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We investigate a simple extension of the Standard Model where the baryon number is a local
gauge symmetry and the cold dark matter in the Universe can be described by a fermionic field
with baryon number. We refer to this scenario as “Baryonic Dark Matter”. The stability of the
dark matter candidate is a natural consequence of the spontaneous breaking of baryon number at
the low scale and there is no need to impose an extra discrete symmetry. The constraints from the
relic density and the predictions for direct detection are discussed in detail. We briefly discuss the
testability of this model using the correlation between the Large Hadron Collider data and possible
results from dark matter experiments.

I. INTRODUCTION

The existence of dark matter in the Universe has mo-
tivated many experimental studies and theoretical spec-
ulations. Today we know that about 26% of the energy
density of the Universe is in form of cold dark matter but
we have no idea about the origin and nature of this type
of matter. There are a lot of theoretical ideas to describe
the properties of the dark matter sector, which can be
as complex as the visible sector. Among the very popu-
lar candidates are the weakly interacting massive parti-
cles which appear in several extensions of the Standard
Model (SM) of particle physics. Thanks to many ex-
perimental collaborations, there are relevant constraints
on the properties of these candidates which play an im-
portant role in ruling out some of the theories for dark
matter. For a review on different dark matter candidates
and experiments see Ref. [1].

We distinguish between baryonic and non-baryonic
matter in the Universe, and we say that the cold dark
matter is non-baryonic. This refers to the fact that it has
to be different from the ordinary matter that is made of
quarks (and leptons). As is well known the quarks are
the only particles in the context of the SM that carry
baryon number, and they form protons and neutrons. In
this article we will discuss a different scenario where the
dark matter carries also baryon number.

Baryon number is an accidental global symmetry of
the renormalizable couplings of the Standard Model La-
grangian, but we know that it has to be broken to explain
the matter–antimatter asymmetry of the Universe. Re-
cently, in Ref. [2], we have proposed the simplest realistic
model where it is possible to have the spontaneous break-
ing of the baryon and lepton numbers. We will not be
concerned with lepton number in this article and we will
discuss only the spontaneous breaking of baryon number.
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See also Refs. [3–7] for earlier attempts to gauge baryon
and lepton numbers.

In this article we focus on a simplified version of the
model in Ref. [2], where there is an interesting connec-
tion between the stability of the dark matter and the
spontaneous breaking of the local baryon number. We
investigate the properties of a fermionic dark matter can-
didate which has baryon number and refer to this type of
scenario as “Baryonic Dark Matter”. We show the relic
density constraints and the predictions for direct detec-
tion experiments. Since this model has only four free
parameters one could hope to test this idea combining
the possible results from the Large Hadron Collider and
dark matter experiments.

This article is organized as follows: In section II we
discuss the theoretical framework, while in section III
we show the correlation between the bounds from direct
detection experiments and the relic density. Additionally,
we discuss a possible test of this model by combining the
efforts at the Large Hadron Collider and dark matter
experiments. We summarize and conclude in section IV.

II. BARYON NUMBER AND DARK MATTER

Recently, we have proposed a simple extension of the
Standard Model where one can understand the sponta-
neous breaking of baryon and lepton numbers at the low
scale [2]. Here, we will discuss a simplified version of this
model, only considering baryon number as a local gauge
symmetry. Therefore, this model is based on the gauge
group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B .

