ϕ ϕ ω ϕ

π ϕ ϕ

=

−
− + + + ˜ + ˜ ˜ − − + ˜

˜ − ˜
( )( )

( )
( )

( )

( ) ( ) ( )

A u u

u u u u u

u

,

2 1 2 2 3 2 2 2 3

6 2
,

c c c c

c c

0 1

0
2

0 1 1 0

2
1
2

0
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for the leading order terms. The subleading corrections can be computed iteratively, but their
expression is very long, and not particularly enlightening.

Other singular behaviors are possible if P2 has a zero. Such situations are more easily
uncovered by studying the equation written in normal form, (43). Assuming that the first
derivative of the potential is divergent (or more divergent than the potential itself) at ϕ ϕ˜ ∼

c̃
, we

obtain the equation

ϕ
ϕ

ϕ ϕ
˜ ˜ ∼ −

˜′ ˜

˜ − ˜ ˜
″ ( ) ( )

( )
V

V

V
2 , (51)

c

2

leading to a simple pole solution ϕ ϕ ϕ˜ ˜ ∼ ˜ − ˜ −( ) ( )V
c

1
, which is consistent with the assumption.

Subleading corrections can be worked out, confirming the possibility that such types of singular
behavior can appear in a solution of the fixed point equation.

4.1.3. Behavior at large field values. We apply here the method of dominant balance to study
the large field regime of the differential equation (32). We have already seen in (48) that
whatever the leading term (for ϕ̃ → ∞ in this case) the quantum part of the equation in general
goes as a constant plus subleading corrections, hence we have two possibilities: either the
potential diverges at infinity, and the classical part of the equation defines the leading order, or
the potential goes to a constant, and there must be some balance between the linear and
nonlinear parts. In the first case, in the ϕ̃ → ∞ limit the solution goes as

ϕ ϕ˜ ˜ ∼ ˜ +−( )V A subleading terms, (52)
d

d 2

where A is a free parameter. Subleading terms can be calculated by solving iteratively the
differential equation for an ansatz of the type

∑ϕ ϕ ϕ˜ ˜ ∼ ˜ + ˜−

>

−⎛
⎝⎜

⎞
⎠⎟( ) ( )V A a A1 . (53)

d
d

n
n

n
2

0

For d = 4, for example, the first few coefficients ( )a An are

π
ω

π
ω ω

π
= = − = − − = − − −( ) ( ) ( ) ( )a A a A a A

A
a A

A
0,

1

16
,

2 61

1152
,

4 4 337

9216
. (54)1 2 2 3 2 4

2

2 2

The coefficients are all inversely proportional to the bare parameter A, so that this expansion
cannot be continued to A = 0, and that case must be treated separately. The asymptotic solution
so far constructed defines a one-parameter family of solutions parametrized by the variable A,
but as the equation is second order, we can ask if the asymptotic solutions have more degrees of
freedom. In order to answer such a question, we follow [18, 31] and perturb the flow equation in
the neighborhood of the solution we just found, i.e. we introduce a perturbation to the potential,

ϕ ϕ ϵ δ ϕ˜ ˜ → ˜ ˜ + ˜ ˜( ) ( ) ( )V V V , (55)

substitute it into (32), and expand to linear order in ϵ. Replacing ϕ˜ ˜( )V with (53), and keeping

only the leading terms in the coefficients of the linear operator acting on the perturbation, in
d = 4 we obtain the linear equation
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ω δ ϕ
π ϕ

ϕ δ ϕ δ ϕ
− − ˜ ˜

˜ + ˜ ˜′ ˜ − ˜ ˜ =
″( ) ( ) ( )

( ) V

A
V V

2 1

1152
2 4 0 , (56)2 2

which allows a solution which goes asymptotically as

δ ϕ ϕ˜ ˜ ∼ ˜ +
π
ω ϕ+

˜( )V B B e , (57)
A

1

2

2

768
2 1

2 2 3

where B1 and B2 are two integration constants. Note that equation (56) seems to reduce to a first
order equation for ω = −1 2, but as we will see for the Landau gauge for ω = 0 (which is the
analogue of the case ω = −1 2 in the Feynman gauge) for that critical value of ω we simply

need to include the subleading correction of the coefficient of δ ϕ˜″ ˜( )V .

