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Abstract

We note that the emerging features of lepton mixing can be reproduced if, with
inverted neutrino mass ordering, both the smallest neutrino mass and the ττ element
of the neutrino mass matrix vanish. Then, the atmospheric neutrino mixing angle is
less than maximal and the Dirac phase δ is close to π. We derive the correlations
among the mixing parameters and show that there is a large cancellation in the
effective mass responsible for neutrinoless ββ decay. Three simple seesaw models
leading to our scenario are provided.
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The increasingly precise determination of the lepton mixing parameters makes a the-
oretical interpretation of the data a necessity. In this Letter we propose a form of the
neutrino mass matrix that accommodates, and in fact correlates, two emerging struc-
tures [1] of lepton mixing: (i) the value of the atmospheric mixing angle θ23 is significantly
less than maximal; (ii) the CP -violating Dirac phase δ is close to π. Table 1 shows the
mixing parameters obtained from a global fit to the neutrino oscillation data.1

Parameter best-fit 1σ range 3σ range

∆m2
sol [10

−5 eV2] 7.54 7.32 – 7.80 6.99 – 8.18

∆m2
atm [10−3 eV2] 2.42 2.31 – 2.49 2.17 – 2.61

sin2 θ12 0.307 0.291 – 0.325 0.259 – 0.359

sin2 θ13 0.0244 0.0219 – 0.0267 0.0171 – 0.0315

sin2 θ23 0.392 0.370 – 0.431 0.335 – 0.663

δ 1.09π (0.83 – 1.47)π 0 – 2π

Table 1: Values of the lepton mixing parameters in the case of an inverted neutrino mass
ordering. This table was taken in abridged form from Ref. [1].

While features (i) and (ii) are not fully established yet, they seem interesting and worth
investigating. The proposal that we make is that, in the basis of a diagonal charged-lepton
mass matrix,2 the following features hold:

Mττ = m3 = 0 , (1)

where M is the neutrino mass matrix and m3 is the mass of the lightest neutrino when the
neutrino mass hierarchy is inverted.3 We shall show that this leads to the correlation

tan θ23 ≃ −2 sin θ13 cos δ tan 2θ12 , (2)

and therefore implies the desired features that cos δ is negative and large while θ23 is small,
hence significantly less than maximal.4 Moreover, our scheme makes predictions: (i) there
is an inverted neutrino mass hierarchy with vanishing smallest mass; (ii) the sole Majorana
phase has a value that leads to a large cancellation in the effective mass on which the
lifetime of neutrinoless ββ decay depends, hence that lifetime must lie at the upper end of
its allowed range.

The implications of single texture zeros, with and without vanishing smallest neutrino
mass, have often been studied [6, 7, 8, 9, 10, 11, 12]. We stress in this Letter how well

1Other fits [2, 3] give somewhat different results for θ23 and for δ.
2Actually, it is enough that the diagonalization of the charged-lepton mass matrix consists only of a

rotation in the e–µ plane.
3It could already be gathered from Ref. [4] that Eq. (1) is in agreement with the data.
4The so-called TM1 scenario, in which the first column of the PMNS matrix satisfies

(|Ue1| , |Uµ1| , |Uτ1|) =
(√

2

3
,
√

1

6
,
√

1

6

)

, displays [5] a similar correlation between θ23 and δ.
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the consequences of Eq. (1) fit the current data. We also point out that Eq. (1) can be
arranged in models; we illustrate this through three seesaw models furnished with discrete
symmetries.

We start with the phenomenology of Eq. (1). Defining—as in Ref. [1], from which we
have taken the values of the mixing parameters—∆m2

atm = |m2
3 − (m2

1 +m2
2)/ 2|, one has,

from m3 = 0, that

m2
1 = ∆m2

atm

(

1−
r

2

)

, (3a)

m2
2 = ∆m2

atm

(

1 +
r

2

)

, (3b)

where r ≡ ∆m2
sol/∆m2

atm ≈ 0.031 and ∆m2
sol = m2

2 −m2
1. Since the neutrino mass matrix,

in the charged-lepton mass basis, is M = U∗ diag (m1, m2, m3)U
†, where U is the PMNS

matrix, one has

Mττ = 0 ⇔ U2
τ1

√

1−
r

2
= −U2

τ2

√

1 +
r

2
. (4)

In the standard parametrization of U ,

Uτ1 = s12s23 − c12c23s13e
iδ , (5a)

Uτ2 =
(

−c12s23 − s12c23s13e
iδ
)

eiρ/2 , (5b)

where sj = sin θj and cj = cos θj for j = 12, 13, 23. To get rid of the Majorana phase ρ one
takes the moduli of both sides of Eq. (4):

(

s212s
2
23 + c212c

2
23s

2
13 − 2s12c12s23c23s13 cos δ

)

√

1−
r

2

=
(

c212s
2
23 + s212c

2
23s

2
13 + 2s12c12s23c23s13 cos δ

)

√

1 +
r

2
.

