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Abstract. Dark matter N-body simulations suggest that the velocity distribution of dark
matter is anisotropic. In this work we employ a mass model for the Milky Way whose
parameters are determined from a fit to kinematical data. Then we adopt an ansatz for the
dark matter phase space distribution which allows to construct self-consistent halo models
which feature a degree of anisotropy as a function of the radius such as suggested by the
simulations. The resulting velocity distributions are then used for an analysis of current data
from dark matter direct detection experiments. We find that velocity distributions which are
radially biased at large galactocentric distances (up to the virial radius) lead to an increased
high velocity tail of the local dark matter distribution. This affects the interpretation of
data from direct detection experiments, especially for dark matter masses around 10 GeV,
since in this region the high velocity tail is sampled. We find that the allowed regions in the
dark matter mass–cross section plane as indicated by possible hints for a dark matter signal
reported by several experiments as well as conflicting exclusion limits from other experiments
shift in a similar way when the halo model is varied. Hence, it is not possible to improve the
consistency of the data by referring to anisotropic halo models of the type considered in this
work.
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1 Introduction

Dark matter direct detection experiments search for nuclear recoil events induced by the
scattering of Weakly Interacting Massiv Particles (WIMPs) providing the dark matter halo
of the Milky Way with nuclei in underground detectors. In order to predict the signal in such
experiments for given dark matter particle physics properties it is necessary to specify also its
local density and velocity distribution. Very little is known about the details of the local dark
matter phase space density and this lack of knowledge introduces significant uncertainty in
the interpretation of data from dark matter direct detection experiments [1–14]. To overcome
these problems halo independent methods have been developed and applied to data [15–23].

In this work we follow a different approach and use information from kinematical data
on the Milky Way to constrain the properties of the dark matter phase space distribution,
based on reasonable assumptions motivated by the results of N-body simulations. Following
Ref. [24] a parameterization for the mass distribution of the dark matter as well as baryonic
components of the Milky Way is adopted and its parameters are determined by a fit to kine-
matical data. In addition to the ansatz of a spherically symmetric dark matter distribution,
in Ref. [25] it was further assumed that the dark matter velocity distribution is isotropic. In
that case the local velocity distribution function can be uniquely determined by using the
Eddington equation [26], see also [27, 28] for similar approaches. In this work we keep the
assumption of spherical symmetry but we consider anisotropic velocity distributions. We
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allow for different velocity dispersions in the radial and tangential directions, convention-
ally described by the anisotropy parameter β. We construct a set of self-consistent halo
models with a functional form of β(r) motivated by the results from N-body simulations,
e.g. [29–34]. Using inversion procedures generalized from the Eddington equation we deter-
mine the corresponding phase space density. Those halo models are then used for an analysis
of current data from direct detection experiments in order to investigate the impact of the
astrophysical uncertainties (including anisotropy) on the interpretation of direct detection
data. In particular, we discuss the status of the controversal hints for WIMPs with masses in
the 10 GeV range from the DAMA [35], CoGeNT [36], CRESST-II [37], and CDMS-Si [38]
experiments, versus the constraints from XENON100 [39], XENON10 [40], KIMS [41], and
CDMS-Ge [42, 43] in the light of our anisotropic self-consistent halo models.

The outline of the rest of the paper is as follows. In section 2 we discuss how to build
a self-consistent dark matter phase space distribution function which leads to anisotropy
parameter profiles β(r) with a shape motivated from N-body simulations, departing from a
given dark matter density profile and gravitational potential. In section 3 we describe our
mass model for the Milky Way as well as the kinematical data we fit in order to constrain
the parameters of our model. Section 4 contains details of the Bayesian analysis of the
galactical data, results for the Milky Way mass model parameters are given, and we describe
how we extract the velocity distribution from the fit. In section 5 we introduce dark matter
direct detection and describe the data we use from the various experiments for our analysis.
In section 6 our results are presented, discussing the implications of anisotropy, as well
as the variation of the parameters of the galactic model. Furthermore, we comment on the
importance of including baryonic components in the galactic model. We conclude in section 7.
Details on the calculation of the anisotropy parameter β are given in the appendix.

2 Self-consistent anisotropic dark matter distribution functions

The distribution function f of a collisionless spherically symmetric system in a steady-state
can be expressed as a function of two integrals of motion only [26]: the relative energy per
unit of mass E = Φ0−Φ− (1/2)v2, where Φ is the total gravitational potential acting on the
system and Φ0 its value at the boundary, and the modulus of the total angular momentum
L = xv sin η, where η is the angle between the position vector x and the velocity v of the
constituents of the system (e.g. stars, dark matter particles, etc. . . ). For these systems the
collisionless Boltzmann equation can be drastically simplified, taking the very compact form

∂f

∂E
dE
dt

+
∂f

∂L

dL

dt
= 0 . (2.1)

Clearly, if f1(E , L) and f2(E , L) are two independent solutions of Eq. (2.1), any linear com-
bination of these distribution functions will obey the same equation. Isotropic distribution
functions can be further simplified and expressed as a function of the relative energy only, i.e.
f(E , L) ≡ f(E). A distribution function is self-consistent if it can be univocally related to the
underlying mass profile of the system and the total gravitational potential generated by the
system itself and eventually other components1. To construct a self-consistent distribution

1This definition of self-consistent distribution function generalizes the one which would apply to a self-
gravitating system, where the mass profile is sufficient to determine both the total gravitational potential and
the distribution function.
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function one has to solve for f the integral equation

ρ(x) =

∫
d3v f(E , L) (2.2)

which relates the relative potential Ψ = Φ0 − Φ (entering the definition of E) and the mass
profile ρ to the distribution function f .

The aim of this section is to introduce simple self-consistent anisotropic dark matter
distribution functions which exhibit the same degree of anisotropy as observed in N-body sim-
ulations. The anisotropy of a distribution function is quantified by the anisotropy parameter
which is defined as

β(r) = 1− σ2
t (r; f)

2σ2
r (r; f)

, (2.3)

where σt(r; f) and σr(r; f) are respectively the tangential and radial velocity dispersions
obtained from the distribution function f . (If not strictly necessary we will omit in the
following the dependence of β(r) on f .) When σ2

t = 2σ2
r the distribution function is isotropic

and β(r) = 0. Radial anisotropy corresponds to the configuration σt � σr which implies
β(r) ≈ 1, while in the opposite limit, namely σt � σr, β(r) → −∞ and the distribution is
said to be tangentially anisotropic. In general β(r) is a function of the galactocentric distance
r. In N-body simulations typically it grows from approximately zero in the center of the halo
up to a value of about 0.2 – 0.4 for r larger than the Sun’s position and then it remains
constant or mildly decreases approaching the edge of the Galaxy, see e.g. [30–32].2 Below we
present several possibilities to construct self-consistent distribution functions providing such
a behaviour for β(r).

2.1 Constant-β plus Osipkov-Merritt distribution functions

A self-consistent distribution function with constant anisotropy parameter can be constructed
from the ansatz

fγ(E , L) = G(E)L2γ , (2.4)

where G(E) is a generic function of the relative energy and γ a real constant. As shown in the
appendix, this distribution function has by construction β(r) = −γ. Starting from Eq. (2.2)
and assuming a distribution function of the form (2.4), one can express the function G(E) in
terms of Ψ and ρ. One finds3 [44]

G(E) =
sin((n− 1/2− γ)π)

πλ(γ)
(
γ + 1

2

)
!

d

dE

∫ E
0

dnρ1(Ψ)

dΨn

dΨ

(E −Ψ)γ+3/2−n , (2.5)

where

ρ1 ≡
ρ

r2γ
; λ(γ) = 2γ+3/2π3/2 Γ(γ + 1)

Γ(γ + 3/2)
(2.6)

and the integer n is defined by n = [γ + 1/2] + 1, with [γ + 1/2] the largest integer less than
or equal to γ + 1/2. Finally(

γ +
1

2

)
! ≡

{
(γ + 1

2)(γ − 1
2) . . . (γ + 3

2 − n) for γ > −1/2
1 for − 1 < γ ≤ −1/2 .