Whereas the power-law solution in (57) merely shifts A in (53), the exponential solution
would seem to be a new degree of freedom. However, for positive ϕ̃ (and ω > −1 2, otherwise

the role of positive and negative ϕ̃ are interchanged) it grows faster than the solution it is
perturbing, contradicting our asymptotic analysis, hence it must be discarded. On the other
hand, for negative ϕ̃ it is an exponentially small perturbation, hence it is acceptable. As the

perturbation is smaller than any power at large ϕ̃, while the leading solution (53) contains only
powers, it is not difficult to see that the full equation decomposes in a hierarchy of equations,
according to powers of the exponential correction, that is, the exponential acts like an ϵ
parameter and we can iteratively solve the equation to obtain

∑ϕ ϕ˜ ˜ ∼ ˜ ˜ϕ

⩾

˜( )( ) ( )( )V B e V , (58)[ ]
m

Z
m

m
0

where ϕ˜ ˜( )V[ ]0 is the leading solution (53), while for ω = 0 we find

ϕ π ϕ π ϕ π ϕ˜ = ˜ + ˜ + + ˜( )( )Z A A A768 4224 64 24 769 , (59)2 2 3 2 2 2

ϕ ϕ π π
π

ϕ ϕ˜ ˜ = ˜ − + + ˜ + ˜
π+

− −⎛
⎝⎜

⎞
⎠⎟ ( )( )

( )
V

A A

A
1

5712 747937 8739072

6
, (60)[ ]

A

A
1

48 329 5568 2 2 4

2 2

1 2

2

and so on, leaving A and B as free parameters.
The presence of a new degree of freedom at ϕ̃ ∼ − ∞ creates an interesting situation, as

we already know that we have an analyticity constraint at ϕ̃ = 0, hence if we had just one-
parameter families of solutions at both plus and minus infinity it would be unlikely to have a
global solution6.
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ϕ̃ = 0 we compute ˜ ( )V 0 and τ = ˜′+ ( )V 0 as functions of A. Upon imposition of the analyticity condition we expect

to find a discrete set of solutions for A. As A was the only free parameter,is now completely fixed by it. If at this

point we repeat the same procedure but start from large negative ϕ̃, and if also in this case the asymptotic solutions

form a one-parameter family, we will end up with a new fixed value τ = ˜′− ( )V 0 . It is very unlikely to find that

τ τ=+ −. On the contrary, if the asymptotic expansion at negative ϕ̃ forms a two-parameter family, we could obtain

in that case a continuum of values for τ−, and the chances would be higher to find a global solution, as that would
only require that τ+ be in the range of τ−.



There remains to consider the special case A = 0, which we now proceed to examine for
d = 4 and ω = 0. From the previous discussion of dominant balance we would expect in such a
case a solution that asymptotes to constant. Nevertheless, we should be careful as in that
analysis we have excluded special cases leading to cancellations in the denominator of the
quantum part of the equation. By plugging into the equation an ansatz of the type

∑ϕ ϕ ϕ˜ ˜ ∼ ˜ + ˜
⩾

−( )V A b , (61)
n

n

n

1
0

we find at leading order the equation =A 01 , in accordance with the previous analysis.
However, a careful look at the higher orders of the expansion reveals the presence of poles at

=A 11 and =A 3 21 , meaning that for those values the general expansion is not valid, and a
separate treatment is needed. In fact, we find that such special values of A1 also lead to solutions
that are solvable with an iterative algorithm7. In all three cases ( =A 01 , 1 and 3 2) we find no
free parameter in the expansion (61), but by studying the linear perturbations we discover the
presence of exponentially small corrections at negative ϕ̃ for =A 01 , exponentially small

corrections at both positive and negative ϕ̃ for =A 11 , and a non-integer power correction at

negative ϕ̃ for =A 3 21 . It is quite easy to see that exponentially small corrections always carry
one new degree of freedom, while the analysis in the case of the non-integer power is slightly
more tedious and we have not pushed it further (also because in our numerical analysis we saw
no evidence of the =A 3 21 asymptotic behavior for the Feynman gauge). Just as an example
of the type of results, for =A 01 we find that the coefficients in (61) read

π π π π
= = = =b b b b

3

128
,

7

6144
,

985

18874368
,

4793

1811939328
, (62)0 2 1 4 2 6 3 8

etc., and that the exponential perturbation at ϕ̃ ∼ −∞ leads to a solution of the form

∑ϕ ϕ˜ ˜ ∼ ˜ ˜π ϕ

⩾

˜( )( ) ( )V B e V , (63)[ ]
m

m

m
0

192 2

where ϕ˜ ˜( )V[ ]0 is the perturbed solution with coefficients (62), and

ϕ ϕ
π

ϕ ϕ˜ ˜ = ˜ − ˜ + ˜− −⎜ ⎟⎛
⎝

⎞
⎠ ( )( )V 1

233

128
, (64)[ ]1

8

2

1 2

ϕ ϕ π
π

ϕ ϕ˜ ˜ = ˜ − ˜ + ˜− −⎜ ⎟⎛
⎝

⎞
⎠ ( )( )V 6144

463

128
, (65)[ ]2

17 4
2

1 2

and so on, leaving B as the only free parameter.
In conclusion, we have found four isolated sets of solutions at ϕ̃ → ±∞. As we will

explain in the concluding section, from the point of view of the f(R) theory the most interesting
solutions are those in the first class, i.e. (52), for which we have found the presence of two
degrees of freedom at ϕ̃ → −∞ and one at ϕ̃ → +∞ (or the opposite for ω < −1 2).
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4.2. Landau gauge

