1	Supplementary material for paper:
2	Origins of the solar radiation biases over the Southern Ocean in
3	CFMIP2 models
4	A. Bodas-Salcedo * , K. D. Williams, M. A. Ringer
	Met Office Hadley Centre, Exeter, United Kingdom
5	I. BEAU
	Météo-France, Toulouse, France
6	J. N. S. COLE
	Environment Canada, Toronto, Canada
7	JL. DUFRESNE
	LMD/IPSL, CNRS, Université Pierre et Marie Curie, Paris, France
8	T. Koshiro
	Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
9	B. Stevens
	Max Planck Institute for Meteorology, Hamburg, Germany
10	Z. WANG
	Beijing Climate Center, China Meteorological Administration, China

11

Т. Үоконата

National Institute for Environmental Studies, Tsukuba, Japan

^{*}*Corresponding author address:* A. Bodas-Salcedo, Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, United Kingdom.

E-mail: alejandro.bodas @metoffice.gov.uk

12 List of Figures

13	1	Cyclone composite of the shallow cumulus cluster: (left column) contribution	
14		of the cloud regime to the mean composite RSR, (center column) relative	
15		frequency of occurrence of the regime, and (right column) average RSR when	
16		the regime occurs. Thus the left column is the product of the other two. The	
17		first two rows show the results from CERES and ISCCP, and the other rows	
18		the results for the models analysed in Section 2.	2
19	2	As Figure 1, but for the transition cluster.	3
20	3	As Figure 1, but for the stratocumulus cluster.	4
21	4	As Figure 1, but for the mid-level cluster.	5
22	5	As Figure 1, but for the frontal cluster.	6
23	6	As Figure 1, but for the cirrus.	7
24	7	As in Figure 1, but for the thin cirrus regime.	8

FIG. 1. Cyclone composite of the shallow cumulus cluster: (left column) contribution of the cloud regime to the mean composite RSR, (center column) relative frequency of occurrence of the regime, and (right column) average RSR when the regime occurs. Thus the left column is the product of the other two. The first two rows show the results from CERES and ISCCP, and the other rows the results for the models analysed in Section 2.

FIG. 2. As Figure 1, but for the transition cluster.

FIG. 3. As Figure 1, but for the stratocumulus cluster.

FIG. 4. As Figure 1, but for the mid-level cluster.

FIG. 5. As Figure 1, but for the frontal cluster.

FIG. 6. As Figure 1, but for the cirrus.

FIG. 7. As in Figure 1, but for the thin cirrus regime.