(2.7)

2In our work we keep the assumption of a spherically symmetric halo, such that β is a function of r only.
The anisotropy in triaxial halos has been investigated for instance in Refs. [33, 34].

3The convergence of this integral requires γ > −1.
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Though this distribution function allows to introduce some degree of anisotropy in the de-
scription of the local population of Milky Way dark matter particles, a constant value for β(r)
seems a too crude approximation, since N-body simulations generically predict an anisotropy
parameter growing with r, at least up to a certain value of the galactocentric distance.

A popular example of anisotropic distribution function associated with a growing β(r)
is the Osipkov-Merritt distribution function [45, 46]. It is constructed from the ansatz

f(E , L) ≡ fOM(Q) ; Q ≡ E − L2

2r2
a

(2.8)

where ra is a reference radius. For r � ra, Q → E and the Osipkov-Merritt distribution
function is isotropic. At galactocentric distances larger than ra this distribution exhibits some
degree of radial anisotropy approaching the regime β(r) = 1 for sufficiently large values of r.
By construction the Osipkov-Merritt distribution function is associated with the anisotropy
parameter (see appendix)

β(r) =
r2

r2 + r2
a

. (2.9)

Starting from Eq. (2.2) and assuming a distribution function of the form (2.8) one can express
f(Q) as a function of Ψ and ρ. One finds [44]

fOM(Q) =
1√
8π2

d

dQ

∫ Q

0

dρ2(Ψ)

dΨ

dΨ√
(Q−Ψ)

(2.10)

where

ρ2 =

(
1 +

r2

r2
a

)
ρ . (2.11)

The major limitation of the Osipkov-Merritt distribution function is that it leads to an
anisotropy parameter growing with a rate much larger than what observed in the N-body
simulations.

In this paper we propose as a benchmark for galactic dark matter searches a simple
anisotropic distribution function constructed as a linear combination of a distribution func-
tion associated with a constant β(r) and a distribution function of the Osipkov-Merritt type:

f(E , L) = wfOM(Q) + (1− w)fγ(E , L), (2.12)

where w is a real constant weighing the relative contribution of the two terms in the linear
combination. The advantage of a distribution function of the type (2.12) is that it can
faithfully reproduce the behavior of β(r) observed in N-body simulations without requiring
complicated inversion procedures to relate the distribution function to Ψ and ρ. Indeed,
the first term in Eq. (2.12) can be expressed as in Eq. (2.10) while the second term can be
written in the integral form of Eq. (2.5). Both terms can be easily evaluated by means of a
straightforward numerical integration. The correct overall normalization for f is guaranteed
by the weights w and (1−w) introduced in the linear combination. By properly choosing the
three free parameter (w, ra, γ) entering the definition of the distribution function proposed
here one is able to generate from Eq. (2.12) different functions β(r), see Eq. (2.13) below. In
the left panel of Fig. 1 we show three curves β(r) obtained from three different choices of the
parameters (w, ra, γ). Comparing this figure to Fig. 3 of Ref. [31], one can appreciate the
effectiveness of the benchmark distribution function proposed here in reproducing the results
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Figure 1. Left panel: anisotropy parameter β(r) as a function of the galactocentric distance r.
Distinct curves correspond to different choices of the parameters (w, ra, γ). The blue dashed curve
corresponds to w = 0.2, ra = 20 kpc, γ = −0.17, the red dotted curve to w = 0.05, ra = 20 kpc,
γ = −0.05, and the black dot-dashed curve to w = 0.15, ra = 20 kpc, γ = −0.10. Right panel:
Contributions to β(r) of the first and second term in Eq. (2.13). For comparison we also show the
Osipkov-Merrit case (with ra = 20 kpc) and the the model proposed in this work and characterized
by w = 0.15, ra = 20 kpc and γ = −0.10.

of the N-body simulations. The two distributions characterized respectively by w = 0.2, ra =
20 kpc and γ = −0.17 (blue dashed curve), and w = 0.05, ra = 20 kpc and γ = −0.05 (red
dotted curve) bracket in fact the uncertainties in the predictions of the N-body simulations,
while the model w = 0.15, ra = 20 kpc and γ = −0.10 (black dot-dashed curve) provides
a good approximation to the best fit found in Ref. [31]. From Eq. (2.12) one obtains the
following expression for the anisotropy parameter

β(r) =

[
1− wσt(r; fOM)

σr(r; f)

]
term 1

−
[
(1− w)

σt(r; fγ)

σr(r; f)

]
term 2

(2.13)

which involves two terms, one with fOM in the numerator and the other proportional to
an integral of fγ . Explicit expressions for σt(r; fOM) and σt(r; fγ) can be obtained using
the expressions given in the appendix. In the right panel of Fig. 1 we show the relative
contribution to β of the first and second term in Eq. (2.13). For comparison we also show the
Osipkov-Merrit anisotropy parameter for ra = 20 kpc. It is the cancellation between these
two terms which produces an anisotropy parameter in agreement with the outcome of the
N-body simulations.

2.2 Alternative choices for constructing anisotropic halo models

While the halo model of the previous subsection based on Eq. (2.12) allows to reproduce
a β(r) behaviour similar to N-body simulations, the ansatz in Eq. (2.12) is certainly not
unique. Therefore, we present in this subsection alternative possibilities to construct halo
models with similar β(r).
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h(E , L) rκ/rvir a b

case 1 hB 0.02 0.5 0.4
case 2 hA 0.015 0.5 0.37
case 3 hA 0.02 0.5 0.5
case 4 hB 0.07 0.5 0.95

Table 1. Parameters for the 4 representative choices for h(E , L). The expressions for hA and hB are
given in Eqs. (2.18) and (2.19), respectively.

Let us write the dark matter distribution function as

f(E , L) = k(E)h(E , L) . (2.14)

For h(E , L) we make an explicit ansatz (see below) in order to obtain anisotropy parameters
β(r) as motivated by N-body simulations, while k(E) is determined in order to fulfill the
relation

ρ(r) =

∫
d3vf(E , L) (2.15)

for the given ρ(r) and Ψ(r) obtained from the fit to the Milky Way data described in the
next section. We invert the function Ψ(r) and consider Ψ as the independent variable instead
of r. After changing the variables of integration one obtains

ρ(Ψ) =

∫ Ψ

0
dE k(E)K(E ,Ψ) (2.16)

where

K(E ,Ψ) = 4π
√

2(Ψ− E)

∫ 1

0
duh(E , L) (2.17)

with L =
√

2(Ψ− E)(1− u2)r(Ψ). For a given h(E , L) the integral over u is performed
numerically. Eq. (2.16) is a Voltera integral equation of the second kind which we solve
numerically in order to determine k(E). For a given h(E , L) and having obtained k(E) from
this procedure, we can calculate the anisotropy parameter by numerically evaluating the
integrals over the phase space density for the calculations of σ2

t and σ2
r (see appendix for

explicit expressions).
Let us now specify h(E , L). We consider here the two choices

hA(E , L) = (1 + κ)−b/a , (2.18)

hB(E , L) =
(

1 + κ− κe−10/κ
)−b/a

, (2.19)

where following [47, 48] we assume that E and L enter only through the particular dimen-
sionless combination

κ =

(
L2

2r2
κE

)a
(2.20)

with rκ being a constant characteristic radius. In Ref. [47, 48] the case hA with a = 1 is
considered, which is isotropic at small radii r � rκ and assumes an anisotropy parameter
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Figure 2. Anisotropy parameter β(r) as a function of the galactocentric distance r for the four
choices of h(E , L) as specified in Tab. 1. The dashed curve corresponds to Eq. (5) of [31] (shown for
comparison), and the vertical line indicates the location of the Sun at 8 kpc.

β = b for r � rκ. Here we consider 4 cases, with parameters as given in Tab. 1. Adopting a
mass profile ρ(r) and potential Ψ(r) from a fit to Milky Way data as described below we can
calculate for each ansatz the corresponding anisotropy parameter β(r) as shown in Fig. 2.
The four choices for h(E , L) are motivated by the results of N-body simulations. The four
cases cover the spread of β(r) shapes as reported for instance in Ref. [31] (see their Fig. 3,
right panel).