4.2.1. Fixed singularities. We repeat here the analysis of the analyticity of the differential
equation for the Landau gauge, starting with the study of the fixed singularity in ϕ̃ = 0.
following 4.1.1, we recast the differential equation in its normal form (43) and then we expand
it in a Laurent series employing a Taylor expansion for the potential. In this gauge we find that
at leading order the equation reduces to

ω
π Γ

π Γ
= −

˜ + + −
˜ +( )

( ) ( )
( ) ( )

d V d d

d d V d
0 4

2 0 2 1 1

2 0 2 2
, (66)

d d

d d

2

2

which vanishes constraining the potential at the origin as

π
Γ

≡ ˜ = −
−

+

− −

( ) ( )
( )

v V
d

d d
0

2 1

2 1
, (67)

d d

0

2

or restricting to ω = 0, which is the case we are interested in. Comparing (66) with (44) we note
once more that the case ω = 0 in the Landau gauge is analogous to the case ω = −1 2 in the
Feynman, so that the analytic properties of the equation in the two gauges are the same for those
two particular values.

For ω = 0 we have now an equation free of singularities. As a consequence, since the
equation is unconstrained, we have (for >d 2) two degrees of freedom at the origin, ˜ ( )V 0 and
˜′ ( )V 0 , and at least one at ϕ̃ ± ∞, so that it seems it is more likely to find global solutions. On

the technical side, the absence of a singularity at ϕ̃ = 0 also means that in this case it is possible
to integrate numerically from the origin without employing a MacLaurin expansion.

4.2.2. Movable singularities. As in the Feynman gauge we expect the nonlinearity of the
equation to involve the presence of movable singularities. Since the polynomials Pi in equation
(48) contain the same monomials in both gauges, the analysis carried out in 4.1.2 with the
method of the dominant balance still holds and we find in general the singular behavior (49)
with γ = 3 2. However, because of the gauge dependence of the off-shell effective action, we
end up with different coefficients for both the analytic and divergent part. For example, for d = 4
and generic ω we obtain

ϕ π ϕ ϕ ϕ
= ˜ +

− ˜ +
− ˜ + ˜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( )u u

u

u u

1
64

128 1 5 3
2 3

4
, (68)

c c c c

1 0
0

2
0 0

ϕ ω ϕ ω ω

π ϕ ϕ
= −

− ˜ − + + ˜ − + −

˜ ˜ −
( )( )

( )
( )

( )
A u u

u u u u

u
,

3 6 4 9 12 2 2 3 8

6 3 2 2
, (69)

c c

c c

0 1

2

1
2

0 1 0
2

1
2

0

etc. Also similar to the Feynman gauge is the presence of simple pole singularities, with (51)
replaced by
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ϕ
ϕ

ϕ ϕ
˜ ˜ ∼ −

˜′ ˜

˜ − ˜ ˜
″ ( ) ( )

( )
V

V

V
4

3 2
. (70)

c

2

4.2.3. Behavior at large field values. Since the method of the dominant balance leads to
similar conclusions for both gauge choices, we expect also for the Landau gauge to find
generically an asymptotic solution of the form

∑ϕ ϕ ϕ˜ ˜ ∼ ˜ + ˜−

>

−⎛
⎝⎜

⎞
⎠⎟( ) ( )V A a A1 . (71)

d
d

n
n

n
2

0

We can iteratively solve the differential equation for this ansatz, obtaining in d = 4

π
ω

π
ω

π
= = − = − − = − −( ) ( ) ( ) ( )a A a A a A

A
a A

A
0 ,

1

32
,

2 39

1152
,

4 207

9216
, (72)1 2 2 3 2 4

2

2 2

and so on. As for the other gauge, we see that the coefficients are inversely proportional to A, so
that also in this gauge we have to treat that case separately. Before studying those other
solutions we focus on the number of free parameters of (71), by introducing a perturbation δṼ .
We then linearize the equation for the perturbation and study the leading terms, obtaining the
equation

ω δ ϕ
π ϕ

ϕ δ ϕ δ ϕ−
˜ ˜

˜ + ˜ ˜′ ˜ − ˜ ˜ =
″( ) ( ) ( )

V

A
V V

576
2 4 0. (73)2 2

For ω ≠ 0 the analysis is similar to the one we presented for the Feynman gauge. For ω = 0 we
need to include the next order term in the coefficient of δ ˜″V , and thus consider the equation

δ ϕ

π ϕ
ϕ δ ϕ δ ϕ

˜ ˜

˜
+ ˜ ˜′ ˜ − ˜ ˜ =

″( ) ( ) ( )
V

A
V V

128
2 4 0 , (74)