(6)

Defining

ε ≡

√

1− r/2−
√

1 + r/2
√

1− r/2 +
√

1 + r/2
= −

r

4
−

r3

64
− · · · , (7)

equation (6) may be rewritten as
(

s212 − c212
) (

s223 − c223s
2
13

)

− 4s12c12s23c23s13 cos δ + ε
(

s223 + c223s
2
13

)

= 0 . (8)

Since c212 − s212 ≈ 0.4 while ε ≈ 0.008, the third term in the left-hand side of Eq. (8) may
be neglected relative to the first one and one ends up with5

cos δ ≈ −
tan θ23

2 sin θ13 tan 2θ12
, (10)

5The exact version of Eq. (10) is

cos δ = −

(

c212 − s212
)

s223 − s213
(

c212 − s212
)

c223 + ε
(

s223 + c223s
2
13

)

4s12c12s23c23s13
, (9)

The first term of the numerator is of order 0.15 while the second and third terms are of order 0.006 and
0.004, respectively.
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and we have demonstrated Eq. (2). Equation (10) indicates that cos δ is negative. More-
over, since sin θ13 ≈ 0.16 is small, |cos δ| should be large. In order for it not to exceed 1,
θ23 must be as small as possible, hence in the first octant, while both θ13 and θ12 should
be largish. To be precise,

sin θ13 tan 2θ12 >
tan θ23|min(3σ)

2
= 0.355 (11)

must hold.
The arguments of the left- and right-hand sides of Eq. (4) should also coincide. Ne-

glecting the small terms containing s13 in Eqs. (5), this results in the condition

ρ ≈ π . (12)

A consequence of Eq. (12) occurs in the effective mass |Mee| ≡ 〈m〉 that governs the rate
of neutrinoless ββ decay [13]. For vanishing m3, and for ρ ≈ π, this is given by

〈m〉 ≈ c213
√

∆m2
atm

√

1− sin2 2θ12 sin2 ρ/2
ρ≈π
≈ c213

√

∆m2
atm cos 2θ12 . (13)

This gives 〈m〉 ≈ 0.018 eV for the best-fit values in Table 1. The effective mass therefore
lies at the lower end of the range 0.013 eV < 〈m〉 < 0.050 eV generally allowed for the
inverted hierarchy. Current limits on 〈m〉 are around 0.3 eV, while future experiments are
aiming at entering the regime of the inverted hierarchy by improving current lifetime limits
on neutrinoless ββ decay by an order of magnitude.

Regarding other neutrino mass observables, KATRIN [14, 15] will not be able to see a
signal if our scheme holds, whereas in cosmology [16] there could be detection in sophisti-
cated future surveys, since the sum of the light-neutrino masses is

m1 +m2 ≈ 2
√

∆m2
atm ≈ 0.1 eV . (14)

We display the phenomenology of our scenario in Fig. 1, which confirms our analytical
expressions. Again, we stress the interesting correlation between the CP -violating Dirac
phase δ and the atmospheric neutrino mixing angle θ23.

Next we turn to model realizations of the scenario under study. We shall present three
such models. We use the type-I seesaw mechanism with only two right-handed neutrinos
νR1,2; this immediately ensures the existence of one massless neutrino. In the first model
we need two Higgs doublets φ1,2 and a complex scalar gauge singlet S. Let there be
a Z4 symmetry under which the fields—including the left-handed lepton doublets DLα

(α = e, µ, τ)—transform as

DLe → −iDLe , DLµ → −iDLµ , eR → −eR , µR → −µR , (15a)

νR1 → −iνR1 , φ1 → iφ1 , S → −iS . (15b)
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The Yukawa couplings D̄Leφ1eR and D̄Lµφ1µR give mass to the electron and the muon
while D̄Lτφ2τR gives mass to the τ .6 The Yukawa couplings to the right-handed neutrinos
are