To explicitly evaluate the distribution function and the associated anisotropy parameter
β(r) one needs to specify a mass model for the Milky Way from which to calculate the
underlying mass profile ρ and the relative gravitational potential Ψ. The mass model adopted
in this work will be introduced in the next section. Let us mention that when one tries to
reconstruct the distribution function from a given mass density and gravitational potental by
using inversion procedures as discussed above it is not guaranteed that the resulting function
f(E , L) is non-negative everywhere, as required as a physical consistency condition. We
have checked that the distribution functions we obtain always satisfy the condition of being
non-negative.

3 A mass model for the Milky Way and kinematical data

3.1 Mass model for the Milky Way

The mass model for the Milky Way adopted in the present analysis to evaluate the anisotropic
dark matter distribution function introduced in the previous section has been extensively
investigated in Refs. [24, 25]. For completeness, we briefly summarize it in what follows,
explicitly mentioning which parameters will be kept fixed and which will be instead considered
as free parameters studying in the next section the impact of astrophysical uncertainties on
the family of anisotropic distribution functions proposed here.
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The model consists of two luminous mass components, namely the stellar disk and
the galactic bulge/bar component, and of a dark matter halo. Regarding the stellar disk,
we assume a mass density profile which in cylindrical coordinates (R, z) with origin in the
galactic center is given by [49]

ρd(R, z) =
Σd

2zd
e
− R

Rd sech2

(
z

zd

)
with R < Rdm , (3.1)

where Σd is the central disk surface density, Rd and zd are length scales in the radial
and vertical directions, while Rdm is the truncation radius of the disk. Rdm is assumed
to scale with the local galactocentric distance R0 according to the prescription Rdm =
12 [1 + 0.07(R0 − 8 kpc)] kpc and the vertical scale zd is fixed to the best fit value sug-
gested in Ref. [49], zd = 0.340 kpc. The bulge/bar region is instead characterized by the
mass density profile [50]:

ρbb(x, y, z) = ρ̄bb

[
s−1.85
a exp(−sa) + exp

(
−
s2
b

2

)]
, (3.2)

where

s2
a =

q2
b (x

2 + y2) + z2

z2
b

, (3.3)

and

s4
b =

[(
x

xb

)2

+

(
y

yb

)2
]2

+

(
z

zb

)4

. (3.4)

We implement in this analysis an axisymmetrized version of Eq. (3.2), and assume xb ' yb =
0.9 kpc · (8 kpc/R0), zb = 0.4 kpc · (8 kpc/R0) and qb = 0.6. See also [24] concerning the
choice of these parameters. Rather than using the two mass normalization scales Σd and
ρ̄bb as free parameters, we re-parameterize these in terms of two dimensionless quantities,
namely, the fraction of collapsed baryons fb and the ratio between the bulge/bar and disk
masses Γ:

fb ≡
ΩDM + Ωb

Ωb

Mbb +Md +MHI
+MH2

Mvir
(3.5)

Γ ≡ Mbb

Md
. (3.6)

In Eq. (3.5) we also included the sub-leading contributions to the total virial mass Mvir

(defined in the following) associated with the atomic (HI) and the molecular (H2) galactic
gas layers, with profiles as given in [51]. In summary, the free parameters describing the
luminous components are R0, Rd, fb and Γ.

Concerning the dark matter halo component we consider an Einasto profile [52, 53],
which is favored by the latest N-body simulations and is given by

ρ(r) = ρ′fE

(
r

r−2

)
, (3.7)

with

fE(x) = exp

[
− 2

α
(xα − 1)

]
. (3.8)
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The reference normalization ρ′ and the scale radius r−2 in Eq. (3.7) are often rewritten as
a function of the virial mass Mvir and of the concentration parameter cvir by inverting the
relations:

Mvir ≡
4π

3
∆virρ̄0R

3
vir =

ΩDM + Ωb

ΩDM
4π

∫ Rvir

0
dr r2ρ(r) (3.9)

cvir ≡ Rvir/r−2, (3.10)

where the virial overdensity ∆vir in the first equation is computed according to Ref. [54]
while ρ̄0 is the mean background density today. The presence in this equation of ΩDM and
Ωb, the dark matter and baryon energy densities in units of the critical density, reflects our
assumption that only a fraction equal to ΩDM/(ΩDM + Ωb) of the total virial mass consists
of dark matter. Their values have been set according to the mean values from the fit of the
7-year WMAP data [55] (employing here the latest Planck data [56] would negligibly alter
the present analysis). In the second equation, instead, r−2 is the radius at which the effective
logarithmic slope of the dark matter profile is equal to −2. Finally, we assume that the
baryons which do not collapse in the disk are distributed according to the same profile as the
dark matter component. The free parameters describing the dark matter halo are therefore
Mvir, cvir and α. The mass model used to compute the dark matter distribution function also
includes an additional parameter, namely the anisotropy parameter β? of a population of halo
stars used in the analysis to constrain the model parameters. This additional parameter has
been introduced in Ref. [24] to include in the parameter estimation the velocity dispersion
measurements of Ref. [57] (regarding β? see also section 3.2).

Given a mass model for the Milky Way one can calculate the galactic gravitational
potential solving the Poisson equation for Φ (or equivalently for the relative potential Ψ). A
rigorous procedure would require the solution of partial differential equations in cylindrical
coordinates, a method which would be numerically challenging to apply to the extensive
scan of our parameter space performed in the next section. Moreover, this approach would
actually provide us with more information than those required in Eq. (2.12), which assumes
a spherically symmetric Φ. We therefore employ here the same approximation introduced
in Refs. [24, 25], where the gravitational potential in the solar neighborhood is estimated as
follows: first calculating the total mass profile M(r̄) from the mass model defined in this
section, i.e. the total mass M(r̄) within a certain galactocentric distance r̄; then using this
quantity in the Poisson equation for Φ in the spherically symmetric limit, whose solution can
be written as

Φ(r) = GN

[∫ Rvir

r
dr̄
M(r̄)

r̄2
− M(Rvir)

Rvir

]
, (3.11)

where GN is the Newton constant. With this last step, one has all the ingredients to evaluate
the asymmetric dark matter distribution function (2.12). In summary, besides the three
parameters controlling the degree of anisotropy of f , namely w, γ and ra, our benchmark
distribution function depends on the following 8 galactic model parameters: R0, Rd, fb, Γ
for the luminous components, Mvir, cvir, α for the dark matter halo, and β? for halo stars.

3.2 Dynamical constraints

The distribution function (2.12) depends on 11 parameters, three fixed requiring a good
agreement with the N-body simulations, namely w, γ and ra, and 8 galactic model parameters
subject to a variety of complementary constraints derived from different observations of the
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Milky Way properties. These constraints will be used in the next section to determine the
uncertainties within which the galactic model parameters are known. This information will
allow us to determine the impact of astrophysical uncertainties on the benchmark distribution
function studied in this paper.

There are different classes of constraints which are relevant for the present study and
will be therefore implemented in the Bayesian analysis described in the next section. A first
class of constraints concerns the direct measurement of the kinematical properties of different
tracers of the Milky Way gravitational potential. Terminal velocities, namely the extreme
velocities observed monitoring the motion of HI and CO gas clouds along different line of
sights, have been often used in the literature to constrain the Milky Way rotation curve
at galactocentric distances smaller than the Sun’s position. Here we adopt the compilation
of terminal velocities published in Ref. [58] consisting in 111 terminal velocities. We then
compare these observations with the theoretical prediction of our mass model for the Milky
Way, namely

vt(r) = vc(r)− vc(R0)
r

R0
, (3.12)

where vc(r) is the circular velocity, i.e. the rotation curve, which, assuming spherical sym-
metry, is given by v2

c (r) = rdΦ/dr. Another population of tracers which has recently played
a major role in the context of galactic mass modeling is the population of about 2400 Blue-
Horizontal-Branch halo stars selected from the SDSS DR-6 for which accurate kinematical
properties have been published in Ref. [57]. Here we compare the observed radial velocity
dispersion σr(r) of this tracer population (we employ the 9 data points of Fig. 10 in Ref. [57])
with the expectations of our galactic model, which under the assumption of spherical symme-
try both for the mass profile of the tracer population and for the total gravitational potential
predicts

σ2
r (r) =

1

r2β? ρ?(r)

∫ ∞
r

dr̃ r̃2β?ρ?(r̃)
dΦ

dr̃
, (3.13)

where ρ? ∝ r−3.5 is the halo star density and β? the constant anisotropy parameter of this
stellar system, treated as explained above, as a free parameter in the analysis performed in
the next section.