2 3 2

which admits solutions with the asymptotic behavior

δ ϕ ϕ˜ ˜ ∼ ˜ + π ϕ− ˜( )V B eB . (75)A
1

2

2
64 3 2 4

The novelty here is that the leading power in the exponent is fourth rather than third order (a
consequence of the different power of ϕ̃ in the coefficient of δ ˜″V in (74) with respect to (73)), so

that the solution does not discriminate positive from negative ϕ̃, but rather leads to constraints
on A. For <A 0, the solution (75) contains an exponential degree of freedom which grows
faster then the perturbed function in both positive and negative field regimes, so that we must
discard it. Interestingly such a sector is the unphysical one, since negative A defines the
asymptotic behavior of an unbounded potential. On the other hand, for >A 0 the perturbation is
exponentially small both at positive and negative ϕ̃, hence it is always acceptable, and we can
work out the subleading corrections as done before for the Feynman case. The higher power in
the exponent means that we have to solve more iteration steps before getting to the power-law
corrections, but as we do not gain any qualitative insight from such analysis, we do not report
further on that, the main message being that now we have two degrees of freedom at both plus
and minus infinity.
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Regarding the case A = 0, making the ansatz (61) we find again (d = 4 and ω = 0) the same
three special values =A 01 , 1 and 3 2, as in the Feynman gauge. The main difference appears in
the case =A 3 21 , for which the expansion (61) now contains one degree of freedom, i.e. b1 is a
free parameter in terms of which all the other bn are expressed:

π π

π

π
= − = − =

−( )
b b

b
b

b b3

64
,

8
,

11 1024

1024
, etc. (76)0 2 2

1
2 3

1
4

1

4

By perturbing around such a solution we find that in order to discover new solutions we have to
include at least the next-to-leading order coefficients for large ϕ̃ in the linear equation, yielding

π
π

ϕ ϕ δ ϕ
π
π

ϕ ϕ δ ϕ

π ϕ δ ϕ

− ˜ −
˜ ˜ ˜ + −

− ˜ −
˜ ˜′ ˜

+ ˜ + ˜ ˜ =
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⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

( ) ( )

( )

b

b b
V

b

b b
V

V

64 1

2

512 3

4

2

64
4
3

0, (77)

4
1
2

1

3
4

1

4
1

2
1

2
3

1

2

whose asymptotic solutions are a superposition of a solution that simply perturbs (76), and a
series of logarithmic corrections,

δ ϕ ϕ ϕ ϕ
π

ϕ˜ ˜ ≃ ˜ ˜ −
˜

+ ˜−
−

−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )( )V c log

8
, (78)1

1
2

2

3

that carries a second degree of freedom, namely the free parameter c1.

5. Numerical results

In order to find global solutions we integrate out from ϕ̃ = 0 and search for a set of initial
conditions τsuch that the movable singularity goes to infinity in both the positive and negative
field region. We present here our analysis for both gauges for ω = 0 and d = 4, starting with the
Feynman gauge.

5.1. Feynman gauge

We start a numerical integration at the origin (actually at ϕ ϵ˜ = ± as explained in section 4.1.1),
and similarly to what was done in [31], we plot the location at which we hit a singularity, as a
function of the free parameter τ = ˜′ ( )V 0 . When we see a spike in such a plot, we interpret it as a
hint of a possible global solution. Since spikes can occur as artifacts due to the scale of the plot,
ending instead at a finite value, the next step is to show that such spikes can be made arbitrarily
long by increasing the numerical precision and by refining the mesh. In addition, in our case we
have to produce such types of plots at both positive and negative ϕ̃, looking for spikes that
occur at the same value ofin both ranges.

At negative ϕ̃ the plot of the singularities looks like those in figure 1. We apparently find a
spike in the negative region for an initial condition τ ∼ 1.638, which however, when zooming
in, reveals a richer fine structure, and actually three peaks being present (only two of which are
shown in the right panel of figure 1).
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Such a triple peak can be understood in terms of the transition between different types of
singular behavior. The most clear explanation is obtained in terms of the numerator and
denominator of the normal equation,  and  in (43), which we plot in figure 2 for four
representative cases. We find that for τ ≲ 1.638 534 and τ ≳ 1.638 597 both  and  diverge,
together with their ratio, at some ϕ̃

c
thus signaling the pole type of singularity found in (51). In

the range between those two values we find that  vanishes at some ϕ̃
c
, reaching zero with an

infinite slope; at the same  reaches a finite value, and we deduce that we are hitting a
singularity of the type (49) with γ = 3 2. The transitions between γ = −1 and γ = 3 2 coincide
with two of the peaks observed in the fine structure of figure 1. We interpret the remaining spike
at τ ∼ 1.638 591 as signaling a transition (asincreases) from a regime in which  is always
positive, to one in which it changes sign twice before hitting ϕ̃

c
.

As seen in the close-up plot in figure 1, spikes can be pushed farther away from the origin,
however, high precision is needed and we have not tried to reach much beyond ϕ̃ ∼ −0.1

c
. In

fact, it turns out that a more detailed investigation of the spikes is not worth doing, as the
remaining part of the plot, for positive ϕ̃, turns out to be quite disappointing. Integrating in the
positive field region for any initial condition, including the neighborhood of τ ∼ 1.638, we
encounter a singularity, as can be seen in figure 3, so that we would have not in any case a
global solution. Only one type of singular behavior is found in the positive domain, a typical
example of which is shown in figure 4, and from which we recognize a behavior consistent with
(49) and γ = 3 2.