In order to define an anomaly-free theory using this gauge
group, we need to include additional fermions that ac-
count for anomaly cancellation,

ΨL ∼ (1, 2,−1

2
, B1), ΨR ∼ (1, 2,−1

2
, B2), (1)

ηR ∼ (1, 1,−1, B1), ηL ∼ (1, 1,−1, B2), (2)

χR ∼ (1, 1, 0, B1), χL ∼ (1, 1, 0, B2), (3)
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and extend the scalar sector with a new Higgs boson to
allow for a spontaneous breaking of baryon number,

SB ∼ (1, 1, 0,−3). (4)

Here B1 and B2 refer to the baryon numbers of the addi-
tional fermions which are vector-like under the SM gauge
group. From the conditions that ensure the cancellation
of all relevant baryonic anomalies, one finds the following
relation for the baryon numbers of the new fermions:

B1 −B2 = −3. (5)

The relevant interactions of the new fields in the theory
are

−L ⊃ λ1Ψ̄LΨRSB +λ2η̄RηLSB +λ3χ̄RχLSB +h.c. (6)

Notice that one can have terms such as a1χLχLSB and

a2χRχRS
†
B only when B1 = −B2. Here we will stick

to the case where B1 6= −B2. The Yukawa interactions
between the new fields and the Standard Model Higgs
boson are present as well, but they are not relevant for
our main discussion. It is important to notice that the
new Higgs boson must have baryon number −3 in order
to generate vector-like mass for the new fermions. There-
fore, once SB gets a vacuum expectation value breaking
local U(1)B we never generate any operator mediating
proton decay and the scale for baryon number violation
can be as low as a few TeV (or even below). For a review
of the bounds on the mass of a leptophobic neutral gauge
boson see Refs. [8, 9].

In this simple theory, when the local baryon number is
spontaneously broken by the vacuum expectation value
vB of SB , one obtains a Z2 discrete symmetry which pro-
tects the stability of the dark matter candidate. Under
this Z2 the new fermionic fields transform as

ΨL,R → −ΨL,R, ηL,R → −ηL,R, and χL,R → −χL,R.

Therefore, when the lightest new field with baryon num-
ber is neutral, one can have a candidate for the cold dark
matter in the Universe. It is important to mention that
the main idea of having a dark matter candidate with
baryon number was first discussed in Ref. [5].

For simplicity, we will focus on the case when the dark
matter is SM singlet-like and is the Dirac fermion χ =
χL + χR. Since the dark matter has baryon number,
the relevant interactions with the new gauge boson ZB
related to baryon number are

L ⊃ gBχ̄γµZµB (B2PL +B1PR)χ, (7)

where PL and PR are the left- and right-handed projec-
tors, and gB is the gauge coupling related to baryon num-
ber. Of course, the new gauge boson also couples to the
SM quarks, which is crucial to understand the properties
of the dark matter candidate. The leptophobic gauge
boson mass reads as

MZB
= 3gBvB , (8)

while the mass of the SM singlet-like baryonic dark mat-
ter candidate is given by

Mχ = λ3vB/
√

2 <

√
2π

3

MZB

gB
. (9)

This upper limit is coming from the perturbative condi-
tion on the Yukawa coupling λ3, i.e. |λ3|2/4π < 1.

It is important to notice that this model for baryonic
dark matter has only four free parameters:

Mχ, MZB
, gB , and B,

and one needs to satisfy the relic density constraints and
the bounds from direct detection. Here B = B1 + B2 is
the parameter which enters in the predictions for the rel-
evant cross sections. One could imagine that the parame-
ters MZB

and gB can be determined from the discovery of
a leptophobic gauge boson at the Large Hadron Collider.
Therefore, one can say that for a given value of these two
quantities we can find the values of B and Mχ using the
relic density and spin-independent cross section values.
We will discuss in more details the numerical predictions
in the next section in order to appreciate this connection
between collider physics and dark matter experiments.
In the rest of the paper we will neglect the kinetic mix-
ing between U(1)B and U(1)Y , and the mixing between
the SM Higgs and SB .