A second class of constraints regards the observation of “integrated properties” of the
Milky Way obtained integrating along the line of sight, or over certain portions of the three-
dimensional space, the mass profiles of the different galactic components. The total mass of
the Milky Way within 50 kpc and 150 kpc, measured observing the motion of the Milky Way
satellites or the radial velocity of distant halo stars and obtained from our galactic model
integrating the total mass density within the corresponding volumes, will be used in this
work to constrain the parameters affecting the total mass of the Milky Way. We will make
use here of the results

M(< 50 kpc) = (5.4± 0.25)× 1011M� (3.14)

from Ref. [59] and
M(< 150 kpc) = (7.5± 2.5)× 1011M� (3.15)

from Ref. [60]. The latter constraint is in agreement with recent measurements of the total
mass of the Milky Way which find a value for the mass of our Galaxy approximately a factor
of 2 lower than previously expected (see Ref. [60] and references therein). Another powerful
constraint belonging to this class is the total mean surface density within 1.1 kpc, Σ|z|<1.1kpc,
which has been reexamined in various analyses in recent years always producing results in
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agreement with the original work of Kuijken & Gilmore who studying the vertical motion of
a population of K halo stars found [61]

Σ|z|<1.1kpc = (71± 6)M� pc−2 . (3.16)

We will implement this value in our analysis together with the constraint on the local surface
density corresponding to the visible components, Σ?, which has been instead estimated with
star counts [62]

Σ? = (48± 8)M� pc−2 . (3.17)

In this context, the observation of microlensing events along certain specific directions point-
ing towards the bulge region has the capability of imposing interesting constraints on the
normalization of the mass profile of the luminous galactic components [63]. The probability
of observing one of these events is related to the so-called optical depth of the region of
interest. Given a mass model for the Milky Way, this can be calculated as follows [63]

τ(`, b) =
4πG

Nc2

∫ r∞

0
dDs

dns
dDs

∫ Ds

0
dDlρl(`, b,Dl)Dl

(
1− Dl

Ds

)
(3.18)

where Ds is the distance between the observer and the sources involved in these microlensing
events, namely the material forming the bulge/bar region, while Dl is the distance between
the observer and the corresponding “lenses”, which in this study are made of the material
forming both the bulge/bar region and the stellar disk, whose density is given by ρl = ρbb+ρd.
dns/dDs ∝ ρs(Ds)D

2
s is the distance distribution of the detectable sources, ρs = ρbb and

N =
∫ r∞

0 dDs dns/dDs with r∞ = 20 kpc. We adopt here the 2005 measurement of τ made
by the MACHO collaboration [64]:

τ(¯̀, b̄) = 2.17+0.47
−0.38 × 10−6 with (¯̀, b̄) = (1.50◦,−2.68◦) . (3.19)

Finally, we have employed in the present analysis constraints obtained from the mea-
surement of local properties of the Milky Way rotation curve, conveniently encoded in two
linear combinations of Oort’s constants, namely A+B and A−B, and the value of the local
circular velocity vc(R0). The sum of the Oort’s constants A and B is proportional to the
local slope of the galactic rotation curve, i.e.

A+B = −
(
∂vc
∂R

)
R=R0

, (3.20)

while the difference of these constants gives

A−B =
vc(R0)

R0
. (3.21)

There are still great uncertainties on the combination of Oort’s constants A + B. We will
implement in our analysis a value derived from Ref. [65]. This has been found studying the
kinematics of a population of old M type stars of the thin disk selected from the SDSS data
and it is compatible with zero within one standard deviation:

A+B = (0.18± 0.47) km s−1 kpc−1 . (3.22)

Different techniques have been instead used in the literature to estimate A − B. These
range from the study of the motion of various populations of stars in the solar neighborhood
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to the observation of the apparent motion of the radio source Sgr A∗, which is believed
to trace the position of the massive black hole at the center of the Milky Way. In this
context it has been recently claimed [66] that this latter measurement, which found [67]
A−B = (29.45±0.15) km s−1 kpc−1, should be corrected taking in to account that the offset
between the so-called local standard of rest (LSR), namely the velocity of a circular orbit
passing at the Sun’s position, and the actual local rotational velocity of the Sun is larger than
previously expected. This correction led to an estimate of A− B in perfect agreement with
the accurate determination of the same quantity made by the Hipparcos satellite, which will
be therefore implemented in the next section as a constraint on A− B. This determination
has a significantly lower central value and reads as follows [68]

A−B = (27.2± 0.9) km s−1 kpc−1 . (3.23)

We want to stress here that the combination of Oort’s constant A − B is very important
in the determination of local quantities relevant for dark matter direct detection. It is for
instance positively correlated with the local dark matter density ρloc (see Fig. 4), i.e. the
larger is A − B the higher is ρloc. Indeed, the mean value found here for the local dark
matter density having assumed the constraint (3.23) (as well as the low value of vc(R0) in
Eq. (3.24), see below) is close to 0.3 GeV cm−3, in agreement with independent analyses of ρloc

based on similar datasets [69]. This value is lower than what we would have found assuming
instead A − B = (29.45 ± 0.15) km s−1 kpc−1 (and vc(R0) ∼ 245 km s−1 [24]). Indeed, as
independently shown by various groups the latter value for A − B (together with a larger
vc(R0)) would have led to ρloc ∼ 0.4 GeV cm−3. Though the focus of this work is on the
impact of anisotropic distribution functions on the direct detection of WIMPs and not on
the determination of the local dark matter density (see for instance Refs. [24, 63, 69–73]
for a discussion on this subject), we underline here that it will be crucial in the future to
accurately determine A−B, convincingly establishing whether or not the offset between the
LSR and the actual local Sun’s rotational velocity is as large as quoted in Ref. [66].

Having assumed in the present analysis the constraint (3.23), we will consistently im-
plement in our study the determination of the local circular velocity of the Sun found in
Ref. [66], namely

vc(R0) = (218± 6) km s−1 . (3.24)

This value of vc(R0) was found analyzing 3365 stars selected from the first year of data of
the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and it is lower
than what was found in a previous work [74] studying the motion of masers associated with
star forming regions located at galactocentric distances larger than the Sun’s position. Again
following Ref. [66], we do not include in the present analysis the estimate of vc(R0) made
using these masers because a refined study of this tracer population [75] found that these
objects can significantly constrain the rotation curve only when a large number of prior
assumptions are made in the data analysis. Moreover, the higher value of vc(R0) found with
this approach might reflect a bias in the data related to the fact that this tracer population
is lagging with respect to circular motion by about 15 km s−1, an offset which, according
to Ref. [75], is quite large for a young and relatively cold tracer population. As for the
combination of Oort’s constants A−B, it will be very important to clarify in the near future
which is the correct value of the local circular velocity.
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4 Bayesian analysis

Having introduced our ansatz for the anisotropic velocity distribution function, the galactic
model on which it depends, and the constraints acting on the associated 8-dimensional pa-
rameter space, we can now focus on the Bayesian analysis of this distribution function. The
aim is to determine the regions in the 8-dimensional parameter space favored by the data and
then to extract from this information the anisotropic distribution function observationally
favored within this setup and the corresponding uncertainties. In a Bayesian framework this
corresponds to determining the posterior probability density function (PDF) characterizing
our 8-dimensional parameter space. This PDF will then allow us to determine the PDF
associated with generic functions of the galactic model parameters, including the benchmark
distribution function proposed in this work.