We did not find other spikes in both negative and positive region for other values of τ
(outside the plot range in figure 3), so that in the end we conclude that there are no global
solutions in d = 4 and ω = 0 in the Feynman gauge.

5.2. Landau gauge

The search of global solutions is more complicated in the Landau gauge since we have two
degrees of freedom at the origin. In order to search for fixed points we adopted the following
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Figure 1. The critical field value ϕ
c
in the negative domain, as a function of the initial

condition τ = ˜′ ( )V 0 , for d = 4 and ω = 0 in the Feynman gauge. In the right panel is a
close-up of the spike, showing the two spikes discussed in the text. A third spike at
τ ∼ 1.638 534 is not shown here.



strategy: i) we integrate numerically from the origin (since there is no fixed singularity we can
directly impose initial conditions at ϕ̃ = 0) for a fixed value of ˜ ( )V 0 varying the initial condition

τ = ˜′ ( )V 0 , ii) we repeat the integration for a discrete set of positive and negative values of ˜ ( )V 0 .
As for the Feynman gauge we restrict our research to ω = 0 and d = 4.

We start with ˜ >( )V 0 0, for which we illustrate a representative outcome at negative ϕ̃ in
figure 5. In this case we find a spike at τ = 1.5 and a continuum set of analytic solutions
occurring for τ τ< c, where τc is a critical value which depends on the initial condition ˜ ( )V 0 , i.e.

τ τ≡ ˜( )( )V 0c c . The peak at τ = 1.5 actually corresponds to an exact solution of the differential

equation in normal form, which for generic >d 2 is given by the simple linear function

ϕ ϕ˜ = +
− ˜( ) ( )

V A
d

d

2 1
, (79)

being = ˜ ( )A V 0 a free parameter. However, we should be careful about such a solution, as in
the original equation it corresponds to a zero of both the numerator and denominator of the h–φ
trace, leading to an undetermined expression. The reason for the zero in the denominator is
easily found by looking back at the second variation (19), and taking ω = 0 and a linear
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Figure 2. A table of plots of  (dashed) and  (solid) as functions of phit, at four
values of τ (from top to bottom, left to right, τ = −5, τ = 1.638 55, τ = 1.6385 965 and
τ = 1.7) corresponding to the four different regimes we observed when integrating at
negative ϕ̃. Plots are not to scale, typically  is several orders of magnitude smaller
than  .



function for ϕ( )V : the φ–φ component immediately vanishes, while the h–φ component does
so once we implement the rule (24) in combination with (25) and we choose the linear function
as in (79) (the h–h component vanishes only for A = 0). As a consequence, the h–φ matrix is not
invertible in such case. We also cannot use a limiting procedure to attribute to (79) the status of

solution of the original equation, as writing ϕ ϕ ϵ ϕ˜ = + ˜ + ˜− ( )( )V A v( )d

d

2 1
and expanding in ϵ

we find that the zeroth order term in ϵ does not vanish, leading instead to a nonlinear differential

equation for ϕ̃( )v (implying also that (79) does not admit linear perturbations). We are thus led

to deem (79) unacceptable.
Regarding the continuum set at negative ϕ̃, we find it for an initial condition τ smaller then

a critical value τc which, as we already mentioned, depends on the value of the initial condition
˜ ( )V 0 . Varying ˜ ( )V 0 we observed the value of τc to oscillate between a minimum value

τ ∼ 0.96min and a maximum τ ∼ 1.12max . By increasing the numerical precision we were able to
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Figure 3. The critical field ϕ
c
in the positive domain, as a function of the initial condition

τ = ˜′ ( )V 0 , for d = 4 and ω = 0 in the Feynman gauge.

Figure 4. Typical plots of solutions hitting a singularity in the positive domain. We
show here the case d = 4, ω = 0 for Feynman gauge with τ = 1.5. The left panel shows
the potential (rescaled by a factor 103) together with its first and second derivative
(rescaled by a factor −10 3), respectively in dotted, dashed and continuous lines. The right
panel shows the behavior of  (dashed) and × 103 .



prolong at will the entire group of solutions and we found all of them to behave asymptotically

as ϕ̃A
2
, being A a function of the initial conditions.