LYukawa = −y6 ν̄R1Cν̄T
R2 S −

(

y1D̄Le + y2D̄Lµ

)

νR1 φ̃2

−
(

y4D̄Le + y5D̄Lµ

)

νR2 φ̃1 − y3D̄Lτ νR2 φ̃2 +H.c., (16)

where y1–6 are coefficients, C is the charge-conjugation matrix in Dirac space, and φ̃k =
iσ2φ

∗
k for k = 1, 2. There is also a bare Majorana mass term

LMajorana = −
m

2
ν̄R2 Cν̄T

R2 +H.c. (17)

Therefore, the neutrino mass matrices, in the notation

Lνmass = −ν̄R MD νL −
1

2
ν̄R MR Cν̄T

R +H.c., (18)

are

MD =

(

y∗1v2 y∗2v2 0
y∗4v1 y∗5v1 y∗3v2

)

, MR =

(

0 y6s
y6s m

)

, (19)

where s = 〈0 |S| 0〉 and vk = 〈0 |φ0
k| 0〉. The effective light-neutrino mass matrix is

M = −MT
D M−1

R MD

=
−1

y26s
2





y∗1v2 y∗4v1
y∗2v2 y∗5v1
0 y∗3v2





(

−m y6s
y6s 0

)(

y∗1v2 y∗2v2 0
y∗4v1 y∗5v1 y∗3v2

)

, (20)

which evidently has Mττ = 0.

A simpler model, which dispenses with the singlet S, is the following. Let there be a
symmetry under which

DLe → σDLe DLµ → σDLµ , DLτ → σ−1DLτ , (21a)

eR → σ3eR , µR → σ3µR , τR → σ−1τR , (21b)

νR1 → σνR1 , νR2 → σ−1νR2 , φ1 → σ−2φ1 . (21c)

where |σ| = 1 and σ4 6= 1. Then the Yukawa couplings to the right-handed neutrinos are

LνYukawa = −
(

y1D̄Le + y2D̄Lµ

)

νR1 φ̃2

−
(

y4D̄Le + y5D̄Lµ

)

νR2 φ̃1 − y3D̄Lτ νR2 φ̃2 +H.c., (22)

6Notice that, without loss of generality, we may assume the charged-lepton mass matrix already to
be diagonal, since its diagonalization only amounts to a redefinition of (DLe, DLµ) and of (eR, µR) in
Eq. (15a).
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where y1–5 are coefficients. There is a bare Majorana mass term

LMajorana = −m ν̄R1 Cν̄T
R2 +H.c. (23)

Defining
a ≡ y∗1v2 , b ≡ y∗2v2 , c ≡ y∗3v2 , d ≡ y∗4v1 , f ≡ y∗5v1 , (24)

gives for the mass matrix

M = −
1

m





a d
b f
0 c





(

0 1
1 0

)(

a b 0
d f c

)

= −
1

m





2ad af + bd ac
af + bd 2bf bc

ac bc 0



 . (25)

This M contains five physical parameters,
∣

∣

∣

∣

ad

m

∣

∣

∣

∣

,

∣

∣

∣

∣

b

a

∣

∣

∣

∣

,

∣

∣

∣

∣

f

d

∣

∣

∣

∣

,
∣

∣

∣

c

d

∣

∣

∣
, arg (afb∗d∗) . (26)

These parameters can be computed from the matrix elements of M , and thus from the
neutrino masses and mixings. Notice for instance that

∣

∣

∣

∣

y1
y2

∣

∣

∣

∣

=

∣

∣

∣

∣

Meτ

Mµτ

∣

∣

∣

∣

,

∣

∣

∣

∣

y4
y5

∣

∣

∣

∣

=

∣

∣

∣

∣

MeeMµτ

MµµMeτ

∣

∣

∣

∣

. (27)

Another example of a model leading to Mττ = 0 uses S3 and Z3 discrete groups as
flavour symmetries. The multiplication rules of S3 can be found for instance in Ref. [11].
The particle content and group assignments are given in Table 2.