According to Bayes’ theorem the posterior PDF of certain parameters – conveniently
grouped in an array p – is proportional to the product of the Likelihood function L(p,d)
and the prior probability density π(p):

P(p,d) =
L(d,p)π(p)

E(d)
(4.1)

where d is the array of datasets used to constrain the parameter space. The Bayesian evidence
E(d), being independent from p, plays the role of a normalization constant when performing
parameter inference. The marginal poster PDF of a generic function g of the parameters
p, e.g. in our case the dark matter distribution function (evaluated at a certain velocity), is
given by the expression

p(g|d) =

∫
dp δ(g(p)− g)P(p|d) , (4.2)

which follows from the definition of conditional probability.
The form of the likelihood function implemented in the present analysis is a multivariate

Gaussian distribution. Each observable contributes to the Likelihood through a Gaussian fac-
tor characterized by the means and standard deviations reported in section 3.2. Concerning
the choice of the prior probability density π(p), we consider flat priors for all the parameters
of our galactic model. A test of the dependence of the results from the priors in the context of
a similar analysis has been performed in Ref. [24], where it is shown that when constraining
the underlying mass model the Likelihood is more informative than the assumed prior PDF.

Regarding the galactic model parameters, we present results in terms of 1- and 2-
dimensional marginal posterior PDFs, which are constructed integrating the full posterior
PDF over the six or seven remaining dimensions. In Fig. 3 we show these PDFs for our galac-
tic model parameters. All parameters can be reconstructed within the setup considered here,
including the parameters associated with the bulge/bar region whose mass profile is con-
strained by the observation of microlensing events performed by the MACHO collaboration.
We also present 2-dimensional marginal posterior PDFs for pairs of functions of the model
parameters obtained analogously to the 1-dimensional PDF in Eq. (4.2). These are shown in
Fig. 4 to emphasize various correlations relating these quantities. As already mentioned it is
particularly relevant in the context of dark matter searches the positive correlation observed
between A − B and ρloc, the local dark matter density, as well as the known correlation
between ρloc and Σ?. Adopting the constraint on A − B reported in Eq. (3.23) and the
estimate of vc(R0) in Eq. (3.24), we find the following mean value for the local dark matter
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Figure 3. 1- and 2-dimensional marginal posterior PDFs for the galactic model parameters. In the off-
diagonal panels the black curves enclose the 68% and 95% credible regions while in the diagonal panels
the black curve is the 1-dimensional PDF and the dotted line corresponds to the mean Likelihood
(see appendix C of Ref. [76] for a definition).

density: ρloc = 0.29 ± 0.035 GeV cm−3, where the reported error corresponds to the stan-
dard deviation. The 68% (95%) credible interval associated with ρloc is [0.25, 0.32] GeV cm−3

([0.22, 0.36] GeV cm−3).
Let us emphasize that the results presented in Figs. 3 and 4 (including the value of ρloc)

are independent of any assumption on the dark matter velocity distribution, in particular on
the anisotropy. Indeed, the observables at disposal provide information only on the spatial
distribution of the dark matter component and not on its distribution in velocity space. This
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Figure 4. 1- and 2-dimensional marginal posterior PDFs for selected functions of the galactic model
parameters. The notation is the same in Fig. 3.

requires additional assumptions as discussed in detail in section 2.
We now focus on our benchmark distribution function introduced in section 2.1 based

on the superposition of a constant-anisotropy part and the Osipkov-Merritt ansatz. This is a
function of the galactic model parameters – determining ρ and Ψ – and of the velocity v of the
dark matter particles. Indeed, in the notation adopted so far v enters both the expression
for E and the one for L. For any given velocity we want to determine the mean value of
the local dark matter distribution function evaluated at that velocity and the corresponding
standard deviation – encoding the astrophysical uncertainties discussed in section 3.2. To
this aim we proceed as follows: first we introduce a finite set of dark matter velocities. For
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Figure 5. Dark matter distribution bands (± 2 standard deviations from the mean) encoding all
the information contained in the dynamical constraints of section 3.2. We show the time averaged
local velocity distribution integrated over angles as defined in Eq. (5.8). The left panel of this figure
has been obtained by applying the procedure described in the text to the set of parameters (w, ra,
γ) determining the blue dashed curve in the left panel of Fig. 1, while the right panel corresponds
to the same analysis performed assuming the set of parameters (w, ra, γ) associated with the red
dotted curve in the left panel of Fig. 1. The blue solid curve is the mean dark matter distribution
function while the black dashed line corresponds to a Maxwell-Boltzmann distribution characterized
by ρloc = 0.3 GeV cm−3 and vc(R0) = 220 km s−1.

each velocity of this set we apply Eq. (4.2) obtaining the 1-dimensional posterior PDF for
the distribution function evaluated at that velocity. For each velocity of the set, the mean of
this PDF is the value of the “mean dark matter distribution function” associated with that
dark matter velocity. The standard deviation of the same PDF gives instead an estimate of
the uncertainty within which the dark matter distribution function is known at the velocity.
Then, applying this procedure to a sufficiently large set of velocities we can construct “dark
matter distribution bands” (rather than functions) encoding all the information contained in
the data, as well as all the sources of uncertainties included in the Likelihood function.

In Fig. 5 we show the time averaged local velocity distribution integrated over angles.
This is the distribution relevant for dark matter direct detection experiments and we give
the precise definition in Eq. (5.8) below. We show bands for the distribution, encoding
the astrophysical uncertainties discussed in section 3.2 obtained adding and subtracting two
standard deviations to the mean distribution function constructed as explained above. The
left panel of this figure has been obtained by applying the procedure described here to the
set of parameters (w, ra, γ) determining the blue dashed curve in the left panel of Fig. 1,
while the right panel of Fig. 5 corresponds to the same analysis performed assuming the set
of parameters (w, ra, γ) associated with the red dotted curve in the left panel of Fig. 1.
For comparison, in Fig. 6 we superimpose the tails of the two bands shown in the panels of
Fig. 5 to the tail of a Maxwell-Boltzmann distribution characterized by ρloc = 0.3 GeV cm−3

and vc(R0) = 220 km s−1 (left and central panel). In the right panel of Fig. 6, instead, we
superimpose in the same plot the tails of the two bands shown in the left and central panels
of the same figure. Therefore, in this plot the gray band corresponds to the left panel of
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Figure 6. In the left (central) panel of this figure we compare the tail of the distribution function
shown in the left (right) panel of Fig. 5 with the tail of a Maxwell-Boltzmann distribution characterized
by ρloc = 0.3 GeV cm−3 and vc(R0) = 220 km s−1. In the right panel, instead, we superimpose in the
same plot the tails of the two bands shown in the left and central panels of this figure. The gray
band corresponds to the left panel while the turquoise band to the central panel. The blue and
orange curves represent the corresponding mean distribution functions while the black dashed line is
associated with the reference Maxwell-Boltzmann distribution.

Fig. 5 while the turquoise band to the right panel of this figure. From the right panel of
Fig. 6 one can see that in the high velocity tail of the dark matter distribution function,
relevant for light WIMP searches, the uncertainties on the galactic model parameters as well
as the uncertainties on the dark matter anisotropy parameter can be simultaneously bracket
considering the upper limit of the gray band and the lower limit of the turquoise band. In
the next section we will use these distribution functions to discuss the impact of anisotropic
dark matter distribution functions on the direct detection of WIMPs.