A typical solution is illustrated in figure 6. The seemingly sharp edge in the second
derivative is actually an optical artifact: working at high precision, and zooming around the
edge one finds that the curve is smooth, as depicted in figure 7. We can understand the presence
of such a short-scale transition as the rapid vanishing at large ϕ̃ of the exponential part of the
solutions we discussed in section 4.2.3 (it can be deduced from figure 6 that >A 0, hence the
exponential corrections are possible). The flat tail in the second derivative is also well
understood in terms of the power-law asymptotic solution (71–72), according to which (in

d = 4) the second derivative of the potential approaches a constant plus ϕ( )O 1 3 corrections

(with the coefficient of the ϕ1 3 correction being in this case of the order of −10 4, whereas the

constant term is of the order 102).
As it can be seen in figure 5 all the numerical integrations performed using initial

conditions with τ τ> c lead (with the exception of τ = 3 2) to a singularity, which we found to
be characterized by the exponent γ = 3 2. An acurate analysis reveals a transition in the way the
solutions behave before reaching the movable singularity (i.e. the large field regime of the

solution), from ϕ ϕ˜ ˜ ∼( )V A 2 at τ τ∼ c, to ϕ ϕ˜ ˜ ∼ ˜( )V
3

2
at τ ∼ 3 2. Such transition, together

with the spurious solution (79), makes the equation particularly stiff around τ = 3 2, as it can be
seen from the noise in figure 5. However, because of the presence of a singularity we did not put
much effort into a more precise numerical integration of this group of solutions.

Integrating towards positive ϕ̃ we discover an interesting situation: for ˜ >( )V 0 0 no

solutions meet any singularity. We were able to push the integration to arbitrarily large ϕ̃ > 0
without encountering singularities for all values τ, and we found solutions with τ < 3 2 to

behave asymptotically like ϕ ϕ˜ ˜ ∼ ˜( )V 3

2
, and solution with τ > 3 2 to go as ϕ ϕ˜ ˜ ∼ ˜( )V A

2
.

Combining our findings for positive and negative ϕ̃ we conclude that the solutions with
˜ >( )V 0 0 and τ τ< c form a continuous set of global solutions.
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Figure 5. The critical field ϕ
c
as a function of the initial condition τ = ˜′ ( )V 0 for

˜ =( )V 0 0.1, d = 4 and ω = 0 in the Landau gauge.
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Figure 6. Plot of a typical global solution in the Landau gauge (τ = 0.5, ˜ =( )V 0 0.1,
d = 4 and ω = 0). In the upper, central and bottom panels are plotted respectively the
potential, its first and its second derivative.

Figure 7. Plot of the second derivative of the potential in the range of the exponential

transition to the asymptotic solution ϕ ϕ˜ ˜ ∼ ˜( )V A
2
in the Landau gauge (τ = 0.5,

˜ =( )V 0 0.1, d = 4 and ω = 0).



At ϕ̃ = 0 and ˜ =( )V 0 0 the equation is singular. Imposing an analyticity condition at the

origin we find that τ = ±( )1 19 4. We did not study these special solutions in detail.

For ˜ <( )V 0 0 the typical situation is depicted in figure 8. All the singular solutions we
found, for both positive and negative field values, diverge with exponent γ = 3 2. We found in
the positive field region a continuum of solutions which do not end on a movable singularity for
τ > 3 2, while at negative ϕ̃ we met no singularity for τ < 3 2, in both cases with an asymptotic

behavior ϕ ϕ˜ ˜ ∼ ˜( )V 3

2
. The two sets have no overlap, hence there are no global solutions in this

case.
In conclusion, in the Landau gauge in d = 4 and ω = 0, we found a two-parameter family

of global solutions for ˜ >( )V 0 0 and τ τ< ˜( )( )V 0c . Such a result could have been expected to

some extent, as in the Landau gauge we have no fixed singularity at the origin, and we have at
least two classes of asymptotic behavior with two degrees of freedom each at both positive and

negative ϕ̃. The global solutions we found behave asymptotically as ϕ ϕ˜ ˜ ∼ ˜( )V A
2
for

ϕ̃ → − ∞, and as ϕ ϕ˜ ˜ ∼ ˜( )V 3

2
for ϕ̃ → + ∞. The latter is an indication of an unusual character

of such solutions, as that type of asymptotic behavior is the result of a balance between the
classical and quantum parts of the RG equation, to be contrasted to the usual situation, where
for →k 0 (i.e. the large field regime) only the classical part survives.

6. Conclusions

In this article we have presented a study of the Brans–Dicke theory (4) for an arbitrary potential
ϕ( )V in the framework of the functional renormalization group. We have derived a differential

equation in the local potential approximation for a generic parameter ω and dimension d,
subsequently focusing our analysis on the case ω = 0 and d = 4, because of its classical
equivalence with the f(R) theory. The main motivation for this work came from the asymptotic
safety scenario of quantum gravity, which in the literature has been investigated mostly in the
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Figure 8. The critical field ϕ
c
as a function of the initial condition τ = ˜′ ( )V 0 for

˜ = −( )V 0 0.1, d = 4 and ω = 0 in the Landau gauge.



pure metric formulation, by means of truncations of the exact renormalization group equations.
An important test for such approximation methods would be to show that at least some
subclasses of truncations correspond to a series expansion of a functional approximation that
explores an infinite dimensional subspace of the full theory space, a classical successful
example of that being the local potential approximation in scalar field theory. However, for the
case of gravity, such a direction is progressing slowly because of the notorious difficulties
related to working on curved backgrounds. The idea we have explored in this paper was to
exploit the classical equivalence between Brans–Dicke theory and f(R) gravity in order to be
able to study a functional approximation of gravity on a flat background. Besides such
motivation, a study of alternative formulations of gravity or modified theories is interesting on
its own, and studies like the one we have presented here can help address the question of
quantum equivalence of different formulations.