III. DARK MATTER RELIC DENSITY

The dark matter particle χ can annihilate into two
standard model quarks through the interaction with the
leptophobic gauge boson ZB . The annihilation cross sec-
tion is given by

σv =
∑
q

g4B

√
1− 4M2

q /s

144πs3/2[(s−M2
ZB

)2 + Γ2
ZB
M2
ZB

]

CB
Mχ

, (10)

with

CB =
(
B2

1 +B2
2

) (
s2 + s(2M2

q −M2
χ)− 2M2

χM
2
q

)
+ 6B1B2M

2
χ(s+ 2M2

q ). (11)

Here Mq is the mass of the quarks, s is the square of the
center-of-mass energy and ΓZB

is the decay width of the
leptophobic gauge boson. In the non-relativistic limit,
the above cross section reads as

σv ≈
∑
q

B2g4B(2M2
χ +M2

q )
√

1−M2
q /M

2
χ

24(M2
ZB
− 4M2

χ)2π
≡ σ0. (12)

We neglected the decay width of the new gauge boson for
simplicity. Note that for B1 = −B2, which would allow
for terms leading to Majorana masses for the DM fields
after symmetry breaking, σ0 = 0 and the annihilation
cross section is velocity suppressed.
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FIG. 1: Allowed values for gauge coupling gB vs. the dark
matter mass Mχ when the DM relic density is in the range
0.10 < Ωχh

2 < 0.12. Here we use B = 1 and MZB = 2 TeV.

As is well-known the cold dark matter relic density can
be approximated by

Ωχh
2 =

1.07× 109

GeV

(
xf√

g∗σ0MPl

)
, (13)

where xf = Mχ/Tf is the freeze-out temperature and
MPl is the Planck mass scale equal to 1.22 × 1019 GeV.
The quantity xf can be calculated using the expression

xf = ln

[
0.038

(
g
√
g∗

)
MPlMχσ0

]
− 1

2
ln

{
ln

[
0.038

(
g
√
g∗

)
MPlMχσ0

]}
, (14)

where g is the number of internal degrees of freedom,
and g∗ is the effective number of relativistic degrees of
freedom evaluated around the freeze-out temperature xf .
The current value of the DM relic density provided by
Planck is ΩDMh

2 = 0.1199 ± 0.0027 [10], which we will
use to understand the constraints on our model.

As we have mentioned above the relevant parameters
for our study are the dark matter mass Mχ, the mass
of the new gauge boson MZB

, the gauge coupling gB ,
and the baryon numbers of the new fermionic fields. In
order to illustrate the numerical results we will choose
B = 1 for simplicity and later discuss how one can test
the model for any value of B.

In Fig. 1 we show the allowed region where the DM
relic density is 0.10 < Ωχh

2 < 0.12 in the plane spanned
by the DM mass Mχ and the gauge coupling gB . For
a range of 0.1 < gB < 0.5, the DM mass in the range
750 GeV < Mχ < 990 GeV allows for a DM relic den-
sity around the current value. Notice that a gauge cou-
pling gB in the interval [0.1, 0.5] and MZB

= 2 TeV is
consistent with recent collider studies [8]. One could use
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FIG. 2: Values of the DM relic density Ωχh
2 vs. the dark

matter mass Mχ. The gauge boson mass was chosen to be
MZB = 2 TeV. Blue dots are for values of gB ∈ [0.10, 0.25],
red dots are for values of gB ∈ [0.25, 0.50]. The blue band
shows the allowed range for the DM relic density.

even smaller values for the gauge boson mass because the
collider bounds are not so strong for this type of gauge
bosons.

In order to illustrate the possible values of the relic
density for different values of the free parameters, Fig. 2
shows possible values of the DM relic density for DM
masses Mχ ∈ [700, 1000] GeV for MZB

= 2 TeV.
The blue dots correspond to the solutions when gB ∈
[0.10, 0.25], and the red dots are for values of gB ∈
[0.25, 0.50]. The region of the current relic density mea-
sured by Planck [10] is marked by a blue band. In this
band, many solutions exist. Of course, our DM candidate
could make up only part of the total DM relic density,
and many solutions for Ωχh

2 smaller than the current
value also exist. As one can appreciate from these nu-
merical results, there is no need to be on the resonance
to achieve the correct relic density value and all the so-
lutions can be in agreement with the collider constraints.
In our opinion, the simplicity of this model is very ap-
pealing and one can make predictions for direct detection
as well, which we discuss in the next section.