5 Dark matter direct detection data

5.1 Event rates

The differential rate in events/keV/kg/day for a dark matter particle χ to scatter elastically
in a detector composed of nuclei with mass number A and charge Z, and depositing the
nuclear recoil energy ER is

dR

dER
=
ρloc

mχ

1

mA

∫
v>vmin

d3v
dσA
dER

vf̃det(v, t). (5.1)

Here mA and mχ are the nucleus and dark matter masses, σA the dark matter–nucleus
scattering cross section and v the 3-vector relative velocity between χ and the nucleus,
while v ≡ |v|. f̃det(v, t) is the dark matter velocity distribution in the detector rest frame
normalized to one. It is related to the distribution function f(E , L) (with E and L considered
as functions of r and v) by

f̃det(v, t) =
1

ρloc
f(R0,v + vEarth(t)) , (5.2)

where vEarth(t) is the velocity of the Earth relative to the halo, including the Sun’s motion
in the Galaxy as well as the Earth revolution around the Sun, which introduces the time
dependence. For a dark matter particle to deposit recoil energy ER in the detector a minimal
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velocity vmin is required, restricting the integral over velocities in Eq. (5.1). For elastic
scattering we have

vmin =

√
mAER
2µ2

χA

, (5.3)

where µχA is the reduced mass of the dark matter–nucleus system.
The particle physics enters in Eq. (5.1) through the differential cross section which is

in general a sum of spin-independent and spin-dependent contributions. In this paper we
consider only spin-independent WIMP interactions, for which the differential cross section is

dσA
dER

=
mA

2µ2
χAv

2
σ0
AF

2(ER) , (5.4)

where σ0
A is the total dark matter–nucleus scattering cross section at zero momentum transfer,

and F (ER) is a form factor. For F (ER) we use the Helm [77] form factor. The astrophysics
dependence enters in Eq. (5.1) through the dark matter velocity distribution f̃det(v, t) in the
detector rest frame. Defining the halo integral

η(vmin, t) ≡
∫
v>vmin

d3v
f̃det(v, t)

v
, (5.5)

the event rate is given by

dR

dER
=
ρlocσ

0
AF

2(ER)

2mχµ2
χA

η(vmin, t) . (5.6)

We can also write the halo integral in terms of the dark matter phase-space density function
gχ(v, t),

η(vmin, t) =
1

ρloc

∫ ∞
vmin

dv gχ(v, t) , (5.7)

where

gχ(v, t) = vρloc

∫
dΩvf̃det(v, t) = v

∫
dΩvf(R0,v + vEarth(t)) . (5.8)

5.2 Description of the used data

Let us now discuss the details on how we perform fits to data from various direct detection
experiments. We consider the most recent experimental data sets available from the following
experiments: DAMA, CDMS, XENON100, XENON10, CoGeNT, CRESST, and KIMS.

DAMA: We use the data on the modulation amplitude for the 1.17 ton yr DAMA
exposure given in Fig. 6 of Ref. [35], divided into 12 bins. In our fit we use the signal region
from 2 keVee to 8 keVee. Above this energy range the data is consistent with no modulation.
The signal as a function of energy and time can be written as,

S(E, t) = S0(E) +A(E) cosω(t− t0), (5.9)

where E is the measured energy (in keVee), S0 is the unmodulated signal, A(E) is the annual
modulation amplitude, ω = 2π/1 yr, and t0 = 152 days. Our analysis of the DAMA data is
analogous to those presented in [6, 78, 79].
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The quenching factor of Na, qNa, is an important parameter in the analysis of low mass
WIMPs. A recent measurement of qNa shows a decrease of the quenching factor at lower
energies [80]. This would result in a shift of the allowed region of DAMA sodium in the
cross section versus mass plane towards higher masses, see e.g., [79]. Since qNa is difficult
to measure, there are some uncertainties regarding its measured value. In this work, we use
qNa = 0.3 and qI = 0.09 for the quenching factors of Na and I, respectively, as measured by
the DAMA collaboration [81]. We consider a 10% uncertainty in the value of qNa in our fit.
According to the results of Ref. [82] the effect of ion channeling in NaI is tiny and therefore
we neglect it.

To fit the DAMA data, we construct a χ2 function

χ2
DAMA(mχ, σp) =

i=12∑
i=1

(
Apred
i (mχ, σp)−Aobs

i

σi

)2

, (5.10)

where Aobs
i and σi are the experimental data points and their errors, respectively, from

Fig. 6 of Ref. [35]. The sum is over the 12 energy bins. The best fit point can be found by
minimizing Eq. (5.10) with respect to the WIMP mass mχ, and cross section σp. The allowed
regions in the mass – cross section plane at a given CL are obtained by looking for contours
χ2(mχ, σp) = χ2

min + ∆χ2(CL), where ∆χ2(CL) is evaluated for 2 degrees of freedom (dof),
e.g., ∆χ2(90%) = 4.6 and ∆χ2(99.73%) = 11.8.

CDMS: The CDMS-II collaboration has observed two events with recoil energies of
12.3 keV and 15.5 keV in their data taken with Ge detectors with an exposure of 612 kg days
in four periods between July 2007 and September 2008 [42]. As done in Ref. [83], we use the
maximum gap method from Ref. [84] to set exclusion limits (labeled “CDMS–Ge” in Figs. 7,
9, 10, and 12). We use a constant energy resolution of 0.2 keV, and take into account a linear
efficiency drop from 32% at 20 keV to 25% at 10 keV and 100 keV.

In a modified reanalysis of the CDMS-II data that was collected in eight Ge detectors
between October 2006 and September 2008 [43], the CDMS collaboration lowered the analysis
energy threshold to 2 keV allowing for a larger background. In this analysis, they obtained a
higher sensitivity to WIMPs with masses lower than ∼ 10 GeV. We analyze the low-threshold
data in a similar manner as in Ref. [83], including only bins with a larger predicted number
of events compared to the observed one. The exclusion limit from our analysis is labeled
“CDMS-LT” in Fig. 7, 9, 10, and 12.

Recently, the CDMS collaboration presented an analysis of data taken with Si detectors
with an exposure of 140.2 kg days using four run periods between July 2007 and September
2008 [38] which revealed 3 events in the dark matter search region. The final surface event
background was 0.62 events. Our analysis is similar to the one in Ref. [85]. We use the
extended maximum likelihood method [86] to calculate the allowed parameter region (labeled
“CDMS–Si” in Figs. 7, 9, 10, and 12). To include the background, we rescale the individual
background contributions from Ref. [87], such that 0.41, 0.13, and 0.08 events are expected
from surface events, neutrons, and 206Pb, respectively. We use the detector acceptance from
Ref. [38] and assume an energy resolution of 0.3 keV.

XENON100: The XENON100 experiment uses liquid xenon and measures both ion-
ization and scintillation signals. In the 224.6 live days × 34 kg exposure of XENON100, the
two candidate events observed are consistent with the background expectation of (1.0± 0.2)
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events, and therefore there is no evidence for dark matter interactions [39]. We analyze the
data and derive an exclusion limit using the maximum gap method [84]. The scintillation
light yield, Leff(ER) is one of the important inputs to the exclusion limits from XENON100.
For Leff(ER) we use the the black solid line from Fig. 1 of [88]. In our analysis we take into
account upward fluctuations due to Poisson statistics of events below the threshold, which is
important for the low WIMP mass region.

XENON10: We use the S2 analysis for the XENON10 experiment [40], using results
from a 12.5 live day dark matter search obtained between 23 August and 14 September, 2006.
For the ionization yield, we use the choice of Qy made in Ref. [40] assuming that it would
vanish for ER < 1.4 keV. To derive an exclusion limit we use the maximum gap method.
Our results are consistent with Ref. [85].

CoGeNT: The CoGeNT experiment uses very low threshold germanium detectors. We
fit the unmodulated CoGeNT data shown in the in–set of Fig. 1 of Ref. [36]. This is the
exponential-like irreducible background of events in the bulk of the crystal, after subtracting
the L–shell peaks and a constant spectral component. In the in–set of Fig. 1 of Ref. [36],
black and white data points correspond to two different peak-subtraction methods. Similar
to Ref. [83], we derive our fit by taking the average of the black and white data points, and
to be conservative we use the lowest and highest edges of the error bars to account for this
systematic uncertainty in the fit. We assume that the total excess events are explained by dark
matter. Let us mention, however, that those events might be contaminated by background
activity on the surface of the detector (“surface events”) [89], which will significantly affect
the size and location of the allowed region, see e.g. [79].