In order to achieve our goals we have evaluated the renormalization group equation for a

generic potential ϕ˜ ˜( )V in two different gauges, namely a Feynman and a Landau gauge,

allowing us to discern possible gauge artifacts. As a result of our study, we found a number of
important differences between the two gauges. In particular, we found no global solutions of the
fixed point equation in the Feynman gauge, whereas we found a two-parameter family of global
solutions in the Landau gauge. While some gauge dependence was expected (due to the
approximations employed and to the fact of working off-shell, see for example [47, 51]), we
would have expected that at least qualitative features like the number of fixed points, and of
associated relevant directions would be gauge independent (in principle together with any
observable quantity, but in practice this property is expected to hold only approximately due to
the approximations used). As the results in our two gauges were so different even at a
qualitative level, we are led to infer some inconsistency of the model under consideration in the
present approximation. Motivated by the relation to f(R) gravity, we did not analyze the case
ω ≠ 0 in detail, but we can identify the freezing of the Brans–Dicke parameter to ω = 0 as the
culprit of the inconsistent scenario we uncovered. We expect the strong gauge dependence to be
lifted once the Brans–Dicke parameter is promoted to a running coupling ωk, in the sense that in
any gauge there will be some critical value ωc where something special happens (e.g. a discrete
or continuous set of fixed points appears), the value of ωc being gauge dependent, but not so for
the overall picture8. For example, we already know that in the Feynman gauge the value
ω = −1 2 gives very similar results to the Landau gauge at ω = 0, and it would be interesting
to test whether such critical values correspond to fixed points of ωk for the two gauges, reached
either in the UV or in the IR. In view of our results and of the possible solution we just outlined,
we can draw an important conclusion: due to its renormalization group flow, the Brans–Dicke
theory at the quantum level needs a running coupling ω ≠ 0k in order to be consistent. Since for
ω ≠ 0 the equivalence with the f(R) theory is broken, we are led to suggest that Brans–Dicke
theory and f(R) gravity are inequivalent at the quantum level. Needless to say, this should not be
intended as a proof of inequivalence, but rather as a logical interpretation of the results we
found.

We should point out another aspect which also hints to a non-equivalence of Brans–Dicke
theory and f(R) gravity at the quantum level. As we explained, the condition for a solution of the
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independent, and give similar results in the two gauges. See appendix.



FRGE to be a valid fixed point is that it should be a global solution. While it is quite clear from
our analysis that, at least within the present approximation, no nontrivial fixed point can be
found for the Brans–Dicke theory at ω = 0 in the Feynman gauge, we should be careful in
translating such a statement back into f(R) gravity. Due to the nonlinearity of the Legendre
transform it could be that a problematic singularity in one theory would turn into a harmless one
in the other, or vice versa. We should indeed remember that the following relations hold (here in
dimensionless variables):

ϕ ϕ˜ = ˜′ ˜ ˜ ′ ˜ = − ˜( ) ( )R V f R, . (80)

As a consequence, if a singular point ϕ̃ < ∞
c

is such that the first derivative of the potential is

divergent, then in the f(R) theory it simply means that ϕ̃
c
is mapped to ˜ = ±∞Rc , depending on

the sign of ϕ˜′ ˜( )V
c
. Although that would correspond to a strange situation in which ˜ ′ ˜( )f R does

not diverge at infinity (usually the asymptotic behavior is a power law dictated by the tree level

part of the equation [16, 18, 19], implying that at infinity ˜ ′ ˜( )f R diverges for any >d 2), that

would not be something we can discard as unacceptable. This is precisely what happens in

reverse for the Landau gauge: we found global solutions for ϕ˜ ˜( )V , but their first derivative is

such that asymptotically ϕ˜′ ˜ ∼( )V 3 2 for ϕ̃ → +∞, and thus their transform would lead to an

f(R) theory valid only up to ˜ =R 3 2c . On the other hand, if the potential is such that only its
derivatives of order greater or equal to two are divergent, then the singular point is mapped to
˜ < ∞Rc , and thus also the transform of the potential is not a global function. The latter is

precisely the case for the Feynman gauge, for which we saw that the singularities at positive ϕ̃
are characterized by an exponent γ = 3 2, that is, they have a finite first derivative at the
singular point.