IV. DIRECT DETECTION

The direct detection of the baryonic dark matter candi-
date is also through the baryonic force. The elastic spin-
independent nucleon–dark matter cross section is given
by

σSIχN =
M2
NM

2
χ

4π(MN +Mχ)2
g4B
M4
ZB

B2. (15)

Notice that the numerical results will be independent of
the matrix elements because the baryon number is a con-
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FIG. 3: Spin-independent elastic DM–nucleon cross section
σSIχN as a function of the baryonic dark matter mass Mχ.
The exclusion limits of XENON100 and projected values for
XENON1T are shown.

served current in the theory. This is a nice feature of the
model because we do not introduce any extra unknown
parameter coming from the matrix elements, as one has
in several dark matter models such as the Higgs portal.

In order to show our numerical results we can write
the above expression as

σSIχN (cm2) = 3.1×10−41
( µ

1 GeV

)2 (1 TeV

rB

)4

B2 cm2.

(16)
where µ = MNMχ/(MN +Mχ) is the reduced mass and
rB = MZB

/gB .
The numerical results for the spin-independent elastic

DM–nucleon cross section is shown in Fig. 3 as a function
of the dark matter mass Mχ. For definiteness, we choose
the same value B = 1 as in the analysis for the relic den-
sity changing MZB

between 500 GeV and 5 TeV, while gB
changes between 0.1 and 0.5. One can appreciate that the
XENON100 bound [11] on σSIχN significantly cuts into the
parameter space and allows for DM masses larger than
about 400 GeV. The projected values for XENON1T even
constrain the range of dark matter masses more tightly,
and allow for values larger than 700 GeV. Therefore, one
can say that in our model we can have several consistent
scenarios in agreement with the relic density constraints
and the XENON100 bounds. We have to say that thanks
to the XENON100 collaboration we can rule out a large
fraction of the parameter space and with XENON1T we
will be able to rule out most of the solutions for the dark

matter mass below 1 TeV in case of no discovery.

Let us discuss the possible correlation between possi-
ble discoveries at the Large Hadron Collider and in dark
matter experiments. At the Large Hadron Collider we
could discover the new neutral gauge boson associated to
the breaking of the local baryon number, the gauge boson
ZB . Therefore, one could know about the mass MZB

and
the gauge coupling gB . Assuming that our dark matter
candidate describes all the relic density in the Universe
and for a given value of the spin-independent cross sec-
tion one can solve for the dark matter mass Mχ and the
baryon number B. Then, we could predict the values
for the production cross section of a dark matter pair
and a energetic jet, relevant for the monojet searches at
the Large Hadron Collider. A possible benchmark sce-
nario is when gB = 0.2, MZB

= 2 TeV, Mχ = 955 GeV,
and σSIχN ≈ 3.1 × 10−45 cm2. In summary, one could
say that this theory provides a scenario for dark matter
which could be fully tested in the future combining dark
matter and collider experiments.

V. SUMMARY AND OUTLOOK

We have proposed a simple theory for dark matter
where the cold dark matter candidate has spin one-half
and baryon number. We refer to this type of dark mat-
ter scenario as “Baryonic Dark Matter”. The baryon
number is defined as a local gauge symmetry which is
spontaneously broken at the low scale and the stabil-
ity of the dark matter is a natural consequence coming
from symmetry breaking. This theory for dark matter
has only four free parameters which determine the relic
density and predictions for the spin-independent cross
section relevant for direct detection experiments.

We have shown several numerical results in order to
illustrate the possibility to have a consistent scenario
for cosmology in agreement with the bounds from dark
matter experiments. One could say that this theory
provides a scenario for dark matter which could be
fully tested in the future combining dark matter and
collider experiments. In a future publication we will
investigate the possibility to test this theory at the
Large Hadron Collider and the predictions for indirect
detection experiments.
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