The CoGeNT collaboration has also reported an annual modulation signal at low ener-
gies [36], and more recently confirmed that the annual modulation persists with an additional
four months of data acquired [90]. The significance of the singal is weak (slightly above 2σ),
and therefore, we do not use the CoGeNT data on the annual modulation amplitude in this
paper, see e.g. [19, 83] for a discussion.

CRESST: The CRESST-II experiment uses CaWO4 crystals and has completed 730 kg
days of data taking [37]. They find 67 events in the acceptance region where a dark matter
signal is expected. To fit the data from CRESST, we use a method analogous to the one used
in Ref. [79]. In particular, we use publicly available information to fit the total event rate in
each detector module and the overall energy spectrum, without including the light yield for
each event.

KIMS: The KIMS experiment uses an array of 12 CsI scintillators to search for WIMPs.
We use the most recent KIMS result based on an exposure of 24524.3 kg days [41]. KIMS
does not see any events at recoil energies below 8 KeVee and so they exclude the possibility
of explaining the DAMA annual modulation by dark matter particles recoiling on iodine.

Finally, we would like to mention the very recent results from the CDMSlite and MAL-
BEK detectors which search for light WIMPs, although we do not perform fits to their data
in this work. CDMSlite [91] is a calorimetric technique used by the SuperCDMS experiment
that substantially reduces the energy threshold and improves the energy resolution, resulting
in a significantly better sensitivity to light WIMPs with masses < 10 GeV. In the recent
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Figure 7. Constraints on elastic, spin-independent dark matter–nucleon scattering for an isotropic
velocity distribution. The preferred regions of DAMA, CoGeNT, and CRESST (at 90% CL and 3σ),
and CDMS–Si (at 68% and 90% CL) are shown together with constrains from XENON100, XENON10,
CDMS–Ge, and CDMS–LT (at 90% CL). The left panel shows the results for a wide range of dark
matter masses, while the right panel zooms on the low mass region (same color code as in the left
panel).

analysis by CDMSlite, with an exposure of 6 kg days and without any background subtrac-
tion, new limits on the WIMP mass and cross section were obtained for WIMPs of mass < 6
GeV, excluding parts of CDMS–Si and CoGeNT allowed regions.

The Majorana demonstrator [92] uses an array of high purity Ge detectors with sub-
keV energy threshold to search for light WIMPs with masses < 10 GeV. Recently, limits
at the 90% confidence in the WIMP parameter space were presented from 221 day dataset
obtained by MALBEK (Majorana Low-background BEGe Detector at Kurf). The MALBEK
exclusion limits also rule out parts of CDMS–Si and CoGeNT preferred regions.

6 Results

We now move to the analysis of direct detection data in the light of the halo models discussed
above. As a reference point, we consider first an isotropic dark matter velocity distribution.
We adopt the best fit model for the galaxy from the analysis of kinematical data and perform
the Eddington inversion to calculate the velocity distribution (see dashed curves in Fig. 8
below). Fig. 7 shows the corresponding exclusion limits and allowed regions in the plane
of dark matter mass and spin-independent cross section from the experiments discussed in
Section 5.2. The zoom to the low-mass region in the right pannel illustrates the well known
fact that the hints for a positive signal from DAMA, CoGeNT, CRESST, and CDMS–Si
are in tension with limits from XENON10, XENON100, CDMS–Ge, CDMS–LT. We now
revisit this problem considering the anisotropic halo models discussed above, as well as the
uncertainties from the fit to kinematical Milky Way data.
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Figure 8. Velocity distributions for the four halo models discussed in section 2.2 as defined in Tab. 1.
The left pannel shows the time averaged local velocity distribution integrated over angles defined in
Eq. (5.8). The right panel shows the halo integral η as a function of the minimial velocity defined
in Eq. (5.5). The dashed curve in both pannels corresponds to an isotropic velocity distribution. All
curves are based on the same model for the spatial visible and dark mass distributions.

6.1 The impact of anisotropy

First we keep the model for the Milky Way fixed but allow for anisotropic velocity distri-
butions, considering the models discussed in section 2.2. The distribution function gχ(v) as
well as the halo integral η(vmin) relevant for direct detection resulting from the 4 anisotropic
halo models defined in Tab. 1 are shown in Fig. 8. Noting that the models labeled from 1
to 4 represent increasing anisotropy parameters β at large radii (see Fig. 2) we observe that
more radial distributions tend to shift the local velocity distribution to higher velocities. All
4 models have a very similar value of β at the galactocentric distance corresponding to the
location of the Sun of β(R0) ≈ 0.2, whereas they differ most significantly at radii r ∼ 10r−2,
where for the specific example considered here r−2 ≈ 18 kpc and Rvir ≈ 270 kpc. We con-
clude that the degree of anisotropy at radii of order up to the virial radius has significant
impact on the local velocity distribution at our position in the Milky Way. Unfortunately for
large radii the shape of β(r) from N-body simulations has a very wide range (see e.g. Fig. 3
of Ref. [31]), indicating a large variability and dependence on the specific merger history of
the halo.

Fig. 9 shows the effect of the anisotropic velocity distributions on the allowed regions and
exclusion limits from the experiments. In the upper pannels we compare the Model with the
highest (“4”) to the one with the lowest (“1”) anisotropy, whereas the lower pannels compare
Model 4 with the isotropic case (same as shown in Fig. 7). We observe that the anisotropy
effects mainly the low WIMP mass region where experiments probe the high-velocity tail of
the distribution. Increasing β from the isotropic case to Model 4 shifts the regions to smaller
WIMP masses by about 1–2 GeV, since more particles appear in the high-velocity tail. For
large WIMP masses (mχ & 40 GeV) limits become insensitive to the anisotropy, since the
event rates are dominated by the region vmin ' 400 km/s, where the halo integrals η(vmin)
become very similar, compare Fig. 8. Let us note, however, that regions and limits shift in
the same way, and hence the tension between them remains essentially unchanged. We have
also checked that the phase of the annual modulation signal is basically unaffected by the
anisotropic models considered here and remains at day 152 (June 2nd) as in the case of an
isotropic distribution.
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Figure 9. Same as Fig. 7, but using anisotropic halo models defined in Tab. 1. We compare “Model
4” with “Model 1” in the upper panels, and “Model 4” with the isotropic case in the lower panels.
The exclusion limits and allowed regions obtained for “Model 4” are shown by solid lines and in color,
whereas the dashed exclusion curves and the gray regions correspond to “Model 1” in the upper panels
and to the isotropic case in the lower panels.

6.2 Astrophysical uncertainties from the fit to Milky Way data

Let us now investigate the impact on the allowed regions and exclusion limits from taking into
account the variations of the parameters for the Milky Way mass model as allowed by the fit
to the kinematical data. As discussed in section 4 we bracket the astrophysical uncertainties
by considering (a) the upper 2σ limit from the distribution shown in the left panel of Fig. 5
based on a relatively large anisotropy parameter β(r), and (b) the lower 2σ limit from the
distribution in the right panel of Fig. 5 based on a less anisotropic velocity distribution. As
argued in section 4 and illustrated in the right panel of Fig. 6 those two choices cover the
allowed spread in the high-velocity tail of the local dark matter distribution, which is most
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Figure 10. Same as Fig 7, but comparing two anisotropic models including variations of the param-
eters for the Milky Way mass model. Solid exclusion limits and colored regions correspond to the
upper 2σ limit from the distribution shown in the left panel of Fig. 5 (based on the blue dashed curve
for β(r) in Fig. 1 left), whereas the dashed exclusion limits and gray shaded regions correspond to
the lower 2σ limit from the distribution in the right panel of Fig. 5 (based on the red dotted curve
for β(r) in Fig. 1 left).

relevant for the direct detection data in the mχ ∼ 10 GeV region.
The impact on the allowed regions and exclusion limits of changing between these two

models is shown in Fig. 10. From the zoom to the low WIMP mass region in the right panel
we observe a shift in mχ of about 1–2 GeV, similar as the one found in Fig. 9 where the Milky
Way mass model has been kept fixed. We conclude that the main effect on the low-mass
region comes from changing the anisotropy. However, different from Fig. 9 we see in the left
panel of Fig. 10 also a shift of the regions for large WIMP masses. This comes from the effect
of changing the parameters of the Milky Way model within their allowed ranges from the fit.
In particular, an important effect here is the overall normalization of the distribution, i.e.
the uncertainty in the local dark matter density ρloc, which varies within the 95% credible
interval [0.22, 0.36] GeV cm−3. Again we observe that exclusion limits and allowed regions
shift in a similar way, such that the compatibility of them remains basically the same.