Regardless of its connection to the f(R) approximation, the study of Brans–Dicke theory is
interesting on its own, and, being a nonrenormalizable theory, it is natural to wonder whether an
asymptotic safety scenario applies to it. From such a point of view, we should emphasize that
what we have presented here is the result of the leading order in an approximation which should
be systematically improved. The local potential approximation we employed can be considered,
in fact, as a ‘double LPA’ since we neglected both the renormalization of the coupling Z of the
operator ϕ R (having set from the start Z = 1) and of the parameter ω. Both could be promoted
to functions ϕ( )Z and ω ϕ( ), thus leading to a next-to-leading order approximation which could
uncover an anomalous scaling of ϕ and the existence of nontrivial fixed points.
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Appendix. The two-dimensional case

In two dimensions the fixed point equations in both gauges reduce to ω-independent first order
equations. The analysis is thus quite different in this case, it is actually much easier, and we can
proceed mostly by analytical means.

Explicitly, the equations in d = 2 reduce to9

ϕ ϕ ϕ ϕ

π ϕ ϕ ϕ
ϕ

˜ + − ˜ ˜′

− ˜ − ˜′
− ˜ =

( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )
V V V

V V
V

2

2 1
2 0, (A.1)

for the Feynman gauge, and to

ϕ
π ϕ

ϕ
˜′
− ˜′

− ˜ =
( )

( )
( )

( )
V

V
V

2 1
2 0, (A.2)

for the Landau gauge. Both equations can be easily integrated, leading to algebraic equations
implicitly defining the solution ϕ˜ ( )V . As equation (A.1) is slightly more complicated to study
than equation (A.2), but at the end it leads to very similar results, we will present the explicit
analysis only for the Landau gauge. The fact that the two gauges lead to similar results in this ω-
independent case supports our hypothesis that in higher dimensions the strong gauge
dependence we found is an artifact of the restriction to ω = 0.

Equation (A.2) can be integrated to give the algebraic relation

π
ϕ ϕ˜ − + ˜ = −( )V y V y

1
4

log , (A.3)
0 0 0

whose solution is by definition expressed in terms of the Lambert function ,

ϕ
π
π

˜ =
πϕ+ ( )

( )V
e4

4
. (A.4)

C 4

The constant of integration π ϕ= − +( )C v y4 log0 0 0
parametrizes a one-parameter family of

global solutions, which hence are all acceptable fixed points. The asymptotic behavior of the
Lambert function is such that ϕ ϕ˜ ∼( )V for ϕ → + ∞, and ϕ˜ ∼ πϕ+( )V e C4 for ϕ → − ∞.

We can study the linear perturbations around such fixed points, by writing as usual

ϕ ϕ ϵ ϕ˜ = ˜ + λ−( ) ( ) ( )V V v e , (A.5)k
t

with ϕ˜ ( )V given by (A.4). Expanding to first order in ϵ, we find the eigenvalue equation

λ ϕ
π

π
ϕ− =

+
′

πϕ+( )( )
( ) ( ) ( )v

e
v2

1 4

2
, (A.6)

C 4
2
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whose solutions are

ϕ
π

π
ϕ=

+
= ˜′

πϕ

πϕ

λ

λ+

+

−
−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟




( )
( ) ( )( ) ( )v A

e

e
A V

4

4 1
, (A.7)

C

C

4

4

2
2

2
2

A being an arbitrary normalization constant, which we can fix to one. Given the exponential fall-
off at ϕ ∼ − ∞ of the fixed point solution ϕ˜ ( )V , we see that we must impose the constraint λ ⩽ 2
in order to avoid exponentially growing perturbations. Indeed the asymptotic behavior of the

eigenperturbations is ϕ λ πϕ∼ − − −( ) ( )v 1
2

2
4

1
forϕ → + ∞, and ϕ π∼

λ
πϕ

−
+λ−

( ) ( )v e4 ( )C
2

2 42
2

for ϕ → − ∞. Apart from the upper bound on λ, we do not have other restrictions, hence the
perturbations form a continuous spectrum. However, for λ < 2 all the perturbations are

redundant, corresponding to a field redefinition ϕ ϕ ϕ→ + ˜′
λ−( )( )V

2
. We are left with only one

essential perturbation, the constant one, ϕ =( )v A.

One special solution of the fixed point equation is ϕ˜ =( )V 0, whose linear perturbations
satisfy

λ ϕ
π

ϕ− = ′( ) ( ) ( )v v2
1

2
, (A.8)

with solutions ϕ = λ πϕ−( )v A e( )2 2 . In order to avoid exponentially growing solutions in this case
we have to restrict to λ = 2, that is, the only allowed perturbation is again a constant potential,
which is a relevant perturbation, and which actually is an exact solution of the full flow
equation.

We conclude by noting that all the solutions in d = 2 do not admit an f(R) interpretation, as
(80) together with the asymptotic behavior of the fixed point solutions imply that ν˜ ( )R 0, 1 . The

departure from f(R) is of course most evident in the ϕ˜ =( )V 0 case, where the equation of
motion obtained by varying ϕ is simply R = 0.
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