(DLe, DLµ) DLτ (νR1, νR2) eR µR τR (ξ1, ξ2) χ

S3 2 1′ 2 1 1 1′ 2 1

Z3 1 1 ω ω2 ω 1 ω ω

Table 2: Field content of our third model. The standard-model Higgs doublet φ, which
is invariant under both S3 and Z3, has been omitted. The fields ξ1,2 and χ are ‘familons’,
i.e. auxiliary scalar gauge singlets. We use ω ≡ exp (i2π/3).

At leading order in the inverse power of the cutoff scale Λ, the neutrino Yukawa cou-
plings and the Majorana masses are given by

Lν = −
g1
2

(

ν̄R1 Cν̄T
R1 ξ

∗
1 + ν̄R2 Cν̄T

R2 ξ
∗
2

)

− g2 ν̄R1 Cν̄T
R2 χ

∗ (28a)

−h1

(

D̄Le νR1 + D̄Lµ νR2

)

χ∗ φ̃

Λ
(28b)

−h2

(

D̄Le νR2 ξ
∗
1 + D̄Lµ νR1 ξ

∗
2

) φ̃

Λ
(28c)

−h3 D̄Lτ (νR1 ξ
∗
1 − νR2 ξ

∗
2)

φ̃

Λ
+ H.c., (28d)
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where g1,2 and h1,2,3 are dimensionless constants. After ξ1,2 and χ obtain vacuum expecta-
tion values according to the alignment [17]

(

ξ1
ξ2

)

→

(

〈ξ1〉
0

)

, χ → 〈χ〉, (29)

and after electroweak symmetry breaking with v = 〈φ̃〉, the mass matrices at low energy
take the forms

MD =





a b
0 a
c 0



 , MR =

(

MA MB

MB 0

)

, (30)

where a = h1〈χ〉
∗v/Λ, b = h2〈ξ1〉

∗v/Λ, c = h3〈ξ1〉
∗v/Λ, MA = g1〈ξ1〉

∗ and MB = g2〈χ〉
∗.

Performing the seesaw diagonalization, one finds the effective Majorana mass matrix

M =
1

MB





2ab a2 bc
a2 0 ac
bc ac 0



−
MA

M2
B





b2 ab 0
ab a2 0
0 0 0



 . (31)

The charged-lepton mass sector is written through a combination of higher-dimensional
operators and a renormalizable operator. At leading order in 1/Λ, it is given by

Ll = −hτ D̄Lτ τR φ (32a)

−he

(

D̄Le ξ1 + D̄Lµ ξ2
)

eR
φ

Λ
(32b)

−hµ

(

D̄Le ξ
∗
2 + D̄Lµ ξ

∗
1

)

µR
φ

Λ
+ H.c., (32c)

where he,µ,τ are dimensionless constants. In the vacuum configuration of Eq. (29), the
charged-lepton mass matrix is diagonal:

Ml = diag

(

he

Λ
〈ξ1〉,

hµ

Λ
〈ξ1〉

∗, hτ

)

v∗. (33)

The hierarchy between me,µ and mτ is naturally explained by the suppression by the cutoff
scale.

A dark matter candidate is easily accommodated in this model. For example, we can
replace the S3 charges of DLτ and τR with 1 and introduce a third right-handed neutrino,
νR3, which is 1′ of S3 and ω of Z3. Then, νR3 has no Yukawa couplings, so that it is stable.
In the early Universe, νR3 can communicate with the thermal plasma via the s-channel
exchange of the scalar fields, since it has a νR3νR3χ vertex and the real part of χ mixes
with the usual Higgs field. In this setup, it is known [18] that the observed relic density is
easily obtained without contradicting the Higgs properties observed at LHC and the direct
detection bounds.
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In summary, a simple texture-zero scenario can accommodate the values of the CP
phase δ around π and of the atmospheric mixing angles θ23 sizably less than π/4. The
framework makes predictions in the form of an inverted hierarchy with a massless neutrino
and a strong cancellation in neutrinoless ββ decay. Simple models are possible to realize
the scenario.
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Figure 1: Scatter plots displaying the correlations among some neutrino mass and mix-
ing observables following from Eq. (1). The horizontal and vertical full lines display the
1σ bounds of Ref. [1] on the corresponding observables; the dashed lines display the 3σ
bounds. The blue (dark) points were found by allowing all the observables to lie within
their corresponding 1σ ranges of Table 1; the yellow (light) points pertain to the 3σ ranges.
〈m〉min and 〈m〉max are the minimal and maximal values of the effective mass in the inverted
hierarchy with vanishing neutrino mass.
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