6.3 Effect of baryons

As a side remark let us mention here the importance of including the visible (baryonic)
components of the Milky Way in the analysis. Note that our model for the dark matter halo
– the density profile ρ(r) as well as the anisotropy parameter β(r) – is inspired by pure dark
matter N-body simulations, which typically do not include baryonic components. On the
other hand, the visible comonents of the Milky Way as described in section 3.1 are essential
for fitting the kinematical data and in turn constraining the parameters of the dark matter
halo.

In Fig. 11 we show the velocity distribution gχ as well as the relative potential Ψ(r),
where the blue solid curves correspond to our standard best fit model of the Milky Way.
For the red dashed curves we use the same dark matter halo as for the solid curves (based
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Figure 11. Comparison of a dark matter only halo (dashed) and the full mass model of the Milky Way
including baryons (solid). The left panel shows the time averaged local velocity distribution integrated
over angles defined in Eq. (5.8) and the right panel shows the relative gravitational potential Ψ(r),
normalized to zero at the virial radius.

Figure 12. Same as Fig 7, but comparing our standard Milky Way mass model including baryons
(solid curves and colored regions) to the same dark matter halo but without baryonic comonents
(dashed curves and gray shaded regions).

on the Einasto profile) but remove all the baryonic components. We see from the right
pannel that the baryonic components contribute significantly to the gravitational potential
for r . 10 kpc. The left pannel illustrates the impact of baryons on the velocity distribution.
It is intuitively clear that the larger gravitational potential increases the number of dark
matter particles with high velocities (as well as the escape velocity), a trend which is obvious
from the figure. Note that both cases have the same value of the local dark matter density
ρloc. While the radial and transversal velocity dispersions differ significantly, the halos with
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and without baryons lead actually to a rather similar β(r) (we explicitly checked this using
the anisotropy model characterized by w = 0.15, ra = 20 kpc, γ = −0.10).

Fig. 12 shows the effect of the baryons on the interpretation of direct detection data.
Again we find that the low WIMP mass regions is affected by a shift of about 2 GeV, where
again the main effect is the larger population of the high-velocity tail of the distribution due
to the presence of baryons. Note that for the dark matter only halo the DAMA region around
15 GeV (scattering on Na) appears only at 3σ with no allowed region at 90% CL. The reason
is that we draw the allowed regions with respect to the global χ2 minimum which in this
case happens for scattering on iodine (mχ ∼ 100 GeV) with a slightly larger ∆χ2 than in the
other cases considered before.

7 Conclusions

In this work we have investigated the impact of anisotropic dark matter velocity distributions
for direct detection data. We depart from a mass model for the Milky Way including a
parameterization of the visible components as well as the dark matter halo, determining the
parameters of the model by a detailed fit to kinematical data from the Milky Way. Then we
assume a radial profile for the anisotropy parameter β(r) motivated by N-body simulation,
with a close to isotropic velocity distribution at the center of the galaxy and moderately
radial biased distributions at large radii. Self-consistent dark matter distribution functions
are derived from the dark matter mass profile ρ(r) and the total gravitational potential Ψ(r)
by a generalization of the Eddington inversion procedure to anisotropic velocity distributions.
We have investigated the implications for dark matter direct detection by considering the
allowed regions and exclusion limits from current data, focusing on spin-independent elastic
scattering. Our main findings can be summarized as follows:

• The local velocity distribution is affected by the degree of anisotropy at radii up to the
virial radius.

• Radially biased velocity distributions at large galactocentric distances lead to an in-
creased high velocity tail of the local dark matter distribution.

• This leads to a shift of direct detection allowed regions and exlusion limits for WIMP
masses around 10 GeV of about 2 GeV, since in this region the high velocity tail is
sampled.

• Exclusion limits for WIMP masses mχ & 50 GeV are less affected by halo anisotropy.

• Once the full uncertainties from the fit of our Milky Way model are taken into account
also the high WIMP mass limits are affected.

• In general exclusion limits (XENON10, XENON100, CDMS–Ge, CDMS–LT, KIMS)
and allowed regions (DAMA, CoGeNT, CRESST, CDMS–Si) shift in the same way,
and the compatibility cannot be improved.

• We have shown that the baryonic components of the Milky Way play an important
role to determine the local velocity distribution and cannot be neglected when building
self-consistent models for the dark matter halo.
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A Computing the anisotropy parameter

In this appendix we briefly review the calculation of the anisotropy parameter β(r) for distri-
bution functions of the form discussed in this work. Let us first focus on the model discussed
in section 2.1 based on the superposition of constant-β and Osipkov-Merritt distributions.
We consider here a generalized distribution function given by

f(E , L) = G̃(Q)L2γ ; Q = E − L2

2r2
a

. (A.1)

In the limit γ → 0 this expression coincides with the Osipkov-Merritt distribution function,
while for ra → +∞ it converges to the case of a distribution function with constant β(r).
Calculating the anisotropy parameter for this distribution we can thus simultaneously justify
all the formulas for β(r) given in section 2.1. First we need to compute the radial and
tangential velocity dispersions. For the radial velocity disperison σr we find

ρσ2
r (r) = π2γ+5/2 Γ(γ + 1)Γ(3/2)

Γ(γ + 5/2)

× r2γ

(1 + r2/r2
a)
γ+1

∫ Ψ(r)

0
dQ G̃(Q)[Ψ(r)−Q]γ+3/2 , (A.2)

where we used the identity∫ π/2

0
dθ sin2γ+1 θ cos2 θ =

Γ(γ + 1)Γ(3/2)

2Γ(γ + 5/2)
, (A.3)

while for the tangential velocity dispersion (σ2
θ = σ2

t /2) one similarly obtains

ρσ2
θ(r) = π2γ+5/2 Γ(γ + 2)Γ(3/2)

Γ(γ + 5/2)

× r2γ

(1 + r2/r2
a)
γ+2

∫ Ψ(r)

0
dQ G̃(Q)[Ψ(r)−Q]γ+3/2 , (A.4)

where we used the identity ∫ π/2

0
dθ sin2γ+3 θ =

Γ(γ + 2)Γ(3/2)

Γ(γ + 5/2)
. (A.5)

Now, using these expressions in the definition of β(r) one finds

β(r) =
r2 − r2

aγ

r2 + r2
a

, (A.6)
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which in the limit ra → +∞ becomes β(r) = −γ while in the limit γ → 0 one recovers
the Osipkov-Merritt anisotropy parameter given in Eq. (2.9). This proves the expressions
for β(r) given in section 2.1. Using Eqs. (A.2) and (A.4) in their present form one can also
explicitly evaluate Eq. (2.13).

For the phase space density ansatz used in section 2.2 in general the velocity dispersions
have to be calculated numerically. Explicitly the integrals are given as

ρσ2
t =

∫
d3v v2

t f(E , L) = 4π

∫ √2Ψ(r)

0
dv

∫ v

0
dvt

v v3
t√

v2 − v2
t

f(E , L) (A.7)

= 4π

∫ Ψ

0
dE [2(Ψ− E)]3/2k(E)

∫ 1

0
du(1− u2)h(E , L) (A.8)

and

ρσ2
r =

∫
d3v v2

r f(E , L) = 4π

∫ √2Ψ(r)

0
dv

∫ v

0
dvt v vt

√
v2 − v2

t f(E , L) (A.9)

= 4π

∫ Ψ

0
dE [2(Ψ− E)]3/2k(E)

∫ 1

0
duu2 h(E , L) (A.10)

with L =
√

2(Ψ− E)(1− u2)r(Ψ). This involves the numerical calculation of double inte-
grals.
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